
Learning Video Object Segmentation from Unlabeled Videos

Xiankai Lu1 , Wenguan Wang2∗, Jianbing Shen1 , Yu-Wing Tai3 , David Crandall4 , Steven C. H. Hoi5,6

1 Inception Institute of Artificial Intelligence, UAE 2 ETH Zurich, Switzerland
3 Tencent 4 Indiana University, USA 5 Salesforce Research Asia, Singapore 6 Singapore Management University, Singapore

carrierlxk@gmail.com, wenguanwang.ai@gmail.com

https://github.com/carrierlxk/MuG

Abstract

We propose a new method for video object segmenta-

tion (VOS) that addresses object pattern learning from unla-

beled videos, unlike most existing methods which rely heav-

ily on extensive annotated data. We introduce a unified un-

supervised/weakly supervised learning framework, called

MuG, that comprehensively captures intrinsic properties of

VOS at multiple granularities. Our approach can help ad-

vance understanding of visual patterns in VOS and signifi-

cantly reduce annotation burden. With a carefully-designed

architecture and strong representation learning ability, our

learned model can be applied to diverse VOS settings, in-

cluding object-level zero-shot VOS, instance-level zero-shot

VOS, and one-shot VOS. Experiments demonstrate promis-

ing performance in these settings, as well as the potential

of MuG in leveraging unlabeled data to further improve the

segmentation accuracy.

1. Introduction

Video object segmentation (VOS) has two common set-

tings, zero-shot and one-shot. Zero-shot VOS (Z-VOS)1 is

to automatically segment out the primary foreground ob-

jects, without any test-time human supervision, whereas

one-shot VOS (O-VOS) focuses on extracting the human

determined foreground objects, typically assuming the first-

frame annotations are given ahead inference1. Current lead-

ing methods for both Z-VOS and O-VOS are supervised

deep learning models that require extensive amounts of

elaborately annotated data to improve the performance and

avoid over-fitting. However, obtaining pixel-wise segmen-

tation labels is labor-intensive and expensive (Fig.1(a)).

It is thus attractive to design VOS models that can learn

from unlabeled videos. With this aim in mind, we develop a

∗Corresponding author: Wenguan Wang.
1Some conventions [36, 59] also use ‘unsupervised VOS’ and ‘semi-

supervised VOS’ to name the Z-VOS and O-VOS settings[3]. In this work,

for notational clarity, the terms ‘supervised’, ‘weakly supervised’ and ‘un-

supervised’ are only used to address the different learning paradigms.

Figure 1: (a) Current leading VOS methods are learned in a super-

vised manner, requiring large-scale elaborately labeled data. (b)

Our model, MuG, provides an unsupervised/weakly-supervised

framework that learns video object patterns from unlabeled videos.

(c) Once trained, MuG can be applied to diverse VOS settings,

with strong modeling ability and high generability.

unified, unsupervised/weakly supervised VOS method that

mines multi-granularity cues to facilitate video object pat-

tern learning (Fig.1(b)). This allows us to take advantage of

nearly infinite amounts of video data. Below we give a more

formal description of our problem setup and main idea.

Problem Setup and Main Idea. Let X and Y denote the

input video space and output VOS space, respectively. Deep

learning based VOS solutions seek to learn a differentiable,

ideal video-to-segment mapping g∗:X 7→Y . To approximate

g∗, recent leading VOS models typically work in a super-

vised learning manner, requiring N input samples and their

desired outputs yn := g∗(xn), where {(xn, yn)}n⊂X×Y .

In contrast, we address the problem in settings with much

less supervision: (1) the unsupervised case, when we only

have samples drawn from X , {xn}n⊂X , and want to ap-

proximate g∗, and (2) the weakly supervised learning set-

ting, in which we have annotations for K, which is a related

output domain for which obtaining annotations is easier
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than Y , and we approximate g∗ using samples from X×K.

The standard way of evaluating learning outcomes fol-

lows an empirical risk/loss minimization formulation [43]:

g̃ ∈ argmin
g∈G

1

N

∑

n
ε(g(xn), z(xn)), (1)

where G denotes the hypothesis (solution) space, and

ε:X×Y 7→R is an error function that evaluates the estimate

g(xn) against VOS-related prior knowledge z(xn) ∈Z .

To make g̃ a good approximation of g∗, current super-

vised VOS methods directly use the desired output yn, i.e.,

z(xn):=g∗(xn), as the prior knowledge, with the price of

vast amounts of well-annotated data.

In our method, the prior knowledge Z , in the unsuper-

vised learning setting, is built upon several heuristics and

intrinsic properties of VOS itself, while in the weakly su-

pervised learning setting, it additionally considers a related,

easily-annotated output domain K. For example, part of

the fore-background knowledge could be from a saliency

model [70] (Fig. 1 (b)), or in a form of CAM maps [73, 76]

from a pre-trained image classifier [14] (i.e., a related im-

age classification domain K)2. Exploring VOS in an unsu-

pervised or weakly supervised setting is appealing not only

because it alleviates the annotation burden of Y , but also

because it inspires an in-depth understanding of the nature

of VOS by exploring Z . Specifically, we analyze several

different types of cues at multiple granularities, which are

crucial for video object pattern modeling:

• At the frame granularity, we leverage information from

an unsupervised saliency method [70] or CAM [73, 76]

activation maps to enhance the foreground and back-

ground discriminability of our intra-frame representation.

