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Abstract. Existing cost-sensitive learning methods work with unequal
misclassification cost that is given by domain knowledge and appears as
precise values. In many real-world applications, however, it is difficult to
have a precise cost information since the user maybe only knows that
one type of mistake is much more severe than another type, yet not
possible to give a precise description. We claim that, in such situations,
it is more meaningful to work with cost intervals instead of a precise cost
value. We propose the CISVM method, a support vector machine that
can work with cost interval information. Experimental results show that
when there is only cost interval information available, CISVM is superior
to training a standard cost-sensitive SVM by using minimal cost, mean
cost and maximal cost.
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1 Introduction

In real-world tasks, different classification errors often lead to different
losses. For example, in medical diagnosis, the loss of misdiagnosing a pa-
tient to be healthy is much more serious than misclassifying a healthy
person as being sick, because the former may lead to the loss of a life.
Unfortunately, traditional machine learning research assumes that all the
classification errors will result in the same loss. Thus, standard classifica-
tion methods try to minimize the number of errors rather than the total
cost. To deal with unequal costs, cost-sensitive learning has attracted
much attention [9, 14, 17, 18, 7, 12].

Existing cost-sensitive learning methods work with precise value of
misclassification costs. The cost information is given by domain knowl-
edge and appears as precise values. The classifiers will be well tuned to
reduce the total cost associated with this particular cost. However, in
many real situations, although the user knows that one type of mistake is
more severe than another type, it may be difficult for the user to specify
a precise cost value. One obvious case is that, cost modelling process is
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required to determine the exact cost values in many cost-sensitive appli-
cations, such as intrusion detection [10] and risk management [8], but the
situations are often too complex to model risk precisely. Another case is,
the misclassification costs should be determined by end users, or, costs
will change over time while it is not sure how it will change exactly.

In many situations, though precise information is not available, other
useful information could be obtained. One of the most common and prac-
tical form to present imprecise information is to bound it with an interval.
[8] provided an interval form of risk evaluation. An intuitive way to work
with cost intervals is to apply existing cost-sensitive learning methods to
reduce total cost associated with the median value of the cost interval
(or, mean value of the cost interval, when the distribution of the cost
is known). Such a solution, however, does not always work because the
cost value used in the training process will affect the performance of the
trained classifier, and thus will affect the distribution of its test results.
The detailed analysis is given in Section 3 and evaluated in experiments.

In this paper, we propose to study the problem of learning with cost
intervals and propose a simple method, CISVM, to handle cost intervals.
Experimental results show it is better than directly applying standard
cost-sensitive support vector machines with minimal cost, mean cost and
maximal cost.

The rest of the paper is organized as follows. Section 2 briefly reviews
some related work. Section 3 analyzes the problem of learning with cost
intervals. Section 4 presents the CISVM method. Section 5 reports the
empirical results and Section 6 concludes.

2 Related Work

Current cost-sensitive learning methods can only be applied when precise
cost information is given. To be best of our knowledge, there is no methods
learning with cost intervals. A related work is [15], which considers the
situation of cost changing over time. But it assumes the cost is known at
time of classification. In our assumption, true cost is always unknown.

ROC curve [2] has been proposed in order to compare classifiers’
performance under imprecise class distributions and/or misclassification
costs. AUC (area under ROC curve) based methods can used to produce
robust classifier to imprecise misclassification cost. This essentially as-
sumes that nothing whatsoever is known about the relative severity of
misclassification cost, a situation which is very rare in real problems. In
our problem settings, cost interval is known. Therefore, to use ROC as
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performance measure and to use AUC as learning metric would not be a
good choice.

3 Problem Analysis

Suppose there are n examples in the training set S = {(xi, yi)}i=1,...,n, as
well as a test set S′ of size n′. Both S and S′ are i.i.d sampled from the
true class distribution Pr(X, Y ).

The standard classification goal is to find a classifier h ∈ H from the
hypothesis space H to minimize the expected loss on test set S′:

R∆(h) =
∫

∆((h(x
′
1), ..., h(x

′
n′)), (y

′
1, ..., y

′
n′))dPr(S′) (1)

where, ∆ is the loss function of h over samples. When ∆ can be decom-
posed linearly into a sum of loss function L over individual examples

∆((h(x
′
1), ..., h(x

′
n′)), (y

′
1, ..., y

′
n′)) =

n′∑

i=1

L(h(x
′
i), y

′
i) (2)

the expression can be simplified to:

RL(h) =
∫

L(h(x
′
), y

′
)dPr(x

′
, y

′
) (3)

The empirical risk on the training set S is

RL
S(h) =

1
n

n∑

i=1

L(h(xi), yi) (4)

