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Abstract—This paper proposes an interactive multi-objective
evolutionary algorithm (MOEA) that attempts to learn a value
function capturing the users’ true preferences. At regular in-
tervals, the user is asked to rank a single pair of solutions.
This information is used to update the algorithm’s internal value
function model, and the model is used in subsequent generations
to rank solutions incomparable according to dominance. This
speeds up evolution towards the region of the Pareto front most
desirable to the user. We take into account the most general
additive value function as a preference model, and we empirically
compare different ways to identify the value function that seems
to be most representative with respect to the given preference
information, different types of user preferences, and different
ways to use the learned value function in the MOEA. Results
on a number of different scenarios suggest that the proposed
algorithm works well over a range of benchmark problems and
types of user preferences.

Index Terms—Evolutionary Multiobjective Optimization, In-
teractive Procedure, Preference Learning, Ordinal Regression

I. INTRODUCTION

REAL life decision problems usually involve considera-

tion of multiple conflicting objectives. For example, in

portfolio optimization, one would like to maximize return but

minimize risk, and in resource-constrained project scheduling,

one might want to minimize project duration and resource

consumption. In such cases, usually there is no single solu-

tion which simultaneously optimizes all objectives. Instead,

without any additional preference information, there is a set

of Pareto-optimal1 solutions (also called Pareto front) which

have to be considered equivalent.

Multi-objective Evolutionary Algorithms (MOEAs) usually

try to approximate the entire Pareto front. This allows the deci-

sion maker (DM, sometimes also called user) to look at all the

generated solutions and identify the most preferred. However,

it may be beneficial to integrate preference information into

the MOEA for the following reasons.

1) Instead of a diverse set of solutions, many of them

clearly irrelevant to the DM, a search bias based on the

DM’s partial preferences will provide a more suitable
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versity of Technology, Poland (email: piotr.zielniewicz@cs.put.poznan.pl

1A solution is Pareto-optimal (also called efficient or non-dominated) if
there is no other feasible solution which would be at least as good on all
objectives while being strictly better on at least one objective.

sample of all Pareto optimal alternatives. It could either

be a smaller set of only the most preferred solutions,

or a more fine-grained resolution of the most preferred

parts of the Pareto front.

2) By focusing the search onto the most preferred part of

the objective space, we expect the optimization algo-

rithm to find these solutions more quickly.

3) As the number of objectives increases, it becomes more

and more difficult to identify the complete Pareto front.

This is partly because of the increasing number of

Pareto optimal solutions, but primarily because with an

increasing number of objectives, an increasing portion of

all feasible solutions becomes non-dominated, rendering

dominance as selection criterion useless [1]. Partial

user preferences re-introduce the necessary selection

pressure.

Based on the above considerations, the goal is no longer to

generate a good approximation of all Pareto optimal solutions,

but a small set of solutions that contains the DM’s preferred

solution with the highest probability.

If the DM is involved in the multiobjective optimization

process, then the preference information provided by the

DM can be used to focus the search on the most preferred

part of the Pareto front. This idea stands behind Interactive

Multiobjective Optimization (IMO) methods proposed a long

time before Evolutionary Multiobjective Optimization (EMO)

has emerged (see, e.g., [2], [3], [4]).

Recently, it became clear that merging the IMO and EMO

methodologies should be beneficial for the multiobjective

optimization process [5]. There are many ways to integrate

user preferences into MOEAs. In this paper, we proposes the

Necessary preference enhanced Evolutionary Multiobjective

Optimizer (NEMO) framework, which combines evolution-

ary multiobjective optimization with an interactive procedure

based on so-called ordinal regression (described in the next

Section). Ordinal regression usually builds preference models

compatible with preference information from holistic compar-

isons of solutions.

It has first been applied to EMO in a methodol-

ogy called NEMO (Necessary preference-based Evolutionary

Multiobjective Optimizer) presented in [6], [7]. But there are

also other ways of combining EMO and ordinal regression,

and here we propose to categorize the combinations into the

following three variants:

• NEMO-0: a single compatible value function is used to

rank solutions in the population. Note that there is usually

more than one compatible value function, so the question

arises (and is addressed in this paper) which one to pick.
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• NEMO-I: the whole set of compatible value functions is

considered and the dominance relation used in NSGA-II

to rank solutions is replaced by the necessary preference

relation of robust ordinal regression. This is the proposal

put forward in [6], [7].

• NEMO-II: the whole set of compatible value functions

is also considered, but differently from NEMO-I, the

solutions in the population are ranked according to a score

calculated as the max-min difference of values between

a given solution and all other solutions in the population,

for the whole set of compatible value functions.

The previously proposed NEMO-I approach, while theoret-

ically very elegant, has two drawbacks. First, at least with the

very flexible additive monotonic value function model used

in [6], [7] and also here, a lot of preference information

is required to learn a useful model. Second, it requires a

substantial computational overhead, as O(n2) linear programs

have to be solved in every iteration to rank the n individuals,

restricting its practical use to problems with very expensive

fitness function evaluations. NEMO-0 avoids both of these

problems, but leaves the question of how to pick the most

helpful value function among all compatible value functions.

In this paper, we focus on NEMO-0, describe its methodology

and the procedure, compare various ways of selecting a value

function, benchmark it against competitive models from the

literature and discuss empirical results.

The paper is organized as follows. The next section provides

a brief introduction to ordinal regression, followed by an

overview of existing interactive EMO/IMO hybrids in Sec-

tion III. Section IV describes the basic steps of NEMO-0.

Some empirical results are reported in Section V. The paper

concludes with a summary and some ideas for future research.

II. ORDINAL REGRESSION

To explain ordinal regression, we consider a Multiple Crite-

ria Decision Aiding (MCDA) problem (for a comphrehensive

collection of state-of-the-art surveys see [8]) concerning a

finite set of alternatives A = {a1, . . . , am}, evaluated on

n criteria (called objectives in optimization) from family

F = {g1, . . . , gn}, with gi : A → R, i = 1, . . . , n. Let

I = {1, . . . , n} denote the set of criteria indices. A criterion

gi ∈ F can be related to preferences in the following ways:

• gi can be a gain-type criterion, i.e., increasing with

respect to the preferences, so that for any a ∈ A,

increasing gi(a) will make a more preferred;

• gi can be a cost-type criterion, i.e., decreasing with re-

spect to the preferences, so that for any a ∈ A increasing

gi(a) will make a less preferred

• gi can be a mixed-type criterion, i.e. increasing or de-

creasing with respect to the preferences in different parts

of its value set

For the sake of simplicity, in the following we shall consider

only gain-type criteria and cost-type criteria.

Let Gi denote the value set (scale) of criterion gi, i ∈ I .

Consequently, the Cartesian product of all Gi’s,

G =
∏n

i=1 Gi,

represents the objective space, and x ∈ G denotes a vector

profile of an alternative in this space. We consider a weak

preference relation % on X which means, for each pair of

vectors, x, y ∈ G,

x % y ⇔ “x is at least as good as y”.

This weak preference relation can be decomposed into its

asymmetric and symmetric parts, as follows,
1) x ≻ y ≡ [x % y and not y % x] ⇔ “x is preferred to y”,

and

2) x ∼ y ≡ [x % y and y % x] ⇔ “x is indifferent to y”.