• At the short-term granularity, we impose local consis-

tency within the representations of short video clips,

to describe the continuous and coherent visual patterns

within a few seconds.

• At the long-range granularity, we address semantic corre-

spondence among distant frames, which makes the cross-

frame representations robust to local occlusions, appear-

ance variations and shape deformations.

• At the whole-video granularity, we encourage the video

representation to capture global and compact video con-

tent, by learning to aggregate multi-frame information

and be discriminative to other videos’ representations.

All these constraints are formulated under a unified,

multi-granularity VOS (MuG) framework, which is fully

differentiable and allows unsupervised/weakly supervised

video object pattern learning, from unlabeled videos. Our

extensive experiments over various VOS settings, i.e.,

object-level Z-VOS, instance-level Z-VOS, and O-VOS,

show that MuG outperforms other unsupervised and weakly

2Note that any unsupervised or weakly supervised object segmentation/saliency

model can be used; saliency [70], and CAM [73, 76] are just chosen due to their

popularity and relatively high performance.

supervised methods by a large margin, and continuously im-

proves its performance with more unlabeled data.

2. Related Work

2.1. Video Object Segmentation

Z-VOS. As there is no indication for objects to be seg-

mented, conventional ZVOS methods resorted to certain

heuristics, such as saliency [59, 62, 61, 7], object propos-

als [19, 37, 24], and discriminative motion patterns [31, 10,

33]. Recent advances have been driven by deep learn-

ing techniques, from early, relatively simple architectures,

such as recurrent network[45, 32, 63], and two-stream net-

work [6, 49, 77], to recent, more powerful designs, such as

teacher-student adaption [44], neural co-attention [26] and

graph neural network[58, 68].

O-VOS. As the annotations for the first frame are assumed

available at the test phase, O-VOS focuses on how to accu-

rately propagate the initial labels to subsequent frames. Tra-

ditional methods typically used optical flow based propaga-

tion strategy[29, 9, 60, 28]. Now, deep learning based solu-

tions become the main stream, which can be broadly classi-

fied into three categories, i.e., online learning, propagation

and matching based methods. Online learning based meth-

ods[3, 55, 35] fine-tune the segmentation network for each

test video on the first-frame annotations. Propagation based

methods [18, 67, 71] rely on the segments of the previous

frames and work in a frame-by-frame manner. Matching

based methods [66, 54, 27] segment each frame according

to its correspondence/matching relation to the first frame.

Typically, current deep learning based VOS solutions

(both Z-VOS and O-VOS) are trained using a large amount

of elaborately-annotated data for supervised learning. In

contrast, the proposed method trains a VOS network from

scratch using unlabeled videos. This is essential for under-

standing how visual recognition works in VOS and for nar-

rowing down the annotation budget.

2.2. VOS with Unlabeled Training Videos

Learning VOS from unlabeled videos is important but

under-explored. Among a few efforts, Pathak et al. [34]

present an early attempt in this direction, which uses a

modified, purely unsupervised version of [7] to generate

proxy masks as pseudo annotations. In a similar spirit,

some methods use heuristic segmentation masks [17] or

weakly supervised location maps [23] as supervisory sig-

nals. With a broader view, some works [47, 11, 74] capi-

talized on untrimmed videos tagged with semantic labels.

In addition to increased annotation efforts, they are hard to

handle such a class-agnostic VOS setting. Recently, self-

supervised video learning has been applied for O-VOS[56,

65], which imposes the learned features to capture certain

constraints on local coherence, such as cross-frame color

consistency[56] and temporal cycle-correspondence[65].
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Our method is distinctive in two aspects. First, it ex-

plores various intrinsic properties of videos as well as class-

agnostic fore-background knowledge in a unified, multi-

granularity framework, bringing a more comprehensive un-

derstanding of visual patterns in VOS. Second, it shows

strong video object representation learning ability and, for

the first time, it is applied to diverse VOS settings after only

being trained once. This gives a new glimpse into the con-

nections between the two most influential VOS settings.

3. Proposed Algorithm

3.1. Multi­Granularity VOS Network

For a training video X ∈X containing T frames: X =
{Xt}

T
t=1, its features are specified as {xt}

T
t=1, obtained

from a fully convolutional feature extractor ϕ: xt=ϕ(Xt)∈
R

W×H×C . Characterics at four-granularity are explored to

guide the learning of ϕ (Fig.2), as follows.

Frame Granularity Analysis: Fore-background Knowl-

edge Understanding. As ϕ is VOS-aware, basic fore-

background knowledge is desired to be encoded. In our

method, this knowledge (Fig.1(b)) is initially from a back-

ground prior based saliency model[70] (in an unsupervised

learning setting), or in a form of CAM maps [73, 76] (in a

weakly supervised learning setting).

Formally, for each frame Xt, let us denote its corre-

sponding initial fore-background mask as Qt ∈ {0, 1}W×H

(i.e., a binarized saliency or CAM activation map). In our

frame granularity analysis, the learning of ϕ is guided by

the supervision signals of {Qt}
T
t=1, i.e., utilizing the intra-

frame information xt=ϕ(Xt) to regress Qt:

Lframe = LCE(Pt, Qt). (2)

Here LCE is the cross-entropy loss, and Pt=ρ(xt) where ρ:
R
W×H×C 7→[0, 1]W×H maps the input single-frame feature xt

into a fore-background prediction map Pt. ρ is implemented

by a 1×1 convolutional layer with sigmoid activation.

