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Abstract. This paper studies the problem of blind face restoration from
an unconstrained blurry, noisy, low-resolution, or compressed image (i.e.,
degraded observation). For better recovery of fine facial details, we mod-
ify the problem setting by taking both the degraded observation and a
high-quality guided image of the same identity as input to our guided
face restoration network (GFRNet). However, the degraded observation
and guided image generally are different in pose, illumination and ex-
pression, thereby making plain CNNs (e.g., U-Net) fail to recover fine
and identity-aware facial details. To tackle this issue, our GFRNet mod-
el includes both a warping subnetwork (WarpNet) and a reconstruction
subnetwork (RecNet). The WarpNet is introduced to predict flow field
for warping the guided image to correct pose and expression (i.e., warped
guidance), while the RecNet takes the degraded observation and warped
guidance as input to produce the restoration result. Due to that the
ground-truth flow field is unavailable, landmark loss together with total
variation regularization are incorporated to guide the learning of Warp-
Net. Furthermore, to make the model applicable to blind restoration,
our GFRNet is trained on the synthetic data with versatile settings on
blur kernel, noise level, downsampling scale factor, and JPEG quality
factor. Experiments show that our GFRNet not only performs favorably
against the state-of-the-art image and face restoration methods, but also
generates visually photo-realistic results on real degraded facial images.

Keywords: Face hallucination - blind image restoration - flow field

1 Introduction

Face restoration aims to reconstruct high quality face image from degraded ob-
servation for better display and further analyses [4,5,8,9,17,32,49,52-54,59]. In
the ubiquitous imaging era, imaging sensors are embedded into many consumer
products and surveillance devices, and more and more images are acquired under
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(a) (b) (¢) (d) (e) (®)
Fig. 1. Restoration results on real low quality images: (a) real low quality image,
(b) guided image, and the results by (c) U-Net [43] by taking low quality image as
input, (d) U-Net [43] by taking both guided image and low quality image as input,
(e) our GFRNet without landmark loss, and (f) our full GFRNet model. Best viewed
by zooming in the screen.

unconstrained scenarios. Consequently, low quality face images cannot be com-
pletely avoided during acquisition and communication due to the introduction of
low-resolution, defocus, noise and compression. On the other hand, high quality
face images are sorely needed for human perception, face recognition [12] and
other face analysis [1] tasks. All these make face restoration a very challenging
yet active research topic in computer vision.

Many studies have been carried out to handle specific face restoration tasks,
such as denoising [2,3], hallucination [4,5,8,17,32,49,52-54,59] and deblurring [9].
Most existing methods, however, are proposed for handling a single specific face
restoration task in a non-blind manner. In practical scenario, it is more general
that both the degradation types and degradation parameters are unknown in
advance. Therefore, more attentions should be given to blind face restoration.
Moreover, most previous works produce the restoration results purely relying on
a single degraded observation. It is worth noting that the degradation process
generally is highly ill-posed. By learning a direct mapping from degraded obser-
vation, the restoration result inclines to be over-smoothing and cannot faithfully
retain fine and identity-aware facial details.

In this paper, we study the problem of guided blind face restoration by incor-
porating the degraded observation and a high-quality guided face image. With-
out loss of generality, the guided image is assumed to have the same identity
with the degraded observation, and is frontal with eyes open. We note that such
guided restoration setting is practically feasible in many real world applications.
For example, most smartphones support to recognize and group the face images
according to their identities®. In each group, the high quality face image can thus
be exploited to guide the restoration of low quality images. In film restoration,
it is also encouraging to use the high quality portrait of an actor to guide the
restoration of low-resolution and corrupted face images of the same actor from
an old film. For these tasks, further incorporation of guided image not only can
ease the difficulty of blind restoration, but also is helpful in faithfully recovering
fine and identity-aware facial details.

* https://support.apple.com/HT207103
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Guided blind face restoration, however, cannot be addressed well by simply
taking the degraded observation and guided image as input to plain convolution-
al networks (CNNs), due to that the two images generally are of different poses,
expressions and lighting conditions. Fig. 1(c) shows the results obtained using
the U-Net [413] by only taking degraded observation as input, while Fig. 1(d)
shows the results by taking both two images as input. It can be seen that direct
incorporation of guided image brings very limited improvement on the restora-
tion result. To tackle this issue, we develop a guided face restoration network
(GFRNet) consisting of a warping subnetwork (WarpNet) and a reconstruction
subnetwork (RecNet). Here, the WarpNet is firstly deployed to predict a flow
field for warping the guided image to obtain the warped guidance, which is re-
quired to have the same pose and expression with degraded observation. Then,
the RecNet takes both degraded observation and warped guidance as input to
produce the final restoration result. To train GFRNet, we adopt the reconstruc-
tion learning to constrain the restoration result to be close to the target image,
and further employ the adversarial learning for visually realistic restoration.

