
Learning with kernel machine architectures

by

Theodoros Evgeniou

B.S. Massachusetts Institute of Technology (1995)
M.Eng. Massachusetts Institute of Technology (1996)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

c© Massachusetts Institute of Technology 2000

Signature of Author .
Department of Electrical Engineering and Computer Science

April 27, 2000

Certified by. .
Tomaso Poggio

Uncas and Helen Whitaker Professor of Brain and Cognitive Sciences
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Learning with kernel machine architectures
by

Theodoros Evgeniou

Submitted to the Department of Electrical Engineering and Computer Science
on April 27, 2000, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis studies the problem of supervised learning using a family of machines,
namely kernel learning machines. A number of standard learning methods belong
to this family, such as Regularization Networks (RN) and Support Vector Machines
(SVM). The thesis presents a theoretical justification of these machines within a uni-
fied framework based on the statistical learning theory of Vapnik. The generalization
performance of RN and SVM is studied within this framework, and bounds on the
generalization error of these machines are proved.

In the second part, the thesis goes beyond standard one-layer learning machines,
and probes into the problem of learning using hierarchical learning schemes. In partic-
ular it investigates the question: what happens when instead of training one machine
using the available examples we train many of them, each in a different way, and then
combine the machines? Two types of ensembles are defined: voting combinations
and adaptive combinations. The statistical properties of these hierarchical learning
schemes are investigated both theoretically and experimentally: bounds on their gen-
eralization performance are proved, and experiments characterizing their behavior are
shown.

Finally, the last part of the thesis discusses the problem of choosing data repre-
sentations for learning. It is an experimental part that uses the particular problem
of object detection in images as a framework to discuss a number of issues that arise
when kernel machines are used in practice.

Thesis Supervisor: Tomaso Poggio
Title: Uncas and Helen Whitaker Professor of Brain and Cognitive Sciences

Acknowledgments

First of all I would like to express my gratitude to my advisor Professor Tommy Poggio
for guiding me throughout my graduate studies. The discussions with Tommy were to
a large extent the source of the ideas found in this thesis, and were always important
lessons about science and life. I would also like to thank Prof. Tommi Jaakkola for
the many useful discussions we had, and Prof. Bob Berwick for co-supervising this
thesis.

There is one more unofficial supervisor for this thesis: Dr. Massimiliano Pon-
til. I thank him both for the close collaboration on this thesis, as well as for the
pleasant atmosphere he created all this time. There are many people to thank for
the academic as well as friendly support. I am grateful to Dr. Vladimir Vapnik for
the very interesting discussions and useful insights he offered for this work. To Tony
Ezzat, who in fact introduced me to CBCL in 1995, for being a very supportive of-
ficemate. To Federico Girosi for the initial guiding in the field of machine learning,
Vinay Kumar, the thoughtful visitor of our office, Sayan Mukherjee, a tough support
vector, Constantine Papageorgiou, the bulky provider of ideas and fun, Luis Perez-
Breva for his very enthusiastic work, and Prof. Alessandro Verri for the many useful
discussions and directions. I would like to thank all other CBCLites for providing the
environment for this research: Nicholas Chan, Gadi Geiger, Bernd Heisele, Martin
Giese, Chikahito Nakajima, Max Reisenhuber, Ryan Rifkin, Christian Shelton, and
particularly Marypat Fitzgerald for her support for everything needed in CBCL.

The thesis, like any other achievement, would have been terribly boring if it had
not been written among friends. This list of people is large, and mentioning them
entails the risk of forgetting some who I hope do not feel left out - they are not. The
thesis was written during the breaks between parties and fun with my roommates Stas
Jarecki and Martin Szummer, my friends Serafim Batzoglou, Mark Choudhari, Naved
Khan and his family, Angelita Mireles, Agha Mirza, Dave Pelly, Andreas Argiriou and
Yiannis Voyatzis with whom I first came to MIT in 1991, and many others, and it
wouldn’t have finished on time without the life support of Kimi Yagi.