Short-Term Granularity Analysis: Intra-Clip Coher-

ence Modeling. Short-term coherence is an essential prop-

erty in videos, as temporally-close frames typically ex-

hibit continuous visual content changes [15]. To capture

this property, we apply a forward-backward patch tracking

mechanism [57] which learns ϕ by tracking a sampled patch

forwards in a few successive frames and then backwards un-

til the start frame, and penalizing the distance between the

initial and final backwards tracked positions of that patch.

Llong

Lglobal

Lshort

Lframe

Figure 2: Overview of our approach. Intrinsic properties over

frame, short-term, long-term and whole video granularities are

explored to guide the video object pattern learning.

Formally, given two consecutive frames Xt and Xt+1,

we first crop a patch p from Xt and apply ϕ on p and Xt+1,

separately. Then we obtain two feature embeddings: ϕ(p)∈
R

w×h×C and xt+1 = ϕ(Xt+1) ∈ R
W×H×C. With a design

similar to the classic Siamese tracker [2], we forward track

the patch p on the next frame Xt+1 by conducting a cross-

correlation operation ‘⋆’ on ϕ(p) and ϕ(Xt+1):

S⇒ = ϕ(p) ⋆ ϕ(Xt+1) ∈ [0, 1]W×H , (3)

whereS⇒ is a sigmoid-normalized response map whose size

is rescaled into (H,W ). The new location of p in Xt+1 is

then inferred according to the peak value onS⇒. After ob-

taining the forward tracked patch p′ in Xt+1, we backward

trackp′ toXtand get a backward tracking response mapS⇐:

S⇐ = ϕ(p′) ⋆ ϕ(Xt) ∈ [0, 1]W×H . (4)

Ideally, the peak of S⇐ should correspond to the location of

p in the initial frame Xt. Thus we build a consistency loss

that measures the alignment error between the initial and

forward-backward tracked positions of p:

Lshort = ‖S⇐ −Gp‖
2
2, (5)

where Gp ∈ [0, 1]W×H is a (H,W )-dimensional Gaussian-

shape map with the same center of p and variance pro-

portional to the size of p. As in [57], the above forward-

backward tracking mechanism is extended to a multi-frame

setting (Fig. 3). Specifically, after obtaining the forward

Xt Xt+1 Xt+2

p p′ p′′

Xt+1

p

ϕ

ϕ

⋆

S⇒

Xt Xt+1 Xt+2 Xt+1 Xt

Xt

ϕ

ϕ

⋆

S⇐

Gp

Lshort

Figure 3: Left: Main idea of short-term granularity analysis. Right: Training details for intra-clip coherence modeling.

8962



X

Xi

Xj

ϕ

ϕ

Ai,j

Aj,i

κ

κ

τi,j

τj,i

Llong

Figure 4: Illustration of our long-term granularity analysis.

tracked patch p′ in Xt+1, p′ is further tracked to the next

frame Xt+2, and a new tracked patch p′′ is obtained. Then

p′′ is reversely tracked toXt+1 and further to the initial frame

Xt, and the local consistency loss in Eq. 5 is computed.

Moreover, during training, we first random sample a short

video clip consisting of six successive frames. Then we

perform above forward-backward tracking based learning

strategy over three frames random drawn from the six-frame

video clip. With above designs, ϕ captures the spatiotem-

porally local correspondence and is content-discriminative

(due to its cross-frame target re-identification nature).

Long-Term Granularity Analysis: Cross-Frame Seman-

tic Matching. In addition to the local consistency among

adjacent frames, there also exist strong semantic correla-

tions among distant frames, as frames from the same video

typically contain similar content [30, 69]. Capturing this

property is essential for ϕ, as it makes ϕ robust to many

challenges, such as appearance variation, shape deforma-

tions, object occlusions, etc. To address this issue, we con-

duct a long-term granularity analysis, which casts cross-

frame correspondence learning as a dual-frame semantic

matching problem (Fig. 4). Specifically, given a training

pair of two disordered frames (Xi, Xj) randomly sampled

from X , we compute a similarity affinity Ai,j between their

embeddings: (ϕ(Xi), ϕ(Xj)) by a co-attention[52]:

Ai,j = softmax(xi
⊤

xj) ∈ [0, 1](WH)×(WH), (6)

where xi ∈ R
C×(WH) and xj∈ R

C×(WH) are flat matrix for-

mats of ϕ(Xi) and ϕ(Xj), respectively. ‘softmax’ indicates

column-wise softmax normalization. Given the normalized

cross-correlation Ai,j , in line with[41], we use a small neu-

ral network κ : R(W×H)×(W×H) 7→ R
6 to regress the param-

eters of a geometric transformation τi,j , i.e., six-degree of

freedom (translation, rotation and scale). τi,j : R
2 7→ R

2

gives the relations between the spatial coordinates in Xi and

Xj considering the corresponding semantic similarity:

mi = τi,j(mj), (7)

where mi is a 2-D spatial coordinate of Xi, and mj the cor-

responding sampling coordinates in Xj . Using τi,j , we can

warp Xi to Xj . Similarly, we can also compute τj,i, i.e.,

a 2-D warping from Xj to Xi. Let us consider two sam-

pling coordinates mi and nj in Xj and Xi, respectively, we

introduce a semantic matching loss[41]:

Llong = −
(

∑

mi∈Ω

∑

oj∈Ω
Ai,j(mi, oj)ι(mi, oj)+

∑

nj∈Ω

∑

oi∈Ω
Aj,i(nj , oi)ι(mi, oi)

)

,
(8)

where Ω refers to the image lattice, Ai,j(mi, oj) ∈ [0, 1]
gives the similarity value between the positions mi and oj
in Xi and Xj , and ι(mi, oj) determines if the correspon-

dence between mi and oj is geometrically consistent. If

||mi, τi,j(oj)||≤1, ι=1; otherwise ι=0.

