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Abstract. Existing concept learning systems can fail when the nega- 
tive examples heavily outnumber the positive examples. The paper dis- 
cusses one essential trouble brought about by imbalanced training sets 
and presents a learning algorithm addressing this issue. The experiments 
(with synthetic and real-world data) focus on 2-class problems with ex- 
amples described with binary and continuous attributes. 

1 Introduction 

The specific problem addressed here is learning from imbalanced training sets 
where examples from one class heavily outnumber examples from the other 
class. Highly imbalanced training sets occur in applications where the classi- 
fier is to detect an infrequent~ albeit important, event: a fraudulent telephone 
call (Fawcett and Provost, 1996), an unreliable telecommunications customer 
(Ezawa, Singh, and Norton, 1996), or a rare diagnosis such as the thyroid dis- 
eases in the UCI repository. Extremely imbalanced classes also arise in informa- 
tion retrieval (Lewis and Catlett, 1994). 

Performace of concept learning is customarily assessed with accuracy: the 
percentage of testing examples correctly classified by the induced classifier. 
In the case of imbalanced training sets, though, this is inappropriate. For in- 
stance, Kononenko and Bratko (1991) report a domain where a medical special- 
ist achieved 64% accuracy, while 80% examples represented the majority class. 
Should he decide to always predict only the majority class, the expert would 
improve accuracy but probably lose his patients in the process. 

Other performance indicators are needed. The information retrieval commu- 
nity uses precision and recall and combines them into the so-called F-measure 
(Lewis and Gale, 1994). Another good idea is the information-based criterion 
suggested by Kononenko and Bratko (1991). Swets (1988) measures the area 
under the curve that depicts the relation between the error rate observed on 
negative examples and the accuracy observed on positive examples. In our re- 
search on the detection of oil spills, we wanted to maximize the geometric mean 
(g-mean) g = x /~cc+,  a c c - ,  where ace+ is the percentage of positive examples 
correctly recognized and a c c -  is the percentage of negative examples correctly 
recognized. Geometric mean is high when both acc+ and a c c -  are high and 
when the difference between acc+ and a c e -  is small. This criterion was chosen 
because it was consistent with the requirements of our customer; however, most 
of the ideas presented below will be valid with other criteria as well. 
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What do such criteria betray about the behavior of learning algorithms in 
applications with imbalanced training sets? This is best illustrated with a ficti- 
cious experiment. Choose randomly n positive and n negative examples, and run 
C4.5 on them. Then increase the number of negatives in increments of n (with 
the same n positives) and repeat the learning. In many applications, g-mean 
measured on an independent testing set (with the same distribution of positives 
and negatives) sooner or later significantly drops. 

This problem has been noted in the neural-network community, where sug- 
gested solutions duplicate examples, create new examples, or increase the learn- 
ing rate for examples of the underrepresented class (DeRouin et al. 1991). In 
the symbolic learning community, the problem has been addressed by weighing 
training examples (Pazzani et al., 1994), by windowing (Catlett, 1991), and by 
sampling (Lewis and Catlett, 1994). A natural approach exploits distinct costs 
assigned to false positives and false negatives (Pazzani et al., 1994). 

In Section 2, we offer a hypothesis why abundant negatives hurt: the reason 
is that the positive and negative classes in real-world domains often overlap. 
The hypothesis underlies the simple learning algorithm SHRINK described in 
Section 3. Experiments illustrating its behavior are reported in Section 4. 

2 W h y  A b u n d a n t  N e g a t i v e s  H u r t  

We assume a scenario where the agent is provided with a set of pairs [(x, c(x)] 
where x is a vector of attribute values (binary or continuous) and c(x) is the 
corresponding concept label. To keep the work focussed, we consider only two- 
class problems. 

Our point can be illustrated by the case of two overlapping classes. As the 
number of negative examples grows, so does the likelihood that the nearest 
neighbor of any example in the region of overlap will be negative. The k-nearest- 
neighbor rule wilt thus correctly recognize most examples of the majority class 
while failing on the minority class. 

A decision-tree generator partitions the instance space into regions labeled 
with the class that has majority in the region. With imbalanced classes, the 
regions with mixed positives and negatives will tend to be labeled with the 
preponderant class. By another perpective, each positive example is eventually 
separated from other positives by a "wall" of negatives and the tree generator 
either stops splitting, in which case negatives are a majority, or it keeps splitting 
until it forms a tiny region around each positive. 

Consider an experimental testbed where random examples are generated ac- 
cording to normal distribution with p+ = [0, 0] and ~+ = [1, 1] for the positives, 
and with #_ = [2, 0] and ~_ = [2, 2] for the negatives. In all runs, the same 
50 training positives are used, while the number of negatives grows from 50 to 
800 in increments of 50. Performance is measured on an independent testing 
set with the same proportion of positive and negative examples as the training 
set. The results of C4.5 (Quinlan, 1993) and 1-NN are shown in Figure 1: with 
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Fig. 1. Running the 1-NN rule (left) and of C4.5 (right) on the gauss data. Horizontal 
axis: the number of negatives. Dashed: accuracy on positives; dotted: accuracy on 
negatives; solid: g-mean. 

abundant negatives, the performance on the majority class exceeds 90% and the 
performance on the minority class collapses. 

