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Abstract

One of the hallmarks of the performance, ver-
satility, and robustness of biological motor con-
trol is the ability to adapt the impedance of the
overall biomechanical system to different task
requirements and stochastic disturbances. A
transfer of this principle to robotics is desir-
able, for instance to enable robots to work ro-
bustly and safely in everyday human environ-
ments. It is, however, not trivial to derive
variable impedance controllers for practical high
degree-of-freedom (DOF) robotic tasks.

In this contribution, we accomplish such
variable impedance control with the reinforce-
ment learning (RL) algorithm PI2 (Policy
Improvement with Path Integrals). PI2 is a
model-free, sampling based learning method de-
rived from first principles of stochastic optimal
control. The PI2 algorithm requires no tuning of
algorithmic parameters besides the exploration
noise. The designer can thus fully focus on cost
function design to specify the task. From the
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viewpoint of robotics, a particular useful prop-
erty of PI2 is that it can scale to problems of
many DOFs, so that reinforcement learning on
real robotic systems becomes feasible. We sketch
the PI2 algorithm and its theoretical properties,
and how it is applied to gain scheduling for vari-
able impedance control.

We evaluate our approach by presenting re-
sults on several simulated and real robots.
We consider tasks involving accurate tracking
through via-points, and manipulation tasks re-
quiring physical contact with the environment.
In these tasks, the optimal strategy requires
both tuning of a reference trajectory and the
impedance of the end-effector.

The results show that we can use path integral
based reinforcement learning not only for plan-
ning but also to derive variable gain feedback
controllers in realistic scenarios. Thus, the power
of variable impedance control is made available
to a wide variety of robotic systems and practical
applications.

1 Introduction

Biological motor systems excel in terms of ver-
satility, performance, and robustness in envi-
ronments that are highly dynamic, often un-
predictable, and partially stochastic. Whereas
classical robotics is mostly characterized by high
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gain negative error feedback control, biological
systems derive some of their superiority from low
gain compliant control with variable and task de-
pendent impedance [26]. If we adapt this con-
cept of adaptive impedance for PD negative er-
ror feedback control, this translates into time
varying proportional and derivative gains, also
known as gain scheduling. Finding the appro-
priate gain schedule for a given task is, however,
a hard problem [8, 27].
One possible solution to this problem is Rein-

forcement Learning (RL) [31]. The idea of RL is
that, given only a reward function, the learning
algorithm finds strategies that yield high reward
through trial and error. As a special and impor-
tant feature, RL can accomplish such optimal
performance without knowledge of the models of
the motor system and/or the environment. This
property is especially appealing for learning how
to interact with objects and the environment, as
good contact models are notoriously difficult to
obtain. However, so far, RL does not scale well
to high-dimensional continuous state-action con-
trol problems.
Closely related to RL is optimal control the-

ory [29], where gain scheduling is a natural
outcome of many optimal control algorithms.
However, optimal control requires model-based

derivations, such that it is frequently not appli-
cable to complex robotic systems and environ-
ments, where models are unknown or not suffi-
ciently known.
In this paper, we present PI2 (Policy

Improvement with Path Integrals) [33], an RL
algorithm which is derived from first principles of
stochastic optimal control, and which does scale
to complex robotic system [30].
The PI2 algorithm is tailored to optimize Dy-

namic Movement Primitives (DMPs), a specific
implementation of a parameterized policy, based

on a set of dynamical system equations [11].
The system overview in Figure 1 illustrates how
PI2 simultaneously optimizes planned trajecto-
ries and gain schedules in a DMP. First, a DMP
is initialized with an initial trajectory and con-
stant gains. Here, the planned trajectory and
gain schedule of each joint are represented as
separate dimensions in the DMP. For a robot
with n joints, the DMP therefore has 2n dimen-
sions. PI2 then iteratively updates the DMP pa-
rameters by executing it to accomplish the de-
sired behavior, and computing the cost for each
resulting trajectory with the task-specific cost
function. During execution, exploration is en-
sured by adding exploration noise to the DMP
parameters. Learning continues until the cost
converges, or a certain number of iterations is
reached. With this approach, PI2 is able to si-
multaneously optimize both the trajectories and
gain schedules, as both are homogeneously rep-
resented in the same DMP.

Figure 1: System overview. After initializa-
tion, the planned trajectory and gain schedules
of a Dynamic Movement Primitive are optimized
with respect to a cost function with the Rein-
forcement Learning algorithm PI2 .

By penalizing high gains in the cost function,
the robot learns to be compliant when it can be,
and stiffens up only when the task requires it. In
comparison to high-gain control approaches, this
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leads to lower energy consumption, less wear-
and-tear for the robot, and safer human-robot
interaction.
We evaluate our approach on three different

simulated robotic systems, a 3-DOF Phantom
Premium Robot, a 6-DOF Kuka Lightweight
Robot, and the humanoid SARCOS CBi. We
also validate the results on a real Phantom Pre-
mium Robot. The tasks require accurate track-
ing through a via-point or physical manipulation
of objects in the environment.
The main contributions of this article are:

1) the use of parametrized control policies to rep-
resent the parameters not only of a reference tra-
jectory, but also of a feedback controller. As the
reinforcement algorithm PI2 is able to optimize
the parameters of all policies simultaneously, we
thus present a novel formulation of learning both
the feedback controller and the reference trajec-
tory on a multi-dimensional robotic system in a
model-free reinforcement learning setting. 2) ap-
plying this approach to learning variable gain
schedules for a PD controller; 3) implementing
and evaluating the proposed method on both
simulated and real robotic systems; 4) demon-
strating how the learned gain schedules enable
the robot to be as compliant as possible, stiffen-
ing up only when the task requires it.
In this paper we are building on initial work

presented in [3], and show further results by ap-
plying the proposed approach to manipulation
tasks and a real robot. We also provide a more
extensive discussion of related work.
The rest of this paper is structured as follows.

We first motivate variable impedance control in
Section 2. In Section 3, we present our RL algo-
rithm PI2 , and explain how it is applied to vari-
able gain scheduling in Section 4. An empirical
evaluation of our methods on simulated and real
robots is presented in Section 5. In Section 6,

we discuss related concepts and work. Finally,
we conclude with Section 7.

2 Variable impedance control

The classical approach to robot control is neg-
ative feedback control with high proportional-
derivative (PD) gains. This type of control
is straightforward to implement, robust to-
wards modeling uncertainties, and computation-
ally cheap. Unfortunately, high gain control is
not ideal for many tasks involving interaction
with the environment, e.g. force control tasks or
locomotion. In contrast, impedance control [8]
seeks to realize a specific impedance of the robot,
either in end-effector or joint space. The issue of
specifying the target impedance, however, is not
completely addressed as of yet. While for simple
factory tasks, where the properties of the task
and environment are known a priori, suitable
impedance characteristics may be derivable, it is
usually not easy to understand how impedance
control is applied to more complex tasks such as
a walking robot over difficult terrain or the ma-
nipulation of objects in daily life (e.g. pillows,
hammers, cans, etc.). An additional benefit of
variable impedance behavior in a robot comes
from the added active safety due to soft “giving
in”, both for the robot and its environment.