Video Granularity Analysis: Global and Discriminative

Representation Learning. So far, we have used the pair-

wise cross-frame information in local and long terms to

boost the learning of ϕ. ϕ is also desired to learn a com-

pact and globally discriminative video representation. To

achieve this, we use a global information aggregation mod-

ule which performs video granularity analysis within an

unsupervised video embedding learning framework [1] to

leverage supervision signals from different videos.

Starting with our global information aggregation module,

we split X= {Xt}
T
t=1 into K segments of equal durations:

X=∪K
k=1Xk. For each segment Xk, we randomly sample a

single frame, resulting in a K-frame abstract X ′={Xtk}
K
k=1

of X . X ′ reduces the redundancy among successive frames

while preserving global information.

With a similar spirit of key-value retrieval networks[46],

for each Xtk ∈ X ′, we set it as a query and the remaining

frames X ′/Xtk as reference. Then we compute the normal-

ized cross-correlation between the query and reference:

Atk=softmax(xtk
⊤[{xtk′

}tk′
]) ∈ [0, 1](WH)×(WH(K−1)), (9)

where k′ ∈{1, · · · ,K}/k, and ‘[·]’ denotes the concatena-

tion operation. xtk ∈R
C×(WH) and [{xtk′

}tk′∈{1,··· ,K}/k]∈

R
C×(WH(K−1)) are flat feature matrices of the query and ref-

erence, respectively. Subsequently, Atk is used as a weight

matrix for global information summarization:

x
′
tk
=[{xtk′

}tk′
] A

⊤
tk
∈R

(WH)×C, where k′∈{1, · · ·,K}/k. (10)

Our global information aggregation module gathers infor-

mation from the reference set with a correlation-based fea-

ture summarization procedure. For query frame Xtk , we

obtain a global information augmented representation:

rtk = [x′
tk
, xtk ] ∈R

W×H×2C . (11)

During training, the video granularity analysis es-

sentially discriminates between a set of surrogate video

classes [1]. Specifically, given N training videos, we ran-

domly sample a single frame from each video, leading to

N training instances: {Xn}Nn=1. The core idea is that, for a

query frame Xn
tk

in the n-th video, its global feature embed-

ding is close to the instance Xn from the same n-th video,

and far from other unrelated instances {Xn′

}n′ 6=n (from the

other N−1 videos). We solve this as a binary classification

problem via maximum likelihood estimation (MLE). In par-

ticular, for Xn
tk

, instance Xn should be classified into n,

while other instances {Xn′

}n′ 6=n shouldn’t be. The proba-

bility of Xn being recognized as instance n is:
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P (n|Xn) =
exp(GAP(rn⊤tk rn))

∑N

i=1 exp(GAP(rn⊤tk ri))
. (12)

where ‘GAP’ stands for global average pooling. Similarly,

given Xn
tk

, the probability of other instances Xn′

be recog-

nized as instance n is:

P (n|Xn′

) =
exp(GAP(rn⊤tk rn

′

))
∑N

i=1 exp(GAP(rn⊤tk ri))
. (13)

Correspondingly, the probability of Xn′

not being recog-

nized as instance n is 1−P (n|Xn′

). The joint probability

of Xn being recognized as instance n and Xn′

not being is:

P (n|Xn)
∏

n′ 6=n(1−P (n|Xn′

)), under the assumption that

different instances being recognized as n are independent.

Then the loss function is defined as the negative log like-

lihood over N query frames from N videos:

Lglobal=−
∑

n

logP (n|Xn)−
∑

n

∑

n′ 6=n

log(1−P (n|Xn′

)). (14)

3.2.One Training Phase for both Z­VOS and O­VOS

We now describe the network architecture during the

training and inference phases. An appealing advantage

of our multi-granularity VOS network is that, after being

trained in a unified mode, it can be directly applied to both

Z-VOS and O-VOS settings with only slight adaption.

Network Architecture. Our whole module is end-to-end

trainable. The video representation space ϕ is learned by

a fully convolutional network, whose design is inspired by

ResNet-50[13]. In particular, the first four groups of convo-

lutional layers in ResNet are preserved and dilated convo-

lutional layer[72] is used to maintain enough spatial details

as well as ensure a large receptive field, resulting in a 512-

channel feature representation x whose spatial dimensions

are 1/4 of an input video frame X .

During training, we use a mini-batch of N=16 videos

and scale all the training frames into 256×256 pixels. For

frame granularity analysis, all the frames access to the su-

pervision signal from the loss Lframe in Eq.2.