Nonetheless, even though the WarpNet can be end-to-end trained with recon-
struction and adversarial learning, we empirically find that it cannot converge
to the desired solution and fails to align the guided image to the correct pose
and expression. Fig. 1(e) gives the results of our GFRNet trained by reconstruc-
tion and adversarial learning. One can see that its improvement over U-Net is
still limited, especially when the degraded observation and guided images are
distinctly different in pose. Moreover, the ground-truth flow field is unavailable,
and the target and guided images may be of different lighting conditions, mak-
ing it infeasible to directly use the target image to guide the WarpNet learning.
Instead, we adopt the face alignment method [57] to detect the face landmarks
of the target and guided images, and then introduce the landmark loss as well
as the total variation (TV) regularizer to train the WarpNet. As in Fig. 1(f),
our full GFRNet achieves the favorable visual quality, and is effective in recover-
ing fine facial details. Furthermore, to make the learned GFRNet applicable to
blind face restoration, our model is trained on the synthetic data generated by
a general degradation model with versatile settings on blur kernel, noise level,
downsampling scale factor, and JPEG quality factor.

Extensive experiments are conducted to evaluate the proposed GFRNet for
guided blind face restoration. The proposed GFRNet achieves significant per-
formance gains over the state-of-the-art restoration methods in quantitative
metrics and visually perceptual quality as well as real degraded image. More-
over, our GFRNet also performs favorably on real degraded images as shown in
Fig. 1(f).To sum up, the main contribution of this work includes:

— The GFRNet architecture for guided blind face restoration, which includes a
warping subnetwork (WarpNet) and a reconstruction subnetwork (RecNet).

— The incorporation of landmark loss and TV regularization for training the
WarpNet.
— The promising results of GFRNet on both synthetic and real face images.
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2 Related Work

Recent years have witnessed the unprecedented success of deep learning in many
image restoration tasks such as super-resolution [11,24, 28], denoising [46, 55],
compression artifact removal [10, 12], compressed sensing [22, 20, 34], and de-
blurring [7,27,36,37]. As to face images, several CNN architectures have been
developed for face hallucination [5,8,17,59], and the adversarial learning is also
introduced to enhance the visual quality [52,53]. Most of these methods, howev-
er, are suggested for non-blind restoration and are restricted by the specialized
tasks. Benefitted from the powerful modeling capability of deep CNNs, recent
studies have shown that it is feasible to train a single model for handling multi-
ple instantiations of degradation (e.g., different noise levels) [35,55]. As for face
hallucination, Yu et al. [53,54] suggest one kind of transformative discrimina-
tive networks to super-resolve different unaligned tiny face images. Nevertheless,
blind restoration is a more challenging problem and requires to learn a single
model for handling all instantiations of one or more degradation types.

Most studies on deep blind restoration are given to blind deblurring, which
aims to recover the latent clean image from noisy and blurry observation with
unknown degradation parameters. Early learning-based or CNN-based blind de-
blurring methods [7,45,48] usually follow traditional framework which includes
a blur kernel estimation stage and a non-blind deblurring stage. With the rapid
progress and powerful modeling capability of CNNs, recent studies incline to
bypass blur kernel estimation by directly training a deep model to restore clean
image from degraded observation [16, 27, 36-38]. As to blind face restoration,
Chrysos and Zafeiriou [9] utilize a modified ResNet architecture to perform face
deblurring, while Xu et al. [19] adopt the generative adversarial network (GAN)
framework to super-resolve blurry face image. It is worth noting that the suc-
cess of such kernel-free end-to-end approaches depends on both the modeling
capability of CNN and the sufficient sampling on clean images and degradation
parameters, making it difficult to design and train. Moreover, the highly ill-posed
degradation further increases the difficulty of recovering the correct fine details
only from degraded observation [31]. In this work, we elaborately tackle this
issue by incorporating a high quality guided image and designing appropriate
network architecture and learning objective.