RL
S(h) is an estimate of the expected risk R∆(h). Discriminative learn-

ing methods will select an h to minimize this empirical risk.
In 2-class cost-sensitive classification problem, positive class has mis-

classification cost C+, and negative class has cost C−. We assume positive
class has higher cost: C+ ≥ C−. The loss function for a particular example
x is in the form of

L(h(x), C+, C−) = C+ × I(h(x) 6= y|y = +) + C− × I(h(x) 6= y|y = −).
(5)

When a cost matrix is multiplied by a positive constant, the optimal
decisions are unchanged [9]. Therefore, we can simplify the cost informa-
tion by setting C− = 1, and C+ = C (C ≥ 1). There is only one free
variable now. And the loss function becomes
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L(h(x), y, C) = C × I(h(x) 6= y|y = +) + I(h(x) 6= y|y = −). (6)

The empirical risk over the training set S is:

RS(h,C) = p+ × fn× C + p− × fp (7)

where, p+ and p− is the probability of the positive and negative class,
respectively. fn is false negative rate, and fp is false positive rate:

fn = p(h 6= y|y = +)
fp = p(h 6= y|y = −)

(8)

When cost is imprecise, a cost interval is provided. The misclassifica-
tion cost of the positive class is therefore a random number in [Cmin, Cmax].
Since we do not know the true cost value, we hope to achieve the ideal
goal

h = arg minRS(h,C),∀C ∈ [Cmin, Cmax] (9)

But generally, this ideal goal cannot be achieved. Suppose C is a
random variable of distribution υ, with p(C ∈ [Cmin, Cmax]) ≈ 1. Then, a
less ambitious goal is to minimize the expected risk over distribution υ1:

ERS(h) = EC∼υ[RS(h,C)]
=

∫
RS(h,C)dυ

=
∫

(p+ × fn× C + p− × fp)dυ
(10)

Note that, Eq. 10 cannot take the expectation of C, i.e.,

ERS(h) =
∫

(p+ × fn× C + p− × fp)dυ
6= p+ × fn× ∫

Cdυ + p− × fp
= p+ × fn× E[C] + p− × fp
= RS(h, E[C])

(11)

ERS(h) = RS(h,E[C]) only if fn and fp are independent of C. But this
assumption should be checked very carefully.

To clarify this, we need to introduction two concepts – training cost
and test cost. Test cost is used to evaluate the total loss of a classifier.
It is given by domain knowledge and it is fixed. And training cost is a
parameter value provided to the learning algorithm to control the cost-
sensitivity of the resulting learner. As we know, cost-sensitive learning
1 The distribution is the underground truth. It could be totally unknown or could be

obtained by domain knowledge
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methods gain cost sensitivity by introducing a parameter to bias toward
expensive class. For example, sampling-base cost-sensitive methods [18,
17] sample data to make sure that the probability of the expensive class
is t times of the less expensive class. Weighting-based cost-sensitive meth-
ods [14] give higher weights to the expensive class. Thresholding-based
cost-sensitive methods [18, 9, 6] move decision threshold toward the inex-
pensive class. Cost-sensitive large margin methods design cost-sensitive
versions of surrogate loss functions. The loss function of cost-sensitive
SVM is

I(y = +)(C(1− yf)+) + I(y = −)(1− yf)+.

The loss function of cost-sensitive boosting [12] is

I(y = +)e−Cyf + I(y = −)e−yf .

All these methods use a parameter to control the bias toward the ex-
pensive class. Usually, this parameter is equal to test cost. But it is not
a must. The amount of bias should be depend on not only the test cost
value, but also the decision boundary. As Brieman et al. [4] stated, train-
ing set size, class prior, cost of errors in different classes, and placement of
decision boundaries are all closely connected. In a special case where two
classes can be perfectly separated, there should be no bias to introduce
no matter how large the cost is. Generally speaking, on easy tasks where
most examples can be correctly classified, using test cost as bias parame-
ter in the training process will make the expensive class over-biased. Using
a smaller value as bias parameter instead could be much better. In this
sense, the cost-sensitivity controller, training cost, is a bias parameter.
Ciraco et al. [5] and Sheng & Ling [13] observed the best training cost is
usually not equal to the test cost.

And since the training cost is a parameter to control bias toward
positive class, it will affect the resulting classifier. So, the h optimizing
Eq. 7 is a function of training cost Ctrain:

h(Ctrain) = arg minRS(h(Ctrain), Ctest)
= arg min p+ × fn(h(Ctrain))× Ctest + p− × fp(h(Ctrain)).