This work wouldn’t have started without the life-long love and encouragement of
my family: my mother, Haido Hartaba, my father, Konstantinos Evgeniou, and my
only sister, Konstantina Evgeniou. The thesis is dedicated to them.

Contents

1 Introduction 9
1.1 Motivation . 9

1.1.1 Complex data analysis . 9
1.1.2 Building intelligent systems 10

1.2 Learning as a mathematical problem 11
1.2.1 Regression and Classification 12

1.3 Outline of the thesis . 12
1.3.1 Contributions of the thesis . 17

2 Statistical Learning Theory 18
2.1 A Mathematical formulation of learning 18

2.1.1 The Empirical Risk Minimization learning principle 18
2.1.2 Uniform convergence for density estimation:

Glivenko-Cantelli and Kolmogorov 20
2.1.3 Uniform convergence for supervised learning 23

2.2 The Structural Risk Minimization learning principle 29
2.2.1 Structural Risk Minimization using the Vγ dimension 30

3 Learning with Kernel Machines 32
3.1 Setup of kernel machines . 32

3.1.1 Reproducing Kernel Hilbert Spaces: a brief overview 34
3.2 Regularization Networks . 36

3.2.1 Examples of Regularization Networks 39
3.2.2 From regression to classification 42

3.3 Support Vector Machines . 43
3.3.1 SVM in RKHS . 43
3.3.2 From regression to classification 45

3.4 SRM for RNs and SVMs . 47
3.4.1 Why not use the VC-dimension 48
3.4.2 A theoretical justification of RN and SVM regression 49
3.4.3 A theoretical analysis of SVM classification 56
3.4.4 Discussion . 61

4 Learning with Ensembles of Kernel Machines 64
4.1 Introduction . 64

4.1.1 Ensemble learning methods: Bagging and Boosting 66
4.2 Generalization performance of voting ensembles 67
4.3 Experiments . 71

4

4.4 Validation set for model selection . 73
4.5 Adaptive combinations of classifiers 75
4.6 Ensembles versus single machines . 76
4.7 Summary . 79

5 Object Detection: a Case Study on Representations for Learning 81
5.1 Introduction . 81
5.2 A trainable system for object detection 82
5.3 Comparison of representations for face and people detection 83

5.3.1 Pixels, principal components and Haar wavelets 83
5.3.2 Linear transformations and kernels 85
5.3.3 Histogram Equalization . 86

5.4 Input feature selection using SVM . 87
5.4.1 A heuristic for feature selection using SVM 88
5.4.2 Experiments . 89

5.5 Features from probabilistic models 90
5.6 Summary . 92

6 Further Remarks 95
6.1 Summary and Contributions . 95
6.2 Extensions and conjectures . 96

5

List of Figures

1-1 A mathematical formulation of learning an input/output relation from
examples. 11

2-1 The empirical distribution and the true distribution function. 21
2-2 The indicator functions considered for the problem of density estima-

tion have the simple “shapes” of orthants shown on the left, while in
the general case considered in statistical learning theory the shape and
number of the indicator functions can be arbitrary as schematically
indicated on the right. Top is a 1-d example, and bottom a 2-d one
(bottom left is a 2-d density estimation problem). 22

3-1 The three loss functions considered: L2 for RN (left), Lε for SVMR
(middle), and soft margin for SVMC (right). 33

3-2 Plot of the Vγ dimension as a function of σ for γ = .9 58
3-3 Hard margin loss (line with diamond-shaped points), soft margin loss

(solid line), nonlinear soft margin with σ = 2 (line with crosses), and
σ = 1

2
(dotted line) . 60

4-1 Breast cancer data: see text for description. 72
4-2 Thyroid data: see text for description. 73
4-3 Diabetes data: see text for description. 74
4-4 Heart data: see text for description. 75
4-5 USPS data: see text for description. 76
4-6 USPS data: using a large C (C=50). In this case the bounds do not

work - see text for an explanation. 77
4-7 When the coefficients of the second layer are learned using a linear SVM

the system is less sensitive to changes of the σ of the Gaussian kernel
used by the individual machines of the ensemble. Solid line is one SVM,
dotted is ensemble of 30 SVMs with fixed βt = 1