For short-term granularity analysis, six successive video

frames are first randomly sampled from each training video,

resulting in a six-frame video clip. For each video clip,

we further sample three video frames orderly and randomly

crop a 64× 64 patch as p. With the feature embedding

ϕ(p)∈R
16×16×64 of p, we forward-backward track p and get

its final backward tracking response map S⇐∈ [0, 1]64×64

via Eq. 4. For computing the loss in Eq. 5, the Gaussian-

shape map Gp ∈ [0, 1]64×64 is obtained by convolving the

center position of p with a two-dimension Gaussian map

with a kernel width proportional (0.1) to the patch size.

For long-term granularity analysis, after randomly sam-

pling two disordered frames (Xi, Xj) (|i− j|≥6) from a

training video X , we compute the correlation map Ai,j ∈
[0, 1](64×64)×(64×64) by the normalized inner production op-

eration in Eq.6. For the geometric transformation parame-

ter estimator κ:R(64×64)×(64×64) 7→R
6, it is achieved by two

convolutional layers and one linear layer, as in [41]. Then

the semantic matching loss in Eq.8 is computed.

For video granularity analysis, we split each training

video X into K = 8 segments, and get the global infor-

mation augmented representation rtk ∈R
64×64×256 for each

query frame Xtk by Eq. 11. Then, we compute the soft-

max embedding learning loss using Eq.14, which leverages

supervision signals from the N training videos.

Iterative Training by Bootstrapping. As seen in Fig.1(b),

the fore-background knowledge from the saliency [70] or

CAM [73, 76] is ambiguous and noisy. Inspired by Boot-

strapping [40], we apply an iterative training strategy: af-

ter training with the initial fore-background maps, we use

our trained model to re-label the training data. With each

iteration, the learner bootstraps itself by mining better fore-

background knowledge and then leading a better model.

Specifically, for each training frame X , given the initial

fore-background mask Q ∈ {0, 1}64×64 and current predic-

tion P̄ i∈{0, 1}64×64 of the model in i-th training iteration,

the loss in Eq. 2 in (i+1)-th iteration is formulated in a

bootstrapping format:

L
(i+1)
frame =

∑

m∈Ω
[αQm+(1−α)P̄ i

m] log(P
i+1
m )+

[α(1−Qm)+(1−α)(1−P̄ i
m)]log(1−P i+1

m ),
(15)

where α = 0.05 and Qm gives the value in position m. In

such a design, the ‘confident’ fore-background knowledge

is generated as a convex combination of the initial fore-

background information Q and model prediction P .

In the i-th training iteration, the overall loss to optimize

the whole network parameters is the combination of the

losses in Eq.15,4,8 and14:

L(h)=L
(h)

frame
+β1Lshort+β2Llong+β3Lglobal, (16)

where βs are coefficients: β1=0.1, β2=0.02 and β3=0.5.

The above designs enable a unified un-/weakly super-

vised feature learning framework. Once the model is

trained, the learned representations ϕ can be used for Z-

VOS and O-VOS, with slight modifications. In practice,

we find that our model can perform well after being trained

with 2 iterations; please see§4.2 for related experiments.

3.3. Inference for Z­VOS and O­VOS

Now we detail our inference modes for object-level Z-

VOS, instance-level Z-VOS, and O-VOS settings.

Object-Level Z-VOS Setting. For each test frame, object-

level Z-VOS aims to predict a binary segmentation mask

where the primary foreground objects are separated from

the background while the identities of different foreground

objects are not distinguished. In the classic VOS set-

ting, since there is no any test-time human intervention,

how to discover the primary video objects is the central

problem. Considering the fact that interested objects fre-

quently appear throughout the video sequence, we readout
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the segmentation results from the global information aug-

mented feature r, instead of directly using intra-frame in-

formation to predict the fore-background mask (i.e., ρ(x)).
This is achieved by an extra segmentation readout layer

υ : R64×64×256 7→ [0, 1]64×64, which takes the global frame

embedding r as the input and produces the final object-level

segmentation prediction. υ is also trained by the cross-

entropy loss, as in Eq.15. For notation clarity, we omit this

term in the overall training loss in Eq.16. Note that υ is only

used in Z-VOS (not O-VOS, see below).

Instance-Level Z-VOS Setting. Our model can also be

adapted for the instance-level Z-VOS setting, in which dif-

ferent object instances must be discriminated, in addition

to separating the primary video objects from the back-

ground without test-time human supervision. For each

test frame, we first apply mask-RCNN [12] to produce

a set of category agnostic object proposals.Then we ap-

ply our trained model for producing a binary foreground-

background mask per frame. After combining object

bounding-box proposals with binary object-level segmen-

tation masks, we can filter out the background proposals

and obtain pixel-wise, instance-level object candidates for

each frame. Finally, to link those object candidates across

different frames, similar to [27], we use overlap ratio and

optical flow as the cross-frame candidate-association met-

ric. Note that, mask-RCNN can be replaced with non-

learning Edgebox [78] and GrabCut, resulting a purely

unsupervised/weakly-supervised protocol.