(12)
And fp and fn are functions of h(Ctrain):

fn(h(Ctrain)) = p(h(Ctrain) 6= y|y = +)
fp(h(Ctrain)) = p(h(Ctrain) 6= y|y = −)

(13)

Since training cost controls the amount of bias toward expensive class,
it should reflect test cost. That is to say, training cost is essentially a
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function of test cost: Ctrain = g(Ctest) . In fact, Ctest = C2. Therefore, fp
and fn are functions of Ctest. And Eq. 10 becomes

ERS(h(Ctrain)) = EC∼υ[RS(h(Ctrain), Ctest)]
=

∫
RS(h(Ctrain), Ctest)dυ

=
∫

(p+ × fn(h ◦ g(Ctest))× Ctest + p− × fp(h ◦ g(Ctest)))dυ
(14)

We can see from Eq. 14, the integral should not take over Ctest. There-
fore, ERS(h(Ctrain)) 6= RS(h(Ctrain), E[Ctest]). Thus, applying standard
cost-sensitive learning methods with expected cost is not the best way to
handle cost intervals.

4 The CISVM Method

Since the bias towards the positive class will affect fp(h) and fn(h),
minimizing the expected loss over distribution υ is not a practical method.
Alternatively, it is possible to learn with cost intervals by minimizing
the least upper bound loss function of the true empirical risk. This loss
function should: (1) be upper bound of the the empirical risk for every
possible test cost; (2) be close to the true cost-sensitive loss function as
near as possible; (3) has cost-sensitivity, can introduce relatively large
enough bias towards positive class.

Large margin methods use convex surrogate loss functions to approx-
imate the true loss function L0: L0 = I(f 6= y). SVM [16] has the loss
function in the form of

LSV M = (1− yf)+. (15)

The goal of cost-sensitive SVM (CSSVM) [3] is to minimize the fol-
lowing cost-sensitive loss function:

LCSSV M = I(y = +)C(1− yf)+ + I(y = −)(1− yf)+. (16)

It is a convex upper bound of the true cost-sensitive loss of Eq. 6.
Cost-sensitive large margin methods have the loss function of the the

following general form

L = I(y = +)L+(C) + I(y = −)L−. (17)

2 For the sake of being clear, we use Ctrain as training cost, Ctest as test cost, though
Ctest is C.
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The difference between L+(C) and L− controls the bias towards the
positive class. So again, we can rewrite Eq. 17 as

L(Ctrain) = I(y = +)L+(Ctrain) + I(y = −)L−. (18)

When Ctrain = Cmax, there will be the biggest bias towards positive
class. In general, the total loss will increase when a classifier is over biased.
Assumption. Let hL(x) is the resulting classifier of minimizing cost-
sensitive loss function L with training cost x, C∗

train be the training cost
with the best bias. Then, if Ctrain > Ctest, the following holds with high
probability:

RS(hL(Ctrain), Ctest) = p+ × fn(hL(Ctrain))× Ctest + p− × fp(hL(Ctrain))
> p+ × fn(hL(C∗

train))× Ctest + p− × fp(hL(C∗
train))

= RS(hL(C∗
train), Ctest) = RS(h∗L, Ctest)

(19)
When this assumption holds, L(Cmax) results in the upper bound of

the empirical risk for every Ctest.
CSSVM’s loss function with Cmax as training cost can’t provide a

good candidate for least upper bound. Firstly, it is too far from the true
loss function. Secondly, when Ctest = Cmin, the amount of overestimated
loss for a false negative will be (Cmax−Cmin)(1−yf)+. It will be as much
as 2(Cmax −Cmin) when yf = −1, which is twice the true overestimated
loss.

Here, we consider a new loss function to satisfy the terms in the be-
ginning of this section:

LCISV M = I(y = +)(Cmax − yf)+ + I(y = −)(1− yf)+. (20)

The illustration of true loss function, LCSSV M and LCISV M is shown
in Fig. 1. Compared with LCSSV M , LCISV M is a better candidate for least
upper bound of the true empirical risk because the following reasons: (1)
It uses Cmax as training cost. So, when the assumption holds, it is an
upper bound of the the empirical risk for every possible test cost. (2) It
is closer to the true loss function than LCSSV M . And when Ctest = Cmin,
the amount of overestimated loss for a false negative will be Cmax−Cmin

for whatever yf , which is the same as the true overestimated loss. (3) It
has cost-sensitivity. The bias towards positive class is (Cmax−yf)+

(1−yf)+
. When

yf ≤ 0, the bias varies in [12(Cmax + 1), Cmax].
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Fig. 1. Illustration of Loss Functions

CISVM Method CISVM method minimizes regularized loss function
of LCISV M :

min 1
2 ||w||2 + λ

∑n
i=1 ξi

s.t. yi(wT xi + b) ≥ Cmax − ξi

ξi ≥ 0

Dual Problem

max
∑n

i=1 αiCi − 1
2

∑n
i=1

∑n
j=1 αiαjyiyjKij

s.t. 0 ≤ αi ≤ λ∑n
i=1 αiyi = 0

where, Ci = Cmax for yi = +, Ci = 1 for yi = −. K is kernel matrix.