30
, and dashed line is

ensemble of 30 SVMs with the coefficients βt learned. The horizontal
axis shows the natural logarithm of the σ of the Gaussian kernel. Left
is the heart dataset, and right is the diabetes one. The threshold b is
non-zero for these experiments. 78

5-1 Top row: examples of images of faces in the training database. The
images are 19x19 pixels in size. Bottom row: examples of images of
people in the training database. The images are 128x64 pixels in size. 83

5-2 The 3 types of 2-dimensional non-standard Haar wavelets; (a) “verti-
cal”, (b) “horizontal”, (c) “diagonal”. 84

6

5-3 ROC curves for face (top) and people (bottom) detection: solid lines
are for the wavelet representation, dashed lines for pixel representation,
and dotted line for eigenvector representation (all 361 eigenvectors). 85

5-4 ROC curves for face (top) and people (bottom) detection after his-
togram equalization: solid lines are for the wavelet representation,
dashed lines for the pixel representation, and dotted line for the eigen-
vector representation. The ROC curve for the wavelet representation
without histogram equalization (like in Figure 5-3) is also shown; this
is the bottom thick solid line. For people, the bottom thick dashed line
shows the performance of pixels without H.E.. 88

5-5 An original image of a face on the left. The same image after histogram
equalization on the right. 89

5-6 Top figure: solid line is face detection with all 1,740 wavelets, dashed
line is with 30 wavelets chosen using the proposed method, and dotted
line is with 30 randomly chosen wavelets. The line with ×’s is with
500 wavelets, and the line with ◦’s is with 120 wavelets, both chosen
using the method based on equation (5.2). Middle figure: solid line is
face detection with all eigenvectors, dashed line is with the 40 princi-
pal components, and dotted line is with the 15 principal components.
Bottom figure: solid line is people detection using all 1,326 wavelets,
dashed line is with the 29 wavelets chosen by the method based on
equation 5.2 , and dotted line is with the 29 wavelets chosen in 93

5-7 Face experiments: Solid line indicates the probabilistic features using
100 principal components, dashed line is for 30 principal components,
and dotted for 15. The ROC curves with all wavelets (line with circles)
is also shown for comparison. Histogram equalization was performed
on the images. 94

7

List of Tables

3.1 Some possible kernel functions. The first four are radial kernels. The
multiquadric and thin plate splines are positive semidefinite and thus
require an extension of the simple RKHS theory presented here. The
last three kernels were proposed by Vapnik (Vapnik,1998), originally
for SVM. The last two kernels are one-dimensional: multidimensional
kernels can be built by tensor products of one-dimensional ones. The
functions Bn are piecewise polynomials of degree n, whose exact defi-
nition can be found in (Schumaker,1981). 38

4.1 Average errors and standard deviations (percentages) of the “best” ma-
chines (best σ of the Gaussian kernel and best C) - chosen according to the
validation set performances. The performances of the machines are about
the same. VCC and ACC use 30 SVM classifiers. 77

4.2 Comparison between error rates of a single SVM v.s. error rates of VCC
and ACC of 100 SVMs for different percentages of subsampled data. The
last dataset is from (Osuna et al., 1997). 78

8

Chapter 1

Introduction

1.1 Motivation

Learning from examples is at the cornerstone of analyzing complex data sets and of
developing intelligent systems. Finding patterns in sequences of numbers, developing
“theories” from few examples, designing models for forecasting and decision making,
datamining, are some of the areas for which what is called learning from examples is
at the core to such a degree that it is often defined as some of them.

With the recent explosion of the internet, more and more complex data need to
be analyzed: from web traffic statistics and e-commerce data, to digital collections
of images, video, music, and of course text. Intelligent navigation through this data
space and extraction of interesting information from this large collection of bits is
increasingly needed. At the same time, the development of more and more complex
systems such as intelligent agents and robots with advanced language, vision, and
decision making modules, is typically approached from the point of view that such
systems need to have the ability to learn by themselves through “experience” to
perform their various difficult tasks. An ultimate dream in this direction is to achieve a
general purpose learning engine to allow machines to learn from experience (and prior
knowledge) – somewhat like people do – without the need of extensive programming
for each specific task.