From a pragmatic point of view, it is reasonable to assume

that Gi ⊆ R, for i = 1, . . . , n, which does not exclude Gi

from being a number-coded ordinal scale. More specifically,

we shall assume that the evaluation scale on each criterion

gi is bounded, such that Gi = [αi, βi], where αi, βi,

αi < βi are the worst and the best (finite) evaluations in

case gi is a gain-type criterion, and, the best and the worst

evaluations in case gi is a cost-type criterion, respectively.

Thus, gi : A → Gi, i ∈ I . Therefore, each alternative

a ∈ A is associated with an evaluation vector denoted by

g(a) = (g1(a), g2(a), . . . , gn(a)) ∈ G.

With respect to set A, taking into account criteria from G,

many MCDA methodologies have been proposed to suggest

to the DM answers to one of the following questions: (i)

what is the subset of the best alternatives in A, (ii) how

to assign alternatives from A to pre-defined and preference

ordered classes, or (iii) how to rank the alternatives from A

from the best to the worst.

Among many preference models considered in the literature,

the most popular is some value function U : G → R represent-

ing the weak preference relation % in the sense that, for all

x, y ∈ G

U(x) ≥ U(y) if and only if x % y.

Like other preference models, the value function U of a

DM is unknown a priori. A direct elicitation of this function

from a DM is counterproductive in real-world decision aid-

ing situations because of the high cognitive effort required.

Eliciting indirect preferences in the form of holistic pairwise

comparisons of some reference or training alternatives is much

less demanding of cognitive effort. This kind of preference

information is given as decision examples. A reverse search

of the preference model from decision examples is done

by so-called ordinal regression (also called disaggregation-

aggregation approach). The preference model found by ordinal

regression is compatible with the given preference information,

i.e., it restores the holistic pairwise comparisons made by the

DM. Finally, it is used on the whole set A of alternatives in

order to compare them and obtain a recommendation for the

decision problem at hand, which within NEMO is the ranking

of solutions of a multiple objective optimization problem and

the selection of a set of solutions considered as the best.

The ordinal regression paradigm emphasizes the discovery

of intentions as an interpretation of actions rather than as

a priori position, which was called by March the posterior

rationality [9]. It has been known for at least fifty years in
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the field o f m ultidimensional a nalysis. I t i s a lso concordant 
with the induction principle used in machine learning. This 
paradigm has been applied within the two main MCDA 
approaches: those using a value function as preference model 
[10], [11], [12], [13], and those using an outranking relation 
as preference model [14], [15]. This paradigm has also been 
used since the mid nineties in MCDA methods involving a 
new, third family of preference models - a set of dominance 
decision rules induced from rough approximations of holistic 
preference relations [16].

The most well known ordinal regression methodology is 
the UTA (UTilités Additives) method proposed by Jacquet-

Lagrèze and Siskos [12], which aims at inferring one or more 
additive value functions from a given ranking on a reference 
set of alternatives AR. The method uses linear programming 
to construct the function so that the ranking obtained on AR 

is as consistent as possible with the given preferences.

The criteria aggregation model in UTA is assumed to be an 
additive value function of the following form: for any a ∈ A,

U [g(a)] =

n
∑

i=1

ui[gi(a)] (1)

subject to monotonicity and normalization constraints:







































∑n

i=1 ui(βi) = 1
ui(gi(a)) ≥ ui(gi(b)) if gi(a) > gi(b)

and gi is a gain-type criterion,

ui(gi(a)) ≥ ui(gi(b)) if gi(a) < gi(b)
and gi is a cost-type criterion,

∀a, b ∈ A, i = 1, . . . , n
ui(αi) = 0, i = 1, . . . , n.

(2)

where ui, i = 1, · · · , n, are monotonic real valued functions,

named marginal value or utility functions, normalized between

0 and 1. αi and βi are the worst and the best considered

values of criterion gi in case of a gain-type criterion, and

the best and the worst considered values in case of a cost-

type criterion, respectively. In the original version of UTA, the

marginal value functions are supposed to be piecewise-linear,

with a pre-defined number of linear pieces. This assumption

has been relaxed in [17], [18], [19], where ui are allowed to

be general monotonic.

Both the marginal and the comprehensive value functions

have the monotonicity property which, in the case of the

comprehensive value function, induces the following property:

for any a, b ∈ A,

{

U [g(a)] > U [g(b)] ⇔ a ≻ b (preference)

U [g(a)] = U [g(b)] ⇔ a ∼ b (indifference)
(3)

Since linear programming does not permit to deal with

constraints expressing that a quantity should be strictly greater

than another one, the first of the above constraints has to be

rewritten as

U [g(a)] ≥ U [g(b)] + ε ⇔ a ≻ b (4)

with ε being a small positive quantity.

The UTA method infers one additive value function U

compatible with the preference of the DM, i.e. satisfying

constraints (3), together with monotonicity and normalization

constraints (2).

Of course, the existence of such a preference model assumes

preferential independence of the criteria for the DM [20]. In

case this is not satisfied, i.e. the preferences % of the DM

cannot be represented by the value function (1), [12] suggests

to select the value function U minimizing the sum of deviation

errors in (3) or minimizing the number of ranking errors in

the sense of Kendall or Spearman distance.

Usually, among the many sets of parameters of a preference

model compatible with the preference information, only one

specific set is used to give a recommendation on a set of

alternatives. For example, among many value functions repre-

senting pairwise comparisons of some alternatives made by the

DM, only one value function is finally used to recommend the

best choice or rank the alternatives. In case only one instance

of the compatible preference model is considered we shall

speak of Classical Ordinal Regression.

In the literature, several methods have also been suggested

for selecting one value function that can be considered as

particularly representative and that we call in the following

the representative value function:

• MDVF: [21] suggests to select the Most Discriminating

Value Function (MDVF) being the one that maximizes

the value of ε in (4).

• MSCVF: [22] suggests to select the Minimal Slope

Change Value Function (MSCVF), that is the value

function U that minimizes ρ satisfying constraints (1),

(2) and (3) and constraints
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where x
A,1
i < x

A,2
i . . . < x

A,ti
i are the values assumed

by alternatives a ∈ A with respect to criterion gi, i =
1, . . . , n (of course, x

A,1
i = αi and x

A,ti
i = βi in case

of gain-type criterion, and x
A,1
i = βi and x

A,ti
i = αi in

case of cost-type criterion).

• MSVF: As a new proposal, in our experiments we shall

consider the Maximal Sum of the Scores Value Function

(MSVF). This value function maximizes the sum of the

scores assigned to alternatives from A, i.e., the value

function U that maximizes
∑

a∈A U [g(a)].

Note that the MSCVF and MSVF approaches require to

specify an ε for the constraints ??. We simply identify the

maximum compatible εm first with the LP termed PRVF

below, and then use ε = 0.001εm to determine the MSCVF

or MSVF.

Since the choice of one among many sets of parameters

of the preference model compatible with the preference infor-

mation is rather arbitrary, Robust Ordinal Regression (ROR)

has been proposed with the aim of taking into account all the
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sets of parameters compatible with the preference information 
given by the DM [18], [17], [19].

As a result of considering the whole set of compatible 
instances of the preference model, ROR takes into account 
necessary preference relation that holds for two alternatives 
a, b ∈ A if and only if a is at least as good as b according 
to all instances of the preference model compatible with the 
preference information.