Several learning-based and CNN-based approaches are also developed for
color-guided depth image enhancement [15, 18, 29], where the structural inter-
dependency between intensity and depth image is modeled and exploited to
reconstruct high quality depth image. For guided depth image enhancement,
Hui et al. [18] present a CNN model to learn multi-scale guidance, while Gu et
al. [15] incorporate weighted analysis representation and truncated inference for
dynamic guidance learning. For general guided filtering, Li et al. [29] construct
CNN-based joint filters to transfer structural details from guided image to re-
constructed image. However, these approaches assume that the guided image
is spatially well aligned with the degraded observation. Due to that the guided
image and degraded observation usually are different in pose and expression,
such assumption generally does not hold true for guided face restoration. To
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address this issue, a WarpNet is introduced in our GFRNet to learn a flow field
for warping the guided image to the desired pose and expression.

Recently, spatial transformer networks (STNs) are suggested to learn a spa-
tial mapping for warping an image [21], and appearance flow networks (AFNs)
are presented to predict a dense flow field to move pixels [13,58]. Deep dense flow
networks have been applied to view synthesis [40, 58], gaze manipulation [13],
expression editing [50], and video frame synthesis [33]. In these approaches, the
target image is required to have the similar lighting condition with the input
image to be warped, and the dense flow networks can thus be trained via re-
construction learning. However, in our guided face restoration task, the guided
image and the target image usually are of different lighting conditions, making
it less effective to train the flow network via reconstruction learning. Moreover,
the ground-truth dense flow field is not available, further increasing the difficulty
to train WarpNet. To tackle this issue, we use the face alignment method [57]
to extract the face landmarks of guided and target images. Then, the landmark
loss and TV regularization are incorporated to facilitate the WarpNet training.

3 Proposed Method

This section presents our GFRNet to recover high quality face image from de-
graded observation with unknown degradation. Given a degraded observation
I? and a guided image 19, our GFRNet model produces the restoration result
I = F(I%,19) to approximate the ground-truth target image I. Without loss of
generality, I9 and I are of the same identity and image size 256 x 256. More-
over, to provide richer guidance information, 19 is assumed to be of high quality,
frontal, non-occluded with eyes open. Nonetheless, we empirically find that our
GFRNet is robust when the assumption is violated. For simplicity, we also as-
sume I? has the same size with I9. When such assumption does not hold, e.g.,
in face hallucination, we simply apply the bicubic scheme to upsample I¢ to the
size of 19 before inputting it to the GFRNet.

In the following, we first describe the GFRNet model as well as the net-
work architecture. Then, a general degradation model is introduced to generate
synthetic training data. Finally, we present the model objective of our GFRNet.

3.1 Guided Face Restoration Network

The degraded observation I¢ and guided image I9 usually vary in pose and
expression. Directly taking I? and I9 as input to plain CNNs generally cannot
achieve much performance gains over taking only I as input (See Fig. 1(c)(d)).
To address this issue, the proposed GFRNet consists of two subnetworks: (i) the
warping subnetwork (WarpNet) and (ii) reconstruction subnetwork (RecNet).

Fig. 2 illustrates the overall architecture of our GFRNet. The WarpNet takes
I% and I9 as input to predict the flow field for warping guided image,

b= F,(I4,19;,0,), 1)
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Fig. 2. Overview of our GFRNet. The WarpNet takes the degraded observation I and
guided image I as input to predict the dense flow field @, which is adopted to deform
I? to the warped guidance I". I'" is expected to be spatially well aligned with I. Thus
the RecNet takes I and I¢ as input to produce the restoration result I.

Degraded Observation 1*

Degraded Obsarvation 1*

(b)
Fig. 3. The network architectures of (a) WarpNet and (b) RecNet.

where 6,, denotes the WarpNet model parameters. With @, the output pixel
value of the warped guidance I at location (4, 7) is given by

Z I ,max(0,1— |&Y ; — h|) max(0,1 — |&7; — w]), (2)
(h,w)eN

where &7, and DY . ;; denote the predicted = and y coordinates for the pixel I},
respectively. N stands for the 4-pixel neighbors of (¢ ;, #/ ;). From Eqn. (2), we
note that I is subdifferentiable to @ [21]. Thus, the WarpNet can be end-to-end
trained by minimizing the losses defined either on I* or on &.