1.1.1 Complex data analysis

To better understand the significance of learning for analyzing data, let’s consider
two simple examples:

• Given the following two sequences of numbers:
A: 1 3 5 7 11 13 17 19 23 ...

B: 2 4 6 8 10 12 14 16 18 ...

decide whether number 53 belongs to sequence A or B.

• Given the following sequence of numbers:
200 250 300 190 240 290 180 230 280 170 ...

predict what are the next three elements of the sequence.

Analyzing the available data in order to solve problems of this type seems easy in
these examples (at first glance only): the analysis can be done by using our (hardly

9

understood) abilities to find patterns, develop theories, and reject possible expla-
nations from experience. In the framework of this thesis, all these abilities can be
summarized as the ability to learn from examples: learning, in this framework, is a
type of data – the examples – analysis process.

Of course very often the data to be analyzed are not as simple (looking) as the
ones in the examples above. In a large-scale scientific experiment or in a collection of
historical data of a corporation, many more numbers – and often noisy – are available,
and questions similar to the ones above still need to be answered. It is a challenge
to develop systems that can analyze such large datasets and develop theories from
them that have predictive power: this is the goal of learning theory in the context of
complex data analysis.

1.1.2 Building intelligent systems

It is a common belief that learning is at the core of intelligence. Consequently, our
attempts to develop intelligent systems are highly constrained by our ability to build
systems that can learn. An example that will also be further studied in this thesis
can clarify this idea.

Consider the problem of developing a system that from any collection of images
can automatically select only those of a particular type (i.e. images containing a face,
as considered in chapter 5). One possible strategy can be for the system to memorize
all images containing faces, and then given a new collection of images simply select
the ones that exactly match with one of the images it has memorized. Unfortunately
such an approach would require that all possible images containing faces are stored
in memory: clearly this is impractical, and furthermore such a brute force memory-
based system would hardly be considered by anyone as “intelligent” (granted the
distinction between a “super-memory” system and an intelligent one is a vague one).
Alternatively, if such a system were to be considered intelligent, it should be able to
“figure out” how a face looks only from a few example images without having to rely
on seeing and memorizing all possible images. We would say that a system learned
how a face looks from the few available examples, if given a new image (that it has
not seen before) it can successfully (with high probability) decide whether the image
contains a face or not. In this example it is implied that the smarter the system is
the fewer the examples it needs to learn the task. It is also implied that successful
learning means low probability of making an error when new images are given.

Clearly such a process (learning) is fundamental for many other similar problems:
detecting verbs in sentences, reading/recognizing characters, detecting sounds and
music patterns, understanding when a particular internet surfer would actually read
a news page etc. Of course very often the learning process can be a trivial one, for
example in the case that the aforementioned memory-based approach is practical (i.e.
if only few possible images of faces existed). It is important to notice that this can
be the case even for complicated-looking tasks. For example, even for the case of
face detection discussed above, a system may be intelligent enough to automatically
decide upon only a few features that describe a face, and then instead of memorizing
all possible images of faces it could memorize only all possible configurations of these

10

features (which can be much less than the possible images of faces). This probes
into the issues of finding appropriate representations for learning: intelligence may lie
behind the choice of features. The issue of feature selection and learning is a difficult
one and very likely not to be ever fully understood.

Finally notice that building intelligent systems and analyzing “complex” data
are tightly related: an intelligent face detection system learns through analyzing the
(seemingly) complex image data. It is often more of a conceptual distinction the one
of “complex data analysis” and “intelligent system development”: learning can be
seen as a common underlying process.

1.2 Learning as a mathematical problem

We consider learning problems of the type discussed above: the goal is to use available
examples of a particular input/output relation (i.e. input is an image, output is a
yes/no answer to the question whether there is a face in the image) in order to
develop a system that can learn this relation and decide outputs corresponding to
future inputs. This is so called supervised learning or learning from examples, the
type of learning considered in this thesis.

