
Learning With Constrained and Unlabelled Data

Tilman Lange1 Martin H.C. Law2 Anil K. Jain2 Joachim M. Buhmann1

langet@inf.ethz.ch lawhiu@cse.msu.edu jain@cse.msu.edu jbuhmann@inf.ethz.ch

1. Institute of Computational Science 2. Dept. of Computer Science and Engineering

ETH Zurich Michigan State University

CH-8050 Zurich, Switzerland East Lansing, MI 48823, USA

Abstract

Classification problems abundantly arise in many com-

puter vision tasks – being of supervised, semi-supervised

or unsupervised nature. Even when class labels are not

available, a user still might favor certain grouping solutions

over others. This bias can be expressed either by providing

a clustering criterion or cost function and, in addition to

that, by specifying pairwise constraints on the assignment

of objects to classes. In this work, we discuss a unifying

formulation for labelled and unlabelled data that can in-

corporate constrained data for model fitting. Our approach

models the constraint information by the maximum entropy

principle. This modeling strategy allows us (i) to handle

constraint violations and soft constraints, and, at the same

time, (ii) to speed up the optimization process. Experimen-

tal results on face classification and image segmentation in-

dicates that the proposed algorithm is computationally ef-

ficient and generates superior groupings when compared

with alternative techniques.

1. Introduction

Many problems in computer vision can be cast as

classification and grouping problems. Examples in-

clude low level image segmentation and object recogni-

tion/classification. Often, a clear distinction is made be-

tween problems that are (i) supervised or (ii) unsupervised,

the first involving only labelled data while the latter involv-

ing only unlabelled data in the process of learning. Re-

cently, there has been a growing interest in a hybrid setting,

called semi-supervised, where the labels of only a portion of

the data set are available for training. The unlabelled data,

instead of being discarded, are used in the training process

to provide information about the data density p(x), so that

the joint data and label density p(x, y) can be more appro-

priately inferred. Partially labelled data are typical in appli-

cations where data collection is easy but data labelling is ex-

pensive. Remote sensing serves as a good example: taking

a high resolution SAR image is relatively easy compared to

the labor-intensive process of correctly labelling pixels in

the scene. In molecular biology, the functional classifica-

tion of proteins based on sequence or secondary structure

information represents an example of similar nature: the

data acquisition process is relatively cheap while the cost

of identifying the correct functional category is high.

Instead of specifying the class labels, a “weaker” way

of specifying a priori knowledge about the desired model

is via constraints. A pairwise must-link constraint corre-

sponds to the requirement that two objects should be as-

signed the same label, whereas the labels of two objects par-

ticipating in a must-not-link constraint should be different.

Must-link constraints are generally easier to model because

they usually represent an equivalence relation. Constraints

can be particularly beneficial in data clustering [6], where

precise definitions of classes are absent. In the search for

good models, one would like to include all (trustworthy)

information that is available, no matter whether it is about

unlabelled, data with constraints, or labelled data. Figure 1

illustrates this spectrum of different types of prior knowl-

edge that can be included in the process of classifying data.

Table 1 summarizes different approaches in the literature

to clustering with constraints – for which we provide a novel

approach. In the second and the third type of approaches,

the subjects of inference are the labels of the objects. These

bear a close similarity to the transductive learning setting

as introduced by Vapnik in [20]. From a probabilistic point

of view, one specifies a prior on the class labels for points

participating in constraints or for labelled points. Combina-

tions of labels that violate the constraints / prior label infor-

mation are either forbidden by having zero prior probability,

or they are penalized by having small prior probability val-

ues. Labels of originally unlabelled or constrained points

are affected by the prior knowledge only indirectly by the

parameter estimates. This, however, can lead to “discon-

tinuous” label assignment: two points at exactly the same

location, one with constraint and one without, can be as-

signed different labels! In [23], smoothness of the cluster
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Figure 1. Spectrum between supervised and unsupervised learning: dots correspond to points without any labels. Points with labels

are denoted by circles, asterisks and crosses. In (c), the must-link and must-not-link constraints are denoted by solid and dashed lines,

respectively.