The necessary preference relation can be considered as 
robust with respect to the preference information because a 
given pair of alternatives compares in the same way whatever 
the instance of the preference model compatible with the 
preference information.

Example. Let us suppose that there are four solutions, 
called a1, a2, a3 and a4, evaluated by four objective functions 
g1, g2, g3 and g4 to be minimized (cost-type criteria). For the 
sake of simplicity, we suppose that each objective function 
gi can take one of four values for each solution ah, i.e. 
gi(ah) ∈ {1, 2, 3, 4}, i = 1, 2, 3, 4; h = 1, 2, 3, 4. The 
performance matrix of the four solutions is shown in Table 
I.

TABLE I
PERFORMANCE MATRIX OF THE FOUR SOLUTIONS

g1 g2 g3 g4
a1 4 2 2 4
a2 3 1 1 3
a3 1 3 1 3
a4 2 4 4 2

Now, suppose that the DM evaluates the solutions in accor-

dance with her value function having the following form:

UDM (ai) =

Max{(5−g1(ai))(5−g4(ai))+0.5, (5−g2(ai))(5−g3(ai))}.

If for the DM ai is preferred to aj , then

UDM (ai) > UDM (aj),

while if ai is indifferent with aj , then

UDM (ai) = UDM (aj), i, j = 1, 2, 3, 4.

In our example, the DM has the following preferences on

the set of the four solutions:

a4 ≻ a1 ≻ a3 ∼ a2

We also assume that this preference information has been

given gradually, in two iterations. In the first iteration, the DM

provided the preference information in the following order:

1) solution a4 is preferred to solution a1,

2) solution a1 is preferred to solution a2,

3) solution a4 is preferred to solution a2.

We want to verify whether it is possible to represent pref-

erences 1)-3) using an additive value function, i.e., a function

that evaluates the solutions according to the following formula:

for ah, h = 1, 2, 3, 4,

U(ah) = u1(g1(ah))+u2(g2(ah))+u3(g3(ah))+u4(g4(ah)),

where ui(·), i = 1, 2, 3, 4, is a non-increasing marginal

value function and U(ah) > U(ak) if ah is preferred to

ak, h, k = 1, 2, 3, 4. In order to obtain one value function

U(·) representing the above preferences, one has to solve

the following Linear Programming (LP) problem (PRVF -

Preference Representing Value Function)

max ε

(PRVF)







































ui(gi(ah)) ≥ ui(gi(ak))
if gi(ah) < gi(ak), i = 1, 2, 3, 4; h, k = 1, 2, 3, 4

U(a4) ≥ U(a1) + ε

U(a1) ≥ U(a2) + ε

U(a4) ≥ U(a2) + ε

ui(4) = 0 i = 1, 2, 3, 4
u1(1) + u2(1) + u3(1) + u4(1) = 1

whose unknown variables are ui(gi(ah)), i = 1, 2, 3, 4 and

h = 1, 2, 3, 4, and ε. If the solution of (PRVF) is positive (as in

our case where max ε = 0.33) there exist value functions U(·)
representing the DM’s preferences; we call them compatible

value functions.

The most discriminating value function, denoted by

UMDV F (·), is that compatible value function which enhances

the DM’s preferences by maximizing the minimal difference

between the values of solutions ah and ak, whenever ah is

preferred to ak.

Note that the above PRVF problem is equivalent to the fol-

lowing (MDVF - Most Discriminant Value Function) problem:

max minh,k∈{1,2,3,4}:ah≻ak
U(ah)− U(ak)

(MDVF)







































ui(gi(ah)) ≥ ui(gi(ak))
if gi(ah) < gi(ak), i = 1, 2, 3, 4, h, k = 1, 2, 3, 4

U(a4) ≥ U(a1) + ε

U(a1) ≥ U(a2) + ε

U(a4) ≥ U(a2) + ε

ui(4) = 0 i = 1, 2, 3, 4
u1(1) + u2(1) + u3(1) + u4(1) = 1

whose unknown variables are ui(gi(ah)), i = 1, 2, 3, 4 and

h = 1, 2, 3, 4. More precisely, u⋆
i (gi(ah)) and ε⋆ constitute

an optimal solution of the PRVF problem if and only if

u⋆
i (gi(ah)) form an optimal solution of the MDVF problem,

and in this case

ε⋆ = max minh,k∈{1,2,3,4}:ah≻ak
U(ah)− U(ak).

The most discriminating value function UMDV F (·) is pre-

sented in Table II. Here, the table is a complete representation

of the value function. For a continuous scale, we would simply

use linear interpolation to assign values to further alternatives.

Table III presents values assigned to solutions a1, a2, a3 and

a4 by the value function UMDV F (·).

TABLE II
MOST DISCRIMINATING VALUE FUNCTION

gi(a) = 1 2 3 4
u1(·) 0.67 0.67 0 0
u2(·) 0 0 0 0
u3(·) 0.33 0.33 0 0
u4(·) 0 0 0 0
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TABLE III
VALUES ASSIGNED TO THE SOLUTIONS BY THE MOST DISCRIMINANT

VALUE FUNCTION

u1(g1(a)) u2(g2(a)) u1(g1(a)) u1(g1(a)) U(a)
a1 0 0 0.33 0 0.33
a2 0 0 0 0 0
a3 0.67 0 0.33 0 1
a4 0.67 0 0 0 0.67

The min-max slope change value function UMSCV F (·),
computed using a fixed threshold ε = 0.1, is given in Table IV

and the values assigned by UMSCV F (·) to the solutions are

presented in Table V. The min-max slope change is ρ⋆ = 0.15.

Analogous values are shown in Tables VI and VII for the

maximum sum of scores value function UMSV F (·) computed

again with a fixed threshold ε = 0.1.

TABLE IV
MIN-MAX SLOPE CHANGE VALUE FUNCTION

gi(a) = 1 2 3 4
u1(·) 0.72 0.33 0.09 0
u2(·) 0 0 0 0
u3(·) 0.27 0.23 0.04 0
u4(·) 0 0 0 0

TABLE V
VALUES ASSIGNED TO THE SOLUTIONS BY THE MIN-MAX SLOPE CHANGE

VALUE FUNCTION

u1(g1(a)) u2(g2(a)) u1(g1(a)) u1(g1(a)) U(a)
a1 0 0 0.23 0 0.23
a2 0.09 0 0.04 0 0.13
a3 0.72 0 0.27 0 1
a4 0.33 0 0 0 0.33

TABLE VI
MAXIMUM SUM OF SCORES VALUE FUNCTION

gi(a) = 1 2 3 4
u1(·) 0.55 0.55 0.35 0
u2(·) 0 0 0 0
u3(·) 0.45 0.45 0 0
u4(·) 0 0 0 0

TABLE VII
VALUES ASSIGNED TO THE SOLUTIONS BY THE MAXIMUM SUM OF -

SCORES VALUE FUNCTION

u1(g1(a)) u2(g2(a)) u1(g1(a)) u1(g1(a)) U(a)
a1 0 0 0.45 0 0.45
a2 0.35 0 0 0 0.35
a3 0.55 0 0.45 0 1
a4 0.55 0 0 0 0.55

Let us suppose now that in the second iteration, the DM

has added a new piece of preference information:

4) s4 is preferred to s3.

