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Learning with Hierarchical-Deep Models
Ruslan Salakhutdinov, Joshua B. Tenenbaum, and Antonio Torralba

Abstract—We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning

models with structured hierarchical Bayesian models. Specifically we show how we can learn a hierarchical Dirichlet process (HDP)

prior over the activities of the top-level features in a Deep Boltzmann Machine (DBM). This compound HDP-DBM model learns to learn

novel concepts from very few training examples, by learning low-level generic features, high-level features that capture correlations

among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of

concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts

from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

Index Terms—Deep Networks, Deep Boltzmann Machines, Hierarchical Bayesian Models, One-Shot Learning.

✦

1 INTRODUCTION

The ability to learn abstract representations that support trans-

fer to novel but related tasks, lies at the core of many problems

in computer vision, natural language processing, cognitive

science, and machine learning. In typical applications of ma-

chine classification algorithms today, learning a new concept

requires tens, hundreds or thousands of training examples.

For human learners, however, just one or a few examples are

often sufficient to grasp a new category and make meaningful

generalizations to novel instances [15], [25], [31], [44]. Clearly

this requires very strong but also appropriately tuned inductive

biases. The architecture we describe here takes a step towards

this ability by learning several forms of abstract knowledge at

different levels of abstraction, that support transfer of useful

inductive biases from previously learned concepts to novel

ones.

We call our architectures compound HD models, where

“HD” stands for “Hierarchical-Deep”, because they are derived

by composing hierarchical nonparametric Bayesian models

with deep networks, two influential approaches from the recent

unsupervised learning literature with complementary strengths.

Recently introduced deep learning models, including Deep

Belief Networks [12], Deep Boltzmann Machines [29], deep

autoencoders [19], and many others [9], [10], [21], [22], [26],

[32], [34], [43], have been shown to learn useful distributed

feature representations for many high-dimensional datasets.

The ability to automatically learn in multiple layers allows

deep models to construct sophisticated domain-specific fea-

tures without the need to rely on precise human-crafted input

representations, increasingly important with the proliferation

of data sets and application domains.
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While the features learned by deep models can enable

more rapid and accurate classification learning, deep networks

themselves are not well suited to learning novel classes from

few examples. All units and parameters at all levels of the

network are engaged in representing any given input (“dis-

tributed representations”), and are adjusted together during

learning. In contrast, we argue that learning new classes from

a handful of training examples will be easier in architectures

that can explicitly identify only a small number of degrees

of freedom (latent variables and parameters) that are relevant

to the new concept being learned, and thereby achieve more

appropriate and flexible transfer of learned representations to

new tasks. This ability is the hallmark of hierarchical Bayesian

(HB) models, recently proposed in computer vision, statistics,

and cognitive science [8], [11], [15], [28], [44] for learning

from few examples. Unlike deep networks, these HB models

explicitly represent category hierarchies that admit sharing

the appropriate abstract knowledge about the new class’s

parameters via a prior abstracted from related classes. HB

approaches, however, have complementary weaknesses relative

to deep networks. They typically rely on domain-specific hand-

crafted features [2], [11] (e.g. GIST, SIFT features in com-

puter vision, MFCC features in speech perception domains).

Committing to the a-priori defined feature representations,

instead of learning them from data, can be detrimental. This

is especially important when learning complex tasks, as it is

often difficult to hand-craft high-level features explicitly in

terms of raw sensory input. Moreover, many HB approaches

often assume a fixed hierarchy for sharing parameters [6],

[33] instead of discovering how parameters are shared among

classes in an unsupervised fashion.

In this work we propose compound HD (hierarchical-deep)

architectures that integrate these deep models with structured

hierarchical Bayesian models. In particular, we show how we

can learn a hierarchical Dirichlet process (HDP) prior over the

activities of the top-level features in a Deep Boltzmann Ma-

chine (DBM), coming to represent both a layered hierarchy of

increasingly abstract features, and a tree-structured hierarchy

of classes. Our model depends minimally on domain-specific

representations and achieves state-of-the-art performance by
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unsupervised discovery of three components: (a) low-level

features that abstract from the raw high-dimensional sensory

input (e.g. pixels, or 3D joint angles) and provide a useful

first representation for all concepts in a given domain; (b)

high-level part-like features that express the distinctive per-

ceptual structure of a specific class, in terms of class-specific

correlations over low-level features; and (c) a hierarchy of

super-classes for sharing abstract knowledge among related

classes via a prior on which higher-level features are likely to

be distinctive for classes of a certain kind and are thus likely

to support learning new concepts of that kind.

We evaluate the compound HDP-DBM model on three

different perceptual domains. We also illustrate the advantages

of having a full generative model, extending from highly

abstract concepts all the way down to sensory inputs: we

cannot only generalize class labels but also synthesize new

examples in novel classes that look reasonably natural, and

we can significantly improve classification performance by

learning parameters at all levels jointly by maximizing a joint

log-probability score.

There have also been several approaches in the computer

vision community addressing the problem of learning with

few examples. Torralba et al. [42] proposed to use several

boosted detectors in a multi-task setting, where features are

shared between several categories. Bart and Ullman [3] further

proposed a cross-generalization framework for learning with

few examples. Their key assumption is that new features

for a novel category are selected from the pool of features

that was useful for previously learned classification tasks. In

contrast to our work, the above approaches are discriminative

by nature and do not attempt to identify similar or relevant

categories. Babenko et al. [1] used a boosting approach that

simultaneously groups together categories into several super-

categories, sharing a similarity metric within these classes.

They, however, did not attempt to address transfer learning

problem, and primarily focused on large-scale image retrieval

tasks. Finally, Fei-Fei et al. [11] used a hierarchical Bayesian

approach, with a prior on the parameters of new categories that

was induced from other categories. However, their approach

was not ideal as a generic approach to transfer learning

with few examples. They learned only a single prior shared

across all categories. The prior was learned only from three

categories, chosen by hand. Compared to our work, they used

a more elaborate visual object model, based on multiple parts

with separate appearance and shape components.

2 DEEP BOLTZMANN MACHINES (DBMS)

A Deep Boltzmann Machine is a network of symmetrically

coupled stochastic binary units. It contains a set of visible

units v ∈ {0, 1}D, and a sequence of layers of hidden units

h
(1) ∈ {0, 1}F1 , h(2) ∈ {0, 1}F2 ,..., h(L) ∈ {0, 1}FL . There

are connections only between hidden units in adjacent layers,

as well as between visible and hidden units in the first hidden

layer. Consider a DBM with three hidden layers1 (i.e. L = 3).

1. For clarity, we use three hidden layers. Extensions to models with more
than three layers is trivial.

The energy of the joint configuration {v,h} is defined as:

E(v,h;ψ) = −
∑

ij

W
(1)
ij vih

(1)
j −

∑

jl

W
(2)
jl h

(1)
j h

(2)
l

−
∑

lk

W
(3)
lk h

(2)
l h

(3)
k ,

where h = {h(1),h(2),h(3)} represent the set of hidden units,

and ψ = {W(1),W(2),W(3)} are the model parameters,

representing visible-to-hidden and hidden-to-hidden symmet-

ric interaction terms2.

The probability that the model assigns to a visible vector v

is given by the Boltzmann distribution:

P (v;ψ) =
1

Z(ψ)
∑

h

exp (−E(v,h(1),h(2),h(3);ψ)). (1)

Observe that setting both W
(2)=0 and W

(3)=0 recovers the

simpler Restricted Boltzmann Machine (RBM) model.