In the following we consider robots with
torque controlled joints. The motor torques T

are calculated via a PD control law with feedfor-
ward control term Tff :

T = −KP (q− qd)−KD(q̇− q̇d) +Tff (1)

where KP , KD are the positive definite position
and velocity gain matrices, q, q̇ are the joint
positions and velocities, and qd, q̇d are the de-
sired joint positions and velocities. The feed-
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forward control term may come, for instance,
from an inverse dynamics control component,
or a computed torque control component [24].
Thus, the impedance of a joint is parameterized
by the choice of the gains KP (“stiffness”) and
KD (“damping”).

For many applications, the joint space
impedance is, however, of secondary interest.
Most often, regulating impedance matters the
most at certain points that contact with the en-
vironment, e.g., the end-effectors of the robot.
We therefore need to assess the impedance at
these points of contacts rather than the joints.
Joint space impedance is computed from the de-
sired task space impedance KP,x,KD,x by help
of the Jacobian J of the forward kinematics of
the robot as follows [24]:

KP,q = JTKP,x J and KD,q = JTKD,x J

(2)
Here we assume that the geometric stiffness due
to the change of the Jacobian is negligible in
comparison to the terms in Eq.(2). Regulating
the task space impedance thus implies regulat-
ing the joint space impedance. Furthermore, this
fundamental mathematical relationship between
joint and task space also implies that a constant
task stiffness in general means varying gains at
the joint level.

In the next section we will sketch a reinforce-
ment learning algorithm that is then applied to
learning the time dependent gain matrices.

3 Reinforcement learning in

high dimensions – the PI2 al-

gorithm

Reinforcement learning algorithms can be de-
rived from different frameworks, e.g., dynamic

programming, optimal control, policy gradients,
or probabilistic approaches. Recently, an in-
teresting connection between stochastic optimal
control and Monte Carlo evaluations of path in-
tegrals was made [14]. In [33] this approach is
generalized, and used in the context of model-
free reinforcement learning with parameterized
policies, which resulted in the PI2 algorithm. In
the following, we provide a short outline of the
prerequisites and the most important points in
the development of the PI2 algorithm as needed
in this paper. The development of the algorithm
in its entirety can be found in [33].
The foundation of PI2 comes from (model-

based) stochastic optimal control for continuous
time and continuous state-action systems. We
assume that the dynamics of the controlled sys-
tem is of the form

ẋt = f(xt, t)+G(xt) (ut + ǫt) = ft+Gt (ut + ǫt)
(3)

with xt ∈ ℜn×1 denoting the state of the sys-
tem, Gt = G(xt) ∈ ℜn×p the control ma-
trix, ft = f(xt) ∈ ℜn×1 the passive dynamics,
ut ∈ ℜp×1 the control vector and ǫt ∈ ℜp×1

Gaussian noise with variance Σǫ. Many robotic
systems fall into this class of control systems.
For the finite horizon problem ti : tN , we want
to find control inputs uti:tN which minimize the
value function1

V (xti) = Vti = min
uti:tN

Eτ i
[R(τ i)] (4)

1Eq. 4 is using a shorthand notation Eτ i
for the

expectation of the finite horizon cost R(τ i). The fi-
nite horizon cost is a random variable with probabil-
ity distribution p(τ i|uti:tN ) and therefore Eτ i

[R(τ i)] =∫
p(τ i|uti:tN )R(τ i)dτ i. uti:tN is a ‘parameter’ influenc-

ing the probability distribution and ultimately the value
of the expectation, used in defining the value function.
And therefore minimization has to happen with respect
to this parameter.
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where R is the finite horizon cost over a trajec-
tory τ i starting at time ti in state xti and ending
at time tN

R(τ i) = φtN +

∫ tN

ti

rt dt (5)

and where φtN = φ(xtN ) is a terminal cost at
time tN . rt denotes the immediate cost at time
t. As immediate cost we consider:

rt = r(xt,ut, t) = qt +
1

2
uT
t Rut (6)

where qt = q(xt, t) is an arbitrary state-
dependent cost function, and R is the positive
semi-definite weight matrix of the quadratic con-
trol cost.
Based on the principles of stochastic optimal

control [29] and as detailed in [33] by minimizing
the Hamilton-Jacobi-Bellman (HJB) equation of
our problem we can derive a 2nd order partial
differential equation for the time derivative of
the value function:

− ∂tVt = qt + (∇xVt)
T ft (7)

−
1

2
(∇xVt)

TGtR
−1GT

t (∇xVt)

+
1

2
trace

(

(∇xxVt)GtΣǫG
T
t

)

The same principles also provide us with a re-
sult for the corresponding optimal control input,
which is a function of the state and is given by
the equation:

u(x∗
ti
) = u∗

ti
= −R−1GT

ti
(∇xti

Vti) (8)

We are leaving the standard development of
this optimal control problem by transforming
the HJB equation with the substitution Vt =
−λ logΨt and by introducing the assumption2

2In the final algorithm the parameter λ is set auto-
matically, cf. [33].

that λR−1 = Σǫ. This assumption allows us to
simplify the mathematical treatment of the HJB
equation. As shown in detail in [33] this way, the
transformed HJB equation becomes a linear 2nd

order partial differential equation:

− ∂tΨt = −
1

λ
qtΨt + fTt (∇xΨt) (9)

+
1

2
tr

(

(∇xxΨt)GtΣǫG
T
t

)

with boundary condition ΨtN = exp
(

− 1
λ
φtN

)

.
Using the Feynman-Kac theorem [21, 41, 33], the
solution for the exponentially transformed value
function becomes:

Ψti = lim
dt→0

∫

p (τ i|xi) exp



−
1

λ



φtN +

N−1
∑

j=0

qtjdt







dτ i

(10)
Thus, we have transformed our stochastic opti-
mal control problem into an approximation prob-
lem of a path integral. As detailed in [33], it is
not necessary to compute the value function ex-
plicitly, but rather it is possible to derive the
optimal controls directly. The optimal controls
take again the form of an expectation:

uti =

∫

P (τ i)u (τ i) dτ i (11)

u(τ i) = R−1Gti
T
(

GtiR
−1Gti

T
)−1

(12)

(Gtiǫti − bti)

where P (τ i) is the probability of a trajectory
τ i,

P (τ i) =
e−

1

λ
S(τ i)