Summary Key ideas Examples

Distance editing Modify the distance/proximity matrix due to the constraints [10, 9]

Constraints on la-

bels

The cluster labels are inferred under the restriction that the constraints

are always satisfied

[21, 22, 23, 19]

Penalize violation Penalty for constraint violations. ICM used for greedy optimization. [3, 4, 2]

Modify genera-

tion model

Generation process of data participating in constraints is modified lead-

ing to parameter estimates consistent with constraints

[12, 11]

Table 1. Different algorithms for clustering with constraints

labels is enforced to avoid this. In [10], the distance metric

is modified in view of the constraints to propagate the effect

of a constraint to the neighboring space. However, this ap-

proach is not very robust: a single constraint can provide a

shortcut and change the distance matrix dramatically.

In this work, we tackle the problem of constraint-based

classification in a model-based framework. Unlabelled and

constrained data are integrated in a manner analogous to the

integration of labelled and unlabelled data. The parame-

ters are estimated by a combination of the unlabelled and

constrained data. We start with a natural formulation of

semi-supervised learning that enables a smooth transition

between supervised and completely unsupervised problem

settings. This formulation is extended to incorporate prior

information in the form of pairwise constraints: for the con-

straint data, we introduce a maximum entropy prior on the

hidden class labels and thereby switching the sampling par-

adigm. In order to maintain computational feasibility, a

mean field approximation is employed that leads to accu-

rate posterior estimates for the constraint data. In contrast

to the approach in [3], the approximation allows us to em-

ploy more sophisticated optimization compared to [3] and

[21, 22]. Furthermore, the method by Shental et al. [19]

does not allow the specification of the importance of con-

straint examples.

We want to emphasize that the approach presented here

is of rather general applicability: it can be easily applied to

mixture-based approaches as well as to all clustering prin-

ciples that rely on minimizing the distance to cluster cen-

troids with respect to a Bregman divergence [1] (e.g. k-

means with squared Euclidean error or histogram clustering

with Kullback-Leibler divergence [5]). Furthermore, thanks

to the formal equivalence proved in [18], which states that

pairwise clustering problems can be recast as k-means prob-

lems in a suitable embedding space, our approach is also

applicable to pairwise data clustering problems.

2. Integrating Partial Label Information

In unsupervised model-based classification, the data den-

sity p(x|Θ) is usually a function of the parameters Θ. In this

setting, learning consists of identifying a model that is suit-

able for the data by parameter optimization. Following the

Maximum Likelihood (ML) approach, parameter estimates

are obtained by minimizing the negative data log-likelihood

L(X u; Θ) = −
∑

x∈Xu log p(x|Θ) of the (unlabelled) data

X u, where p(x|Θ) =
∑

ν πνp(x|θν) in model-based clus-

tering, with ν as cluster label and θν as the parameter for

the ν-th class-conditional density. Algorithmically, the of-

ten intractable global optimization over the parameter space

is replaced by an iterative, local optimization procedure, the

Expectation-Maximization (EM) algorithm [16]. The latter

is also an intrinsic part of the Deterministic Annealing (DA)

optimization procedure [17].

2
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In supervised model-based classification, one has a data

set X l and the corresponding labels, denoted by yi for

xi ∈ X l. For simplicity, we assume yi ∈ {1, . . . , k},

where k is the number of classes. The application of

the maximum likelihood principle to this data tells us to

choose the parameters Θ that minimize L(X l,Y; Θ) =
−

∑

xi∈X l log p(xi, yi|Θ), where again p(xi, yi|Θ) =
πyi

p(xi|θyi
).

In semi-supervised learning, we have both labelled and

unlabelled data where the latter should be employed in order

to get an improved model (i.e. parameter) estimate.1 It is

natural to require that the estimated parameters yield high

likelihood for both, labelled and unlabelled data, which can

be achieved by considering

min
Θ

(

αL(X u; Θ) + (1 − α)L(X l,Y; Θ)
)

(2.1)

as the objective function. Here, α ∈ [0, 1] controls the in-

fluence of the labelled/unlabelled data on the parameter es-

timation. For very small α, the unlabelled data is almost

ignored while for α close to 1, the labelled data hardly en-

ters the model estimate. Clearly, the choice of α is criti-

cal in this context since it might significantly determine the

resulting model, in particular in the case of a model mis-

match. By choosing α = |X u|/|X u ∪X l|, every data point

– independent of it being labelled or unlabelled – is consid-

ered equally important while by setting α = 1/2 both data

sources, labelled and unlabelled, will have the same influ-

ence. A different strategy is to choose the largest α with

minimal empirical test error on the labelled data X l. By

means of this strategy, one integrates the log-likelihood and

the empirical classification risk into the objective function.

