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Abstract

In this paper we propose and evaluate an algorithm that

learns a similarity measure for comparing never seen ob-

jects. The measure is learned from pairs of training images

labeled “same” or “different”. This is far less informative

than the commonly used individual image labels (e.g. “car

model X”), but it is cheaper to obtain. The proposed al-

gorithm learns the characteristic differences between local

descriptors sampled from pairs of “same” and “different”

images. These differences are vector quantized by an en-

semble of extremely randomized binary trees, and the simi-

larity measure is computed from the quantized differences.

The extremely randomized trees are fast to learn, robust due

to the redundant information they carry and they have been

proved to be very good clusterers. Furthermore, the trees

efficiently combine different feature types (SIFT and geom-

etry). We evaluate our innovative similarity measure on

four very different datasets and consistantly outperform the

state-of-the-art competitive approaches.

1. Introduction

Humans easily recognize objects even those seen only

once. One can recognize a person seen only once, despite

changes in dressing, haircut, glasses, expression, etc. One

can recognize a car model seen only once, despite changes

in pose, light, color, etc (see figure 1). This is because we

have a knowledge about our environment, and about per-

sons and cars in particular, thus a single view of a new ob-

ject of a known category is enough for recognition.

Comparing two images – and more generally comparing

two examples – heavily relies on the definition of a good

similarity function. Standard functions (e.g. the Euclidean

distance in the original feature space) are often too generic

and fail to encode domain specific knowledge; this is why

we propose to learn a similarity measure that embeds do-

main specific knowledge.
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Figure 1. Our knowledge of cars allows us to recognize a new car

model that we have never seen before, despite changes in pose,

light and clutter. This paper proposes an algorithm that performs

such a visual identification for never seen objects.

Moreover, we propose to learn this measure from equiv-

alence constraints. Equivalence constraints considered in

this paper are pairs of training examples representing simi-

lar or different objects. A pair of images is not labeled “car

model X and car model Y”, but only “same” or “different”.

The latter is much more difficult because it contains less

information: same or different pairs can be produced from

fully labeled examples, not vice versa. For many applica-

tions, equivalence information is cheaper to obtain than la-

bels, e.g. for retrieval systems. It is indeed easier to know

whether two documents are similar or not rather than to ob-

tain their true labels, because the space of potential labels is

very large (e.g. all car models) and difficult to define.

We use this similarity measure for visual identification

of never seen objects. Given a training set of pairs labeled

“same” or “different”, we have to decide if two never seen

objects are the same or not (see figure 2).
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Figure 2. Given pairs labeled “same” or “different”, can we learn

a similarity measure that decides if two images represent the same

object? The similarity measure should be robust to modifications

in pose, background and lighting conditions, and above all should

deal with never seen objects.

1.1. Related Works

Learning effective functions to compare examples is an

active topic which received much attention during the last

years. Most of the contributions consist in finding a function

mapping the feature space into a target space such that a

simple distance can eventually be used in the target space.

This function is generally inspired by the Mahanalobis

distance, of the form d(x, y) = (x − y)tA(x − y), like
in [14] or more recently [21, 11, 19, 1, 10, 20]. Various

optimization schemes are possible to estimate A, depend-
ing on the objective function to be satisfied. The objective

function plays a key role in the definition of the metric. In

[21, 11] the objective function tries to collapse all exam-

ples of the same class and to separate examples of differ-

ent classes. In [11], a stochastic variant of the leave-one-

out k-NN score is maximized. In [20], the objective func-

tion tries to separate examples from different classes by a

large margin, in a k-NN framework. In [19], the margin be-

tween positive pairs and negative pairs is to be maximized.

In [1], A is directly computed from the so-called chunklets,
which are the sets of equivalence relations provided as train-

ing data. The mapping can also be learned without explicit

functions, like in [3] where a convolutional network is used

for its robustness to geometric distortions. When consider-

ing distance between images, more specific functions can be

used, embedding expected deformations of object appear-

ances [16, 6, 13].

Unfortunately, none of these methods is perfectly suited

for visual identification in images. Unlike traditional pat-

tern recognition problems, information included in images

is subject to complex transformations such as occlusions,

pose and scale changes, etc., that can not be modeled easily

by any kind of linear, quadratic, or other polynomial trans-

formations.