∫

e−
1

λ
S(τ i)dτ i

,

S(τ i) is the generalized cost (cf. Table 1), and
bti is a more complex expression, beyond the
space constraints of this paper.
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A post-hoc interpretation of this result, which
confirms the intuition about how optimal con-
trollers should be chosen, is: The probability
P (τ i) is the weighting of a local control with
the cost function. The optimal control is thus
the expectation of the local controls when they
are associated with a probability that decreases
for controllers yielding a high cost. The impor-
tant conclusion is that it is possible to evaluate
Eq. (11) using Monte Carlo sampling [5] of the
control system, i.e., our optimal control problem
can be solved as an estimation problem. Eq. (11)
can therefore be approximated by drawing ran-
dom samples of the noise vector ǫti and calculat-
ing the associated probability P (τ i) by forward-
integrating the system dynamics and calculating
the costs. The P -weighted sum of the local con-
trols u (τ i) of these samples then approximates
the value of the integral. In application to robot
learning, the forward integration of the system
dynamics is replaced by drawing local controls
from a probability distribution and running the
randomized controllers on the real system. The
cost statistics are then collected from these ex-
periments. Each of these experiments is called a
roll-out.

3.1 The PI2 Algorithm

The PI2 algorithm is just a special case of the
optimal control solution in Eq. (11), applied to
control systems with parameterized control pol-
icy:

at = gT
t (θ + ǫt) (13)

i.e., the control command is generated from the
inner product of a parameter vector θ with a
vector of basis function gt – the noise ǫt is inter-
preted as user controlled exploration noise.
A particular case of a control system with pa-

rameterized policy is the Dynamic Movement

Primitives (DMP) approach introduced by [11]:

1

τ
v̇t = ft + gT

t (θ + ǫt) (14)

1

τ
q̇d,t = vt

ft = α(β(g − qd,t)− vt)

1

τ
ṡt = −αst (15)

[gt]j =
wj,tst

∑p
k=1wk,t

(g − q0) (16)

wj = exp
(

−0.5hj(st − cj)
2
)

(17)

The intuition of this approach is to create de-
sired trajectories qd,t, q̇d,t, q̈d,t = τ v̇t for a mo-
tor task out of the time evolution of a nonlin-
ear attractor system, where the goal g is a point
attractor and q0 the start state. The parame-
ters θ determine the shape of the attractor land-
scape, which allows to represent almost arbitrary
smooth trajectories, e.g., a tennis swing, a reach-
ing movement, or a complex dance movement.
While leaving the details of the DMP approach
to [11], for this paper the important ingredients
of DMPs are that i) the overall system formed
by the attractor system Eq. (14) coupled with
a nonlinear robot dynamics via the control law
Eq. (1) has the same form as Eq. (3), and that
ii) the p-dimensional parameter vector θ can be
interpreted as motor commands as used in the
path integral approach to optimal control (i.e.
u = θ). Learning the optimal values for θ will
thus create a optimal reference trajectory for a
given motor task. A further key step in the appli-
cation of the path integral theory to robot learn-
ing problems is its formulation as an iterative al-
gorithm. Instead of evaluating the path integral
Eq. (11) with a large number of samples and cal-
culating the optimal vector directly, the optimal
value is approached iteratively. By not sampling
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large irrelevant parts of the state space, solv-
ing high DOF learning problems thus becomes
feasible. The PI2 learning algorithm applied to
this scenario is summarized in Table 1. As il-
lustrated in [33, 34], PI2 outperforms previous
RL algorithms for parameterized policy learning
by at least one order of magnitude in learning
speed and also lower final cost performance. As
an additional benefit, PI2 has no open algorith-
mic parameters, except for the magnitude of the
exploration noise ǫt (the parameter λ is set auto-
matically, cf. [33]). We would like to emphasize
one more time that PI2 does not require knowl-
edge of the model of the control system or the
environment.

Key Innovations in PI2 In summary we list
the key innovations in PI2 that we believe lead
to its superior performance. These innovations
make applications like the learning of gain sched-
ules for high dimensional tasks possible.

• The basis of the derivation of the PI2 algo-
rithm is the transformation of the optimal
control problem into a probabilistic estima-
tion problem which can then be solved by
sampling techniques. This transformation
is achieved with the assumption λR−1 = Σǫ

to transform a nonlinear partial differential
equation (PDE) into a linear one, and the
use the Feynman-Kac lemma [21, 33] to ap-
proximate its solution.

• Paths with higher cost have lower proba-
bility. A clear intuition that has also rig-
orous mathematical representation through
the exponentiation of the value function.
This transformation is necessary for the lin-
earization of HJB into a linear 2nd order par-
tial differential equation.

input : rt = qt + θ
T
t Rθt ; immediate cost function

φtN ; terminal cost term

at = gT
t (θ + ǫt) ; parameterized policy

gti ; basis function from the system dynamics

Σǫ ; variance of the mean-zero noise ǫt

θinit ; initial parameter vector

K ; number of roll-outs per update

output : θ ; final parameter vector

while trajectory cost R not converged do
Create K roll-outs of the system from the same start
state x0 using stochastic parameters θ + ǫt at every

time step (ǫt,k ∼ N(0, γ(#updates so far)
· σ2).

foreach k in K ; for all roll-outs

do

Mtj ,k =
R−1gtj ,k

gT
tj,k

gT
tj,k

R−1gtj ,k

S(τ i,k) = φtN ,k +
∑N−1

j=i
qtj ,k+

1
2

∑N−1

j=i+1
(θ +Mtj,kǫtj ,k)

TR(θ +Mtj ,kǫtj ,k)

P (τ i,k) =
e
−

1
λ

S(τ i,k)

∑
K

k=1
[e

−

1
λ

S(τ i,k)
]

end

foreach i in N ; for all time steps

do

δθti =
∑K

k=1
[P (τ i,k)Mti,k ǫti,k]

[δθ]j =

∑
N−1

i=0
(N−i) wj,ti

[δθti
]j∑

N−1

i=0
wj,ti

(N−i)

θ ← θ + δθ ; parameter update

end

Create one noiseless roll-out to evaluate the trajectory
cost R = φtN +

∑N−1

i=0
rti of the current parameters θ.

end

Table 1: Pseudocode of the PI2 algorithm for a
1D Parameterized Policy.

• With PI2 the optimal control problem is
solved with the forward propagation of dy-
namics. Thus no backward propagation
of approximations of the value function is
required. This is a very important char-
acteristic of PI2 that allows for sampling
(i.e. roll-out) based estimation of the path-
integral.

• For high dimensional problems, it is not pos-
sible to sample the whole state space and
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that is the reason for applying path integral
control in an iterative fashion to update the
parameters of the DMPs.