O-VOS Setting. In O-VOS, for each test video sequence,

instance-level annotations regarding multiple general fore-

ground objects in the first frame are given. In such a setting,

our trained network works in a per-frame matching based

mask propagation fashion. Concretely, assume there are a

total of L object instances (including the background) in the

first-frame annotation, each spatial position n ∈Ω will be

associated with a one-hot class vector ŷn∈{0, 1}L, whose

element ŷln indicates whether pixel nbelong to l-th object in-

stance. Starting from the second frame, we use both the last

segmented frame Xt−1 as well as current under-segmented

frame Xt to build an input pair for our model. Then we

compute their similarity affinity At−1,t∈[0, 1]
(64×64)×(64×64)

in the feature space: At−1,t=softmax(xt−1
⊤xt). After that,

for each pixel m in Xt, we compute its probability distribu-

tion vm∈ [0, 1]L over the L object instances as:

vm=
∑

n∈Ω
At−1,t(n,m) ŷm, (17)

where At−1,t(n,m) ∈ [0, 1] is the affinity value between

pixel n in Xt−1 and m in Xt. For m, it is assigned to l∗-
th instance: l∗=argmaxl({v

l
m}

L
l=1), where vm = [vlm]

L
l=1.

Then we get its label vector ŷm. In this way, from the seg-

mented frame Xt, we move to the next input frame pair

(Xt, Xt+1) and get the segmentation result for Xt+1. As

our method does not use any first-frame fine-tuning [6, 35]

or online learning [55] technique, it is fast for inference.

Unsuper. Weakly-super.
Aspects Module

mean J ∆J mean J ∆J

Reference Full model (2 iterations) 58.0 - 61.2 -

Initial Fore-/Background

Knowledge

Heuristic Saliency[70] 37.2 -20.8 - -

CAM[73] - - 45.3 -15.9

Multi-Granularity

Analysis

w/o. Frame Granularity 40.2 -17.8 40.2 -21.0

w/o. Short-term Granularity 51.3 -6.7 57.1 -4.1

w/o. Long-term Granularity 52.8 -5.2 56.0 -5.2

w/o. Video Granularity 56.4 -1.6 60.4 -0.8

Iterative Training

via Bootstrapping

1 iteration 50.8 -7.2 54.9 -6.3

3 iterations 58.0 0.0 61.2 0.0

4 iterations 58.0 0.0 61.2 0.0

More Data + LaSOT dataset[8] 59.5 +1.5 62.3 +1.1

Post-Process w/o. CRF 55.3 -2.7 58.7 -2.5

Table 1: Ablation study on DAVIS16 [36] val set, under the

object-level Z-VOS setting. Please see§4.2 for details.

4. Experiment

4.1. Common Setup

Implementation Details. We train the whole network from

scratch on the OxUvA[51] tracking dataset, as in[22]. Ox-

UvA comprises 366 video sequences with more than 1.5

million frames in total. We train our model with SGD op-

timizer. For our bootstrapping based iterative training, two

iterations are used and each takes about 8 hours.

Configuration and Reproducibility. MuG is implemented

on PyTorch. All experiments are conducted on an Nvidia

TITAN Xp GPU and an Intel (R) Xeon E5 CPU. All our

implementations, trained models, and segmentation results

will be released to provide the full details of our approach.

4.2. Diagnostic Experiments

A series of ablation studies are performed for assessing

the effectiveness of each essential component of MuG.

Initial Fore-Background Knowledge. Baselines Heuris-

tic Saliency and CAM give the scores of initial fore-

background knowledge, based on their CRF-binarized out-

puts. As seen, with the low-quality initial knowledge,

our MuG gains huge performance improvements (+20.8%
and +15.9% promotions), showing the significance of our

multi-granularity video object pattern learning scheme.

Multi-Granularity Analysis. Next we investigate the con-

tributions of multi-granularity cues in depth. As shown in

Table1, the intrinsic, multi-granularity properties are indeed

meaningful, as disabling any granularity analysis compo-

nent causes performance to erode. For instance, removing

the frame granularity analysis during learning hurts perfor-

mance (mean J : 58.0→40.2,61.2→40.2), due to the lack

of fore-/background information. Similarly, performance

drops when excluding short- or long-term granularity anal-

ysis, suggesting the importance of capturing local consis-

tency and semantic correspondence. Moreover, consider-

ing video granularity information also improves the final

performance, proving the meaning of comprehensive video

content understanding in video object pattern modeling.

Iterative Training Strategy. From Table1, we can see that
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Supervision Non Learning Unsupervised Learning Weakly-supervised

Method TRC[10] CVOS[48] KEY[24] MSG[31] NLC[7] FST[33] Motion Masks[34] TSN[17] Ours COSEG[50] Ours

J
Mean ↑ 47.3 48.2 49.8 53.3 55.1 55.8 48.9 31.2 58.0 52.8 61.2

Recall ↑ 49.3 54.0 59.1 61.6 55.8 64.7 44.7 18.7 65.3 50.0 74.5

Decay ↓ 8.3 10.5 14.1 2.4 12.6 0.0 19.2 -0.4 2.0 10.7 11.6

F
Mean ↑ 44.1 44.7 42.7 50.8 52.3 51.1 39.1 18.4 51.5 49.3 56.1

Recall ↑ 43.6 52.6 37.5 60.0 51.9 51.6 28.6 5.6 53.2 52.7 62.1

Decay ↓ 12.9 11.7 10.6 5.1 11.4 2.9 17.9 1.9 2.1 10.5 3.55

T Mean ↓ 39.1 25.0 26.9 30.1 42.5 36.6 36.4 37.5 30.1 28.2 58.6

Table 2: Evaluation of object-level Z-VOS on DAVIS16 val set [36] (§4.3), with region similarity J , boundary accuracy F and time

stability T . (The best scores in each supervision setting are marked in bold. These notes are the same to other tables.)