5 Experiment

5.1 Settings

In the empirical study, we compare three methods: standard SVM, CSSVM
and CISVM on 5 UCI data set [1]. There are 3 versions of CSSVM: train-
ing with minimum cost (CSSVMmin), mean cost (CSSVMmed) and max-
imum cost (CSSVMmax).
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Because class imbalance may affect cost-sensitive classifier’s perfor-
mance [11], the larger class is random sampled to the same size of an-
other class. The information of these data sets are summarized in Table 1.
“Distribution” includes distribution of current data set and the original
one. “+” indicates which class is used as the positive class.

We choose 25 cost intervals in [1, 30] with different size. The detailed
information is shown in Table 2.

Table 1. Data Set Information

Dataset Size Attribute #Class Distribution +

breast-w1 482 9 2 [241,241] ([458 241]) malignant
ionosphere1 351 34 2 [126,126] ([126 225]) g
heart-statlog1 240 13 2 [120,120] ([150 120]) present
sonar1 194 60 2 [97,97] ([97 111]) mine
spambase1 1000 57 2 [500,500] ([2788 1813]) 1

Table 2. Cost Intervals

Step Count Intervals

3 10 [1, 3], [4, 6], [7, 9], [10, 12], [13, 15], [16, 18], [19, 21], [22, 24], [25, 27], [28, 30]
5 6 [1, 5], [6, 10], [11, 15], [16, 20], [21, 25], [26, 30]
11 5 [1, 11], [5, 15], [10, 20], [15, 25], [20, 30]
15 4 [1, 15], [5, 20], [10, 25], [15, 30]

Thirty times stratified hold-out experiment are carried out, with 66%
as training set and 33% as test set. The average values are recorded. All
methods use RBF kernel. Parameters are choose in λ = [0.01, 0.1, 1, 10, 100],
and kernel parameter σ is [1/10, 1/2, 1, 2, 10] times the mean squared dis-
tance of the training set. All parameters are chosen on the first hold-out
training data by performing 5-fold cross validation. The parameter re-
sulting in the smallest mean risk is the best.

5.2 Evaluation Criteria

Though in our problem settings, it is assumed the underlying distribution
of Ctest is unknown, we can still use some kind of distribution as true cost
distribution to evaluate classifiers. For example, we can assume uniform or
normal distribution as true underlying distributions. In this experiment,
we assume cost is uniformly distributed in the given interval, and use
expected loss as evaluation criteria.
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Note that, ROC is not suitable to be used as evaluation criteria here,
as we have discussed in Section 2.

5.3 Results

The results on each data set is shown in Fig. 2. X-axis shows on the
bottom the odd cost interval values, and on the top the even ones. Y-axis
is the ratio of the total loss of each method cost again that of SVM. So
the performance of SVM is represented as the line of y = 1. The lower
the value, the better the performance. A loss ratio above y = 1 means
it is worse than cost-blind method SVM, which should not happen since
the tasks are cost-sensitive. To make the figures clear, the cost intervals
on X-axis are sorted to make CSSVMmed has ascending loss ratio. Thus,
the orders of cost intervals for each data set are different from each other.

The results show that, CSSVMmed is the most competitive one to our
proposed method CISVM. On spambase, CISVM is consistently better
than CSSVMmed. On heart and sonar, CISVM is better in most cases, but
not always. On breast and ionosphere CISVM is about half times better
and half times worse than CSSVMmed. Note that, on breast, CSSVMmed

is worse than SVM on 9 cost intervals. But CSSVMmed is only twice worse
than SVM. CSSVMmin is the worst among the compared cost-sensitive
methods. It is seldom better than CSSVMmed, but could be often worse.
CSSVMmax is similar to, but still a slightly worse than CSSVMmed.

In general, CISVM is the best method to learn with cost intervals.

6 Conclusion

In many real-world applications, it is difficult to get precise cost informa-
tion. In this paper, we study the problem of learning with cost intervals,
and propose a method CISVM by minimizing an approximation of the
least upper bound of empirical risk over all test costs in the interval.
Experimental results show that, compared with standard cost-sensitive
support vector machines, CISVM is able to achieve a better performance.

In future work, we will test the method in real-world applications,
especially imbalanced data sets. Also, we will study the influence of the
size of the cost intervals.
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