• The number of roll-outs per iteration step is
a parameter that can be chosen by the user.
The number of roll-outs is not very criti-
cal and can be chosen to be very small, as
shown in the examples. This is very impor-
tant to render the learning approach feasible
on real systems.

• The derivation of an RL algorithm from
first principles largely eliminates the need
for open parameters in the final algorithm.

4 Variable Impedance Control

with PI2

The PI2 algorithm as introduced above seems
to be solely suited for optimizing a trajectory
plan, and not directly the controller. Here we
will demonstrate that this is not the case, and
how PI2 can be used to optimize a gain sched-
ule simultaneously to optimizing the reference
trajectory. For this purpose, it is important to
realize how Eq. (3) relates to a complete robotics
system. We assume a d-DOF robot that obeys
rigid body dynamics. qv denotes the joint ve-
locities, and qp the joint angle positions. Ev-
ery DOF has its own reference trajectory from
a DMP, which means that Eqs. (14) are dupli-
cated for every DOF, while Eqs. (15), (16), and
(17) are shared across all DOFs – see [11] for ex-
planations on how to create multi-dimensional
DMPs. Thus, Eq. (3) applied to this context,
i.e. using rigid body dynamics equations, with
M,C,G the Inertia matrix, Coriolis/centripedal
and gravity forces respectively, and combining
them with the reference trajectory generating

DMP becomes:

q̇v = M(qp)−1 (−C(qp,qv)−G(qp) +T)

q̇p = qv (18)

1

τ
ṡt = −αst

1

τ
q̇vd,i = α(β(gi − qpd,i)− qvd,i) + g

i,T
t (θi

ref + ǫ
i
t)

1

τ
q̇pd,i = qvd,i (19)

where each element Ti of the torque vector T:

Ti = −KP,i

(

qpi − qpd,i

)

− ξi
√

KP,i

(

qvi − qvd,i
)

+ Tff,i (20)

The terms qvd,i, q
p
d,i are the reference joint angle

position and velocity of the ith DOF as com-
puted by the DMP Eq. 19. The control vector
to this system is ut = θ

i
ref .

Note that in the control law in (20), we used
Eq. (1) applied to every DOF individually using
a time varying gain, and we inserted the common
practice that the damping gain Ki

D is written as
the square root of the proportional gain Ki

P with
a user determined multiplier ξi. A critically im-
portant result of [33] is that for the application of
PI2 only those differential equations in Eq. (18)
matter that have learnable parameter θi. More-
over, the optimization of these parameters is ac-
complished by optimizing the parameter vector
of each differential equation independently (as
shown in Table 1), despite that the DOFs are
coupled through the cost function. For this rea-
son, PI2 operates in a model free mode, as only
one of the DMP differential equations per DOF
is required, and all other equations, including the
rigid body dynamics model, drop out.
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For variable stiffness control, we exploit these
insights and add one more differential equation
per DOF in Eq. (18):

K̇P,i = αK

(

g
i,T
t,K(θi

K + ǫ
i
K,t)−KP,i

)

(21)

[gt,K ]
j

=
wj

∑p
k=1wk

(22)

This equation models the time course of the po-
sition gains, coupled to Eq. (15) of the DMP.
Thus, KP,i is represented by a basis function rep-
resentation linear with respect to the learning
parameter θi

K , and these parameter are learned
with the PI2 algorithm following Table 1. We
will assume that the time constant 1

αK
is so

small, that for all practical purposes we can as-
sume that KP,i = g

i,T
t,K(θi

K + ǫ
i
K,t) holds at all

times.
Essentially Eqs. (18),(19) and (21) are incor-

porated in one stochastic dynamical system of
the form of Eq. (3). In conclusion, we achieved
a novel formulation of learning both the refer-
ence trajectory and the gain schedule for a multi-
dimensional robotic system with model-free rein-
forcement learning, using the PI2 algorithm and
its theoretical properties as foundation of our
derivations.

5 Empirical Evaluation

We now present results of applying the outlined
algorithms to three robots with 3, 6 and 7-DOF
respectively. We show four experiments using
these robots, three in simulation, and one on a
real robot.
The first two experiments serve to illustrate

the idea and effects of variable gain schedule
learning with two via-point experiments with
robotic arms. The other two experiments are
manipulation tasks, where a real robot learns

to flip a light switch, and the humanoid robot
CBi [6] learns to open a door.

5.1 Via-point experiments

In the first two experiments the robot’s primary
task is to pass through an intermediate goal, ei-
ther in joint space or end-effector space – such
scenarios occur in tasks such as playing tennis.

For these two experiments, we express the goal
of the task with the following immediate cost
function, which is a task-specific implementation
of the generic cost function in Eq. 6:

rt =Wgain

∑

i

Ki
P,t +Wacc||ẍ||+Wvia−pointC(t)

(23)
Here,

∑

iK
i
P,t is the sum over the proportional

gains over all joints. The reasoning behind pe-
nalizing the gains is that low gains lead to several
desirable properties of the system such as com-
pliant behavior (safety and/or robustness [2]),
lowered energy consumption, and less wear and
tear3. The term ||ẍ|| is the magnitude of the
accelerations of the end-effector. This quantity
is penalized to avoid high-jerk end-effector mo-
tion. This penalty is low in comparison to the
gain penalty.

The component of the cost function C(t) that
represents this primary task will be described in-
dividually for each robot in the next sections.
Gains and accelerations are penalized at each
time step t, but C(t) only leads to a cost at spe-
cific time steps along the trajectory.

3During learning, we bound the gains between pre-
specified maximum and minimum values. Too high gains
would generate oscillations and can lead to instabilities
of the robot, and too low gains lead to poor tracking
such that the robot frequently runs into the joint limits.
This also keeps the exploration algorithm from generating
negative gains.
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For both via-point experiments, the cost
weights are Wvia−point = 2000, Wgain = 1/N ,
Wacc = 1/N . Dividing the weights by the num-
ber of time steps N is convenient, as it makes the
weights independent of the duration of a move-
ment.

5.1.1 Experiment 1: Phantom robot,

passing through via-point in joint

space

The Phantom Premium 1.5 Robot is a 3-DOF,
two link arm. It has two rotational degrees of
freedom at the base and one in the arm. We
use a physically realistic simulation of this robot
generated in SL [23], as depicted in Figure 2.

Figure 2: 3-DOF Phantom simulation in SL.

The task for this robot is intentionally simple
and aimed at demonstrating the ability to tune
task relevant gains in joint space with straight-
forward and easy to interpret data.
The duration of the movement is 2.0s, which

corresponds to 1000 time steps at 500Hz servo
rate. The intermediate goals for this robot are
set as follows:

C(t) = δ(t− 0.4) · | qSR(t) + 0.2 |+ (24)

δ(t− 0.8) · | qSFE(t)− 0.4 |+

δ(t− 1.2) · | qEB(t)− 1.5 |

This penalizes joint SR for not having an an-
gle qSR = −0.2 at time t = 0.4s. Joints SFE
and EB are also required to go through (differ-
ent) intermediate angles at times 0.8s and 1.2s
respectively.