The conditional distributions over the visible and the three

sets of hidden units are given by:

p(h
(1)
j = 1|v,h(2)) = g

(

D
∑

i=1

W
(1)
ij vi +

F2
∑

l=1

W
(2)
jl h

(2)
l

)

,

p(h
(2)
l = 1|h(1),h(3)) = g
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∑
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W
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(3)
lk h

(3)
k



 ,

p(h
(3)
k = 1|h(2)) = g

(

F2
∑

l=1

W
(3)
lk h

(2)
l

)

,

p(vi = 1|h(1)) = g





F1
∑

j=1

W
(1)
ij h

(1)
j



 , (2)

where g(x) = 1/(1 + exp(−x)) is the logistic function.

The derivative of the log-likelihood with respect to the

model parameters ψ can be obtained from Eq. 1:

∂ logP (v;ψ)

∂W(1)
= EPdata

[vh(1)⊤]− EPmodel
[vh(1)⊤], (3)

∂ logP (v;ψ)

∂W(2)
= EPdata

[h(1)
h
(2)⊤]− EPmodel

[h(1)
h
(2)⊤],

∂ logP (v;ψ)

∂W(3)
= EPdata

[h(2)
h
(3)⊤]− EPmodel

[h(2)
h
(3)⊤],

where EPdata
[·] denotes an expectation with respect to the com-

pleted data distribution Pdata(h,v;ψ) = P (h|v;ψ)Pdata(v),
with Pdata(v) =

1
N

∑

n δvn
representing the empirical distri-

bution, and EPmodel
[·] is an expectation with respect to the dis-

tribution defined by the model (Eq. 1). We will sometimes refer

to EPdata
[·] as the data-dependent expectation, and EPmodel

[·]
as the model’s expectation.

Exact maximum likelihood learning in this model is in-

tractable. The exact computation of the data-dependent expec-

tation takes time that is exponential in the number of hidden

units, whereas the exact computation of the models expectation

takes time that is exponential in the number of hidden and

visible units.

2. We have omitted the bias terms for clarity of presentation. Biases are
equivalent to weights on a connection to a unit whose state is fixed at 1.
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2.1 Approximate Learning

The original learning algorithm for Boltzmann machines used

randomly initialized Markov chains in order to approximate

both expectations in order to estimate gradients of the like-

lihood function [14]. However, this learning procedure is too

slow to be practical. Recently, [29]. proposed a variational

approach, where mean-field inference is used to estimate

data-dependent expectations and an MCMC based stochastic

approximation procedure is used to approximate the models

expected sufficient statistics.

2.1.1 A Variational Approach to Estimating the Data-
dependent Statistics

Consider any approximating distribution Q(h|v;µ), parameta-

rized by a vector of parameters µ, for the posterior P (h|v;ψ).
Then the log-likelihood of the DBM model has the following

variational lower bound:

logP (v;ψ) ≥
∑

h

Q(h|v;µ) logP (v,h;ψ) +H(Q) (4)

≥ logP (v;ψ)− KL(Q(h|v;µ)||P (h|v;ψ)),

where H(·) is the entropy functional, and KL(Q||P ) denotes

the Kullback-Leibler divergence between the two distribu-

tions. The bound becomes tight if and only if Q(h|v;µ) =
P (h|v;ψ).

Variational learning has the nice property that in addition to

maximizing the log-likelihood of the data, it also attempts to

find parameters that minimize the Kullback-Leibler divergence

between the approximating and true posteriors.

For simplicity and speed, we approximate the true posterior

P (h|v;ψ) with a fully factorized approximating distribution

over the three sets of hidden units, which corresponds to so-

called mean-field approximation:

QMF (h|v;µ) =
F1
∏

j=1

F2
∏

l=1

F3
∏

k=1

q(h
(1)
j |v)q(h

(2)
l |v)q(h

(3)
k |v), (5)

where µ = {µ(1),µ(2),µ(3)} are the mean-field parameters

with q(h
(l)
i = 1) = µ

(l)
i for l = 1, 2, 3. In this case the

variational lower bound on the log-probability of the data takes

a particularly simple form:

logP (v;ψ) ≥
∑

h

QMF (h|v;µ) logP (v,h;ψ) +H(QMF )

≥ v
⊤
W

(1)µ(1) + µ(1)⊤
W

(2)µ(2) +

+µ(2)⊤
W

(3)µ(3) − logZ(ψ) +H(QMF ). (6)

Learning proceeds as follows. For each training example, we

maximize this lower bound with respect to the variational

parameters µ for fixed parameters ψ, which results in the

mean-field fixed-point equations:

µ
(1)
j ← g

( D
∑

i=1

W
(1)
ij vi +

F2
∑

l=1

W
(2)
jl µ

(2)
l

)

, (7)

µ
(2)
l ← g

( F1
∑

j=1

W
(2)
jl µ

(1)
j +

F3
∑

k=1

W
(3)
lk µ

(3)
k

)

, (8)

µ
(3)
k ← g

( F2
∑

l=1

W
(3)
lk µ

(2)
l

)

, (9)

where g(x) = 1/(1 + exp(−x)) is the logistic function. To

solve these fixed-point equations, we simply cycle through

layers, updating the mean-field parameters within a single

layer. Note the close connection between the form of the

mean-field fixed point updates and the form of the conditional

distribution3 defined by Eq. 2.

2.1.2 A Stochastic Approximation Approach for Estimat-
ing the Data-independent Statistics
Given the variational parameters µ, the model parameters ψ

are then updated to maximize the variational bound using an

MCMC-based stochastic approximation [29], [39], [46].

Learning with stochastic approximation is straightforward.

Let ψt and xt = {vt,h
(1)
t ,h

(2)
t ,h

(3)
t } be the current param-

eters and the state. Then xt and ψt are updated sequentially

as follows:

• Given xt, sample a new state xt+1 from the transition

operator Tψ
t
(xt+1← xt) that leaves P (·;ψt) invariant.

This can be accomplished by using Gibbs sampling (see

Eq. 2).

• A new parameter ψt+1 is then obtained by making a

gradient step, where the intractable model’s expectation

EPmodel
[·] in the gradient is replaced by a point estimate

at sample xt+1.

In practice, we typically maintain a set of M “persistent”

sample particles Xt = {xt,1, ....,xt,M}, and use an average

over those particles. The overall learning procedure for DBMs

is summarized in Algorithm 1.

Stochastic approximation provides asymptotic convergence

guarantees and belongs to the general class of Robbins–

Monro approximation algorithms [27], [46]. Precise sufficient

conditions that ensure almost sure convergence to an asymp-

totically stable point are given in [45]–[47]. One necessary

condition requires the learning rate to decrease with time, so

that
∑

∞

t=0 αt = ∞ and
∑

∞

t=0 α
2
t < ∞. This condition can,

for example, be satisfied simply by setting αt = a/(b + t),
for positive constants a > 0, b > 0. Other conditions ensure

that the speed of convergence of the Markov chain, governed

by the transition operator Tψ, does not decrease too fast as ψ

tends to infinity. Typically, in practice, the sequence |ψt| is

bounded, and the Markov chain, governed by the transition

kernel Tψ, is ergodic. Together with the condition on the

learning rate, this ensures almost sure convergence of the

stochastic approximation algorithm to an asymptotically stable

point.

3. Implementing the the mean-field requires no extra work beyond imple-
menting the Gibbs sampler.
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Algorithm 1 Learning Procedure for a Deep Boltzmann

Machine with Three Hidden Layers.

1: Given: a training set of N binary data vectors {v}Nn=1, and M ,
the number of persistent Markov chains (i.e. particles).

2: Randomly initialize parameter vector ψ0 and M samples:

{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}, where h̃ = {h̃(1), h̃(2), h̃(3)}.
3: for t = 0 to T (number of iterations) do

4: // Variational Inference:
5: for each training example vn, n = 1 to N do

6: Randomly initialize µ = {µ(1),µ(2),µ(3)} and run mean-
field updates until convergence, using Eqs. 7, 8, 9.