Thus, we have to add the constraint U(s4) ≥ U(s3) + ε to

problem (PRVF), obtaining problem (PRVF1). For (PRVF1)

we obtain max ε = 0. Thus, even though the DM provided

accurate and consistent preference information, there is no

additive value function that can represent all the four items

of preference information given by the DM. In other words,

even the additive preference model is not flexible enough to

represent the user’s preferences. In order to enable represen-

tation of the most recently given preference information, we

have to remove some pairwise preferences given by the DM,

starting from the oldest, until we are able to represent again

the remaining preferences. In this example, it is sufficient to

discard the pairwise preference comparisons 1) (“solution s4
is preferred to solution s1”) and 2) (“solution s1 is preferred to

solution s2”). The obtained value function represents pairwise

comparisons 3) (“solution s4 is preferred to solution s2”) and

4) (“solution s4 is preferred to solution s3”). The most dis-

criminating value function UMD(·) thus obtained is presented

in Table VIII while Table IX gives the values assigned by the

value function UMD(·) to solutions s1, s2, s3 and s4.

TABLE VIII
MOST DISCRIMINATING VALUE FUNCTION REPRESENTING PAIRWISE

COMPARISONS 3) AND 4)

1 2 3 4
u1(·) 0.5 0.5 0 0
u2(·) 0 0 0 0
u3(·) 0 0 0 0
u4(·) 0.5 0.5 0 0

TABLE IX
VALUES ASSIGNED TO THE SOLUTIONS BY THE MOST DISCRIMINANT

VALUE FUNCTION REPRESENTING PAIRWISE COMPARISONS 3) AND 4)

u1(g1(s)) u2(g2(s)) u1(g1(s)) u1(g1(s)) U(s)
s1 0 0 0 0 0
s2 0 0 0 0.5 0.5
s3 0.5 0 0 0 0.5
s4 0.5 0 0 0.5 1

III. INTERACTIVE EVOLUTIONARY MULTIOBJECTIVE

OPTIMIZATION

There are various ways in which user preferences can be

incorporated into EMO, and over recent years, there has been

a surge of publications on this topic. The methods can be

grouped, for example, according to the kind of information

asked from the DM, such as a reference point (e.g., [23],

[24], [25]), maximal and minimal trade-offs [26], desirability

functions [27] or pairwise comparisons of solutions (e.g.,

[28]).

Most papers assume that partial preference information is

provided a priori, i.e., before the optimization run. In principle,

however, all these preference-based MOEAs can be run in a

quasi interactive fashion: The DM is asked for some preference

information, then the MOEA is run and a set of solutions is

returned upon which the DM is allowed to alter their pref-

erence information and the run is continued. In this case, the

user is fully responsible for specifying and refining preference

information. Apart from the solutions maintained from one

iteration to the next, there is no learning or accumulation

of knowledge in these algorithms. It can be expected that

the algorithm will converge to the solutions corresponding to

the final preference information provided, independent of the

history of the search.
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Deb and Chaudhuri [29] propose an interactive decision 
support system called I-MODE that implements an interactive 
procedure built over a number of existing EMO and classical 
decision making methods. The main idea of the procedure is 
to allow the DM to interactively focus on interesting region(s) 
of the Pareto front. The DM has several options to focus the 
search on the desired regions. For example, he/she may use a 
weighted sum approach, a value function based approach, or 
trade-off information. The preference information is then used 
by an MOEA to generate new solutions in the most preferred 
regions.

Truly interactive MOEAs try to learn from the interaction 
with the user, and accumulate preference information over 
time. Some examples include the Territory Defining Algorithm 
by Köksalan and Karahan [30] or the interactive MOEA/D by 
Gong et al. [31].

Since we propose an algorithm that attempts to learn the 
user’s value function, the following will focus on previous 
work based on a similar line of thought. It is categorized into 
approaches that attempt to find a  s ingle v alue f unction (as 
usually in ordinal regression), and those that work with a set 
of value functions (as does robust ordinal regression).

A full survey is out of the scope of this paper, and the 
interested reader is referred to the corresponding survey papers 
[32], [33], [34], [35].

A. Learning a value function model

Some approaches use the elicited preference information to

derive a single value function to represent the user preferences,

similar to what is usually done in classical ordinal regression.

Value function models can have different complexity, ranging

from simple linear functions through general additive forms, to

non-parametric approaches such as artificial neural networks

or support vector machines. Most approaches simply use the

derived value function for ranking individuals, sometimes as

secondary criterion after non-dominance, but other uses can

also be found.

Phelps and Köksalan [36] proposed an interactive evolution-

ary algorithm that periodically asks the DM to rank pairs of

solutions. Assuming a linear model (actually, the objectives

are modified before the optimization to the squared distance

from a reference value, which effectively results in ellipsoidal

indifference curves of the value function), these preferences

are turned into constraints for possible weights. For example,

if solution a is preferred over b and the objectives are to be

minimized (cost-type criterion), it is clear that

n
∑

k=1

wk(gk(a)− gk(b)) < 0. (6)

The method determines the most discriminating (in the

sense of MDVF) linear value function compatible with the

preference information. As explained in Section II, the most

discriminating value function can be obtained by solving a

linear program (LP). The resulting value function is then

used for ranking individuals in the evolutionary algorithm that

works as a single objective evolutionary algorithm between

user interactions. If the LP is overconstrained and no fea-

sible solution is found, the oldest preference information is

discarded. Since this method uses LP to determine the value

function, it is computationally efficient. Its limiting factor is

the restriction on linear models.

A very similar idea is used by Barbosa and Barreto [37],

but instead of an LP, a second evolutionary algorithm is used

to determine a compatible linear value function.

Deb et al. [38] derive a polynomial value function model.

The user is shown a set of (five in the paper) evenly spread

Pareto-optimal solutions and asked to (at least partially) rank

them. Then, the most discriminating value function is deter-

mined. However, because a polynomial value function model

is used, fitting the value function model to the specified prefer-

ences involves solving a non-linear optimization problem, and

the authors propose to use sequential quadratic programming.

Once a most discriminating value function has been identified,

this information is used not directly for ranking, but for

separating the objective space into two areas: All individuals

with an estimated value (according to the approximated value

function) better than the solution ranked second by the DM

are assumed to dominate all the solutions with an estimated

value worse than the solution ranked second. If both solutions

lie either above or below the estimated indifference curves

of the value function through the second best individual,

they are compared based on the usual Pareto dominance. The

authors additionally use the approximated value function to

perform a local single-objective optimization starting with the

solution ranked best by the DM. If this local improvement

step is not able to improve the solution’s value by at least a

certain margin, it is concluded that the algorithm has found

the most preferred solution and the optimization is stopped.

The approach is particularly interesting for its innovative use

of the value function. The drawbacks are the computational

overhead involved in sequential quadratic programming, and

the larger number of solutions to be considered by the DM in

every step.

Todd and Sen [39] use artificial neural networks to

represent the DM’s value function. Periodically, they present

the DM with a set of solutions and ask for a score between 0

and 1. The set of solutions is chosen such that they represent

a broad variety regarding the approximated value function,

in particular, the estimated best and worst individual of the

population are always included. Information from several

user interactions is accumulated after normalizing preference

scores. While an artificial neural network is a very flexible

value function model, it is again time-consuming to train, the

resulting value function is not explicit (which might be useful,

e.g., to communicate with the user), and a user may find it very

difficult to score solutions (rather than rank them) consistently

over the run.