The predicted warping guidance I is expected to have the same pose and
expression with the ground-truth I. Thus, the RecNet takes I% and I as input
to produce the final restoration result,

I=F.(11";0,), (3)

where 6, denotes the RecNet model parameters.

Warping Subnetwork (WarpNet). The WarpNet adopts the encoder-decoder
structure (see Fig. 3(a)) and is comprised of two major components:

— The input encoder extracts feature representation from I¢ and I9, consisting
of eight convolution layers and each one with size 4 x 4 and stride 2.

— The flow decoder predicts the dense flow field for warping I9 to the desired
pose and expression, consisting of eight deconvolution layers.

Except the first layer in encoder and the last layer in decoder, all the other
layers adopt the convolution-BatchNorm-ReLU form. The detailed structure of
WarpNet is given in the supplementary material.
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Reconstruction Subnetwork (RecNet). For the RecNet, the input (I¢ and
I") are of the same pose and expression with the output (f ), and thus the U-
Net can be adopted to produce the final restoration result I. The RecNet also
includes two components, i.e., an encoder and a decoder (see Fig. 3(b)). The
encoder and decoder of RecNet are of the same structure with those adopted in
WarpNet. To circumvent the information loss, the i-th layer is concatenated to
the (L —i)-th layer via skip connections (L is the depth of the U-Net), which has
been demonstrated to benefit the rich and fine details of the generated image [20].
The detailed structure of RecNet is given in the supplementary material.

3.2 Degradation Model and Synthetic Training Data

To train our GFRNet, a degradation model is required to generate realistic
degraded images. We note that real low quality images can be the results of
either defocus, long-distance sensing, noise, compression, or their combinations.
Thus, we adopt a general degradation model to generate degraded image 1%,

I = (I ®ky) s + nU)JPEGq’ ®

where ® denotes the convolution operator. k, stands for the Gaussian blur kernel
with the standard deviation p. |s denotes the downsampling operator with scale
factor s. n, denotes the additive white Gaussian noise (AWGN) with the noise
level 0. (-)spEG, denotes the JPEG compression operator with quality factor g.

In our general degradation model, (I ® k,) |s + n, characterizes the degra-
dation caused by long-distance acquisition, while (-);prq, depicts the degra-
dation caused by JPEG compression. We also note that Xu et al. [19] adopt
the degradation model (I ® k, + n,) }s. However, to better simulate the long-
distance image acquisition, it is more appropriate to add the AWGN on the
downsampled image. When s # 1, the degraded image I%° is of different size
with the ground-truth I. So we use bicubic interpolation to upsample I%* with
scale factor s, and then take I? = (I%*) 1, and I9 as input to our GFRNet.

In the following, we explain the parameter settings for these operations:

— Blur kernel. In this work, only the isotropic Gaussian blur kernel k, is
considered to model the defocus effect. We sample the standard deviation of
Gaussian blur kernel from the set ¢ € {0,1 : 0.1 : 3}, where 0 indicates no
blurring.

— Downsampler. We adopt the bicubic downsampler as [5,8,17,49,59]. The
scale factor s is sampled from the set s € {1:0.1: 8}.

— Noise. As for the noise level o, we adopt the set o € {0:1: 7} [19].

— JPEG compression. For economic storage and communication, JPEG
compression with quality factor ¢ is further operated on the degraded image,
and we sample ¢ from the set ¢ € {0,10 : 1 : 40}. When ¢ = 0, the image is
only losslessly compressed.

By including p =0, s =1, 0 = 0 and ¢ = 0 in the set of degradation parame-
ters, the general degradation model can simulate the effect of either the defocus,
long-distance acquisition, noising, compression or their versatile combinations.
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Given a ground-truth image I; together with the guided image I7, we can
first sample g;, s;, 0; and g; from the parameter set, and then use the degra-
dation model to generate a degraded observation I¢. Furthermore, the face
alignment method [57] is adopted to extract the landmarks {(x;l,yj] )98} for

I; and {( T ,y] ) %} for I7. Therefore we define the synthetic training set

- {(Ilvjiqvlzdv{(xflvy]]) 1} {( Z; 7y] ) 1}) 1}7 where N denotes the
number of samples.

j=1

3.3 Model Objective

Losses on Restoration Result I. To train our GFDNet, we define the re-
construction loss on the restoration result I , and the adversarial loss is further
incorporated on I to improve the visual perception quality.