(In C4.5, we used the default parameter setting while being aware that  better 
results might be achieved by their more careful adjustment. The graphs show 
performances of unpruned trees: in the given domain, existing pruning techniques 
often degenerate the tree to a single leaf labeled with the majority class--the 
very event that  we wanted to avoid.) 

3 The  Sys tem S H R I N K  

To cope with the domination of negative examples in mixed regions, our system 
SHRINK insists that a mixed region be labeled as positive, whether positive 
examples prevail in the region or not. That  changes the learner's focus: search 
for the best positive region, one with the maximum ratio of positives to negatives. 

The system is restricted to search for a single region to be labeled as positive, 
and is thus ill-suited for disjunctive concepts. The justification is that  partition- 
ing rare positives into two or more subsets leaves virtually nothing to be reliably 
reasoned about, considering the presence of freak outliers which, with such small 
numbers, could well be mistaken for additional disjuncts. 

The concept will be represented by the network of tests depicted in Figure 2. 
The tests on numeric attributes have the form xi E [minai ;maxai]  where i 
indexes the attributes. For boolean attribues the tests will have the form of 
zi = 0 or xi = 1. Denote by hi the output of the i-th test and let hi = 1 if the 
test suggests a positive label and hi = - 1  otherwise. The example is classified 
as positive if ~ i  hi �9 w~ > 0, where wi is the weight of the i-th test. 

The weights are determined by an algorithm by Freund and Schapire (1995): 
Denote by p a vector assigning to each example its "importance." The vector 
is fixed during learning. In the simplest case, pj = 1 for any j .  Alternatively, pj 
can be set to a higher value for a positive example, and to a lower value for a 
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Fig. 2. A classifier in the form of a network of tests. 

negative example.  Define the loss vector I i = [/1~,..., lj~,...] so that  lj~ = 0 if the 
j - th  example is classified correctly by the i-th test, and lji = 1 otherwise. The 

overall error of the i-th test is calculated as e~ = 1 i �9 pT and the corresponding 
weight is obtained as w~ = log(e~/(1 - e~)). The intuition behind this expression 
is to assign higher weights to tests with less errors on the training set. 

In the search for the tests, SHRINK begins by establishing the "best" interval 
along each attribute.  To find it, the program begins with the smallest interval 
containing all positive examples and on every iteration shrinks the interval by 
eliminating either the left or right endpoint, whichever results in the bet ter  g- 
mean score. This produces a set of  nested intervals that  are scanned for the one 
with the m a x i m u m  score. The intervals thus shrink from one at t r ibute  value to 
the next, hence the program's  name. 

When the intervals have been found, SHRINK discards tests with g > 0.5 
(so as to get rid of less relevant attributes),  and then calculates the weights of 
each of the remaining tests using the formula mentioned above. The procedure 
is summarized in Table 1. 

Table  1. Control structure of SHRINK 

1) For each attribute: 
�9 Sort the examples by the attribute's value; 
�9 The initial interval is [minas, maxa,] where minai and max a, are the min and 
max values observed for the / - th  attribute in positive examples; 
�9 Remove either rain ai or max a~, whichever reduces more radically the number 
of negative examples in the interval; record the value of g-mean (g) for the new 
interval; 
�9 Repeat the previous step as long as there is at least one positive example in the 
interval, and then return the interval with maximum g. 

5) Discard tests with g < 0.5. 
6) Calculate the weight of each test. 
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SHRINK pays a price for its simplicity: it will fail on disjunctive concepts, 
and, as it was developed specifically for overlapping classes, its advantage will 
disappear if the classes do not overlap. 

4 E x p e r i m e n t a l  E v i d e n c e  

SHRINK's results in the gaussian domain from Section 2 are depicted in Figure 3, 
using the same format as in Figure 1 and 2. The learner's performance does not 
appear to be affected by the growing number of negatives: whereas g-mean for 
C4.5 dropped with the growing number of negatives from about 70% to less than 
40%, SHRINK kept a steady performance slightly above 75%. 
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Fig. 3. Performance of SHRINK on the 2-dim data 

The claim that  SHRINK overcomes the problems with imbalanced classes is 
corroborated by experiments with the following real-world domains. 

Oil-slick data. (our current research) Oil slicks I: 21 positives, 350 negatives; 
39 numeric attributes; 7-fold cross-validation. Oil slicks II: 24 positives, 400 
negatives; 44 numeric attributes; 8-fold cross-validation. 

Sleep data. (An earlier project of one of the authors, see Kubat, Pfurtscheller, 
and Flotzinger, 1994). The original task was modified to recognize the occurence 
of class REM. Two files, slightly adapted from the original, were used: KR2 with 
150 positives and 750 negatives; BR2 with 140 positives and 700 negatives. 15 
numeric attributes; 5-fold cross-validation. 