Another model that allows to represent complex value func-

tions are support vector machines (SVM). SVMs have the

additional advantage of being able to trade-off model accuracy

and model complexity. Battiti and Passerini [40] use SVMs in

the setting of an interactive MOEA, more specifically NSGA-

II. Periodically, the DM is presented with a set of solutions

and asked to (at least partially) rank them. This information



7

is then used to train the SVM, with cross-validation employed 
to select an appropriate kernel. The derived approximate value 
function is then used to replace the crowding distance in 
NSGA-II by sorting individuals in the same non-dominance 
rank based on their value according to the learned value func-

tion. The solutions shown to the DM are the best according to 
the approximated value function, or randomly selected non-

dominated solutions in the first s tep. T he p aper examines 
the influence o f t he n umber o f s olutions s hown t o t he DM 
(assuming full ranking) and the number of interactions with 
the DM. The results suggest that a relatively large number of 
solutions need to be ranked for the SVM to learn a useful 
value function (around 10-20), but only two interactions with 
the DM seem sufficient t o c ome v ery c lose t o r esults that 
would have been obtained had the DM’s true value function 
been known from the beginning. The authors recommend not 
starting interaction until the MOEA has found a reasonable 
coverage of the entire Pareto front, which somewhat defeats 
the purpose of narrowing down the search early on. In [41], 
the approach’s robustness to incorrect (noisy) DM preferences 
is examined and it is shown that the algorithm can cope well 
with noise, in particular if the number of solutions ranked by 
the DM is large.

The NEMO-0 approach in this paper allows for a flexible 
value function model (additive monotonic) that can still be 
computed efficiently w ith L P. A lso, w hile m ost o f t he above 
approaches rely on the MDVF principle (implicitly also SVM 
relies on this idea, albeit in a different space), we examine 
various alternatives and show MSVF actually to be a better 
choice.

B. Using a set of value functions

Rather than deriving a single value function, and analogous

to robust ordinal regression, one may acknowledge that there

are usually several value functions compatible with the elicited

user preferences.

Jaszkiewicz [42] samples the preference function used

in each generation from the set of compatible preference

functions (in this case linear weightings are assumed). The

proposed approach uses the value function also for local

search. In the interactive version, preference information from

pairwise comparisons of solutions is used to reduce the set of

possible weight vectors.

Greenwood et al. [28] suggested the imprecise value func-

tion approach which considers all compatible linear value

functions simultaneously. The procedure asks the user to rank

a few alternatives, and from this derives constraints for the

weightings of the objectives consistent with the given ordering.

Then, to compare any two solutions a and b, simultaneously

all linearly weighted additive value functions are considered

which are consistent with the ordering on the initially ranked

solutions. A preference of a over b is inferred if a is preferred

to b for all such value functions. Again, this can be checked by

linear programming. The approach can be seen as a simplified

form of robust ordinal regression (cf. Section II), based on

the assumption of simple linear value functions. Overall, the

method requires to solve one or two LPs for each pair of

solutions in the population. In order to make sure that there

is at least one compatible value function the authors suggest

to use a mechanism from [43] which removes a minimal set

of the DM’s preference statements to make the weight space

non-empty.

Branke et al. [44] use the expected value as indicator in an

indicator-based EA i.e., a solution is evaluated by the loss in

expected value the DM is able to get if this solution would be

absent from the population. To calculate the expected value, it

is assumed that the DM has a linear value function of the form

U(a) = λg1(a)+ (1−λ)g2(a), and λ is unknown but follows

a uniform distribution over [0, 1]. The expected marginal

value (EMV) of a solution a is then the value difference

between the best and second best solution, integrated over all

value functions where solution a is best. Without preference

information, the result of using this indicator is a natural

focus of the search on so-called “knees”, i.e., convex regions

with strong curvature. In these regions, an improvement in

either objective requires a significant worsening of the other

objective, and such solutions are often preferred by DMs [45].

Additional explicit user preferences can be taken into account

by allowing the user to specify the probability distribution for

λ [32]. Obviously, any distribution over any space of value

functions could be considered with this approach, and Wagner

et al. [46] use similar ideas but Chebycheff value functions.

In the approach by Korhonen et al. [47], the value func-

tion model is only implicit. Under the assumption of quasi-

concave value functions, specified preferences between solu-

tions can be generalized to preference cones [47]. This idea is

used by Fowler et al. [48] to partially rank the non-dominated

solutions in an MOEA. The DM is asked to consider a set

of six solutions and specify the best and worst. From this

information, six preference cones are derived (five 2-point

cones involving the best and any of the other solutions, and

one 6-point preference cone specifying that five solutions are

better than the worst). The solutions shown to the DM are

selected from the set of non-dominated solutions that can not

already be ranked with the existing cones.

Branke et al. [6], [7] proposed a method called NEMO

(Necessary preference enhanced Evolutionary Multiobjective

Optimizer) which we classify as NEMO-I approach in this

paper. It uses pairwise comparisons of solutions to learn user

preferences. Similar to the imprecise value function approach

by Greenwood et al. [28], it simultaneously considers the set

of all value functions compatible with the elicited preference

information. But rather than being restricted to linear value

functions, it allows for piecewise-linear [7] or general mono-

tonic additive [6], [7] value functions. This is possible because

it is based on robust ordinal regression (cf. Section II). It can

take into account a preference ranking of solutions, such as ”a

is preferred over b”, but also intensities of preferences, such

as ”a is preferred over b more than c over d”. A solution

a is necessarily preferred over solution b, if it is preferred

according to all value functions compatible with the elicited

preference information. As in [28], whether one solution is

necessarily preferred over another can be detected by solving

at most two linear programs. The main difference is that the

variables are not weights, but values of characteristic points
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of marginal value functions. NEMO-I replaces the use of 
the dominance relation in the non-dominance sorting step of 
NSGA-II by the necessary preference relation.

IV. THE NEMO-0 APPROACH

With all the theory of ordinal regression explained, it is 
easy to explain NEMO-0, the algorithm we focus on in this 
paper. NEMO-0 is based on NSGA-II [49]. That means it 
uses Pareto-non-dominance ranking as primary criterion to 
rank individuals. Non-dominance ranking ranks individuals 
by iteratively determining the non-dominated solutions in the 
population (non-dominated front), assigning those individuals 
the next best rank, and removing them from the population. 
The result is a partial ordering, favoring individuals closer to 
the Pareto front.

NEMO-0 differs from NSGA-II primarily by also making 
use of preference information from pairwise comparisons to 
order individuals within the same non-dominance rank. Every 
q generations (where q is a user-specified p arameter), the 
DM is asked to compare two solutions a and b, resulting 
in preference information (either a ≻ b or b ≻ a). After 
the stage of preference elicitation, a representative value 
function compatible with all elicited preference information is 
computed as explained in Section II. As class of possible value 
functions, we chose the very flexible c lass o f a dditive mono-

tonic functions. A representative value function of this type is 
then used as secondary criterion to order all individuals with 
the same non-dominance rank, thus replacing the crowding-

distance calculation usually used in NSGA-II. The information 
from the pairwise comparison is appended to the previously 
provided preference information. If there is no value function 
compatible with the current preference information, we must 
discard the inconsistent information. The complete algorithm 
is outlined in Algorithm 1.