Reconstruction loss. The reconstruct loss is used to constrain the restora-
tion result  to be close to the ground-truth I, which includes two terms. The
first term is the ¢5 loss defined as the squared Euclidean distance between I and

I,ie., 0(I,I) = ||[I—1I|]%. Due to the inherent irreversibility of image restoration,
only the /5 loss inclines to cause over-smoothing result. Following [23], we define
the second term as the perceptual loss on the pre-trained VGG-Face [11]. Denote

by ¢ the VGG-Face network, 1;(I) the feature map of the I-th convolution layer.
The perceptual loss on the I-th layer (i.e., Conv-4 in this work) is defined as

R 2
NI | H I H 5
e OB ] i )
where C;, H; and W; denote the channel numbers, height and width of the feature
map, respectively. Finally, we define the reconstruction loss as

Lo (1,1) = \ol(1,1) + Ay 2H(1,1), (6)

where A, o and \,; are the tradeoff parameters for the ¢ and the perceptual
losses, respectively.

Adversarial Loss. Following [19,30], both global and local adversarial losses
are deployed to further improve the perceptual quality of the restoration result.
Let paata(I) be the distribution of ground-truth image, pg(1¢) be the distribution
of degraded observation. Using the global adversarial loss [14] as an example,
the adversarial loss can be formulated as,

lag=minmaxEy_p,.,. ) [log D] + Eqary, (o) llog(1—=D(F (I, 1% 0)))], (7)

where D(I) denotes the global discriminator which predicts the possibility that
I is from the distribution pgasa(I). F(I¢,19;©) denotes the restoration result by
our GFRNet with the model parameters © = (O,,,6,.).

Following the conditional GAN [20], the discriminator has the same archi-
tecture with pix2pix [20], and takes the degraded observation, guided image and
restoration result as the input. The network is trained in an adversarial manner,
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where our GFRNet is updated by minimizing the loss £, 4 while the discrimina-
tor is updated by maximizing ¢, ,. To improve the training stability, we adopt
the improved GAN [44], and replace the labels 0/1 with the smoothed 0/0.9 to
reduce the vulnerability to adversarial examples. The local adversarial loss ¢,
adopts the same settings with the global one but its discriminator is defined
only on the minimal bounding box enclosing all facial landmarks. To sum up,
the overall adversarial loss is defined as

ﬁa = )\a,gga,g + )\a,léa,b (8)

where \q 4 and A, ; are the tradeoff parameters for the global and local adver-
sarial losses, respectively.

Losses on Flow Field &. Although the WarpNet can be end-to-end trained
based on the reconstruction and adversarial losses, it cannot be learned to cor-
rectly align I with I in terms of pose and expression (see Fig. 7). In [13,50], the
appearance flow network is trained by minimizing the MSE loss between the out-
put and the ground-truth of the warped image. But for guided face restoration,
I generally has different illumination with 19, and cannot serve as the ground-
truth of the warped image. To circumvent this issue, we present the landmark
loss as well as the TV regularization to facilitate the learning of WarpNet.
Landmark loss. Using the face alignment method TCDCN [57], we detect
the 68 landmarks {(z!’,y!*)|%8,} for 19 and {(zf,y})|%8,} for I. In order to
align I and I, it is natural to require that the landmarks of I are close to
those of I, i.e., & (x],y]) ~ :cjl.g and @Y (xf, yl) ~ yij Thus, the landmark loss
is defined as
lm=Y (Pa(al,y]) — ) + (@y(z], 4]) —v]")*. 9)
1
All the coordinates (including z, y, ¢, and ®,) are normalized to range [—1, 1].
TV regularization. The landmark loss can only be imposed on the locations
of the 68 landmarks. For better learning WarpNet, we further take the TV

regularization into account to require that the flow field should be spatially
smooth. Given the 2D dense flow field (fz, fy), the TV regularizer is defined as

lry = |Vo®a|® + IV Pl + [Va®y|* + [V, @y 1%, (10)

where V, (V) denotes the gradient operator along the z (y) coordinate.
Combining landmark loss with TV regularizer, we define the flow loss as

Lfiow = Nimbim + Arvilry, (11)

where \;,, and Ay denote the tradeoff parameters for landmark loss and TV
regularizer, respectively.