Our formulation ensures that the model parameters are actu-

ally modified and affected by the prior information, not just

the posterior assignment probabilities of some objects. This

formulation has the consequence that the final parameter es-

timate essentially becomes a convex combination of the pa-

rameter estimates due to purely unlabelled data and purely

labelled data, with α as a trade-off parameter between para-

meter estimates. For Gaussian class-conditional densities,

for example, the class-specific means µν are estimated in

each EM iteration by

µν =
α

∑

xi∈Xu ρi(ν)x + (1 − α)
∑

xi∈X l 1{yi = ν}x

α
∑

xi∈Xu ρi(ν) + (1 − α)
∑

xi∈X l 1{yi = ν}
.

(2.2)

Here, ρi(ν) represents the posterior probability estimated

from the unlabelled data. For central clustering with Breg-

man divergences, one also obtains an estimate analogous

to the one in eq. (2.2). A similar update equation for

covariance matrices is straightforwardly obtained by tak-

ing the derivative of convex combination of the two log-

likelihoods.

1We assume that there is at least one labelled sample for each class.

3. Integrating Pairwise Constraints

The focus of the present work is the integration of

pairwise must-link and must-not-link constraints into the

process of model fitting. We want to achieve this in a

way similar to the integration of partially labelled data as

described in section 2. Our perspective is that specifying

constraints amounts to specifying an object-specific prior

model for the assignment of constraint data to different

classes. This contrasts the sampling paradigm underlying

a standard mixture model, which is given by the following

two-stage process: (i) a class is picked with probability πν ,

and (ii) the datum x is generated according to p(x|θν). For

constrained data, the first step of the sampling process is no

longer object independent. We provide a Maximum Entropy

(ME) [7, 8] prior model defined on the hidden variables that

captures the dependencies, and propose an efficient imple-

mentation of the model by means of a Mean-Field approx-

imation. At first, however, we discuss constraint specifica-

tion.

3.1 Constraint Specification

Suppose a user provides the information about objects i
and j that they should be linked together, i.e., be assigned

to the same group. We introduce a binary indicator vari-

able ai,j such that it is 1 if i and j should be in the same

group, and 0 otherwise. If the must-link constraints con-

tain no errors, it is natural to assume that the must-link con-

straints represent an equivalence relation, i.e., they should

be symmetric, reflexive and transitive. Therefore, the transi-

tive closure of the user-provided, must-link constraints rep-

resents a useful augmentation of the constraint set. For an

equivalence relation, there exists a partitioning of the set

in relation. By considering the graph with (ai,j) as ad-

jacency matrix, the connected components (cliques in the

augmented graph) of the graph correspond to the equiva-

lence classes. While performing this augmentation is a must

for certain approaches, e.g. for the one in [19], it is optional

in our approach. Note that augmentation of constraints can

increase the number of erroneous constraints if there exist

mis-specified constraints.

Similar to must-link constraints, must-not-link con-

straints can be expressed by employing an additional in-

dicator variable bi,j with bi,j = 1 if i and j should not

be linked, and 0 otherwise. Negative or must-not-link con-

straints, despite their symmetry, do not represent an equiv-

alence relation. However, given the transitive closure of

positive constraints, there is some structure that can be ex-

ploited. Suppose there is a negative constraint between i
and j, i.e. bi,j = 1. The negative constraints can be aug-

mented by adding negative constraints between i′ and j′

where ai′,i = 1 and aj′,j = 1. In other words, negative

3
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constraints can be considered as constraints between com-

ponents. Again, we want to emphasize that performing this

augmentation is also optional for must-not-link constraints;

e.g. , augmenting conflicting constraints is not reasonable.

3.2 Including Constraints in the Inference

Consider the data set X c which consists of all data that

participate in at least one constraint. Since only constraints

and no labels are prescribed for the data in X c, we consider

the label yi for xi ∈ X c as a hidden or latent variable.