We made a number of design decisions.

• We examined all of the different ways to select a rep-

resentative value function discussed in Section II. Their

performance will be compared in Section V-A.

• Instead of the two-stage ranking using Pareto-non-

dominance ranking and the value function as secondary

criterion, we also considered using the inferred value

function only. The benefit of the two-stage ranking is

demonstrated in Section V-B).

• The selection of the solutions to be compared may have

an impact on the information gained as well as the effort

required from the DM. As several other papers before us,

we here follow the simple approach of comparing ran-

domly selected non-dominated solutions, but would like

to point out that an intelligent selection mechanism may

further enhance the performance not only of NEMO, but

also other comparison-based interactive EMO algorithms.

• There are various possibilities to make sure there is

always a compatible value function. One sensible way

would certainly be to ask the user to resolve any in-

consistencies in the preference information once they

are detected. As we assume an artificial user, in case

there is no value function compatible with the preference

information, following Phelps and Köksalan [36], we

simply discard the information from the oldest pairwise

comparison provided by the user until the space of

compatible value functions becomes again non-empty.

So, while NEMO-I considered the entire set of compatible

value functions, NEMO-0 only determines a single repre-

sentative value function and thus falls into the category of

Section III-A. This makes it much faster than NEMO-I, which

in each generation has to solve a number of LPs that is

quadratic in the population size.

Compared to the other approaches in Subsection III-A, we

use a very flexible value function model (arbitrary monotonic

additive value functions), much more flexible than for example

the linear model used by Phelps and Köksalan [36] or also

the quadratic model used by Deb et al. [38]. On the other

hand, we accumulate preference information over the run, and

only require relatively little input from the user (comparison

of pairs of solutions) while other approaches such as the ones

by Battiti and Passerini [40] or Deb et al. [38] require to rank

much larger sets of solutions.

Overall, NEMO-0 is most similar to the way Phelps and

Köksalan [36] use preferences, which we primarily use as a

benchmark in this paper. NEMO-0 differs by using a more

flexible value function model (additive monotonic instead

of linear), by examining different ways to determine the

representative value function, and by using non-dominance

ranking in addition to the representative value function.

V. EXPERIMENTAL RESULTS

An empirical evaluation of interactive EMO methods is

challenging, because the test environment has to include a

model of the user behavior. We use an artificial user which

applies a pre-specified value function for decision making.

Obviously, this value function is not known to NEMO, but

only used by the artificial user (DM) for comparing two

solutions when preferences are elicited.

As it is usual in EMO, we assume here without loss of

generality that the objective functions g1, . . . , gn are to be

minimized (cost-type criteria). Two user’s value functions are

used in our tests:

• Linear – assumes the artificial user has a value function

that for the minimized objective functions is the opposite

of a linear weighting of those objectives. More specif-

ically, we use U(a) = − ((w1g1(a) + · · ·+ wngn(a)))
and, consequently, the user’s goal is to minimize

U−(a) = w1g1(a) + . . . + wngn(a). The w1, . . . , wn

parameters depend on the problem and are defined below.

• Chebycheff – assumes the artificial user has a value

function that for the minimized objective functions

and the reference point in zero is the opposite of a

Chebycheff function of these objectives. More specif-

ically, the user’s goal is to maximize U(a) =
−max{w1g1(a), . . . , wngn(a)} which is equivalent to

to minimize U−(a) = max{w1g1(a), . . . , wngn(a)}.

Again, the parameters w1, . . . , wn depend on the problem

and are defined below.
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Algorithm 1 Basic NEMO-0

Generate initial solutions randomly.

Elicit DM’s preferences. {Present to the DM a pair of non-dominated solutions and ask for a preference comparison}
Determine the representative value function consistent with the preference information.

Determine the non-dominance ranking. {As in NSGA-II}
Within each non-dominance rank, sort individuals according to representative value function. {The representative value

function replaces the crowding distance in NSGA-II}
repeat

Mating selection and offspring generation.

if Time to ask the DM then

Elicit DM’s preferences.

Determine the representative value function.

end if

Determine non-dominance ranking.

Within each non-dominance rank, sort individuals according to representative value function.

Environmental selection.

until Stopping criterion met

Return all non-dominated solutions in the population.

For the sake of simplicity, with a slight abuse of the terminol-

ogy, when we speak of a user’s value functions we refer to their

opposite forms, and thus we aim at minimizing the linear value

function U−(a) = w1g1(a)+. . .+wngn(a) or the Chebycheff-

like value function U−(a) = max{w1g1(a), . . . , wngn(a)}.

When showing the plots of convergence (Figures 1-2, and

Tables XII-XIII), the terms “Convergence indicator” and “Con-

vergence curve” mean the value of U−(·).

We look at two performance measures over time:

1) Best-in-population value: The value of the best solution

in the final population. This assumes that the final

population is returned to the DM, and the DM is able and

willing to spend the effort to identify the most preferred

solution among the set.

2) Average population value: The average value of all

the solutions in the final population. This puts more

emphasis on whether an algorithm was able to focus

the search appropriately, as solutions with much lower

value than the best one hurt performance.

NEMO-0 is set up such that in every k-th generation, it

randomly selects two individuals from the current population,

which do not dominate each other, and receives as feedback

the preference relation for the selected pair of solutions by

the artificial user acting according to the assumed value

function. The information from the DM is then used to

update the internal preference model. Additionally, we used

a buffer of preferences to reduce the amount of accumulated

preference information to at most 50 pairwise comparisons.

The use of this buffer significantly reduces the computation

time for more complex problems. The preference elicitation

is performed every generation (elicit-interval=1), every 10

generations (elicit-interval=10) or every 50 generations (elicit-

interval=50). A typical run of 300 generations takes between 4

seconds (for 2D problems and elicit-interval 10) to 15 seconds

(for 4D problems and elicit-interval 1), i.e., the computational

overhead is insignificant for most real-world applications.

All our results have been averaged over 100 independent

runs. Since we do not expect the parameter settings of the

algorithm to influence the relative performance of the various

algorithms, we mostly rely on default settings. We use a real-

valued representation, generate offspring by simulated binary

crossover with crossover probability of 0.9 and ηc = 1, and

Gaussian mutation with mutation probability 0.03 and step

size σ = 0.01. Constraints are ensured by reflecting on

the boundary, and mating selection is done by tournament

selection. We run the algorithm for a pre-specified number

of generations (problem dependent). The population size has

been set to 32, a value smaller than usual in MOEA. However,

we no longer aim at finding a set of solutions representative for

the entire Pareto front, but only a single solution. Therefore,

returning a large population size and asking the DM to look

at such a large number of alternatives does not seem to be

desirable.

We compared the efficiency of NEMO-0 with that of the

preference model proposed by Phelps and Köksalan [36].

However, we did not use an exact re-implementation of [36],

because we are primarily interested in the learning and use of

the preference model. In our implementation of this algorithm,

we therefore used only the fitness score proposed in [36], but

the same selection and mutation operators in the evolutionary

process as for NEMO-0 and NSGA-II. This algorithm is

henceforth denoted by P&K.

In this section, we empirically investigate NEMO-0 and

show the following.

1) We compare different definitions of what constitutes the

best concept of representative value function for NEMO-

0.