7: Set µn = µ.
8: end for

9: // Stochastic Approximation:
10: for each sample m = 1 to M (number of persistent Markov

chains) do
11: Sample (ṽt+1,m, h̃t+1,m) given (ṽt,m, h̃t,m) by running a

Gibbs sampler for one step (Eq. 2).
12: end for

13: // Parameter Update:

14: W
(1)
t+1 = W

(1)
t + αt

(

1
N

∑N

n=1 vn(µ
(1)
n )⊤−

1
M

∑M

m=1 ṽt+1,m(h̃
(1)
t+1,m)⊤

)

.

15: W
(2)
t+1 = W

(2)
t + αt

(

1
N

∑N

n=1 µ
(1)
n (µ(2)

n )⊤−

1
M

∑M

m=1 h̃
(1)
t+1,m(h̃

(2)
t+1,m)⊤

)

.

16: W
(3)
t+1 = W

(3)
t + αt

(

1
N

∑N

n=1 µ
(2)
n (µ(3)

n )⊤−

1
M

∑M

m=1 h̃
(2)
t+1,m(h̃

(3)
t+1,m)⊤

)

.

17: Decrease αt.
18: end for

2.1.3 Greedy Layerwise Pretraining of DBMs

The learning procedure for Deep Boltzmann Machines de-

scribed above can be used by starting with randomly initialized

weights, but it works much better if the weights are initialized

sensibly. We therefore use a greedy layer-wise pretraining

strategy by learning a stack of modified Restricted Boltzmann

Machines (RBMs) (for details see [29]).

This pretraining procedure is quite similar to the pretraining

procedure of Deep Belief Networks [12], and it allows us to

perform approximate inference by a single bottom-up pass.

This fast approximate inference is then used to initialize the

mean-field, which then converges much faster than mean-field

with random initialization4.

2.2 Gaussian-Bernoulli DBMs

We now briefly describe a Gaussian-Bernoulli DBM model,

which we will use to model real-valued data, such as im-

ages of natural scenes and motion capture data. Gaussian-

Bernoulli DBMs represent a generalization of a simpler class

of models, called Gaussain-Bernoulli Restricted Boltzmann

4. The code for pretraining and generative learning of the DBM model is
available at http://www.utstat.toronto.edu/∼rsalakhu/DBM.html
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Fig. 1. Left: Multinomial DBM model: the top layer represents
M softmax hidden units h

(3), which share the same set of
weights. Right: A different interpretation: M softmax units are
replaced by a single multinomial unit which is sampled M times.

Machines, which have been successfully applied to various

tasks including image classification, video action recognition,

and speech recognition [16], [20], [23], [35].

In particular, consider modelling visible real-valued units

v ∈ R
D and let h(1) ∈ {0, 1}F1, h(2) ∈ {0, 1}F2 , and h

(3) ∈
{0, 1}F3 be binary stochastic hidden units. The energy of the

joint configuration {v,h(1),h(2),h(3)} of the three-hidden-

layer Gaussian-Bernoulli DBM is defined as follows:

E(v,h;ψ) =
1

2

∑

i

v2i
σ2
i

−
∑

ij

W
(1)
ij h

(1)
j

vi
σi

(10)

−
∑

jl

W
(2)
jl h

(1)
j h

(2)
l −

∑

lk

W
(3)
lk h

(2)
l ĥ

(3)
k ,

where h = {h(1),h(2),h(3)} represent the set of hidden units,

and ψ = {W(1),W(2),W(3),σ2} are the model parameters,

and σ2
i is the variance of input i. The marginal distribution

over the visible vector v takes form:

P (v;ψ) =
∑

h

exp (−E(v,h;ψ))
∫

v′

∑

h
exp (−E(v,h;ψ))dv′

. (11)

From Eq. 10, it is straightforward to derive the following

conditional distributions:

p(vi = x|h(1)) =
1√
2πσi

exp






−

(

x− σi

∑

j h
(1)
j W

(1)
ij

)2

2σ2
i






,

p(h
(1)
j = 1|v) = g

(

∑

i

W
(1)
ij

vi
σi

)

, (12)

where g(x) = 1/(1 + exp(−x)) is the logistic function.

Conditional distributions over h(2) and h
(3) remain the same

as in the standard DBM model (see Eq. 2).

Observe that conditioned on the states of the hidden units

(Eq. 12), each visible unit is modelled by a Gaussian distribu-

tion, whose mean is shifted by the weighted combination of

the hidden unit activations. The derivative of the log-likelihood
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with respect to W
(1) takes form:

∂ logP (v;ψ)

∂W
(1)
ij

= EPdata

[

1

σi

vih
(1)
j

]

− EPModel

[

1

σi

vih
(1)
j

]

.

The derivatives with respect to parameters W
(2) and W

(3)

remain the same as in Eq. 3.

As described in previous section, learning of the model

parameters, including the variances σ2, can be carried out us-

ing variational learning together with stochastic approximation

procedure. In practice, however, instead of learning σ2, one

would typically use a fixed, predetermined value for σ2 ( [13],

[24]).

2.3 Multinomial DBMs

To allow DBMs to express more information and introduce

more structured hierarchical priors, we will use a conditional

multinomial distribution to model activities of the top-level

units h
(3). Specifically, we will use M softmax units, each

with “1-of-K” encoding, so that each unit contains a set of K
weights. We represent the kth discrete value of hidden unit by

a vector containing 1 at the kth location and zeros elsewhere.

The conditional probability of a softmax top-level unit is:

P (h
(3)
k |h(2)) =

exp
(

∑

l W
(3)
lk h

(2)
l

)

∑K

s=1 exp
(

∑

l W
(3)
ls h

(2)
l

) . (13)

In our formulation, all M separate softmax units will share the

same set of weights, connecting them to binary hidden units

at the lower-level (Fig. 1). The energy of the state {v,h} is

then defined as follows:

E(v,h;ψ) = −
∑

ij

W
(1)
ij vih

(1)
j −

∑

jl

W
(2)
jl h

(1)
j h

(2)
l

−
∑

lk

W
(3)
lk h

(2)
l ĥ

(3)
k ,

where h
(1) ∈ {0, 1}F1 and h

(2) ∈ {0, 1}F2 represent

stochastic binary units. The top layer is represented by the M

softmax units h(3,m), m = 1, ..,M , with ĥ
(3)
k =

∑M

m=1 h
(3,m)
k

denoting the count for the kth discrete value of a hidden unit.

A key observation is that M separate copies of softmax units

that all share the same set of weights can be viewed as a single

multinomial unit that is sampled M times from the conditional

distribution of Eq. 13. This gives us a familiar “bag-of-words”

representation [30], [36]. A pleasing property of using softmax

units is that the mathematics underlying the learning algorithm

for binary-binary DBMs remains the same.

3 COMPOUND HDP-DBM MODEL

After a DBM model has been learned, we have an undirected

model that defines the joint distribution P (v,h(1),h(2),h(3)).
One way to express what has been learned is the conditional

model P (v,h(1),h(2)|h(3)) and a complicated prior term

P (h(3)), defined by the DBM model. We can therefore rewrite

the variational bound as:

logP (v) ≥
∑

h(1),h(2),h(3)

Q(h|v;µ) logP (v,h(1),h(2)|h(3)) +

H(Q) +
∑

h(3)

Q(h(3)|v;µ) logP (h(3)). (14)

This particular decomposition lies at the core of the greedy

recursive pretraining algorithm: we keep the learned condi-

tional model P (v,h(1),h(2)|h(3)), but maximize the varia-

tional lower-bound of Eq. 14 with respect to the last term

[12]. This maximization amounts to replacing P (h(3)) by a

prior that is closer to the average, over all the data vectors, of

the approximate conditional posterior Q(h(3)|v).
Instead of adding an additional undirected layer (e.g. a

restricted Boltzmann machine), to model P (h(3)) we can place

a hierarchical Dirichlet process prior over h(3), that will allow

us to learn category hierarchies, and more importantly, useful

representations of classes that contain few training examples.