We want to penalize a constraint violation whenever the

latent variables in a constraint are different (the same) while

they are supposed to be the same (different). Hence, the

penalty for violation of positive and negative constraints be-

comes ai,j1{yi 6= yj}, and bi,j1{yj = yj}, respectively,

where 1 denotes the indicator function.

As stated above, the user specifies a preference for or

against certain labellings of the constrained data. We turn

this information into a prior on the label assignment for

the data in X c by applying the maximum entropy princi-

ple: find the prior distribution p(y) = p(y1, . . . , yn) for

the cluster labels of the data points xi ∈ X c such that the

entropy H(p) is maximized while the expected number of

constraint violations,

k
∑

y1=1

· · ·
k

∑

yn=1

p(y)
∑

i,j

(ai,j1{yi 6= yj} + bi,j1{yi = yj}) ,

(3.1)

is bounded by κ+ for positive and κ− for negative con-

straints. Note, that we can rewrite the problem of finding the

maximum entropy distribution as a Lagrangian functional

with Lagrange parameters λ+ and λ−; the latter control the

amount of penalty for a constraint violation. The solution

to this inference problem is the so-called Gibbs distribution,

and, in our case, it is

1

Z

∏

i,j

exp
(

−λ+ai,j1{yi 6= yj} − λ−bi,j1{yi = yj}
)

,

(3.2)

where Z is the normalization constant. A similar prior has

been proposed independently in [14] using a heuristic argu-

ment. The prior can be considered as the distribution in a

pairwise Markov random field defined on the label variables

where the graph structure is given by the constraint parame-

ters ai,j and bi,j . The result is a prior factorial over the

edges in the Markov Random Field; it can be regarded as

maximally non-committal to fluctuations in the data since

the ME principle assumes the least about the label informa-

tion apart from the information derived from the constraints.

Furthermore, depending on the choice of λ+ and λ−, con-

straint violations are possible. For λ+ → ∞, λ− → ∞,

the prior strictly enforces the constraints for the data in X c.

We note that, procedures like EM or Deterministic Anneal-

ing require the computation of posterior assignment distri-

butions for each single datum, i.e. the posterior over the as-

signment variables needs to be marginalized. Clearly, direct

marginalization is only feasible for a small number of con-

straints, or when the constraints are highly decoupled.

In [3], the authors avoided the need to perform marginal-

ization by resorting to a different, more greedy hill climbing

heuristic, the Iterative Conditional Mode (ICM). As the re-

sults in the experimental section indicate, the drawback of

such a procedure is that it gets stuck very easily in poor lo-

cal minima which is particularly dangerous in the context

of constraint clustering. In order to use more sophisticated

optimization techniques such as EM or DA, the problem

of estimating marginalized posteriors can no longer be cir-

cumvented. In order to keep the optimization tractable, we

approximate the posterior in the E-step by the mean field

approximation.

Mean-Field Approximation for Posterior Inference

Assume that the data given in X c are independent, i.e. the

data densities are factorial. By Bayes rule, we have

p(y|X c) =
1

Z

∏

i

exp (−hi(yi)) p(y), (3.3)

where, e.g., hi(yi) = − log p(xi|yi) for Gaussian class-

conditional densities or hi(yi) = ‖xi − µyi
‖2 for the DA

version of k-means.

In the mean field approximation, one tries to find a facto-

rial approximation, the mean field approximation, q(y) =
∏

i qi(yi) of the posterior p(y|X c) such that the Kullback-

Leibler divergence between the approximate and true pos-

terior distributions is minimized, i.e.

min
q

∑

y

q(y) log

(

q(y)

p(y|X c)

)

, (3.4)

such that
∑

ν qi(ν) = 1, for all i. Because the approx-

imation is factorial, the computation of the marginalized

posterior probabilities becomes feasible, a prerequisite to

optimize the model efficiently. Note that the above KL di-

vergence can be decomposed as

−H(q) − Eq [log p(y|X c)] (3.5)

where H(q) denotes the entropy of the mean field approx-

imation and Eq denotes the expectation w.r.t. q. We seek

to minimize the expression in eq. (3.4) by looking for sta-

tionary points for the qi(ν). Set γij = λ+aij − λ−bij and

∆ν,µ = 1−δν,µ, where δν,µ is the Kronecker delta function.