Overall Objective. Finally, we combine the reconstruction loss, adversarial
loss, and flow loss to give the overall objective,

L=L 4L+ Ltiow- (12)
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4 Experimental Results

Extensive experiments are conducted to assess our GFRNet for guided blind face
restoration. Peak Signal-to-Noise Ratio (PSNR) and structural similarity (SSIM)
indices are adopted for quantitative evaluation with the related state-of-the-arts
(including image super-resolution, deblurring, denoising, compression artifact
removal and face hallucination). As for qualitative evaluation, we illustrate the
results by our GFRNet and the competing methods. Results on real low quality
images are also given to evaluate the generalization ability of our GFRNet. More
results can be found in the supplementary material. More results and the code
are available at: https://github.com/csxmli2016/ GFRNet.

4.1 Dataset

We adopt the CASIA-WebFace [51] and VggFace2 [6] datasets to constitute
our training and test sets. The WebFace contains 10,575 identities and each
has about 46 images with the size 256 x 256. The VggFace2 contains 9,131
identities and each has an average of 362 images with different sizes. The images
in the two datasets are collected in the wild and cover a large range of pose,
age, illumination and expression. For each identity, at most five high quality
images are selected, in which a frontal image with eyes open is chosen as the
guided image and the others are used as the ground-truth to generate degraded
observations. By this way, we build our training set of 20,273 pairs of ground-
truth and guided images from the VggFace2 training set. Our test set includes
two subsets: (i) 1,005 pairs from the VggFace2 test set, and (ii) 1,455 pairs
from WebFace. In addition, 200 pairs from Web-face are chosen as a validation
set, which are not included in training and testing. The images whose identities
have appeared in our training set are excluded from the test set. Furthermore,
low quality images are also excluded in training and testing, which include: (i)
low-resolution images, (ii) images with large occlusion, (iii) cartoon images, and
(iv) images with obvious artifacts. The face region of each image in VGGFace2
is cropped and resized to 256 x 256 based on the bounding box detected by
MTCNN [56]. All training and test images are not aligned to keep their original
pose and expression. Facial landmarks of the ground-truth and guided images
are detected by TCDCN [57] and are only used in training.

4.2 Training Details and Parameter Setting

Our model is trained using the Adam algorithm [25] with the learning rate of
2x 1074, 2x 1072, 2 x 107% and 31 = 0.5. In each learning rate, the model is
trained until the reconstruction loss on validation set becomes non-decreasing.
Then a smaller learning rate is adopted to further fine-tune the model. The
tradeoff parameters are set as A\ g = 100, A\,; = 0.001, A\ g =1, Ag;; = 0.5, \jyy, =
10, and Apy = 1. We first pre-train the WarpNet for 5 epochs by minimizing
the flow loss £ 10w, and then both WarpNet and RecNet are end-to-end trained
by using the objective £. The batch size is 1 and the training is stopped after
100 epochs. Data augmentation such as flipping is also adopted during training.
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Table 1. Quantitative results on two test subsets. Numbers in the parentheses indicate
SSIM and the remaining represents PSNR (dB). The best results are highlighted in
red and second best ones except our GFRNet variants are highlighted in blue.

] VggFace2 [0] WebFace [51]
Methods 4x 8% 4% 8%

SRONN [11] | 24.57 (.842) 22.30 (.802)]26.11 (.872) 23.50 (.842)
s |VDSR [2]] 25.36 (.858) 22.50 (.807)|26.60 (.884) 23.65 (.847)
SRGAN [28]  |25.85 (.911) 23.01 (.874)|27.65 (.941) 24.49 (.913)
MSRGAN 26.55 (.906) 23.45 (.862)|28.10 (.934) 24.92 (.908)
DCP [10] 24.42 (.804) 21.54 (.848)|24.97 (.895) 23.05 (.887)
Deblye |PeepDeblur [36]| 26,31 (917) 22.97 (.873) |28.13 (.934) 24.63 (.910)
DeblurGAN [27]/ 24.65 (.889) 22.06 (.846) |24.63 (.910) 23.38 (.896)
MDeblurGAN | 25.32 (.918) 22.46 (.867)|29.41 (.952) 23.49 (.900)
DnCNN [55] | 26.73 (.920) 23.20 (.877)|28.35 (.033) 24.75 (.912)
Denoise |MemNet [40] 26.85 (.923) 23.31 (.877)|28.57 (.934) 24.77 (.909)
MDnCNN 27.05 (.925) 23.33 (.879)[29.40 (.942) 24.84 (.912)
AR |ARCNNI0] [22.05 (:863) 2084 (.837)[23.39 (.876) 2047 (.858)
MARCNN 95.43 (.923) 23.16 (.876)|28.40 (.938) 25.15 (.914)
Nomblind |CBN 7] 2452 (867) 21.84 (.817)|25.43 (.899) 23.10 (.852)
rr [ WaveletSR [17] | 25.66 (.909) 20.87 (831)|27.10 (.937) 21.63 (.869)
TDAE [54] () 2019 (729)| - () 2024 (.741)