Supervision Non Learning Unsupervised Learning Weakly-supervised Learning

Method CRANE[47] NLC[7] FST[33] ARP[19] Motion Masks[34] TSN[17] Ours SOSD[75] BBF[42] COSEG[50] Ours

J Mean ↑ 23.9 27.7 53.8 46.2 32.1 52.2 57.7 54.1 53.3 58.1 62.4

Table 3: Evaluation of object-level Z-VOS on Youtube-Objects[39] (§4.3), with mean J . See the supplementary for more details.

with more iterations of our bootstrapping training strategy

(1 → 2), better performance can be obtained. However,

further iterations (2 → 4) give only marginal performance

change. We thus use two iterations in all the experiments.

More Training Data. To show the potential of our unsuper-

vised/weakly supervised VOS learning scheme, we probe

the upper bound by training on additional videos. With

more training data (1400 videos) from LaSOT dataset [8],

performance boosts can be observed in both two settings.

4.3. Performance for Object­Level Z­VOS

Datasets. Experiments are conducted on two famous Z-

VOS datasets: DAVIS[36] and Youtube-Objects[39], which

have pixel-wise, object-level annotations. DAVIS16 has 50

videos (3,455 frames), covering a wide range of challenges,

such as fast motion, occlusion, dynamic background, etc.

It is split into a train set (30 videos) and a val set (20

videos). Youtube-Objects contains 126 video sequences

that belong to 10 categories (such as cat, dog, etc.) and has

25,673 frames in total. The val set of DAVIS16 and whole

Youtube-Objects are used for evaluation.

Evaluation Criteria. For fair comparison, we follow the

official evaluation protocols of each dataset. For DAVIS16,

we report region similarity J , boundary accuracy F and

time stability T . For Youtube-Objects, the performance is

evaluated in terms of region similarity J .

Post-processing. Following the common protocol in this

area[49, 45, 6], the final segmentation results are optimized

by CRF[21] (about 0.3s per frame).

Quantitative Results. Table2 presents the comparison re-

sults with several non-learning, unsupervised or weakly su-

pervised learning competitors in DAVIS16 dataset. MuG

exceeds current leading unsupervised learning-based meth-

ods (i.e., Motion Masks[34] and TSN[17] ) in large margins

(58.0 vs 48.9 and 58.0 vs 31.2). MuG also outperforms clas-

sical weakly-supervised Z-VOS method COSEG [50], and

all the previous heuristic methods. Table3 summarizes com-

parison results on Youtube-Objects dataset, showing again

our superior performance in both unsupervised and weakly

supervised learning settings.

Supervision Fully Supervised Unsupervised Weakly-super.

AGS PDB RVOS
Method

[63] [45] [53]
Ours* Ours Ours* Ours

J&F Mean ↑ 45.6 40.4 22.5 36.5 37.3 40.6 41.7

J
Mean ↑ 42.1 37.7 17.7 33.8 35.0 37.7 38.9

Recall ↑ 48.5 42.6 16.2 38.2 39.3 42.5 44.3

Decay ↓ 2.6 4.0 1.6 2.1 3.8 1.9 2.7

F
Mean ↑ 49.0 43.0 27.3 38.0 39.6 43.5 44.5

Recall ↑ 51.5 44.6 24.8 38.6 41.1 44.9 46.6

Decay ↓ 2.6 3.7 1.8 3.2 4.6 1.0 1.7

Table 4: Evaluation of instance-level Z-VOS on DAVIS17

test-dev set[4] (§4.4), ∗ denotes purely unsupervised/weakly-

supervised protocol with non-learning Edgebox [78] and GrabCut.

Runtime Comparison. The inference time of MuG is

about 0.6s per frame, which is faster than most deep

learning based competitors (e.g., MotionMask [34] (1.1s),

TSN [17] (0.9s)). This is because, except CRF [21], there

is no other pre-/post-processing step (e.g., superpixel [50],

optical flow[33], etc.) and online fine-tuning[19].

4.4. Performance for Instance­Level Z­VOS

Datasets. We test the performance for instance-level Z-

VOS on DAVIS17 [4] dataset, which has 120 videos and

8,502 frames in total. It has three subsets, namely, train,

val, and test-dev, containing 60, 30, and 30 video se-

quences, respectively. We use the ground-truth masks pro-

vided by the newest DAVIS challenge [4], as the original

annotations are biased towards the O-VOS scenario.

Evaluation Criteria. Three standard evaluation metrics,

provided by DAVIS17, are used, i.e., region similarity J ,

boundary accuracy F and the average value of J&F .

Quantitative Results. Three top-performing ZVOS meth-

ods from the DAVIS17 benchmark are included. As shown

in Table 4, our model achieves comparable performance

with the fully supervised methods (i.e., AGS [63] and

PDB [45]). Notably, it significantly outperforms recent

RVOS[53] (mean J&F : +14.8% and +19.2% in unsuper-

vised and weakly-supervised learning setting, respectively).