Using this convention, we can summarize the exponents in

eq. (3.2) by γi,j∆ν,µ if yi = ν and yj = µ. We want to em-

phasize that this approximation is only used for constrained

data.

4
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Taking the derivative of eq. (3.4) w.r.t qi(ν) and setting

it to zero leads to

qi(ν) =
1

Zi

exp



−hi(ν) −
∑

j 6=i

∑

µ

qj(µ)γi,j∆ν,µ



 ,

(3.6)

where

Zi =
∑

ν

exp



−hi(ν) −
∑

j 6=i

∑

µ

qj(µ)γi,j∆ν,µ



 .

(3.7)

Since ∆ν,µ = 1 only if µ 6= ν, we can further simplify the

expression for qi(ν) to

qi(ν) =
1

Zi

exp



−hi(ν) −
∑

j 6=i

(1 − qj(ν))γi,j



 . (3.8)

Eventually, we have arrived at a factorial approximation of

the marginal posterior probabilities. For the constrained

data, these update equations can be used in the E-step for

posterior probability estimation.

Model Fitting with Constraints So far, we have assumed

that every data point in X c participates in a constraint and

we minimize the negative log-likelihood − log p(X c; Θ, C)
where C is used to denote the set of constraints. The con-

strained data and the unlabelled data can be integrated in a

manner similar to eq. (2.1): suppose the given data X can be

decomposed into unlabelled data X u and data X c that par-

ticipate in pairwise assignment constraints. Furthermore,

let α ∈ [0, 1]. The same convex combination can be used

min
Θ

(

αL(X u; Θu
prior,Θmodel)+ (3.9)

(1 − α)L(X c; Θc
prior,Θmodel, C)

)

,

which shifts the focus from pure posterior inference to im-

proved parameter estimation. Similarly, (labelled + con-

strained) as well as (labelled + constrained + unlabelled)

data can be combined into a single objective function. In

particular, the optimal Θ can still be found by EM or DA,

while allowing the inclusion of partially labelled as well as

constrained data. The result of the minimization is a para-

meter estimate that takes all the available prior information

into account. For the class-conditional densities, we arrive

at a similar formula as we did in the semi-supervised case,

e.g. for the means, we have

µν =
α

∑

xi∈Xu ρi(ν)x + (1 − α)
∑

xi∈X c qi(ν)x

α
∑

xi∈Xu ρi(ν) + (1 − α)
∑

x∈X c qi(ν)
,

(3.10)

which amounts again to a convex combination of parame-

ter estimates due to labelled and constrained data. Note,

however, that the priors are different for unlabelled and con-

strained data.

The appropriate choice of α largely depends on what the

user wants to achieve. If we set α = |X u|/|X c∪X u| again,

we assign equal importance to all the data points while for

α = 1/2 labelled and constrained data have the same im-

portance in the inference. We can also use the search strat-

egy mentioned above which controls α such that the num-

ber of constraint violations is minimized – in analogy to

the minimization of the empirical risk (see section 2). Note

that the coupling parameter α is different from the Lagrange

parameters λ+ and λ−: α controls the importance of con-

strained data set X c as opposed to unlabelled data set, while

the Lagrange parameters λ+ and λ− only affect the data in

X c.

4. Experimental Results

The approach described in section 3 is applied to deter-

ministic annealing (DA) [17] for Gaussian mixture models

and squared error clustering, leading to a DA clustering al-

gorithm with constraints. This algorithm is tested on differ-

ent synthetic and real world data sets. The clustering with

constraints algorithms2 by Shental et al. [19] and Basu et

al. [3] are also run on all the data sets for comparison. For

the algorithm in [3], both PCKMEANS and MPCKMEANS

have been tried and they give nearly identical results for all

data sets. Thirteen different constraint penalty values rang-

ing from 1 to 4000 are used for the algorithm in [3]; only the

best result of their algorithms is reported. In order to eval-

uate the results of the different methods, we use F-scores,

i.e. the harmonic mean of precision and recall, to compare

two classifications. Note, that an F-score of one amounts to

perfect agreement of two solutions.