2) We show that NEMO-0 works for finding solutions in

different regions of the Pareto front.

3) We show that NEMO-0 works for different types of user

preferences.

4) We compare NEMO-0 with NSGA-II and the preference

model proposed in [36] on a variety of benchmark func-

tions and show that preference elicitation is particularly

useful in many-objective problems.
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A. Comparing different concepts of the representative value 
function

For an initial comparison of the considered concept of the 
representative value function for NEMO-0, we use ZDT1 (a 
simple 2-objective benchmark with convex Pareto front [50]) 
with linear value function and DTLZ2 (a concave Pareto 
front [51]) with 4 objectives (4D) with Chebycheff user value 
function. Each one is used once with a true preference function 
that has the most preferred solution in the middle of the 
Pareto front (Figure 1 (a) and (c) labelled ”middle”), and 
once with a preference function that has the most preferred 
solution towards the lower right of the Pareto front (Figure 1 
(b) and (d) labelled ”extreme”). The parameters of the user’s 
true value function are summarized in Table X. We compare 
the three different ways to determine the representative value 
function as discussed in Section II, i.e., minimum slope change 
(MSCVF), maximum discrimination (MDVF), and maximum 
sum of utilities (MSVF). The convergence plots for the value 
of the best solution in the population for these functions are 
presented in Figure 1.

TABLE X
PARAMETERS OF THE USER’S VALUE FUNCTION

w1 w2 w3 w4

ZDT1 Linear (middle) 0.60 0.40 – –
ZDT1 Linear (extreme) 0.15 0.85 – –

DTLZ2-4D Cheb. (middle) 0.30 0.15 0.20 0.35
DTLZ2-4D Cheb. (extreme) 0.65 0.10 0.15 0.10

As can be seen, all concepts of the representative value

function work more or less equally well if the DM’s value

function is linear and the Pareto front is convex. Also, the

elicitation interval does not seem to have much influence, so

it seems that very little preference information is needed to

focus the search for such simple problems (Figure 1a,b). For

DTLZ2-2D with Chebycheff user value function, more differ-

ences are visible. The minimum slope change value function

(MSCVF) is clearly worse, in particular for larger elicitation

intervals. Also the maximum discrimination concept (MDVF)

with elicit-interval=10 struggles, and has a performance quite

similar to NSGA-II.

For DTLZ2-4D, i.e., as soon as we move to more objectives,

the differences become very large. The maximum sum of

marginal utilities as representative value function (MSVF)

performs best for both settings of the user preferences, and

for both settings of the elicitation interval. The maximum

discrimination concept (MDVF) sometimes also works quite

well, although seems to get stuck at suboptimal solutions for

elicit-interval=10 and struggles with the case where the most

preferred solution is an extreme solution. NSGA-II is quite

slow in the beginning and seems to converge to a much worse

value level than most of the other approaches. The minimum

slope change idea (MSCVF) is worst, and even worse than

NSGA-II for the larger elicitation interval. Its curve also seems

more erratic than the others, often deteriorating substantially

after an initial phase of ”normal” convergence. The reason may

be that penalizing slope changes leads to mostly linear value

function approximations that struggle with the concave Pareto

front in DTLZ2 and sometimes lead the population away from

the most preferred solution.

In all cases except the simplest ones, the runs with elicit-

interval=10 are substantially slower than the corresponding

variant with elicit-interval=1, demonstrating the benefit pref-

erence information can have in speeding up the optimization.

In the following experiments, we use only the best per-

forming maximum sum of marginal values concept (MSVF)

to determine the representative value function.

B. Benefit of two-tier ranking

The representative value function computed provides a

complete ordering on the population. This is what Phelps and

Köksalan [36] use for selection. NEMO-0 instead uses a two-

tier ranking, with standard non-dominance Pareto ranking as

first criterion (as in NSGA-II), and the representative value

function is only used to rank individuals with the same non-

dominance rank. The reason is that the representative value

function represents only one out of potentially many value

functions compatible with the provided preference informa-

tion, and completely relying on it may temporarily misguide

the search. As can be seen in Figure 2, this two-tier ranking

is essential for NEMO-0. If the representative value function

is used as the only ranking tool, convergence suffers substan-

tially, in particular in cases with little preference information

(elicit-interval=10).

C. Robustness with respect to user preference

In the next set of experiments we use ZDT1 with linear and

ZDT4 with Chebycheff user value function, each with three

different preference parameters displayed in Table XI, to show

how quickly and how accurately the population focuses on the

corresponding areas of the Pareto front.

TABLE XI
PARAMETERS OF THE USER’S VALUE FUNCTION

w1 w2

ZDT1 Linear (middle) 0.60 0.40
ZDT1 Linear (extreme-1) 0.15 0.85
ZDT1 Linear (extreme-2) 0.85 0.15

ZDT4 Chebysheff (middle) 0.60 0.40
ZDT4 Chebysheff (extreme-1) 0.20 0.80
ZDT4 Chebysheff (extreme-2) 0.95 0.05

Figure 3 shows the typical result of NEMO-0 after 50, 100,

200 and 300 generations. The Pareto front is marked yellow.

As can be seen, NEMO-0 very quickly converges to the user-

preferred solution on the Pareto front. For the more difficult

ZDT-4 function, NEMO-0 reaches a similar value after 200

generations that NSGA-II reaches after 300 generations, con-

firming that incorporation of preference information can not

only focus the search on the most interesting region, but also

get there more quickly.

D. Comparison of NEMO-0 with other approaches

In this section, we compare our approach with NSGA-II and

Phelps and Köksalan’s preference model (P&K). We consider

the following problems: ZDT2 and ZDT4 in 2D, DTLZ2 in
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Fig. 1. Comparison of different concepts of the representative value function, for various test problems and user preferences. Plots show best-of-population
value vs. generations.

3D, DTLZ2 in 4D and WFG1 in 5D (for a description of the

latter one, see [52]), all with Chebycheff user value function.

Rather than comparing the value obtained after a specific

number of generations, we calculate the area under the con-

vergence curve (average over generations) as a measure of the

overall performance of the algorithm. For WFG-5D, we ran the

algorithm for 15,000 generations, while for all other problems,

the limit was 300 generations. We report on the area under

the convergence curve for NEMO-0 and P&K relative to the

area under the curve for NSGA-II for all tested functions (i.e.,

values > 1 mean worse performance than NSGA-II, while

values < 1 mean better performance than NSGA-II). These

results are presented in Table XII (for the value of the best

individual in the population) and Table XIII (for the average

value of individuals in the population).

As can be seen, overall, NEMO-0 with elicit-interval=1

clearly works best in all cases.

Looking first at the value of the best individual in the

population (Table XII), for ZDT-2 the differences are rather

small and preference elicitation does not seem to help much.