The usual way to face these problems is to represent im-

ages as a collection of lose scale invariant local informa-

tion (gray-scale patches, SIFT [15] descriptors or others),

so that at least several parts of the image are not affected by

these transformations. This kind of strategy has been used

in [4, 5]; in this case, the key idea is to learn what char-

acterizes features (local descriptors) that are informative in

distinguishing one object instance from another. There is

also an approach based on chopping [7]. However, this ap-

proach, which relies on random binary splits chosen to keep

images of the same object together, requires to have all the

training images fully labeled and therefore it is not usable

in our context. Finally, the recent approach of Frome et

al. [8] learns a distance function for each individual training

image as a combination of elementary distances between vi-

sual features. Their approach is based on triplets of images

(F, I1, I2) with F more similar to I1 than I2.

Inspired by the work proposed in these related ap-

proaches and more particularly in [5], we propose a new

learning method for measuring similarity between two im-

ages of never seen objects, using information extracted from

pairs of similar and different objects of the same generic

category.

Our approach is also inspired by the recent work of [17].

Several key components are responsible for its good perfor-

mance. First, a bag-of-words like model makes it robust to

occlusions and various image transformations; second, the

use of an ensemble of extremely-randomized trees makes it

very fast (both for training and testing) and gives good prop-

erties when dealing with high-dimensional features (image

patches).

The paper is organized as follows. In section 2 we

present our approach and in section 3 we show experimen-

tal results obtained on different datasets. We also compare

our results with those obtained by several recent competing

approaches (section 3.3).

2. Building a similarity measure from patch

correspondences

As explained earlier, our objective is to build a similar-

ity measure for deciding whether two images represent the

same object instance or not, despite view point changes,

occlusions and other image transformations (see figure 2).

This measure is expected to give good results when the ob-

jects involved in the comparison have never been seen be-

fore. Furthermore, the system is designed to be trained from

pairs of “same” and “different” objects, without knowing

their labels: we assume having no information about which

objects are in the training pairs.

2.1. Quantizing local differences

As in [5], we propose to observe corresponding local re-

gions sampled from pairs of images, but we do not limit

our observation to the distance between the region descrip-

tors, we also want to describe how the regions differ. Thus,

we propose to characterize the difference in appearance

of corresponding local regions. Comparing two patches is



Figure 3. Similarity computation. (a) Detect corresponding patch

pairs. (b) Quantize them, i.e. assign them to clusters via extremely

randomized trees. (c) The similarity is a linear combination of the

cluster memberships.

achieved by clustering the local differences with an ensem-

ble of extremely randomized trees.

We could compute a codebook of patches [18], find the

closest codeword to each of the two patches we want to

compare, and then decide based on the two codewords if the

patches come from similar or different objects. The prob-

lem of this approach is that fine differences are lost from

the very first step (each local descriptor is quantized). Fine

differences are not important for generic image categoriza-

tion, but they play a key role for object instance recognition.

Thus, we decide (1) to compute precise information on the

two patches (e.g. comparing the same SIFT histogram bin

of the two patches to a threshold), and then (2) to quantize

that information with extremely-randomized trees. The first

step characterizes fine differences, and the second step re-

duces the feature space complexity. This section details how

we compute these quantized differences of local regions, i.e.

how we build a vocabulary of visual differences.

2.2. Overview

The computation of the similarity measure is a three step

process illustrated on figure 3. (a) Several pairs of corre-

sponding local regions (patches) are sampled from a pair of

images. (b) Each patch pair is quantized, i.e. it is assigned

to several clusters with an ensemble of extremely random-

ized decision trees. (c) The cluster memberships are com-

bined to make a global decision about the pair of images.

These steps are detailed below.

Figure 4. Patch pairs sampled on a toy car dataset. Each image

pair shows: a random patch in image 1, the search region in image

2 and the best match in the search region. All image pairs are

positive (same object) except the last one (different objects).

2.3. Computing the similarity of two images

Sampling corresponding patch pairs. Each patch pair is

produced as follows. A patch p1 of a random size is chosen

at a random position (x, y) in the first image I1. The best

normalized cross correlation match p2 is looked for in the

second image I2, in the neighborhood of (x, y). The process
is illustrated on figure 4.