Figure 2 shows a 2D synthetic data set with 200 points,

together with an example set of constraints. Since the hor-

izontal separation between the point clouds is smaller than

the vertical separation, the two-cluster unsupervised solu-

tion is to group the data into “upper” and “lower” clus-

ters. With the presence of the constraints, however, the

data points should be grouped into “left” and “right” clus-

ters. The actual constraints are generated by first sampling

point pairs randomly and then converting each pair to ei-

ther a must-link or must-not-link constraint according to its

location. Different levels of constraint information are con-

sidered: 1%, 5%, 10%, 15%, 30%, or 50% of constraints

are considered relative to the total number of samples in the

data set in order to account for the construction of the tran-

sitive closure on constraint graphs. We run the proposed

2We would like to thank the authors for putting the implementation of

their algorithms online: http://www.cs.huji.ac.il/∼tomboy/

code/ConstrainedEM plusBNT.zip for [19] and http://www.

cs.utexas.edu/users/ml/risc/code/ for [3].

5
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Figure 2. Synthetic data set. Solid lines: must-link constraints.

Dashed lines: must-not-link constraints.

1% 5% 10% 15% 30% 50%

Shental 0.540 0.560 0.560 0.580 0.535 1.0

Basu 0.540 0.545 0.535 0.590 0.535 1.0

Proposed 1.0 1.0 0.995 0.995 0.995 0.995

Table 2. F-scores of the toy data set.

algorithm with λ+ = λ− = 1000 and recover the desired

boundary almost exactly (with at most one erroneous point)

for all levels of constraint information. On the contrary, the

desired boundary is recovered by the algorithm in [19] and

[3] only when 50% of constraints are present. The F-scores

are shown in table 2. Note that a random grouping would

have a F-score of 0.5 in this case. In order to demonstrate

the effect of mis-specified constraints, we have randomly

flipped 20% of the constraints for the 50% data set. The

best result for the method in [19] is an F-score of 0.835. In

contrast, our proposed method behaves favorably: the mis-

specified constraints have hardly any effect of the decision

boundary learnt and, hence, we obtain again an F-score of

0.995. We conclude that our approach is more robust to-

wards erroneous constraints in this case.

Our second experiment is about an ethnicity classifica-

tion problem [13], where the goal is to classify if a face im-

age belongs to an Asian or not. The data set consists of 2630

images with size 64×64 from multiple databases, including

the PF01 database3, the Yale database4, the AR database

[15] and the non-public NLPR database5. Some example

images are shown in Figure 3. A face image is represented

by the first 30 eigenface coefficients. Again, different levels

3http://nova.postech.ac.kr/archives/imdb.html.
4http://cvc.yale.edu/projects/yalefaces/

yalefaces.html.
5Provided by Dr. Yunhong Wang, National Laboratory for Pattern

Recognition, Beijing.

(a) Asians

(b) Non-Asians

Figure 3. Example face images in the ethnicity classification prob-

lem.

1% 10% 15% 30%

Shental 0.925 0.946 0.891 0.973

Basu 0.568 0.565 0.570 0.809

Proposed 0.923 0.915 0.922 0.963

Table 3. F-scores of the ethnicity classification problem by differ-

ent clustering with constraints algorithms.

(1%, 10%, 15% and 30%) of constraint information (which

has been derived from the known ground-truth labelling) are

considered. The F-scores of different algorithms are shown

in Table 3. We can see that the proposed algorithm sig-

nificantly outperforms the algorithm by Basu et al. and is

competitive with the algorithm by Shental et al.

Our third experiment is about the newsgroup data sets6

used in [3]. It consists of three data sets, each of which

contains roughly 300 documents from three different top-

ics. The topics are regarded as the classes to be recovered.

Latent semantic indexing is used to transform the term fre-

quency and inverse document frequency normalized docu-

ment vector to a 20D feature vector. Again, we have access

to a ground-truth labelling of the data which we used to de-

rive a varying number of constraints – as in the last two

experiments. The F-scores are shown in table 4. We can see

that the proposed algorithm is also very competitive: the

method in [3] is outperformed on most problem instances

again. We observe similar behavior on two of the three data

sets in comparison with the approach in [19].

Our final experiment is on an image segmentation task.