In fact, the P&K model performs even worse than NSGA-II,

probably because the linear preference model is not very useful

for ZDT-2’s concave Pareto front. On ZDT-4, there is a clear

benefit of using preference information for both preference-
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Fig. 2. Comparing NEMO-0 two-tier ranking (MSVF) vs. NEMO-0 one-tier ranking (MSVF2). Plots show best-of-population value vs. generations.

based approaches. With elicit-interval=1, NEMO-0 is signifi-

cantly better than P&K, while their performance is very similar

for elicit-interval=10. For DTLZ2, NEMO-0 again shows clear

advantages, and the advantage is substantially larger in the

case of 4 objectives compared to the case of 3 dimensions,

which supports our conjecture that preference information is

particularly helpful in higher dimensional problems. Finally,

for the WFG-1 problem in 5D, NSGA-II is performing quite

poorly, which is not particularly surprising not only because

it is a hard benchmark problem, but also because NSGA-

II is known to work poorly in the case of more than 3

dimensions. So, relative to NSGA-II, NEMO-0 and the P&K

preference model yield much better solutions despite the fact

that they are based on NSGA-II, only additionally taking into

account preference information. Again this demonstrates how

the integration of preference information can overcome the

challenges associated with many-objective problems. On the

other hand, the amount of preference information needs to be

sufficiently large. While for elicit-interval=50, the preference-

based approaches still focus on the most interesting region as

can be seen from the average values in Table XIII, the value of

the best found solution of the preference-based solutions is not

better than of NSGA-II. The difference between NEMO-0 and

P&K in Table XII for each combination of test problem and

elicit-interval are significant according to a Mann-Whitney-U

test with 5% significance level. The only exception is ZDT4

with elicit-interval=10, where the difference is non-significant.

The results on the average value of individuals in the

population confirm the above observations. All preference-

based approaches outperform NSGA-II under all scenarios,

partly by a huge margin, because Pareto-optimal individuals

far away from the preferred region and thus with low value are

dropped from the population. On the other hand, the relative

difference between NEMO-0 and P&K are less clear, although

all differences are still statistically significant. For ZDT4, P&K

is better with respect to the average value of all individuals in

the population, although it was worse or equal with respect to

the best individual in the population. This may indicate that

NEMO-0 is finding better solutions, but P&K is converging

to a more narrow region.

VI. CONCLUSION

We presented a general framework for combining MOEAs

with interactive preference information and ordinal regression.

This framework encompasses three variants, all using pairwise

comparisons to interactively elicit user preferences:

• the approach explored in this paper, NEMO-0, which

combines the advantages of the well known EMO method

NSGA-II with ordinal regression by learning a represen-

tative value function,

• a previously proposed method called NEMO-I, which

uses robust ordinal regression to determine whether one

solution is necessarily preferred to another, and

• a variant of NEMO-I, called NEMO-II, which is much

faster as it requires only one LP to be solved per solution,

rather than per pair of solutions.

The main advantages of NEMO-0 studied here are the

following:

1) It models the user preferences in terms of very general

additive value functions,

2) It uses a preference information expressed in a simple

and intuitive way (comparisons of solutions), and re-

quires relatively few interactions.

Our empirical results show that the proposed NEMO-0

method works as expected and is able to converge faster to the

user-preferred solutions than NSGA-II without taking the user

preferences into account. It also significantly outperforms a

previous approach by Phelps and Köksalan [36], in particular

in cases where user preferences are non-linear. Because we

only have to solve one linear program per user interaction,

the approach runs much faster than our previously proposed

NEMO-I. There are various avenues for future work. Ob-

viously, after having presented the general framework and

NEMO-II, we should also explore this algorithm empirically.

For all three approaches in the NEMO framework, we should

investigate to adapt the number of interactions with the user,

the times of interactions, and the pairs of solutions shown to

the user.
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Fig. 3. Population of NEMO-0 after 50, 100, 200 and 300 generations in objective space.
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TABLE XII
AREA UNDER CONVERGENCE CURVE (VALUE OF BEST INDIVIDUAL IN THE POPULATION).

ZDT2-2D ZDT4-2D DTLZ2-3D DTLZ2-4D WFG1-5D

NEMO-0 (elicit-interval=1) 0.970 ± 0.015 0.905 ± 0.104 0.907 ± 0.005 0.791 ± 0.015 0.451 ± 0.023
P&K (elicit-interval=1) 1.012 ± 0.025 0.935 ± 0.125 1.011 ± 0.037 0.997 ± 0.123 0.494 ± 0.019

NEMO-0 (elicit-interval=10) 0.995 ± 0.027 0.946 ± 0.111 0.956 ± 0.017 0.900 ± 0.032 0.672 ± 0.075
P&K (elicit-interval=10) 1.126 ± 0.073 0.942 ± 0.114 1.157 ± 0.073 1.344 ± 0.301 0.822 ± 0.066

NEMO-0 (elicit-interval=50) —— —— —— —— 1.039 ± 0.085
P&K (elicit-interval=50) —— —— —— —— 1.167 ± 0.161

TABLE XIII
AREA UNDER CONVERGENCE CURVE (AVERAGE VALUE OF ALL INDIVIDUALS IN THE POPULATION).

ZDT2-2D ZDT4-2D DTLZ2-3D DTLZ2-4D WFG1-5D

NEMO-0 (elicit-interval=1) 0.783 ± 0.012 0.916 ± 0.092 0.520 ± 0.006 0.452 ± 0.010 0.119 ± 0.006
P&K (elicit-interval=1) 0.801 ± 0.019 0.848 ± 0.092 0.566 ± 0.025 0.569 ± 0.094 0.138 ± 0.006

NEMO-0 (elicit-interval=10) 0.822 ± 0.020 0.957 ± 0.096 0.635 ± 0.042 0.644 ± 0.044 0.183 ± 0.023
P&K (elicit-interval=10) 0.888 ± 0.054 0.854 ± 0.087 0.656 ± 0.049 0.764 ± 0.164 0.218 ± 0.018

NEMO-0 (elicit-interval=50) —— —— —— —— 0.283 ± 0.024
P&K (elicit-interval=50) —— —— —— —— 0.297 ± 0.040
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models for robust ordinal regression. Presentation at 74 EWG-MCDA,
Yverdon-les-Bains, October 2011.

[23] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective
optimization: Formulation, discussion, and generalization. In Proceed-

ings of the Fifth International Conference on Genetic Algorithms, pages
416–423, 1993.

[24] A. Lopez Jaimes, A. Arias Montano, and C. A. Coello Coello. Prefer-
ence incorporation to solve many-ojective airfoil design problems. In
Congress on Evolutionary Computation, pages 1605–1612. IEEE, 2011.

[25] L. B. Said, S. Bechikh, and K. Ghedira. The r-dominance: A new
dominance relation for interactive evolutionary multicriteria decision
making. IEEE Transactions on Evolutionary Computation, 14(5):801–
818, 2010.

[26] J. Branke, T. Kaußler, and H. Schmeck. Guidance in evolutionary multi-
objective optimization. Advances in Engineering Software, 32:499–507,
2001.

[27] T. Wagner and H. Trautmann. Integration of preferences in hypervolume-
based multiobjective evolutionary algorithms by means of desirability
functions. IEEE Transactions on Evolutionary Computation, 14(5):688–
701, 2010.

[28] G. W. Greenwood, X. S. Hu, and J. G. D’Ambrosio. Fitness functions for
multiple objective optimization problems: combining preferences with
Pareto rankings. In R. K. Belew and M. D. Vose, editors, Foundations

of Genetic Algorithms, pages 437–455. Morgan Kaufmann, 1997.

[29] K. Deb and S. Chaudhuri. I-MODE: An interactive multi-objective
optimization and decision-making using evolutionary methods. Applied

Soft Computing, 10:496–511, 2010.
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