The part we keep, P (v,h(1),h(2)|h(3)), represents a con-

ditional DBM model5:

P (v,h(1),h(2)|h(3)) =
1

Z(ψ,h(3))
exp

(

∑

ij

W
(1)
ij vih

(1)
j (15)

+
∑

jl

W
(2)
jl h

(1)
j h

(2)
l +

∑

lm

W
(3)
lm h

(2)
l h(3)

m

)

,

which can be viewed as a two-layer DBM but with bias terms

given by the states of h(3).

3.1 A Hierarchical Bayesian Prior

In a typical hierarchical topic model, we observe a set of N
documents, each of which is modelled as a mixture over topics,

that are shared among documents. Let there be K words in

the vocabulary. A topic t is a discrete distribution over K
words with probability vector φt. Each document n has its

own distribution over topics given by probabilities θn.

In our compound HDP-DBM model, we will use a hi-

erarchical topic model as a prior over the activities of the

DBM’s top-level features. Specifically, the term “document”

will refer to the top-level multinomial unit h
(3), and M

“words” in the document will represent the M samples, or

active DBM’s top-level features, generated by this multinomial

unit. Words in each document are drawn by choosing a topic

t with probability θnt, and then choosing a word w with

probability φtw. We will often refer to topics as our learned

higher-level features, each of which defines a topic specific

distribution over DBM’s h
(3) features. Let h

(3)
in be the ith

word in document n, and xin be its topic. We can specify the

following prior over h(3):

θn|π ∼ Dir(απ), for each document n=1, .., N

φt|τ ∼ Dir(βτ ), for each topic t=1, .., T

xin|θn ∼ Mult(1, θn), for each word i=1, ..,M

h
(3)
in |xin,φxin

∼ Mult(1,φxin
),

5. Our experiments reveal that using Deep Belief Networks instead of
DBMs decreased model performance.
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h3
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HDP prior
over activities of
the top-level units

Learned Hierarchy
of super-classes

“Animal” “Vehicle”

Fig. 2. Hierarchical Dirichlet Process prior over the states of
the DBM’s top-level features h

(3).

where π is the global distribution over topics, τ is the global

distribution over K words, and α and β are concentration

parameters.

Let us further assume that our model is presented with a

fixed two-level category hierarchy. In particular, suppose that

N documents, or objects, are partitioned into C basic level

categories (e.g. cow, sheep, car). We represent such partition

by a vector z
b of length N , each entry of which is zbn ∈

{1, ..., C}. We also assume that our C basic-level categories

are partitioned into S super-categories (e.g. animal, vehicle),

represented by a vector zs of length C, with zsc ∈ {1, ..., S}.
These partitions define a fixed two-level tree hierarchy (Fig. 2).

We will relax this assumption later by placing a nonparametric

prior over the category assignments.

The hierarchical topic model can be readily extended to

modelling the above hierarchy. For each document n that

belongs to the basic category c, we place a common Dirichlet

prior over θn with parameters π
(1)
c . The Dirichlet parameters

π(1) are themselves drawn from a Dirichlet prior with level-2

parameters π(2), common to all basic-level categories that

belong to the same super-category, and so on. Specifically,

we define the following hierarchical prior over h(3):

π(2)
s |π(3)

g ∼ Dir(α(3)π(3)
g ), for each super-class s=1, .., S

π(1)
c |π

(2)
zs
c
∼ Dir(α(2)π

(2)
zs
c
), for each basic-class c=1, .., C

θn|π(1)

zb
n

∼ Dir(α(1)π
(1)

zb
n

), for each document n=1, .., N

xin|θn ∼ Mult(1, θn), for each word i=1, ..,M

φt|β, τ ∼ Dir(βτ ),

h
(3)
in |xin,φxin

∼ Mult(1,φxin
), (16)

where π
(3)
g is the global distribution over topics, π

(2)
s is

the super-category specific and π
(1)
c is the class specific

distribution over topics, or higher-level features. These high-

level features, in turn, define topic-specific distribution over

h
(3) features, or “words” in our DBM model. Finally, α(1),

α(2), and α(3) represent concentration parameters describing

how close π’s are to their respective prior means within the

hierarchy.

For a fixed number of topics T , the above model represents

a hierarchical extension of the Latent Dirichlet Allocation

(LDA) model [4]. However, we typically do not know the

number of topics a-priori. It is therefore natural to consider

a nonparametric extension based on the HDP model [38],

which allows for a countably infinite number of topics. In

the standard hierarchical Dirichlet process notation, we have

the following:

G(3)
g |β, γ, τ ∼ DP(γ,Dir(βτ )), (17)

G(2)
s |α(3), G(3) ∼ DP(α(3), G(3)

g ),

G(1)
c |α(2), G(2) ∼ DP(α(2), G

(2)
zs
c
),

Gn|α(1), G(1) ∼ DP(α(1), G
(1)

zb
n

),

φ∗

in|Gn ∼ Gn,

h3
in|φ∗

in ∼ Mult(1,φ∗

in),

where Dir(βτ ) is the base-distribution, and each φ∗ is a factor

associated with a single observation h
(3)
in . Making use of topic

index variables xin, we denote φ∗

in = φxin
(see Eq. 16). Using

a stick-breaking representation we can write:

G(3)
g (φ) =

∞
∑

t=1

π
(3)
gt δφt

, G(2)
s (φ) =

∞
∑

t=1

π
(2)
st δφt

,

G(1)
c (φ) =

∞
∑

t=1

π
(1)
ct δφt

, Gn(φ) =

∞
∑

t=1

θntδφt
, (18)

that represent sums of point masses. We also place Gamma

priors over concentration parameters as in [38].

The overall generative model is shown in Fig. 2. To generate

a sample we first draw M words, or activations of the top-

level features, from the HDP prior over h(3) given by Eq. 17.

Conditioned on h
(3), we sample the states of v from the

conditional DBM model given by Eq. 15.

3.2 Modelling the number of super-categories

So far we have assumed that our model is presented with

a two-level partition z = {zs, zb} that defines a fixed two-

level tree hierarchy. We note that this model corresponds to a

standard HDP model that assumes a fixed hierarchy for sharing

parameters. If, however, we are not given any level-1 or level-

2 category labels, we need to infer the distribution over the

possible category structures. We place a nonparametric two-

level nested Chinese Restaurant Prior (CRP) [5] over z, which

defines a prior over tree structures and is flexible enough to

learn arbitrary hierarchies. The main building block of the

nested CRP is the Chinese restaurant process, a distribution on

partition of integers. Imagine a process by which customers

enter a restaurant with an unbounded number of tables, where

the nth customer occupies a table k drawn from:

P (zn = k|z1, ..., zn−1) =

{

nk

n−1+η
nk > 0

η
n−1+η

k is new
, (19)

where nk is the number of previous customers at table k and

η is the concentration parameter.

The nested CRP, nCRP(η), extends CRP to nested sequence

of partitions, one for each level of the tree. In this case each
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observation n is first assigned to the super-category zsn using

Eq. 19. Its assignment to the basic-level category zbn, that is

placed under a super-category zsn, is again recursively drawn

from Eq. 19. We also place a Gamma prior Γ(1, 1) over η. The

proposed model allows for both: a nonparametric prior over

potentially unbounded number of global topics, or higher-level

features, as well as a nonparametric prior that allow learning

an arbitrary tree taxonomy.