The initial parameters θi for the reference tra-
jectory are determined by training the DMPs
with a minimum jerk trajectory [42] in joint
space from qt=0.0 = [0.0 0.3 2.0]T to qt=2.0 =
[−0.6 0.8 1.4]T . The function approximator for
the proportional gains of the 3 joints is initial-
ized to return a constant gain of 6.0Nm/rad.
The initial trajectories are depicted as thin black
lines in Figure 4, where the angles and gains of
the three joints are plotted against time. Since
the task of PI2 is to optimize both trajectories
and gains with respect to the cost function, this
leads to a 6-D RL problem. The robot executes
100 parameter updates, with 4 noisy roll-outs
per update. After each update, we perform one
noise-less test trial for evaluation purposes.

Figure 3 depicts the learning curve for the
phantom robot, which is the overall cost of the
noise-less test trial after each parameter update.
The joint space trajectory and gain scheduling
after 100 updates are depicted as thick solid lines
in Figure 4.

5.1.2 Experiment 2: Kuka robot, passing

through a via-point in task space

Next we show a similar task on a simulated
6-DOF Kuka Light-Weight Arm, depicted in
the middle of Figure 7. This example illus-
trates that our approach scales well to higher-
dimensional systems, and also that appropriate
gains schedules are learned when intermediate
targets are chosen in end-effector space instead
of joint space.

The duration of the movement is 1.0s, which
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Figure 3: Learning curve for the phantom robot.
Left: linear y-axis. Right: logarithmic y-axis,
with the total cost broken down into the separate
cost components of Equation 23.

corresponds to 500 time steps. This time, the
intermediate goal is for the end-effector x to pass
through [0.7 0.3 0.1]T at time t = 0.5s:

C(t) = δ(t− 0.5)| x− [ 0.7 0.3 0.1]T | (25)

The six joint trajectories are again initialized
as minimum jerk trajectories. As before, the re-
sulting initial trajectory is plotted as a thin black
line in Figure 6. The initial gains are set to a
constant [60, 60, 60, 60, 25, 6]T . Given these ini-
tial conditions, finding the parameter vectors for
DMPs and gains that minimizes the cost func-
tion leads to a 12-D RL problem. We again per-
form 100 parameter updates, with 4 exploration
roll-outs per update.

The learning curve for this problem is depicted
in Figure 5. The trajectory of the end-effector
before learning and after 30 and 100 updates is
depicted in Figure 6. The intermediate goal at
t = 0.5 is visualized by circles. Finally, Figure 7
shows the gain schedules before learning and af-
ter 30 and 100 updates for the 6 joints of the
Kuka robot.

Figure 4: Initial (thin) and final (thick) joint
trajectories and gain scheduling for each of the
three joints of the phantom robot. Yellow circles
indicate intermediate via-points in joint space at
different times.

5.1.3 Discussion of via-point experi-

ments

For both experiments PI2 has adapted the initial
minimum jerk trajectories such that they fulfill
the task and pass through the desired joint an-
gles or the end-effector task-space goal at the
specified times with only small error (Figures 4,
and 6). These intermediate goals are represented
by the circles on the graphs. The remaining er-
ror is a result of the trade-off between the differ-
ent factors of the cost function (i.e. penalty for
distance to goal vs. penalty for high gains). It
learns to do so after only 30 updates for the task
space goal on the 6-DOF Kuka Arm (Figure 5)
and less than 20 for the joint space goal in the
3-DOF Phantom robot (Figure 3).

Because the magnitude of gains is penalized
in general, they are low when the task allows it,
as illustrated in Figure 4: After t = 1.6s, all
gains drop to their pre-specified minimum val-
ues, because accurate tracking is no longer re-
quired to fulfill the goal. Once the task is com-
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Figure 5: Learning curve for the Kuka robot.
Left: linear y-axis. Right: logarithmic y-axis,
with the total cost broken down into the separate
cost components of Equation 23.

Figure 6: Initial (thin), intermediate (dashed),
and final (thick) end-effector trajectories of the
Kuka robot.

pleted, the robot becomes maximally compliant,
as one would wish it to be.

The same effect is visible in the results for the
Kuka Arm, where after 100 updates the peaks
of most gains occur just before the end-effector
passes through the intermediate goal (Figure 7),
and in many cases decrease to the minimum gain
directly afterwards. As with the phantom robot
we observe high impedance when the task re-
quires accuracy, and more compliance when the
task is relatively unconstrained.

The second joint (GA2) has the most work
to perform, as it must support the weight of all
the more distal links. Its gains are by far the
highest, especially at the intermediate goal, as

Figure 7: Initial (thin), intermediate (dashed),
and final (thick) joint gain schedules for each of
the six joints of the Kuka robot.

any error in this DOF will lead to a large end-
effector error.

When the robot is required to pass through
the intermediate targets, it needs better track-
ing, and therefore higher gains. Therefore, the
peaks of the gains correspond roughly to the
times where the joint is required to pass through
an intermediate point. Due to nonlinear effects,
e.g., Coriolis and centripedal forces, the gain
schedule shows more complex temporal behav-
ior as one would initially assume from specifying
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three different joint space targets at three differ-
ent times.

For the Kuka arm, the learning has two dis-
tinct phases. In the first phase (plotted as a
dashed graph), the robot is learning to make
the end-effector pass through the intermediate
goal. At this point, the basic shape of the gain
scheduling has been determined. In the second
phase, PI2 fine tunes the gains, and lowers them
as much as the task permits.

In summary, these two experiments illustrate
that we have achieved the objective of variable
impedance control: the robot is compliant when
possible, but has a higher impedance when the
task demands it.

5.2 Manipulation experiments

The next two experiments show how the pro-
posed method can find trajectories and gain
schedules for more complex behaviors that in-
volve contact with the environment.

5.2.1 Experiment 3: Phantom robot,

flipping a light switch

The goal of this task is for the 3-DOF Phantom
robot to flip a light switch. The experiment was
conducted with both a real robot, depicted in
Figure 8, and the simulated robot as in Experi-
ment 1.

The initial trajectory was acquired through
kinesthetic teaching. To demonstrate the tra-
jectory, the gains of the robot were simply set to
0, as the robot is light enough to maneuver by
hand without gravity compensation. The 3 joint
angles were recorded over time, and a low-pass
Butterworth filter is applied to these trajectories
to suppress the large accelerations that arise due
to the noisy recordings. The resulting trajectory

in end-effector space is depicted in Figure 8. A
DMP with 20 basis functions is trained for each
degree of freedom.