We use a Mondrian image (Figure 4(a)) consisting of five

regions: three regions with strong texture, and two regions

of very noisy gray-level segments, are to be identified. This

512 by 512 image is divided into a 101-by-101 grid. A 24-

dimensional feature vector is extracted for each site: 12 fea-

tures originate from a 12-bin histogram of gray-level values,

while the remaining 12 correspond to the averages of Ga-

bor filter responses for four orientations at three different

scales at each site. The segment labels of different sites are

6http://www.cs.utexas.edu/users/ml/risc/.
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Data set 1% 10% 15% 30%

same-300

Shental 0.412 0.429 0.516 0.487

Basu 0.515 0.459 0.472 0.552

Proposed 0.491 0.588 0.527 0.507

similar-300

Shental 0.560 0.553 0.531 0.532

Basu 0.515 0.492 0.549 0.530

Proposed 0.54 0.54 0.53 0.514

diff-300

Shental 0.877 0.554 0.907 0.871

Basu 0.677 0.582 0.558 0.608

Proposed 0.533 0.658 0.571 0.594

Table 4. F-scores of the newsgroup data sets with different num-

bers of constraints.

generated from a ground-truth image. Since, the texture in-

formation dominates the gray value information, clustering

with unlabelled data fails to recover the ground-truth infor-

mation. This also holds true for the data set with 1% and

5% of the data in constraints (see figure 4(c)). The seg-

mented image with 10% of sites in constraints is shown in

figure 4(d). Here, we almost perfectly identify the ground-

truth information, since the algorithm is able to distinguish

between the gray-level segments. The F-scores by various

algorithms are listed in Table 5. The proposed method holds

an edge when at least 10% of data are in constraints, and it

can discover the desired segmentation (approximately) with

the least amount of constraint information. The quality gap

is particularly large in this case. Furthermore, the approach

in [19] had a very high running time, in particular for exam-

ples with a large number of constraints.

(a) Original Image (b) Segmentation, no constraints

(c) Segmentation, 1% and 5%

pixels in constraints

(d) Segmentation, 10% pixels in

constraints

Figure 4. Results of image segmentation. (a): source image. (b) to

(d): segmentation results with different numbers of constraints.

1% 5% 10% 15%

Shental 0.830 0.831 0.840 0.829

Basu 0.761 0.801 0.821 0.776

Proposed 0.772 0.829 0.972 0.98

Table 5. F-scores of the Image segmentation task.

5. Conclusion

The traditional boundary between supervised and unsu-

pervised learning has been blurred by the recent advances of

learning with partially labelled and constrained data. In this

paper, we have proposed a general framework for incorpo-

rating different sources of information in learning classifi-

cations of a data set, with supervised learning and unsuper-

vised learning arising as special cases. By inferring on the

parameters instead of the posterior assignment probabili-

ties, we avoid the pitfall of inconsistent labelling rules. This

combination approach also decouples the learning task; in-

stead of worrying about how different types of information

interact with each other, we can focus on building the most

appropriate model for a single source of information (con-

straints in our case). To this end, we adopt the maximum

entropy principle to derive a prior distribution for the as-

signment labels. The maximum entropy principle assumes

the least about the label information apart from the infor-

mation derived from the constraints. The mean field ap-

proximation technique is adopted to keep the computation

tractable: the computation requirement in each iteration is

similar to that of a standard EM iteration. This can be much

more efficient than the algorithm in [19] in the case where

the constraints lead to a large clique in the corresponding

graphical model. The factorial distribution due to mean

field approximation is a stationary point of the variational

free energy and, thereby, aims at finding the best factor-

ial distribution in terms of the Kullback-Leibler divergence

to the true distribution. The use of deterministic annealing

in our approach has avoided getting trapped in poor local

minima, which can be the case for the ICM technique used

in [3]. This is particularly valuable in clustering with con-

straints, where the energy landscape can be more “rugged”

than in standard clustering tasks.

There are several avenues for future work. The proposed

framework can be applied to clustering with other types of

Bregman divergence, such as histogram clustering. We can

also consider information other than partial labels and con-

straints. Finally, we would like to investigate more about the

interplay between unlabelled, labelled and constraint infor-

mation in both theoretical and practical sense.
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