Quantizing the space of patch pairs. Each patch pair

sampled from an image pair is assigned to several clusters

via an ensemble of extremely randomized binary decision

trees. How we build them is detailed in section 2.4. Each

patch pair is input in the root node of all trees (see figure 3).

For each tree, the patch pair goes from the root node to a

leaf, at each node the left or right child node is selected ac-

cording to the evaluation of a simple test on the patch pair.

When a patch pair reaches a leaf, the corresponding leaf la-

bel (i.e. the id of the leaf in the forest) is set to 1. If a leaf
is never reached, it is set to 0. Thus, an image pair is trans-
formed into a binary vector x (of size the total number of
leaves), each dimension indicating if a patch pair sampled

from the image pair has reached the corresponding leaf. The

use of binary representation to indicate cluster membership

has been suggested by [17].

The similarity measure. The learned trees perfectly dis-

criminate the patch pairs they were trained on since they

were trained to do so. However, we are not using the trees

as classifiers, but as quantizers, so we consider which leaves

are reached by the patch pairs and discard the prediction of

the decision trees.

The similarity measure is a simple linear combination

of the binary feature vector indicating cluster membership:

Slin(I1, I2) = ω⊤x, where ω contains weights optimized
such that high values of Slin correspond to similar images.

In practice, ω is the hyperplane normal of a binary linear
SVM trained on positive and negative image pair represen-

tations.

The weights are a very convenient way to express how

useful a leaf (i.e. cluster) is. Intuitively, a leaf which is

equally probable in positive and negative image pairs should



not weight much because it is not informative. On the con-

trary, a leaf which occurs only in positive or negative image

pairs should weight more.

2.4. Learning the extremely randomized trees

All trees are learned independently, according to a proce-

dure suggested by Geurts [9] which is a Perturb and Com-

bine paradigm [2] applied to decision trees. We sample a

large number of patch pairs from positive image pairs (same

object) and negative image pairs (different objects). We

then create a tree with a unique node, the root node, that

contains these positive and negative patch pairs. We recur-

sively split the nodes and their associated patch pairs to cre-

ate a tree: we assign a random boolean split condition to a

node, create two sub-nodes, one with patches for which the

condition is true, the other one with the remaining patches;

we repeat this procedure as long as the sub-nodes contain

positive and negative patch pairs.

The boolean split conditions (detailed in the next section)

are parametrized functions evaluated on the patch pair. We

generate a small set of split conditions with random param-

eters, and keep the one with the highest information gain:

IG = H−(n1H1 +n2H2)/n whereH (resp. H1,H2) and

n (resp. n1, n2) are the entropy and the number of patches

of the parent (resp. first child, second child).

We are using a set of extremely randomized binary deci-

sion trees for several reasons. First, learning the trees is fast

because unlike boosting or ID3, we are not looking for op-

timal parameter values, we are only selecting the best ones

out of a randomly created small set. Second, the use of sev-

eral extremely randomized trees decreases the risk of over-

fitting, because it makes the trees less correlated [2]. Third,

such trees have been proved to provide an interesting clus-

tering of the feature space [17].

2.5. Multi­modal split­conditions

We propose and combine two different kinds of split con-

ditions. The first kind uses pixel information, the second

one uses geometry information. For the former, we consid-

ered graylevel pixel values, gradient norm and orientation,

and SIFT descriptors. As SIFT descriptors always outper-

form the other ones in our experiments, we only focus on

SIFT descriptors in this paper.

SIFT based split-conditions. Given the SIFT descriptors

S1 and S2 of two patches, the split condition is true if

k(S1(i) − d) > 0 ∧ k(S2(i) − d) > 0 (1)

where i, d, k are parameters. i is the SIFT dimension under
observation, d is a threshold, and k = 1 or k = −1 encodes
if the measured value should be higher or lower than the

threshold.