Figure 8: Experimental set-up for the Phantom
experiment, including the demonstrated trajec-
tory.

The initial gains for each joint are set to a
constant value over time of 0.2, 0.5 and 0.3 for
the SR, SFE and EB joint respectively. This
corresponds to a quarter of the default gains
for this robot. With these gains, the robot is
very compliant, and hardly exerts forces, even
when pushed far off the desired trajectory. These
gains are also the minimum gains allowed during
learning. Lower gains lead to such bad tracking
of desired trajectories, that the robot frequently
reaches its joint limits, which is undesirable.
The cost function for PI2 consists of two parts.

The terminal cost φtN is 0 if the switch was
flipped, or 500 if it was not. On the real
robot, the user provides yes/no feedback (key-
board input) whether the switch was flipped or
not. The intermediate costs for the gains are
the same as in the via-point experiments, i.e.
rt =

1
N

∑3
i=1K

i
P,t, again dividing by the length

of the trajectory N to be independent of trajec-
tory duration.
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The variance of the exploration noise for the
gain schedule of each joint is 10−4γn, with de-
cay parameter γ = 0.98 and n the number of
updates. Before each update, 4 roll-outs are ex-
ecuted on the robot, and the 4 roll-outs with low-
est cost from the previous parameter update are
kept, so each update is computed over K = 8
trajectories. This elitarianist reuse of roll-outs
makes sure that ‘good examples’ are not forgot-
ten, as chance might have it that all newly gener-
ated roll-outs are worse than the previous mean,
and reward weighted averaging would lead to

Results. Figure 9 depicts the cost of the
noise-less test trial after each update for both
the real and simulated robot. The gain schedules
after 0/2/18 and 0/4/30 updates are depicted
for the real and simulated robot respectively in
Figure 10. These result will be discussed in Sec-
tion 5.2.3.

Figure 9: Learning curves of the real and simu-
lated Phantom on the light switch task.

5.2.2 Experiment 4: CBi humanoid

robot, pushing open a door

In this task, the simulated CBi humanoid
robot [6] is required to open a door. This robot is
accurately simulated with the SL software [23].
For this task, we not only learn the gain sched-

Figure 10: Learned gain schedules of the real
(upper row) and simulated (lower row) of the
three Phantom joints after 0/2/18 and 0/4/30
updates respectively

ules, but also improve the planned joint trajec-
tories with PI2 simultaneously.

In this task, we fix the base of the robot, and
consider only the 7 degrees of freedom in the left
arm. The initial trajectory before learning is a
minimum jerk trajectory in joint space. In the
initial state, the upper arm is kept parallel to
the body, and the lower arm is pointing forward.
The target state is depicted in Figure 11.

The gains of the 7 joints are initialized to
1/10th of their default values. This leads to ex-
tremely compliant behavior, whereby the robot
is not able to exert enough force to overcome
the static friction of the door, and thus cannot
move it. The minimum gain for all joints was
set to 5. Optimizing both joint trajectories and
gains leads to a 14-dimensional learning prob-
lem.

The terminal cost is the degree to which the
door was opened, i.e. φtN = 104 · (ψmax − ψN ),
where the maximum door opening angle ψmax is
0.3rad (it is out of reach otherwise). The imme-
diate cost for the gains is again rt =

1
N

∑3
i=1K

i
P .
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The variance of the exploration noise for the
gains is again 10−4γn, and for the joint trajecto-
ries 10γn, both with decay parameter λ = 0.99
and n the number of updates4. The number of
executed and reused ‘elite’ roll-outs is both 5, so
the number of roll-outs on which the update is
performed is K = 10.

Results. Figure 11 (right) depicts the total
cost of the noise-less test trial after each update.
The costs for the gains are plotted separately.
When all of the costs are due to gains, i.e. the
door is opened completely to ψmax and the task
is achieved, the graphs of the total cost and that
of the gains coincide. The joint trajectories and
gain schedules after 0, 6 and 100 updates are
depicted in Figure 12.

Figure 11: Left: Task scenario. Right: Learning
curve for the door task. The costs specific to the
gains are plotted separately.

4The relatively high exploration noise for the joint tra-
jectories does not express less exploration per se, but is
rather due to numerical differences in using the function
approximator to model the gains directly (Equation 21)
rather than as the non-linear component of a DMP (Equa-
tion 14).

Figure 12: Learned joint angle trajectories (left)
and gain schedules (right) of the CBi arm af-
ter 0/6/100 updates. The gain schedules of
only three joints have been depicted for sake
of clarity (EB: elbow, SAA: shoulder adduction-
abduction, SFE: shoulder flexion-extension)

5.2.3 Discussion of manipulation experi-

ments

We now discuss the results of the last two experi-
ments: flipping the light switch, and opening the
door.

In all the manipulation results above, there are
two distinct phases during learning. In the first
few updates, the gains are increased and a suit-
able trajectory is found in order to achieve the
task, i.e. flip the light switch, or open the door.
This leads to a strong decrease in the cost for not
achieving the task, which is traded off against a
higher cost for higher gains. This is clearly seen
in Figure 11, where the cost due to the gains
increases dramatically in the first few updates
(note the logarithmic scale), whereas the overall
cost decreases. Essentially, the robot is learning
that it is able to solve the task with high-gain
control. This is also apparent when inspecting
the (dashed) gain schedules after a few updates
(2/4/6) in Figure 10 and Figure 12: the gains
are much higher than their low values with which
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they are initialized.
In the second phase, gains are lowered overall

to reduce the immediate costs rt, and the exact
timing and magnitudes of the gains required to
achieve the task are determined. On the Phan-
tom robot, this leads to a peak in the gains of the
elbow joint (EB) when the robot’s end-effector
comes into contact with the switch. This joint
needs to stiffen up in order to exert the force
necessary to flip the switch. On the CBi robot,
there is a peak in the elbow joint before contact,
as the elbow must be lifted to reach the door.
During door opening, the gains of the shoulder
flexor-extensor joint (SFE) increase, again to ex-
ert the force necessary to open the door. Too
much compliance during this time will not allow
the robot to achieve its task. It is interesting to
see that after 100 updates, the sum of the gains
(i.e. the ‘cost due to gains’ in Figure 11) for the
CBi robot is actually 25% lower than at initial-
ization, when it could not open the door. But
by timing and tuning the gains appropriately as
depicted in Figure 12, the robot is now able to
open the door.
Note that during this second phase, the robot

sometimes lowers the gains too much, and is
not able to flip the switch/open the door any-
more, as indicated by the spikes in the learning
curves. That the robot is always able to open the
door/flip the switch one update after a spike is
because of the elitarianism, which always leads
to at least some roll-outs with successful task
achievement to be among the pool of K roll-outs
on which the parameter update is performed.
In Figure 9, it is surprising to see that learn-

ing is faster on the real robot that in simula-
tion. We believe this is due to the strong dis-
continuity in the cost function, caused by the
binary nature of achieving the task or not. Due
to the reproducibility of movement and interac-

tions in simulation, this will indeed be a very
sharp discontinuity. On the real robot this dis-
continuity is ‘smoothed’ by imperfect tracking,
inaccurate sensors, and slight displacements of
the light switch between trials. We assume that
this leads to a smoother cost function, which fa-
cilitates learning.