. SCGAN 25.16 (.905 - - 26.37 (.923) - -

Blind FH MCGAN[[ ]] 25.26 E.gug - - |26.35 E931) - -
Ours(—WG) | 25.97 (915) 22.01 (.838)|28.73 (.928) 24.76 (.884)
Ours(—WG2) |27.20 (.932) 23.22 (.863)|29.45 (.945) 25.93 (.914)
Ours(—W) 26.03 (.923) 23.29 (.843)|29.66 (.934) 25.20 (.897)
Ours  |Ours(—W2)  |27.25 (.933) 23.24 (.864)[29.73 (.948) 25.95 (.917)
Ours(—F) 26.61 (.927) 23.17 (.863)|31.43 (.920) 26.00 (.922)
Ours(R) 27.90 (.943) 24.05 (.890)|31.46 (.962) 26.88 (.922)
Ours(Full) 98.55 (.947) 24.10 ( .898)| 32.31 ( .973) 27.21 ( .935)

4.3 Results on Synthetic Images

Table 1 lists the PSNR and SSIM results on the two test subsets, where our
GFRNet achieves significant performance gains over all the competing methods.
Using the 4x SR on WebFace as an example, in terms of PSNR, our GFRNet
outperforms other methods by at least 3.5 dB. Since guided blind face restoration
remains an uninvestigated issue in literature, we compare our GFRNet with sev-
eral relevant state-of-the-arts, including three non-blind image super-resolution
(SR) methods (SRCNN [11], VDSR [24], SRGAN [28]), three blind deblurring
methods (DCP [39], DeepDeblur [36], DeblurGAN [27]), two denoising methods
(DnCNN [55], MemNet [16]), one compression artifact removal method (ARCN-
N [10]), three non-blind face hallucination (FH) methods (CBN [59], WaveletSR-
Net [17], TDAE [54]), and two blind FH methods (SCGAN [419], MCGAN [19]).
To keep consistent with the SR and FH methods, only two scale factors, i.e., 4
and 8, are considered for the test images. As for non-SR methods, we take the
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Fig. 4. The 4x SR results: (a) synthetic low quality image (Close-up in right bottom
is the guided image), (b) MDnCNN [55], (¢) MARCNN [10], (d) MDeblurGAN [27],
(e) Ours, and (f) ground-truth.

bicubic upsampling result as the input to the model. To handle 8x SR for SRC-
NN [11] and VDSR [24], we adopt the strategy in [47] by applying the 2x model
to the result produced by the 4x model. For SCGAN [49] and MCGAN [49],
only the 4x models are available. For TDAE [54], only the 8x model is available.

Quantitative evaluation. It is worth noting that the promising performance
of our GFRNet cannot be solely attributed to the use of our training data and
the simple incorporation of guided image. To illustrate this point, we retrain
four competing methods (i.e., SRGAN, DeblurGAN, DnCNN, and ARCNN) by
using our training data and taking both degraded observation and guided image
as input. For the sake of distinction, the retrained models are represented as
MSRGAN, MDeblurGAN, MDnCNN, MARCNN. From Table 1, the retrained
models do achieve better PSNR and SSIM results than the original ones, but
still perform inferior to our GFRNet with a large margin, especially on WebFace.
Therefore, the performance gains over the retrained models should be explained
by the network architecture and model objective of our GFRNet.

Qualitative evaluation. In Fig. 4, we select three competing methods with top
quantitative performance, and compare their results with those by our GFRNet.
It is obvious that our GFRNet is more effective in restoring fine details while
suppressing visual artifacts. In comparison with the competing methods, the
results by GFRNet are visually photo-realistic and can correctly recover more
fine and identity-aware details especially in eyes, nose, and mouth regions. More
results of all competing methods are included in the supplementary material.