Geometry based split-conditions. Given the position

and scale (x, y, s) of the patch from the first image, the split
condition is true if

kx(x−dx) > 0 ∧ ky(y−dy) > 0 ∧ ks(s−ds) > 0 (2)

where dx, dy, ds, kx, ky, ks are parameters. kx, ky, ks are

equal to 1 or −1 and encode if the values should be above
or below the thresholds dx, dy, ds. This split condition can

encode complex concepts, for example a large patch in the

bottom left corner of an image may be

−1∗(x−0.25) > 0 ∧ 1∗(y−0.75) > 0 ∧ 1∗(s−0.5) > 0

For each tree node, we generate random boolean tests of

any type (SIFT/geometry): first we randomly draw a type,

then we randomly draw the parameters it requires. The in-

formation gain is computed for all these boolean tests, and

the best one is assigned to the node.

3. Experimental results

We evaluate our similarity measure on four different

datasets: a small dataset of toy cars and three other pub-

licly available datasets, making comparisons with competi-

tive approaches possible. For each dataset, the objects of in-

terest fully occupy the images and we have pairs marked as

positive (same object) or negative (different objects). Those

sets are split into a training set and a test set. Obviously,

the test set does not contain any image from the training set,

but it does not contain any object of the training set either.

The similarity measure is evaluated only on never seen ob-

jects (not only never seen images). The datasets are detailed

below, and they are illustrated on figure 5.

The toy cars dataset1 contains 225 images of 14 differ-

ent objects (cars and trucks). The training set contains 1185

positive and 7330 negative image pairs of 7 different ob-

jects. The test set contains 1044 positive and 6337 negative

image pairs of the 7 other (new) objects.

The Ferencz & Malik cars dataset [5] contains 2868

training pairs (180 positive, 2688 negative) and the test set

contains 2860 pairs.

The Jain faces dataset [12] is a subset of “Faces in the

news”2 and contains 500 positive and 500 negative pairs of

faces, and we measure our accuracy like the authors by 10

fold cross validation. That dataset is built from faces sam-

pled “in the news”, hence there are very large differences of

resolution, light, appearance, expression, pose, noise, etc.

The Coil-100 dataset used by Fleuret & Blanchard [7]

has 10 different configurations, each configuration uses

1000 positive and 1000 negative pairs from 80 objects for

training and 250 positive and 250 negative pairs from the re-

maining 20 (new) objects for testing. This dataset is highly

1http://lear.inrialpes.fr/people/nowak
2We thank the authors for providing us the precise subset



Figure 5. Two “Same” and two “Different” pairs from all datasets.

Line 1: Ferencz cars, Line 2: our toy cars, Line 3 left: Faces

in the News, Line 3 right: Coil 100. Although “Different” pairs

may look similar and “Same” pairs may look different and test set

objects are never seen, our similarity measure obtains a very high

performance on all these datasets (see section 3.3).

heterogeneous, as it contains categories such as bins, toma-

toes, boxes, medicine, puppets, mugs, bottles, ...

In all experiments, gray-scale and color images are all

considered gray-scale. All datasets have image pairs of

slightly different orientations, except Coil-100 that has very

different orientations.

To evaluate the performance, we compute a Precision-

Recall Equal Error Rate (EER PR) score on the similarity

measure evaluated on the test set image pairs. For each

test set image pair, a similarity score Slin is computed. A

threshold t is defined to decide if the two images represent
the same object instance or not: Slin > t means “same”
object, Slin ≤ t means “different” objects. The Precision-
Recall curve is obtained by varying the threshold t.

3.1. Parametric evaluation

We have evaluated the influence of all the parameters in-

volved in the similarity measure using the toy car dataset.

Figure 6 shows the effect of influential parameters. Each ex-

periment plots the Precision-Recall Equal Error Rate (EER-

PR) w.r.t. a parameter. We give the EER-PR of our simi-

larity measure Slin as well as the EER-PR of a simple vote

based similarity measure Svote that uses the trees as classi-

fiers and not clusterers, and thus counts the number of patch

pairs predicted as “same”.