In summary, learning such variable gain sched-
ules enables the robot to keep its gains as low
as possible (with resulting energy efficiency, re-
duced wear-and-tear, and compliance), switch-
ing to high-gain control only when the task re-
quires it (i.e. when force is required to open the
door).

6 Related work

Biological Motor control It has been shown
that humans are able to control the impedance
characteristics of their hand in task space [4, 26].
The mathematical treatment of the human mo-
tor system is usually developed along the same
lines as in robotics, i.e. the basic kinematics
and dynamics equations are borrowed from rigid
body dynamics. However, actuation is done by
antagonistic muscle systems to generate joint
torques, which adds another space, the muscle
actuation space [10]. For the discussion as it
applies to the presented work this added space
and complexity is of minor importance. The cen-
tral characteristics is (a) relevance of impedance
in task space (b) realization of impedance con-
trol in another space i.e. in robots in joint
space, in humans in ‘muscle space’. We cur-
rently present results only on tuning stiffness in
joint space, and not in ‘muscle’ space (e.g. no
biarticular or antagonistic actuation, no nonlin-
earities). However, our method generalizes to
more complex parameterized impedance control
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laws, and could also parameterize muscle based
models. Therefore, this work opens a large field
of comparative studies in biological motor con-
trol with PI2 . It is also worth noting that in
the biological motor control literature, very often
only variation of stiffness is discussed, last but
not least also due to experimental difficulties of
measuring a more general mechanical impedance
in human subjects.

Impedance control One of the motivations
behind our work is the same motivation that
is behind impedance control as presented in [8]:
“[. . . ] the controller should be capable of mod-
ulating the impedance of the manipulator as
appropriate for a particular phase of a task.”
While, for long time, the robotics control com-
munity has realized how important it is to con-
trol the interaction dynamics of a robot properly,
to this day “[T]he selection of good impedance
parameters [. . . ] is not an easy task” [27]. Deriv-
ing useful impedance controllers usually involves
models and knowledge of both the environment
and the robot and deep knowledge about design-
ing and parameterizing such controllers. Here we
show how appropriate interaction behavior can
be learned purely from experience and without

the need of knowledge of the robot and the envi-

ronment and only simple reward on the quality
of task achievement in form of a cost function
(unspecific to the controller).

In [9] a variety of impedance control schemes
are discussed. One of these schemes is ’feedback’
impedance control where a desired impedance is
chosen and tracked via state-feedback and force-
feedback. Today, this scheme is commonly re-
ferred to as impedance control (e.g. in [27]), even
though the idea of impedance control is more
general. To illustrate this fact, other schemes

that do not use feedback to online control the
impedance are also presented in [9] along with
the feedback impedance control scheme.

The approach presented in this paper is not
to be confused with ’feedback’ impedance con-
trol. Our controllers generate variable impedance

at the end-effector by manipulating the joint
space impedance parameters and the reference
trajectory. As joint space impedance parame-
ters we use variable gains of a PD controller,
which does not mean that the most general form
of impedance can be realized, but, in princi-
ple, other more general parameterizations could
be used to find more general impedance realiza-
tions. The dimensionality of the learning prob-
lem will increase. Studying the gain/benefit
tradeoff of these more general schemes remains
future work.

Note that despite restricting the algorithm to
tuning stiffness and damping in joint space, it
can still tune the apparent inertia properties and
other aspects of the dynamic behavior at the
end-effector (in certain limits) via the reference
trajectory. The reference trajectory influences
the dynamic behavior at the end-effector in two
ways. First by determining the configuration at
a given point in the task, the apparent inertia at
the end-effector is co-determined [15, 9, 25], and
second by possibly purposefully using a reference
trajectory which is far from the actually followed
trajectory (e.g. as in indirect force control [28]
where the desired force is achieved by putting
the end-effector reference trajectory within the
object).

Optimal control In optimal control and
model based RL, Differential Dynamic Program-
ming (DDP) [12] has been one of the most es-
tablished and most commonly used frameworks
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for finite horizon optimal control problems. In
DDP, both state space dynamics and cost func-
tion are approximated up to the second order.
The assumption of stabilizability and detectabil-
ity for the local approximation of the dynamics
are necessary for the convergence of DDP. The
resulting state space trajectory is locally opti-
mal, while the corresponding control policy con-
sists of open loop feedforward commands and
closed loop gains relative to a nominal and opti-
mal reference trajectory. This characteristic al-
lows the use of DDP for both planning and gain
scheduling problems. In [7, 40] DDP was ex-
tended to incorporate constraints in state and
controls. In [18] the authors suggest computa-
tional improvements to constrained DDP and
apply the proposed algorithm to a low dimen-
sional planning problem.
An example of a DDP application to robotics

is presented in [20]. In this work, a min-max or
Differential Game Theory approach to optimal
control is proposed. There is a strong link be-
tween robust control frequency design analysis
such as H∞ control and the framework of Dif-
ferential Game Theory [1]. Essentially the min-
max DDP results in robust feedback control poli-
cies with respect to model uncertainty and un-
known dynamics. Although, in theory, min-max
DDP should resolve the issue of model uncer-
tainty, it can lead to overly conservative control
policies. The conservatism results from the need
to guarantee that the game theoretic approach
will be always stabilizable, i.e. making sure that
the stabilizing controller wins. For linear and
time invariant systems, such guarantee is feasible
through γ-iteration [39]. However, for nonlinear
systems providing this guarantee is not trivial.