We view the problem of learning from examples as that of generating a hypothesis
(“theory”) from the available examples - the training data - that can be subsequently
used for tasks such as prediction, pattern recognition, “event” detection, decision
making etc. More formally, the data can be seen as points in a vector space, and the
“theory” as a function in that space (figure 1-1). Learning from examples can then be
regarded as the problem of approximating the desired multivariate function (finding
a hypothesis - function F in figure 1-1) from the sparse available data.

I
n
p
u
t

O
u
t
p
u
t

F

Figure 1-1: A mathematical formulation of learning an input/output relation from
examples.

There are many ways one could proceed in searching for a theory-function. For
example a simple solution, as discussed above, could be to always consider the func-
tion that takes everywhere a fixed value, say zero, apart from the training points
where it takes the values given at those points. This would be a simple memory
based approach. A general strategy can be to always consider a fixed set of candidate
functions, and then choose the best one according to the data and a desired criterion.
The choices of the set of candidate theories and of the criterion give plenty of room
for a number of various learning methods. This thesis studies learning methods of
this second type.

11

Whatever the approach one takes, the main goal is the following: how to best use
the available training examples to generate a theory that can best work when given
new data – has the best predictive power. This was also the key issue in the examples
discussed above. This thesis studies the problem of learning within a well formulated
mathematical framework, namely statistical learning theory, within which questions
of this type can be answered. Theoretical foundations as well as practical issues are
discussed.

1.2.1 Regression and Classification

Depending on the type of the output values of the relation learned (see Figure 1-1),
we distinguish between two types of supervised learning:

• Regression: The outputs are real-valued, and therefore the problem is that of
approximating a real-valued function from the examples.

• Classification: (or pattern recognition) The outputs take only a few possible
values (finite number). In this case the problem is to discriminate between a
number of types/categories of inputs.

We discuss both types of learning machines simultaneously, and discriminate between
them only when it is necessary.

1.3 Outline of the thesis

The Statistical Learning Theory framework

The first part, chapter 2, reviews the basic theoretical framework of the thesis,
particularly of chapters 3 and 4, namely Statistical Learning Theory (SLT) [Vapnik,
1982, Vapnik, 1995, Vapnik, 1998]. The theory has been developed to analyze learning
methods of the following form:

Learning in Statistical Learning Theory

Given set of example pairs of an input-output relation, the problem of learning is
approached in two basic steps:

1. A set of candidate functions (theories) that can be used to characterize the
input-output relation is defined: we call this a hypothesis space.

2. Within the chosen hypothesis space, the function that best describes the ex-
ample data according to a given criterion is found. The criterion used is the
minimization of errors over the example data made by the function.

More formally, in the second step the theory uses the principle of empirical risk
minimization which, as the name suggests, is the following:

12

• Define a loss function V that measures the error made by a function f on an
input-output pair. If x is the input and y the actual output, then V is of the
form V (y, f(x)) and measures the error made when f(x) is predicted while y is
the output.

• Find the function in the hypothesis space that minimizes the empirical error on
the example input-output data. If {(xi, yi)}�

i=1 is the set of � available examples
(xi is the input and yi the corresponding output), and F is the hypothesis
space considered, then according to the empirical risk minimization principle
the solution to the learning problem is the function f ∈ F that minimizes the
empirical error:

�∑
i=1

V (yi, f(xi))

In the general form, the theory suggests that empirical risk minimization is per-
formed iteratively in a number of hypothesis spaces, and that eventually the “best”
solution among the ones found in each hypothesis space is chosen. The theory gives
conditions under which this approach leads to solutions that can be reliably used to
find the output of the relation corresponding to a new (i.e. future) input. Appropri-
ate measure of “reliability” is also defined: it is the expected error the solution makes
on a new input. Therefore the theory answers questions of the following type:

• How large is the expected error of the solution found using the approach above?

• How different is the empirical error of the solution from the expected one?

• How fast does the expected error decrease as the number of examples increases?