We first notice that the linear similarity measure Slin al-

ways outperforms the simple similarity Svote, which proves

that trees are more useful as clusterers instead of classi-

fiers. Second, let us discuss the different parameters one
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Figure 6. Precision-Recall Equal Error Rate for the toy car dataset,

with a simple similarity measure Svote and our linear similarity

measure Slin.

by one. The first curve shows that the search region size

should not be too small (otherwise it is impossible to find

the expected match) nor too large (leading to too many mis-

leading matches). Moreover, if the second patch is selected

randomly, the performance is very bad (42.7%, not shown

on the graph). This shows how crucial the computation of

good patch pairs is. The second curve shows that the more

trees, the higher the performance. This is because we ob-

tain more clusters, and because the clusters are not corre-

lated due to the randomness of the tree computation. The

third curve shows that the more patch pairs sampled in an

image pair the higher the performance. We first believed



Toy cars Ferencz Faces Coil 100

T+W T T+W T T+W T T+W T

Ferencz 28.0 4.5 0 0 49.2 23.5 35.8 10.1

Coil100 10.0 1.6 9.0 2.4 13.2 2.8 0 0

Table 1. Trees (T) and weights (W) are learned by our algorithm.

This table shows the decrease of EER-PR evaluated on the Fer-

encz and Coil100 datasets when the trees (T) or the trees and the

weights (T+W) are learned on other datasets.

that sampling more windows increases chances to sample

relevant information. But if it were true, only Slin would

progress because it is able to separate relevant and irrele-

vant information. However, Svote also increases, and that

measure makes no difference between relevant and irrele-

vant information. This means that any “weak” information

also improves the performance, which confirms our previ-

ous works [18] about sampling strategies.

Also, on average, using SIFT and geometry is 1% better

than using SIFT only. The increase is surprisingly low as

some categories have strong geometric structures. But this

is not negligible.

3.2. Generic versus specific knowledge

Our algorithm learns two types of information from the

training data: the trees and the weights of the similarity

measure. It is interesting to investigate how much category

specific knowledge is embedded during training. Does the

algorithm learn generic rules, or does it use heuristics spe-

cific to the dataset it is trained on? Elements of the answer

are presented in Table 1. It shows, for two datasets, how the

EER-PR decreases when other datasets are used for learn-

ing. When testing on a dataset, another dataset may be used

to learn the trees and the weights (T+W), or the trees only

(T), in which case the weights are learned on the training

set of the good dataset.

First, we observe that the best performance is achieved

when training and test are performed on the same dataset,

which means that category specific knowledge is embedded

during learning. Second, learning the trees and the weights

on another dataset is always much worse than learning the

trees only. It means that the weights allow to use any clus-

terer, although the performance is better when the best clus-

terer is used. Third, it is more important to use the appro-

priate dataset to learn the trees for the Ferencz dataset than

for the Coil 100 dataset. This is because Coil 100 images

may have any orientation and any shape, and they represent

very different objects, whereas the Ferencz dataset contains

aligned images of cars seen from profile, which makes it

easier to learn very specific (and useful) information.

Method Toy cars Ferencz Faces Coil 100

Others - 84.9 [4] 70.0 [12] 88.6±4 [7]

Ours 85.9±0.4 91.0±0.6 84.2±3.1 93.0±1.9

Gain - 6.1 14.2 4.4

Table 2. PR-EER on different datasets. Our method clearly out-

performs the others.

Method Recall 40% Recall 60% Recall 80%

Jain [12] 93.0±6.3 78.9±8.2 60.1±7.0

Ours 99.0±1.9 97.8±2.5 86.3±7.6

Table 3. Precision on the Jain faces dataset for given recall.

3.3. Performance and comparisonwith state­of­the­
art competitive approaches

We report the performance of our algorithm and compare

our results with state of the art methods on the four datasets.

For each dataset, the experiments are carefully performed

with the same protocol as the one used in the method com-

pared to. Results are summarized in Table 2.

For all these experiments on the different datasets, we

use the same parameters: the number of positive and nega-

tive patch pairs sampled to learn the trees is set to 105, the

number of random split conditions among which the best

one is selected is 103, the number of trees in the forest is

50, the number of patch pairs sampled to compute the simi-
larity is 103, the second patch search region size is increased

of 1 time the size of the patch in all directions, leading to

a search region 9 times larger than the original patch, the

minimum patch sampling size is set to 15x15 pixels, and

the maximum is set to one half of the image height. On

average, the produced trees have 20 levels.