The work on Receding Horizon DDP [32] pro-
vided an alternative and rather efficient way of
computing local optimal feedback controls. Nev-

ertheless, all the computations of optimal tra-
jectories and control take place off-line and the
model predictive component is only due to the
fact that the final target state of the optimal
control problem varies. Recent work on LQR-
trees uses a simpler variation of DDP, the iter-
ative Linear Quadratic Regulator (iLQR) [19],
which is based on linear approximations of the
state space dynamics, in combination with tools
from Nonlinear Robust Control theory for region
of attraction analysis. Given the local optimal
feedback control policies, the sums of squares op-
timization scheme is used to quantify the size of
of the basin of attraction, and provides so-called
control funnels. These funnels improve sampling
since they quantize the state space into attrac-
tor regions placed along the trajectories towards
the target state. This is a model based approach
and thus suffers from many of problems of model
based approaches to optimal control. In addi-
tion, even though sampling is improved, it is still
an issue how LQR trees scale in high dimensional
dynamical systems.
The path integral formalism for optimal con-

trol was introduced in [13, 14]. In this work,
the role of noise in symmetry breaking phenom-
ena was investigated in the context of stochastic
optimal control. In [38], the path integral for-
malism is extended for stochastic optimal con-
trol of multi-agent systems, which is not unlike
our multi DOF control systems.
Recent work on stochastic optimal control by

[36, 35, 37] shows that for a class of discrete
stochastic optimal control problems, the Bell-
man equation can be written as the Kullback-
Leibler (KL) divergence between the probability
distribution of the controlled and uncontrolled
dynamics. Furthermore, it is shown that the
class of discrete KL divergence control problem
is equivalent to the continuous stochastic opti-
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mal control formalism with quadratic cost con-
trol function and under the presence of Gaussian
noise. In all this aforementioned work, both in
the path integral formalism as well as in KL di-
vergence control, the class of stochastic dynami-
cal systems under consideration is rather restric-
tive since the control transition matrix is state
independent. Moreover, the connection to direct
policy learning in RL and model-free learning
was not made in any of the previous projects.
In [37], the stochastic optimal control problem
is investigated for discrete state-action spaces,
and therefore it is treated as Markov Decision
Process (MDP).

As was demonstrated, to apply our PI2 algo-
rithm, we do not discretize the state space and
we do not treat the problem as an MDP. Instead
we work in continuous state-action spaces which
are suitable for performing RL in high dimen-
sional robotic systems. To the best of our knowl-
edge, our results present RL in one of the most
high dimensional continuous state action spaces.

In our derivations, the probabilistic inter-
pretation of control comes directly from the
Feynman-Kac Lemma. Thus we do not have
to impose any artificial pseudo-probability treat-
ment of the cost as in [37]. In addition, for
continuous state-action spaces, we do not have
to learn the value function as it is suggested in
[37] via Z-learning. Instead we directly obtain
the controls based on our generalization of opti-
mal controls. In the previous work, the problem
of how to sample trajectories is not addressed.
Sampling is performed with the hope to cover all
the relevant state space. We follow a rather dif-
ferent approach by incremental updating, which
allows us to address robotic learning problems of
the complexity and dimensionality of complete
humanoid robots.

Reinforcement Learning In contrast to pol-
icy gradient methods [22], in PI2 there is no need
to explicitly calculate a gradient, which is usu-
ally sensitive to noise and large derivatives in the
value function. Essentially the gradient of the
exponentiated value function ∇xΨ is implicitly
calculated by a weighted average of the explo-
ration parameter ǫ weighted by the exponenti-
ated cost of every sampled trajectory (last step
in 1). This computation is robust to non-smooth
dynamics and cost functions. As is shown in the
results session, PI2 performs RL under boolean
cost functions which are introduced either to in-
corporate contact with objects or to encode suc-
cess and failure modes in motor tasks. Thus PI2

is robust to non-smooth cost functions since it
does rely on quadratic approximations of them
as model based RL methods [12].

With respect to previous work on path inte-
gral control [14, 13], in PI2 the exploration of
the state space is done with the propagation
of DMPs, rather than sampling the whole state
space. For high dimensional problems, it is sim-
ply not possible to sample the whole state space.
The differences discussed above enable PI2 to

outperform previous RL algorithms for parame-
terized policy learning by at least one order of
magnitude in learning speed and also lower final
cost performance, as demonstrated in [33, 34]. It
also scales up to high-dimensional spaces, which
enables PI2 to learn full-body humanoid motor
skills with over 30-DOFs [30]. As an additional
benefit, PI2 has no open algorithmic parameters,
except for the magnitude of the exploration noise
ǫt (the parameter λ is set automatically, cf. [33]).
It is a model free reinforcement learning algo-
rithm in the sense that it does not require knowl-
edge of the model of the control system or the
environment for the learning of an optimal con-
trol policy.
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In [17], a robot learns the coupling between
the different DOFs of a robot, to learn synergies
across the different dimensions. These couplings
are learned with the PoWER algorithm [16], on a
representation very similar to DMPs. The initial
DMP is acquired through kinesthetic teaching.
The output of the motion primitive, desired ac-
celerations, is converted into torque commands
using inverse dynamics and PD control. Rather
than learning couplings between joints, we learn
variable gain schedules for each joint. Also, PI2

enables us to use much simpler cost functions for
specifying whether the task is achieved. In the
case of the light switch flipping task, it is a sim-
ple boolean function that specifies whether the
flip was switched or not. This makes it easier for
non-expert users to provide feedback.

7 Conclusion

We presented a model-free reinforcement learn-
ing approach that can learn variable impedance
control for robotic systems. Our approach is
derived from stochastic optimal control with
path integrals, a relatively new development that
transforms optimal control problems into estima-
tion problems. In particular, PI2 goes beyond
the original ideas of optimal control with path
integrals by realizing the applicability to optimal
control with parameterized policies and model-
free scenarios.

The mathematical structure of the PI2 algo-
rithm makes it suitable to optimize simultane-
ously both reference trajectories and gain sched-
ules. This is similar to classical differential dy-
namic programming (DDP) methods, but com-
pletely removes the requirements of DDP that
the model of the controlled system must be
known, that the cost function has to be twice

differentiable in both state and command cost,
and that the dynamics of the control system have
to be twice differentiable. The latter constraints
make it hard to apply DDP to tasks with dis-
crete events, as is typical in force control and
locomotion.

We evaluated our approach on three simulated
robot systems and one real robot, which posed
up to 14 dimensional learning problems in con-
tinuous state-action spaces. The goal was to
learn compliant control while fulfilling kinematic
task constraints, like passing through an inter-
mediate target. The evaluations demonstrated
that the algorithm behaves as expected: it in-
creases gains when needed, but tries to maintain
low gain control otherwise. The optimal ref-
erence trajectory always fulfilled the task goal.
Learning speed was rather fast, i.e., within at
most a few hundred roll-outs, the task objec-
tive was accomplished. From a machine learning
point of view, this performance of a reinforce-
ment learning algorithm is very fast.

The PI2 algorithms inherits the properties of
all trajectory-based learning algorithms in that
it only finds locally optimal solutions. For high
dimensional robotic system, this is unfortunately
all one can hope for, as exploring the entire state-
action space in search for a globally optimal so-
lution is impossible.

Future work aims at applying these methods
to actual robots for mobile manipulation and lo-
comotion controllers. We believe that our meth-
ods are a major step towards realizing compliant
autonomous robots that operate robustly in dy-
namic, stochastic environments, without harm-
ing other beings or themselves.
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