Unlike in many conventional hierarchical Bayesian models,

here we infer both the model parameters as well as the

hierarchy for sharing those parameters. As we show in the

experimental results section, both sharing higher-level features

and forming coherent hierarchies play a crucial role in the

ability of the model to generalize well from one or few

examples of a novel category. Our model can be readily used in

unsupervised or semi-supervised modes, with varying amounts

of label information at different levels of the hierarchy.

4 INFERENCE

Inferences about model parameters at all levels of hierarchy

can be performed by MCMC. When the tree structure z of

the model is not given, the inference process will alternate

between fixing z while sampling the space of model parame-

ters, and vice versa.

Sampling HDP parameters: Given the category assign-

ment vector z, and the states of the top-level DBM features

h
(3), we use the posterior representation sampler of [37].

In particular, the HDP sampler maintains the stick-breaking

weights {θ}Nn=1, {π(1)
c ,π

(2)
s ,π

(3)
g }, and topic indicator vari-

ables x (parameters φ can be integrated out). The sampler

alternates between: (a) sampling cluster indices xin using

Gibbs updates in the Chinese restaurant franchise (CRF)

representation of the HDP; (b) sampling the weights at all

three levels conditioned on x using the usual posterior of a

DP.

Conditioned on the draw of the super-class DP G
(2)
s and the

state of the CRF, the posteriors over G
(1)
c become independent.

We can easily speed up inference by sampling from these

conditionals in parallel. The speedup could be substantial, par-

ticularly as the number of the basic-level categories becomes

large.

Sampling category assignments z: Given the current

instantiation of the stick-breaking weights, for each input n
we have:

(θ1,n, ..., θT,n, θnew,n) ∼ (20)

Dir(α(1)π
(1)
zn,1, ..., α

(1)π
(1)
zn,T , α

(1)π(1)
zn,new).

Combining the above likelihood term with the CRP prior

(Eq. 19), the posterior over the category assignment can be

calculated as follows:

p(zn|θn, z−n,π
(1)) ∝ p(θn|π(1), zn)p(zn|z−n), (21)

where z−n denotes variables z for all observations other than

n. When computing the probability of placing θn under a

newly created category, its parameters are sampled from the

prior.

Sampling DBM’s hidden units: Given the states of the

DBM’s top-level multinomial unit h
(3)
n , conditional samples

from P (h
(1)
n ,h

(2)
n |h(3)

n ,vn) can be obtained by running a

Gibbs sampler that alternates between sampling the states of

h
(1)
n independently given h

(2)
n , and vice versa. Conditioned on

topic assignments xin and h
(2)
n , the states of the multinomial

unit h
(3)
n for each input n are sampled using Gibbs condition-

als:

P (h
(3)
in |h(2)

n ,h
(3)
−in,xn) ∝ P (h(2)

n |h(3)
n )P (h

(3)
in |xin), (22)

where the first term is given by the product of logistic

functions (see Eq. 15):

P (h(2)
n |h(3)

n ) =
∏

l

P (h
(2)
ln |h(3)

n ), with (23)

P (h
(2)
l = 1|h(3)) =

1

1 + exp
(

−∑m W
(3)
lm h

(3)
m

)

,

and the second term P (h
(3)
in ) is given by the multinomial:

Mult(1,φxin
) (see Eq. 17). In our conjugate setting, parame-

ters φ can be further integrated out.

Fine-tuning DBM: Finally, conditioned on the states of

h
(3), we can further fine-tune low-level DBM parameters

ψ = {W(1),W(2),W(3)} by applying approximate maxi-

mum likelihood learning (see section 2) to the conditional

DBM model of Eq. 15. For the stochastic approximation

algorithm, since the partition function depends on the states

of h
(3), we maintain one “persistent” Markov chain per data

point (for details see [29], [39]). As we show in our experi-

mental results section, fine-tuning low-level DBM features can

significantly improve model performance.

4.1 Making predictions

Given a test input vt, we can quickly infer the approximate

posterior over h
(3)
t using the mean-field of Eq. 6, followed

by running the full Gibbs sampler to get approximate samples

from the posterior over the category assignments. In practice,

for faster inference, we fix learned topics φt and approximate

the marginal likelihood that h
(3)
t belongs to category zt by

assuming that document specific DP can be well approximated

by the class-specific6 DP Gt ≈ G
(1)
zt (see Fig. 2). Hence

instead of integrating out document specific DP Gt, we

approximate:

P (h
(3)
t |zt, G(1),φ) =

∫

Gt

P (h
(3)
t |φ, Gt)P (Gt|G(1)

zt
)dGt

≈ P (h
(3)
t |φ, G(1)

zt
), (24)

which can be computed analytically by integrating out topic

assignments xin (Eq. 17). Combining this likelihood term with

nCRP prior P (zt|z−t) of Eq. 19 allows us to efficiently infer

approximate posterior over category assignments. In all of

our experimental results, computing this approximate posterior

takes a fraction of a second, which is crucial for applications,

such as object recognition or information retrieval.

6. We note that G
(1)
zt

= E[Gt|G
(1)
zt

]
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DBM features

Training samples 1st layer 2nd layer HDP high-level features

Fig. 3. A random subset of the training images along with the 1st and 2nd layer DBM features, and higher-level class-sensitive
HDP features/topics. To visualize higher-level features, we first sample M words from a fixed topic φt, followed by sampling RGB
pixel values from the conditional DBM model.

1. bed, chair, clock, couch, dinosaur, lawn mower, table,
telephone, television, wardrobe

2. bus, house, pickup truck, streetcar, tank, tractor, train
3. crocodile, kangaroo, lizard, snake, spider, squirrel
4. hamster, mouse, rabbit, raccoon, possum, bear
5. apple, orange, pear, sunflower, sweet pepper
6. baby, boy, girl, man, woman
7. dolphin, ray, shark, turtle, whale
8. otter, porcupine, shrew, skunk
9. beaver, camel, cattle, chimpanzee, elephant
10. fox, leopard, lion, tiger, wolf
11. maple tree, oak tree, pine tree, willow tree
12 flatfish, seal, trout, worm
13 butterfly, caterpillar, snail
14 bee, crab, lobster
15 bridge, castle, road, skyscraper
16 bicycle, keyboard, motorcycle, orchid, palm tree
17 bottle, bowl, can, cup, lamp
18 cloud, plate, rocket 19. mountain, plain, sea
20 poppy, rose, tulip 21. aquarium fish, mushroom
22 beetle, cockroach 23. forest

Fig. 4. A typical partition of the 100 basic-level categories.
Many of the discovered super-categories contain semantically
coherent classes.

5 EXPERIMENTS

We present experimental results on the CIFAR-100 [17], hand-

written character [18], and human motion capture recognition

datasets. For all datasets, we first pretrain a DBM model in

unsupervised fashion on raw sensory input (e.g. pixels, or

3D joint angles), followed by fitting an HDP prior, which

is run for 200 Gibbs sweeps. We further run 200 additional

Gibbs steps in order to fine-tune parameters of the entire

compound HDP-DBM model. This was sufficient to obtain

good performance. Across all datasets, we also assume that

the basic-level category labels are given, but no super-category

labels are available. We must infer how to cluster basic

categories into super-categories at the same time as we infer

parameter values at all levels of the hierarchy. The training set

includes many examples of familiar categories but only a few

examples of a novel class. Our goal is to generalize well on

a novel class.