4.4 Results on Real Low Quality Images

Fig. 5 further shows the results on real low quality images by MDnCNN [55],
MARCNN [10], MDeblurGAN [27], and our GFRNet. The real images are select-
ed from VGGFace2 with the resolution lower than 60 x 60. Even the degradation
is unknown, our method yields visually realistic and pleasing results in face region
with more fine details, while the competing methods can only achieve moderate
improvement on visual quality.
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Fig. 5. Restoration results on real low quality images with different poses: (a) real
low quality images (Close-up in right bottom is the guided image), (b) MDnCNN [55],
(¢) MARCNN [10], (d) MDeblurGAN [27], and (e) Ours.

4.5 Ablative Analysis

Two groups of ablative experiments are conducted to assess the components of
our GFRNet. First, we consider five variants of our GFRNet: (i) Ours(Full):
the full GFRNet, (ii) Ours(—F'): GFRNet by removing the flow loss Lo, (i-
ii) Ours(—W): GFRNet by removing WarpNet (RecNet takes both I? and I9
as input), (iv) Ours(—WG@G): GFRNet by removing WarpNet and guided image
(RecNet only takes I? as input), and (v) Ours(R): GFRNet by using a random
I9 with different identity to I¢. Table 1 also lists the PSNR and SSIM results of
these variants, and we have the following observations. (i) All the three compo-
nents, i.e., guided image, WarpNet and flow loss, contribute to the performance
improvement. (ii) GFRNet cannot be well trained without the help of flow loss.
As a result, although Ours(—F') outperforms Ours(—W) in most cases, some-
times Ours(—W) can perform slightly better than Ours(—F) by average PSNR,
e.g., for 8x SR on VggFace2. (iii) It is worth noting that GFRNet with random
guidance (i.e., Ours(R)) achieves the second best results, indicating that GFR-
Net is robust to the misuse of identity. Figs. 1 and 6 give the restoration results
by GFRNet variants. Ours(Full) can generate much sharper and richer details,
and achieves better perceptual quality than its variants. Moreover, Ours(R) also
achieves the second best performance in qualitative results, but it may introduce
the fine details of the other identity to the result (e.g., eye regions in Fig. 6(h)).
Furthermore, to illustrate the effectiveness of flow loss, Fig. 7 shows the warped
guidance by Ours(Full) and Ours(—F). Without the help of flow loss, Ours(—F)
cannot converge to stable solution and results in unreasonable warped guidance.
In contrast, Ours(Full) can correctly align guided image to the desired pose and
expression, indicating the necessity and effectiveness of flow loss.

In addition, it is noted that the parameters of Ours(Full) are nearly two
times of Qurs(—W) and Ours(—W@G). To show that the gain of Ours(Full) does
not come from the increase of parameter number, we include two other variants
of GFRNet, i.e., Ours(—W2) and Ours(—W@G2), by increasing the channels of
Ours(—W) and Ours(—W@G) to 2 times, respectively. From Table 1, in terms of
PSNR, Ours(Full) also outperforms Ours(—W2) and Ours(—WG2). Instead of
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Fig. 6. Restoration results of our GFRNet variants: (a) input, (b) guided image.
(¢) Ours(—WQ@G), (d) Ours(—W@G2), (e) Ours(—=W), (f) Ours(—W2), (g) Ours(—F),
(h) Ours(R) (Close-up in right bottom is the random guided image), (i) Ours(Full),
and (j) ground-truth. Best viewed by zooming in the screen.

e

S

(a) (b) (©) (d) (e)

Fig. 7. Warped guidance by Ours(Full) and Ours(—F): (a) input, (b) guided image,
(c) Ours(—F), (d) Ours(Full), and (e) ground-truth.

the increase of model parameters, the performance improvement of Ours(Full)
should be mainly attributed to the incorporation of both WarpNet and flow loss.

5 Conclusion

In this paper, we present a guided blind face restoration model, i.e., GFRNet,
by taking both the degraded observation and a high-quality guided image from
the same identity as input. Besides the reconstruction subnetwork, our GFRNet
also includes a warping subnetwork (WarpNet), and incorporates the landmark
loss as well as TV regularizer to align the guided image to the desired pose and
expression. To make our GFRNet be applicable to blind restoration, we further
introduce a general image degradation model to synthesize realistic low quality
face image. Quantitative and qualitative results show that our GFRNet not
only performs favorably against the relevant state-of-the-arts but also generates
visually pleasing results on real low quality face images.
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