Runtime Comparison. The processing time for each

frame is about 0.7s which is comparable to AGS [63] and
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Supervision Non Learning Unsupervised Learning Weakly-supervised

Method HVS[29] JMP[9] FCP[37] SIFT Flow[25] BVS[28] Vondrick et al.[56] mgPFF[20] TimeCycle[65] CorrFlow[22] Ours FlowNet2[16] Ours

J
Mean ↑ 54.6 57.0 58.4 51.1 60.0 38.9 40.5 55.8 48.9 63.1 41.6 65.7

Recall ↑ 61.4 62.6 71.5 58.6 66.9 37.1 34.9 64.9 44.7 71.9 45.7 77.6

Decay ↓ 23.6 39.4 -2.0 18.8 28.9 22.4 18.8 0.0 19.2 28.1 19.9 26.4

F
Mean ↑ 52.9 53.1 49.2 44.0 58.8 30.8 34.0 51.1 39.1 61.8 40.1 63.5

Recall ↑ 61.0 54.2 49.5 50.3 67.9 21.7 24.2 51.6 28.6 64.2 38.3 67.7

Decay ↓ 22.7 38.4 -1.1 20.0 21.3 16.7 13.8 2.9 17.9 30.5 26.6 27.2

T Mean ↓ 36.0 15.9 30.6 16.4 34.7 45.9 53.1 36.6 36.4 43.0 29.8 44.4

Table 5: Evaluation of O-VOS on DAVIS16 val set[36] (§4.5), with region similarity J , boundary accuracy F and time stability T .

Supervision Non Learning Unsupervised Learning Weakly-supervised

SIFT Flow BVS DeepCluster Transitive Inv Vondrick et al. mgPFF TimeCycle CorrFlow FlowNet2
Method

[25] [28] [5] [64] [56] [20] [65] [22]
Ours

[16]
Ours

J&F Mean ↑ 34.0 37.3 35.4 29.4 34.0 44.6 42.8 50.3 54.3 26.0 56.1

J
Mean ↑ 33.0 32.9 37.5 32.0 34.6 42.2 43.0 48.4 52.6 26.7 54.0

Recall ↑ - 31.8 - - 34.1 41.8 43.7 53.2 57.4 23.9 60.7

F
Mean ↑ 35.0 41.7 33.2 26.8 32.7 46.9 42.6 52.2 56.1 25.2 58.2

Recall ↑ - 41.4 - - 26.8 44.4 41.3 56.0 58.1 24.6 62.2

Table 6: Evaluation of O-VOS on DAVIS17 val set[38] (§4.5), with region similarity J , boundary accuracy F and average of J&F .

Figure 5: Visual results on three videos (top: blackswan, middle:

tram, bottom: scooter-black) under object-level Z-VOS, instance-

level Z-VOS and O-VOS setting, respectively (see §4.6). For

scooter-black, its first-frame annotation is also depicted.

PDB[45], and slightly slower than RVOS [53] (0.3s).

4.5. Performance for O­VOS

Datasets. DAVIS16[36] and DAVIS17[38] datasets are used

for performance evaluation under the O-VOS setting.

Evaluation Criteria. Three standard evaluation criteria are

reported: region similarity J , boundary accuracy F and the

average value of J&F . For DAVIS16 dataset, we further

report the time stability T .

Quantitative Results. Table 5 and Table 6 give evalua-

tion results on DAVIS16 and DAVIS17, respectively. Ta-

ble 5 shows that our unsupervised method exceeds rep-

resentative self-supervised methods (i.e., TimeCyle [65]

and CorrFlow [65]) and the best non-learning method

(i.e., BVS [28]) across most metrics. In particular, with

the learned CAM as supervision, our weakly supervised

method further improves the performance, e.g., mean J of

65.7. Table 6 verifies again our method performs favorably

against the current best unsupervised method, CorrFlow, ac-

cording to mean J&F (54.3 vs 50.3). Note that CorrFlow

and our method use the same training data. This demon-

strates our MuG is able to learn more powerful video object

patterns, compared to previous self-learning counterparts.

Runtime Comparison. In O-VOS setting, MuG runs about

0.4s per frame. This is faster than matching based methods

(e.g., SIFT Flow [25] (5.1s) and mgPFF [20] (1.3s)), and

favorably against self-supervised learning methods, e.g.,

TimeCycle[65] and CorrFlow[22].

4.6. Qualitative Results

Fig.5 presents some visual results for object-level ZVOS

(top row), instance-level Z-VOS (middle row) and O-VOS

(bottom row). For blackswan in DAVIS16 [36], the primary

objects undergo view changes and background clutter, but

our MuG still generates accurate foreground segments. The

effectiveness of instance-level Z-VOS can be observed in

tram of DAVIS17 [4]. In addition, MuG can produce high-

quality results with the given first-frame annotations in O-

VOS setting (see the results on the last row for scooter-black

in DAVIS17 [38]), although the different instances suffer

from fast motion and scale variation. More results can be

found in supplementary materials.

5. Conclusion

We proposed MuG – an end-to-end trainable, unsuper-

vised/weakly supervised learning approach for segment-

ing objects from the videos. In contrast to current popu-

lar supervised VOS solutions requiring extensive amounts

of elaborately annotated training samples, our MuG mod-

els video object patterns by comprehensively exploring su-

pervision signals from different granularities of unlabeled

videos. Our model sets new state-of-the-arts over diverse

VOS settings, including object-level Z-VOS, instance-level

Z-VOS, and O-VOS. Our model opens up the probability

of learning VOS from nearly infinite amount of unlabeled

videos and unifying different VOS settings from a single

view of video object pattern understanding.
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