In all experiments we compare performance of HDP-DBM

to the following alternative models. The first two models,

Shared HDP high-level features

Shape Color

Fig. 5. Learning to Learn: training examples along with eight
most probable topics φt, ordered by hand.

stand-alone Deep Boltzmann Machines and Deep Belief Net-

works (DBNs) [12] used three layers of hidden variables

and were pretrained using a stack of RBMs. To evaluate

classification performance of DBNs and DBMs, both models

were converted into multilayer neural networks and were

discriminatively fine-tuned using backpropagation algorithm

(see [29] for details). Our third model, “Flat HDP-DBM”,

always used a single super-category. The Flat HDP-DBM

approach, similar in spirit to the one-shot learning model

of [11], could potentially identify a set of useful high-level

features common to all categories. Our fourth model used a

version of SVM that implements cost-sensitive learning7. The

basic idea is to assign a larger penalty value for misclassifying

examples that arise from the under-represented class. In our

setting, this model performs slightly better compared to a

standard SVM classifier. Our last model used a simple k
nearest neighbours (k-NN) classifier. Finally, using HDPs on

top of raw sensory input (i.e. pixels, or even image-specific

GIST features) performs far worse compared to our HDP-

DBM model.

7. We used LIBSVM software package of [7].
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Generated Samples

Apples Willow Tree Elephant Castle

Fig. 6. Class-conditional samples generated from the HDP-DBM model. Observe that the model despite extreme variability, the
model is able to capture a coherent structure of each class. See in colour for better visualization.

Learning with Three Examples

Apples Willow Tree Rocket Woman

Fig. 7. Conditional samples generated by the HDP-DBM model when learning only with three training examples of a novel class:
Top: three training examples, Bottom: 49 conditional samples. See in colour for better visualization

5.1 CIFAR-100 dataset

The CIFAR-100 image dataset [17] contains 50,000 training

and 10,000 test images of 100 object categories (100 per class),

with 32 × 32 × 3 RGB pixels. Extreme variability in scale,

viewpoint, illumination, and cluttered background makes the

object recognition task for this dataset quite difficult. Similar

to [17], in order to learn good generic low-level features,

we first train a two-layer DBM in completely unsupervised

fashion using 4 million tiny images8 [40]. We use a conditional

Gaussian distribution to model observed pixel values [13],

[17]. The first DBM layer contained 10,000 binary hidden

units, and the second layer contained M=1000 softmax units9.

We then fit an HDP prior over h(2) to the 100 object classes.

We also experimented with a 3-layer DBM model, as well as

various softmax parameters: M = 500 and M = 2000. The

difference in performance was not significant.

Fig. 3 displays a random subset of the training data, 1st

8. The dataset contains random images of natural scenes downloaded from
the web.

9. The generative training of the DBM model using 4 million images takes
about a week on the Intel Xeon 3.00GHz. Fitting an HDP prior to the DBMs
top-level features on the CIFAR dataset takes about 12 hours. However, at
test time, using variational inference and approximation of Eq. 24, it takes a
fraction of a second to classify a test example into its corresponding category.

and 2nd layer DBM features, as well as higher-level class-

sensitive features, or topics, learned by the HDP model.

Second layer features were visualized as a weighted linear

combination of the first layer features as in [21]. To visualize

a particular higher-level feature, we first sample M words from

a fixed topic φt, followed by sampling RGB pixel values from

the conditional DBM model. While DBM features capture

mostly low-level structure, including edges and corners, the

HDP features tend to capture higher-level structure, including

contours, shapes, colour components, and surface boundaries

in the images. More importantly, features at all levels of

the hierarchy evolve without incorporating any image-specific

priors. Fig. 4 shows a typical partition over 100 classes that

our model discovers with many super-categories containing

semantically similar classes.

Table 1 quantifies performance using the area under the

ROC curve (AUROC) for classifying 10,000 test images as

belonging to the novel vs. all other 99 classes. We report

2*AUROC-1, so zero corresponds to the classifier that makes

random predictions. The results are averaged over 100 classes

using “leave-one-out” test format. Based on a single exam-

ple, the HDP-DBM model achieves an AUROC of 0.36,

significantly outperforming DBMs, DBNs, SVMs, and 1-NN
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CIFAR Dataset Handwritten Characters Motion Capture
Number of examples Number of examples Number of examples

Model 1 3 5 10 50 1 3 5 10 1 3 5 10 50

Tuned HDP-DBM 0.36 0.41 0.46 0.53 0.62 0.67 0.78 0.87 0.93 0.67 0.84 0.90 0.93 0.96
HDP-DBM 0.34 0.39 0.45 0.52 0.61 0.65 0.76 0.85 0.92 0.66 0.82 0.88 0.93 0.96
Flat HDP-DBM 0.27 0.37 0.42 0.50 0.61 0.58 0.73 0.82 0.89 0.63 0.79 0.86 0.91 0.96
DBM 0.26 0.36 0.41 0.48 0.61 0.57 0.72 0.81 0.89 0.61 0.79 0.85 0.91 0.95
DBN 0.25 0.33 0.37 0.45 0.60 0.51 0.72 0.81 0.89 0.61 0.79 0.84 0.92 0.96

SVM 0.20 0.29 0.32 0.39 0.61 0.43 0.68 0.78 0.87 0.55 0.78 0.85 0.91 0.96
1-NN 0.17 0.18 0.19 0.20 0.32 0.43 0.65 0.73 0.81 0.58 0.75 0.81 0.88 0.93
GIST 0.27 0.31 0.33 0.39 0.58 - - - - - - - -

TABLE 1

Classification performance on the test set using 2*AUROC-1. The results in bold correspond to ROCs that are statistically

indistinguishable from the best (the difference is not statistically significant).
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Fig. 8. Performance of HDP-DBM, DBM, and SVMs for all ob-
ject classes when learning with 3 examples. Object categories
are sorted by their performance.

using standard image-specific GIST features10 that achieve an

AUROC of 0.26, 0.25, 0.20 and 0.27 respectively. Table 1 also

shows that fine-tuning parameters of all layers jointly as well

as learning super-category hierarchy significantly improves

model performance. As the number of training examples

increases, the HDP-DBM model still outperforms alternative

methods. With 50 training examples, however, all models

perform about the same. This is to be expected, as with

more training examples, the effect of the hierarchical prior

decreases.

We next illustrate the ability of the HDP-DBM to generalize

from a single training example of a “pear” class. We trained

the model on 99 classes containing 500 training images each,

but only one training example of a “pear” class. Fig. 5 shows

the kind of transfer our model is performing, where we display

training examples along with eight most probable topics φt,

ordered by hand. The model discovers that pears are like

10. Gist descriptors have previously been used for this dataset [41]

apples and oranges, and not like other classes of images, such

as dolphins, that reside in very different parts of the hierarchy.

Hence the novel category can inherit the prior distribution

over similar high-level shape and colour features, allowing the

HDP-DBM to generalize considerably better to new instances

of the “pear” class.

We next examined the generative performance of the HDP-

DBM model. Fig. 6 shows samples generated by the HDP-

DBM model for four classes: “Apple”, “Willow Tree”, “Ele-

phant”, and “Castle”. Despite extreme variability in scale,

viewpoint, and cluttered background, the model is able to

capture the overall structure of each class. Fig. 7 shows

conditional samples when learning only with three training

examples of a novel class. For example, based on only three

training examples of the “Apple” class, the HDP-DBM model

is able to generate a rich variety of new apples. Fig. 8

further quantifies performance of HDP-DBM, DBM, and SVM

models for all object categories when learning with only three

examples. Observe that over 40 classes benefit in various

degrees from both: learning a hierarchy as well as learning

low and high-level features.

5.2 Handwritten Characters
The handwritten characters dataset [18] can be viewed as

the “transpose” of the standard MNIST dataset. Instead of

containing 60,000 images of 10 digit classes, the dataset

contains 30,000 images of 1500 characters (20 examples each)

with 28 × 28 pixels. These characters are from 50 alphabets

from around the world, including Bengali, Cyrillic, Arabic,

Sanskrit, Tagalog (see Fig. 9). We split the dataset into 15,000

training and 15,000 test images (10 examples of each class).