Toy car dataset. On our toy car dataset, we obtain a

precision-recall equal error rate (EER PR) of 85.9%±0.4

measured on 5 runs. Using a simple Normalized Cross-

Correlation (NCC) as a similarity measure leads to an

EER PR of 51.1%. This is a new dataset for which no other

results are published yet.

Ferencz & Malik dataset. On the Ferencz & Malik

dataset, we obtain an EER-precision of 91.0%±0.6, where

Ferencz & Malik [4] get 84.9%. Figure 7 shows pairs of

cars ranked by similarity.

Faces in the news dataset. Jain [12] greatly outperforms

the top performer in the FERET face recognition competi-

tion on their face dataset, and we largely outperform their

results. The EER-PR reported in Table 2 (70%) is approxi-

mate since we have estimated it from a curve in their paper,

thus we also provide a comparison with the same metric as

they use, the precision score for given recall values, see Ta-

ble 3. We always outperform their results, and are even 26%

better for a 80% recall. Moreover, Jain is working on face

images rectified to frontal pose, whereas we are working



❆☞❇ ❈❉❇ ❊ ❋✴●★❇ ❍✾■

Figure 7. Test set image pairs from Ferencz & Malik dataset,

line 1: the two most similar pairs, line 2: the two least similar

pairs, line 3: the two least different pairs, line 4: the two most

different pairs (according to the learned similarity measure).
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Figure 8. Test set face pairs ranked by our similarity measure:

line 1: two very similar pairs, line 2: two similar pairs, line 3:

two different pairs, line 4: two very different pairs.

on the original face images. Figure 8 shows pairs of faces

ranked by similarity.

Coil-100 dataset. On the Coil-100 dataset, we have an

EER-PR of 93.0%±1.9 where Fleuret & Blanchard [7] have

88.6%±4. Moreover, the method of Fleuret and Blanchard

uses the information of the real object categories during

training, whereas we only know if two images belong to

the same category or not.

Figure 9. 2D multidimensional scaling representation of never

seen toy car images. Top: similarity measure based on bag-of-

words representation and Euclidean distance. Bottom: our sim-

ilarity measure, that perfectly groups the different views of the

same object.

3.4. Visualizing the similarities

The previous section shows that our similarity measure

outperforms the ones that achieve the best state of the art

performance. Since “a picture is worth a thousand words”,

we also compute a 2D visualization of the similarity mea-

sures evaluated on the never seen images of the toy car

dataset.

Therefore we compute a 2D mapping of images using

the learned similarity function by applying a multidimen-

sional scaling technique (MDS). It computes the 2D pro-

jection preserving as much as possible all pairwise image

similarities (Sammon mapping). This mapping can be seen

on Figure 9, bottom. It is surprising to see how well dif-

ferent views of same objects are grouped together despite

large intra-class variations, high inter-class similarities and

despite the fact that these cars are very different from the

ones used to learn the distance. The top of the figure shows

the same mapping using only bag-of-word representations

of images and the Euclidean distance.



Figure 10. All positive patch pairs contained in a node during tree

learning on the face dataset.

4. Discussion and Conclusion

We are addressing the problem of predicting how similar

two images of never seen objects are, given a set of simi-

lar and different training object pairs. We propose a novel

method consisting in (a) finding corresponding local regions

in a pair of images (b) quantizing (clustering) them with an

ensemble of extremely randomized trees and (c) combining

the cluster memberships of the local region pairs to compute

a global similarity measure between the two images.

Our algorithm automatically selects and combines ge-

ometry and SIFT features. We have shown that it does not

perform a generic similarity computation, but that it embeds

knowledge specific information, via the construction of the

trees and the computation of the optimal weights.

Our experiments show that our approach gives excellent

results on the four datasets used for evaluation. We greatly

outperform the latest results of Ferencz et al. [4], Vidit et

al. [12] and Fleuret et al. [7], and obtain a high accuracy on

our own dataset.

We are currently extending our approach to recognize

similar object categories from a training set of equivalence

constraints. Positive image pairs may contain two different

models of bikes, cars, motorbikes, etc. This is more difficult

than dealing with positive pairs of the same model, because

it is harder to obtain two local regions that match from im-

ages of two different models, moreover if the objects may

have any orientation and scale.

The toy car dataset, binaries and other information are

available at http://lear.inrialpes.fr/people/nowak.
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