Euthyroid and Hypothyroid from the UCI repository (Murphy and Aha, 1994). 
We deleted all examples age and sex had missing values and we removed at- 
tribute TBG_measured because its values were frequently missing. From Euthy- 
told, we randomly selected 240 positives and 2400 negatives. From Hypothy- 
roid, we selected 120 positives and 2400 negatives. 18 boolean and 6 numeric 
attributes; 5-fold cross-validation. 

In the oil-slick domains, the ratio between the positive and negative examples 
is very high. For this reason, the importance vector p was set so that  Pi for a 
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positive example was r times higher than in the case of a negative example. 
The value of r is determined as r = n n / n p  where n,~ is the number of negative 
examples and np is the number of positive examples. In the other domains (sleep 
and thyroid), p~ = 1 for all i. Auxiliary experiments (not reported here) have 
shown that  SHRINK'S performance was not very sensitive to precise values in 
the importance vector. 

Table 2. g-means in off-slicks I Table 3. g-means in oil-slicks II 

I1# neg.IIC4.511-NNISHRINKll I1# neg.IIC4.511-NNISHRINKll 

140 66.5 40.0 66.9 160 83.9 55.9 75.8 
210 51.0 43.5 68.2 240 82.3 59.8 74.9 
280 52.6 29.8 68.0 320 83.2 49.1 72.6 
350 48.2 27.6 67.5 400 80.5 44.8 73.8 

Table 4. g-means in sleep data: KR. Table 5. g-means in sleep data: BR 

H# neg.]]C4.5]I-NN]SHRINK]] H# neg.]]C4.5]I-NN]SHRINK]] 

150 81.0 76.3 68.6 140 84.5 84.5 69.7 
300 79.4 75.1 71.7 280 83.9 86.0 71.0 
450 76.9 73.0 74.7 420 83.2 85.7 70.2 
600 72.3 70.3 73.8 560 78.7 83.5 72.2 
750 72.0 67.8 75.9 700 78.4 78.9 73.1 

Table 6. g-means in euthyroid data Table 7. g-means in hypothyroid 

I1# neg.IIC4.511-NNISHRINKII I1# neg.IIC4.511-NNISHRINKII 

480 94.3 71.5 71.7 360 95.7 93.1 93.5 i 
960 94.3 67.0 78.1 840 96.3 93.0 94.8 
1440 94.7 63.2 74.6 1320 95.4 91.0 94.4 
1920 91.1 62.2 73.7 1800 95.6 89.2 94.7 
2400 88.2 60.8 74.0 2280 93.6 88.9 95.0 

The results are summarized in Tables 2 through 7 for growing numbers of 
negatives. For reference, the tables give also results achieved by C4.5 and 1-NN. 
(The poor results of 1-NN in some domains, such as oil-slick II, are caused by a 
high number of irrelevant attributes.) In all domains, the performance of 1-NN 
decreases with the growing number of negatives. The performance of C4.5 drops 
in all domains save for the hypothyroid data  file, where it remains virtually 
unchanged regardless of the number of negatives. 

SHRINK's performance steadily increases with the growing number of nega- 
tives in oil slicks I, and in both sleep-data domains. In the hypothyroid domain, 
the improvement is marginal. Only in the euthyroid domain did SHRINK's per- 
formance drop with increasing number of negatives. When presented with all 

available examples, SHRINK outperformed C4.5 in three (out of 6) domains and 
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outperformed 1-NN in five domains. In some domains, the limits of SHRINK's 
representation language were reached even with small numbers of negatives and 
could not be improved by providing more negatives. As an aside, our algorithm 
tended to yield better results on positive examples than on negative examples. 
A more detailed study would exceed the scope of this brief contribution and will 
appear in a full-length paper currently under preparation. 

To obtain evidence that  the performance of SHRINK can be at tr ibuted to 
the chosen evaluation criterion, we have run the program on the same data, this 
t ime using mean accuracy. Expectedly, SHRINK now turned out to be useless, 
invariably relapsing to 100% on negatives and 0% on positives whenever the ratio 
between the positives and negatives exceeded 3, in some domains even earlier. 

The approach should not be viewed as a panacea. In some domains, such 
as the glass data from the UCI repository, the performance of C45 and 1-NN 
does not degrade with increasing numbers of negatives. SHRINK will also lose 
its edge if the concept is disjunctive. 

5 C o n c l u s i o n  

The poor behavior of existing learners in domains with imbalanced training sets 
can be caused by the fact that  examples of the majori ty class can "infest" the 
region of the minority class. This can be due to class-label noise or to the overlap 
between the two classes. In this paper, we described a novel technique that  is 
robust against this phenomenon. 

In future research, analytical and practical studies of essential learning al- 
gorithms should be addressed. One should also study decision-tree generators 
using (e.g. in attribute-value splitting) criteria maximizing g-mean or other cri- 
teria of this kind. Whereas our experiments focussed on two-class problems, 
multiclass domains present new challenges: n - 1 underrepresented classes and 
one dominating class can be different case than n - 1 balanced classes with a 
single underrepresented class. Techniques for sampling the examples from the 
majori ty class should be investigated. 
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