Similar to the CIFAR dataset, we pretrain a two-layer DBM

model, with the first layer containing 1000 hidden units, and

the second layer containing M=100 softmax units. The HDP

prior over h(2) was fit to all 1500 character classes.

Fig. 9 displays a random subset of training images, along

with the 1st and 2nd layer DBM features, as well as higher-

level class-sensitive HDP features. The first-layer features

capture low-level features, such as edges and corners, while

the HDP features tend to capture higher-level parts, many

of which resemble pen “strokes”, which is believed to be a

promising way to represent characters [18]. The model dis-

covers approximately 50 super-categories, and Fig. 10 shows
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Training samples
DBM features

1st layer 2nd layer HDP high-level features

Fig. 9. A random subset of the training images along with the 1st and 2nd layer DBM features, as well as higher-level class-sensitive
HDP features/topics. To visualize higher-level features, we first sample M words from a fixed topic φt, followed by sampling pixel
values from the conditional DBM model.

Learned Super-Categories

Fig. 10. Some of the learned super-categories that share the same prior distribution over “strokes”. Many of the discovered
super-categories contain meaningful groupings of characters.

a typical partition of some of the classes into super-categories,

which share the same prior distribution over “strokes”. Similar

to the CIFAR dataset, many of the super-categories contain

meaningful groups of characters.

Table 1 further shows results for classifying 15,000 test

images as belonging to the novel vs. all other 1,499 character

classes. The results are averaged over 200 characters chosen

at random, using “leave-one-out” test format. The HDP-DBM

model significantly outperforms other methods, particularly

when learning characters with few training examples. This

result demonstrates that the HDP-DBM model is able to suc-

cessfully transfer appropriate prior over higher-level “strokes”

from previously learned categories.

We next tested the generative aspect the HDP-DBM model.

Fig. 11 displays learned super-classes along with examples

of entirely novel characters that have been generated by the

model for the same super-class. In particular, left panels

show training characters in one super-category with each row

displaying a different observed character and each column

displaying a drawing produced by a different subject. Right

panels show examples of novel synthesized characters in

the corresponding super-category, where each row displays a

different synthesized character, whereas each column shows

a different example generated at random by the HDP-DBM

model. Note that, many samples look realistic, containing

coherent, long-range structure, while at the same time being

different from existing training images.

Fig. 12 further shows conditional samples when learning

only with three training examples of a novel character. Each

panel shows three figures: 1) three training examples of a

novel character class, 2) 12 synthesized examples of that class,

and 3) samples of the training characters in the same super-

category that the novel character has been grouped under.

Many of the novel characters are grouped together with related

classes, allowing each character to inherit the prior distribution

over similar high-level “strokes”, and hence generalizing better

to new instances of the corresponding class (see Supplemen-

tary Materials for a much richer class of generated samples).
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Learned super-class Sampled characters Learned super-class Sampled characters Learned super-class Sampled characters

Generated Samples

Fig. 11. Within each panel, Left: Examples of training characters in one super-category: each row is a different training character
and each column is a drawing produced by a different subject. Right: Examples of novel sampled characters in the corresponding
super-category: each row is a different sampled character, and each column is a different example generated at random by the
model.

Learning with Three Examples

Fig. 12. Each panel shows three figures from left to right: 1) three training examples of a novel character class, 2) 12 synthesized
examples of that class, and 3) training characters in the same super-category that the novel character has been assigned to.

Using Deep Belief Networks instead of DBMs produced far

inferior generative samples when generating new characters as

well as when learning from three examples.

5.3 Motion capture

Results on CIFAR and Character datasets show that the HDP-

DBM model can significantly outperform many other models

on object and character recognition tasks. Features at all levels

of the hierarchy were learned without assuming any image-

specific priors, and the proposed model can be applied in a

wide variety of application domains. In this section, we show

that the HDP-DBM model can be applied to modelling human

motion capture data.

The human motion capture dataset consists of sequences of

3D joint angles plus body orientation and translation, as shown

in Fig. 13, and was preprocessed to be invariant to isometries

[34]. The dataset contains 10 walking styles, including normal,

drunk, graceful, gangly, sexy, dinosaur, chicken, old person,

cat, and strong. There are 2500 frames of each style at

60fps, where each time step was represented by a vector

of 58 real-valued numbers. The dataset was split at random

into 1500 training and 1000 test frames of each style. We

further preprocessed the data by treating each window of 10
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Fig. 13. Human motion capture data that corresponds to the
“normal” walking style.

consecutive frames as a single 58 ∗ 10 = 580-d data vector.

For the two-layer DBM model, the first layer contained

500 hidden units, with the second layer containing M=50

softmax units. The HDP prior over the second-layer features

was fit to various walking styles. Using “leave-one-out” test

format, Table 1 shows that the HDP-DBM model performs

much better compared to other models when discriminating

between existing nine walking styles vs. novel walking style.

The difference is particularly large in the regime when we

observe only a handful number of training examples of a novel

walking style.

6 CONCLUSIONS

We developed a compositional architecture that learns an HDP

prior over the activities of top-level features of the DBM

model. The resulting compound HDP-DBM model is able to

learn low-level features from raw, high-dimensional sensory

input, high-level features, as well as a category hierarchy for

parameter sharing. Our experimental results show that the

proposed model can acquire new concepts from very few

examples in a diverse set of application domains.

The compositional model considered in this paper was

directly inspired by the architecture of the DBM and HDP,

but it need not be. Indeed, any other deep learning module,

including Deep Belief Networks, sparse auto-encoders, or

any other hierarchical Bayesian model can be adapted. This

perspective opens a space of compositional models that may

be more suitable for capturing the human-like ability to learn

from few examples.

Acknowledgements
This research was supported by NSERC, ONR (MURI Grant

1015GNA126), ONR N00014-07-1-0937, ARO W911NF-08-

1-0242, and Qualcomm.

REFERENCES

[1] B. Babenko, S. Branson, and S. J. Belongie. Similarity functions for
categorization: from monolithic to category specific. In ICCV, 2009.

[2] E. Bart, I. Porteous, P. Perona, and M. Welling. Unsupervised learning
of visual taxonomies. In CVPR, pages 1–8, 2008.

[3] E. Bart and S. Ullman. Cross-generalization: Learning novel classes
from a single example by feature replacement. In CVPR, pages 672–
679, 2005.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[5] David M. Blei, Thomas L. Griffiths, and Michael I. Jordan. The nested
chinese restaurant process and bayesian nonparametric inference of topic
hierarchies. J. ACM, 57(2), 2010.

[6] Kevin R. Canini and Thomas L. Griffiths. Modeling human transfer
learning with the hierarchical dirichlet process. In NIPS 2009 workshop:

Nonparametric Bayes, 2009.

[7] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-

nology, 2:27:1–27:27, 2011.

[8] Bo Chen, Gungor Polatkan, Guillermo Sapiro, David B. Dunson, and
Lawrence Carin. The hierarchical beta process for convolutional factor
analysis and deep learning. In Lise Getoor and Tobias Scheffer, editors,
Proceedings of the 28th International Conference on Machine Learning,

ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages
361–368. Omnipress, 2011.

[9] Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin
Suresh, Tao Wang, and Andrew Y. Ng. Text detection and character
recognition in scene images with unsupervised feature learning. In In

Proceedings of the 11th International Conference on Document Analysis

and Recognition, 2011.

[10] Aarron Courville, James Bergstra, and Yoshua Bengio. Unsupervised
models of images by spike-and-slab rbms. In Lise Getoor and Tobias
Scheffer, editors, Proceedings of the 28th International Conference on

Machine Learning (ICML-11), ICML ’11, pages 1145–1152, New York,
NY, USA, June 2011. ACM.

[11] Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object
categories. IEEE Trans. Pattern Analysis and Machine Intelligence,
28(4):594–611, April 2006.

[12] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[13] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504 – 507, 2006.

[14] G. E. Hinton and T. Sejnowski. Optimal perceptual inference. In IEEE

conference on Computer Vision and Pattern Recognition, 1983.

[15] C. Kemp, A. Perfors, and J. Tenenbaum. Learning overhypotheses with
hierarchical Bayesian models. Developmental Science, 10(3):307–321,
2006.

[16] A. Krizhevsky. Learning multiple layers of features from tiny images,
2009.

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, Dept. of Computer Science, University of Toronto,
2009.

[18] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Josh Tenenbaum.
One-shot learning of simple visual concepts. In Proceedings of the 33rd

Annual Conference of the Cognitive Science Society, 2011.

[19] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring
strategies for training deep neural networks. Journal of Machine

Learning Research, 10:1–40, 2009.

[20] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations. In Intl. Conf. on Machine Learning, pages 609–616,
2009.

[21] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng.
Convolutional deep belief networks for scalable unsupervised learning
of hierarchical representations. In Proceedings of the 26th International

Conference on Machine Learning, pages 609–616, 2009.

[22] Yuanqing Lin, Tong Zhangi, Shenghuo Zhu, and Kai Yu. Deep coding
networks. In Advances in Neural Information Processing Systems,
volume 23, 2011.

[23] A. Mohamed, G. Dahl, and G. Hinton. Acoustic modeling using deep
belief networks. IEEE Transactions on Audio, Speech, and Language

Processing, 2011.

[24] V. Nair and G. E. Hinton. Implicit mixtures of restricted Boltzmann
machines. In Advances in Neural Information Processing Systems,
volume 21, 2009.

[25] A. Perfors and J.B. Tenenbaum. Learning to learn categories. In 31st

Annual Conference of the Cognitive Science Society, pages 136–141,
2009.



14

[26] M. A. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning
for deep belief networks. Advances in Neural Information Processing

Systems, 2008.
[27] H. Robbins and S. Monro. A stochastic approximation method. Ann.

Math. Stat., 22:400–407, 1951.
[28] A. Rodriguez, D. Dunson, and A. Gelfand. The nested Dirichlet process.

Journal of the American Statistical Association, 103:11311144, 2008.
[29] R. R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In

Proceedings of the International Conference on Artificial Intelligence

and Statistics, volume 12, 2009.
[30] R. R. Salakhutdinov and G. E. Hinton. Replicated softmax: an undirected

topic model. In Advances in Neural Information Processing Systems,
volume 22, 2010.

[31] L.B. Smith, S.S. Jones, B. Landau, L. Gershkoff-Stowe, and L. Samuel-
son. Object name learning provides on-the-job training for attention.
Psychological Science, pages 13–19, 2002.

[32] Richard Socher, Cliff Lin, Andrew Y. Ng, and Christopher Manning.
Parsing natural scenes and natural language with recursive neural
networks. In Proceedings of the Twenty-Eighth International Conference

on Machine Learning. ACM, 2011.
[33] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky. De-

scribing visual scenes using transformed objects and parts. International

Journal of Computer Vision, 77(1-3):291–330, 2008.
[34] G. Taylor, G. E. Hinton, and S. T. Roweis. Modeling human motion

using binary latent variables. In Advances in Neural Information

Processing Systems. MIT Press, 2006.
[35] Graham W. Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler.

Convolutional learning of spatio-temporal features. In ECCV 2010.
Springer, 2010.

[36] Y. W. Teh and G. E. Hinton. Rate-coded restricted Boltzmann machines
for face recognition. In Advances in Neural Information Processing

Systems, volume 13, 2001.
[37] Y. W. Teh and M. I. Jordan. Hierarchical Bayesian nonparametric models

with applications. In Bayesian Nonparametrics: Principles and Practice.
Cambridge University Press, 2010.

[38] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical
dirichlet processes. Journal of the American Statistical Association,
101(476):1566–1581, 2006.

[39] T. Tieleman. Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient. In ICML. ACM, 2008.

[40] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny im-
ages: a large dataset for non-parametric object and scene recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(11):1958–1970, 2008.

[41] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image
databases for recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2008.
[42] Antonio B. Torralba, Kevin P. Murphy, and William T. Freeman. Shared

features for multiclass object detection. In Toward Category-Level

Object Recognition, volume 4170 of Lecture Notes in Computer Science,
pages 345–361. Springer, 2006.

[43] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and
composing robust features with denoising autoencoders. In William W.
Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings

of the Twenty-Fifth International Conference, volume 307, pages 1096–
1103, 2008.

[44] Fei Xu and Joshua B. Tenenbaum. Word learning as bayesian inference.
Psychological Review, 114(2), 2007.

[45] L. Younes. Parameter inference for imperfectly observed Gibbsian fields.
Probability Theory Rel. Fields, 82:625–645, 1989.

[46] L. Younes. On the convergence of Markovian stochastic algorithms with
rapidly decreasing ergodicity rates, March 17 2000.

[47] A. L. Yuille. The convergence of contrastive divergences. In Advances

in Neural Information Processing Systems, 2004.

Ruslan Salakhutdinov received his PhD in ma-
chine learning (computer science) from the Uni-
versity of Toronto in 2009. After spending two
post-doctoral years at the Massachusetts Insti-
tute of Technology Artificial Intelligence Lab, he
joined the University of Toronto as an Assistant
Professor in the Departments of Statistics and
Computer Science. His primary interests lie in
statistical machine learning, Bayesian statistics,
probabilistic graphical models, and large-scale
optimization. He is the recipient of the Early Re-

searcher Award, Connaught New Researcher Award, and is a Scholar
of the Canadian Institute for Advanced Research.

Joshua B. Tenenbaum received his Ph.D. in
1993 from MIT in the Department of Brain and
Cognitive Sciences, where he is currently Pro-
fessor of Computational Cognitive Science as
well as a principal investigator in the Computer
Science and Artificial Intelligence Laboratory
(CSAIL). He studies learning, reasoning and
perception in humans and machines, with the
twin goals of understanding human intelligence
in computational terms and bringing computers
closer to human capacities. He and his collab-

orators have pioneered accounts of human cognition based on so-
phisticated probabilistic models and developed several novel machine
learning algorithms inspired by human learning, most notably Isomap,
an approach to unsupervised learning of nonlinear manifolds in high-
dimensional data. His current work focuses on understanding how
people come to be able to learn new concepts from very sparse data
– how we ’learn to learn’ – and on characterizing the nature and origins
of people’s intuitive theories about the physical and social worlds. His
papers have received awards at the IEEE Computer Vision and Pattern
Recognition (CVPR), NIPS, Cognitive Science, UAI and IJCAI confer-
ences. He is the recipient of early career awards from the Society for
Mathematical Psychology, the Society of Experimental Psychologists,
and the American Psychological Association, along with the Troland
Research Award from the National Academy of Sciences.

Antonio Torralba received the degree in
telecommunications engineering from the Uni-
versidad Politecnica de Cataluna, Spain; he re-
ceived the PhD degree in signal, image, and
speech processing from the Institute National
Polytechnique de Grenoble, France. Thereafter,
he spent postdoctoral training at the Brain and
Cognitive Science Department and the Com-
puter Science and Artificial Intelligence Labo-
ratory at the Massachusetts Institute of Tech-
nology (MIT). He is an associate professor of

electrical engineering and computer science in the Computer Science
and Artificial Intelligence Laboratory (CSAIL) at MIT. He is a member of
the IEEE.