In the first part of the thesis, chapter 2, this framework is formally presented.
Moreover, a technical extension of the standard SLT of Vapnik, based on work in the
PAC learning community [Kearns and Shapire, 1994, Alon et al., 1993, Valiant, 1984],
is presented. This extended SLT will be used in chapter 3 to theoretically justify and
analyze a class of learning machines, namely kernel learning machines.

Learning using Kernel Machines

A number of machines can be developed in the aforementioned framework. Among
others, two are the key choices to be made when designing a learning machine:

1. Choose the loss function V .

2. Choose the set of possible functions, hypothesis space F .

This thesis concentrates on so called kernel machines. These are learning machines
for which the hypothesis space is a subspace of a Reproducing Kernel Hilbert Space
F with kernel K (hence the name kernel machines) [Wahba, 1990, Aronszajn, 1950,
Wahba, 1980, Wahba, 1985] - see chapter 3. Learning using these machines can be
seen as a variational problem of finding the function f that minimizes the functional

13

min
f∈F

H[f] =
1

l

l∑
i=1

V (yi, f(xi)) + λ‖f‖2
K (1.1)

where ‖f‖2
K is a norm in the Reproducing Kernel Hilbert Space F defined by the

positive definite function K, λ is a parameter often called the regularization parameter
[Wahba, 1990, Powell, 1992, Poggio and Girosi, 1990, Girosi et al., 1995, Ivanov, 1976],
V (y, f(x)) is, as mentioned above, the loss function measuring the error made when
function f outputs f(x) given input x while the actual output is y, and {(xi, yi)}�

i=1

represent the � given example data - the training data.
Within this family of machines the thesis focuses on two particular kernel ma-

chines: standard regularization networks (RN) [Tikhonov and Arsenin, 1977, Ivanov,
1976, Girosi et al., 1995, Wahba, 1990] and Support Vector Machines [Vapnik, 1998,
Cortes and Vapnik, 1995] for both regression (SVMR) and classification (SVMC).
These are kernel machines for the following choices of the loss function V :

• Standard (L2) Regularization Networks (RN)

V (yi, f(xi)) = (yi − f(xi))
2 (1.2)

• Support Vector Machines Regression (SVMR)

V (yi, f(xi)) = |yi − f(xi)|ε (1.3)

• Support Vector Machines Classification (SVMC)

V (yi, f(xi)) = |1 − yif(xi)|+ (1.4)

where | · |ε is Vapnik’s epsilon-insensitive norm (see later), and yi is a real number in
RN and SVMR, whereas it takes values −1, 1 in SVMC. Loss function (1.4) is also
called the soft margin loss function. For SVMC, two other loss functions will also be
considered:

• The hard margin loss function:

V (yi, f(x)) = θ(1 − yif(xi)) (1.5)

• The misclassification loss function:

V (yi, f(x)) = θ(−yif(xi)) (1.6)

where θ(·) is the Heaviside function. For classification one should minimize (1.6) (or
(1.5)), but in practice other loss functions, such as the soft margin one (1.4) [Cortes
and Vapnik, 1995, Vapnik, 1995], are used.

A unified justification for kernel machines

14

Formulating RN and SVM as kernel machines is the first step towards the de-
velopment of a unified theory that can justify both of them. The second and most
important part is the study of the statistical properties of kernel machines within the
statistical learning theory framework outlined above. That is, the study of questions
like the ones discussed above. Chapter 3 presents a framework based on the technical
extension of standard SLT presented in chapter 2 within which the kernel machines
listed above are theoretically justified and analyzed. In particular the following tech-
nical issues are discussed (see chapter 2 for definitions):

1. Study of the VC-dimension of the kernel machines outlined above (SVM and
RN).

2. Study of the Vγ dimension of the kernel machines outlined above (SVM and
RN).

3. Based on the results of (1) and (2), uniform convergence in probability both for
RN and for SVM regression is shown.

4. Bounds on the expected risk of the solution of RN, of SVMR, and of SMVC are
given. In the case of SVMC new bounds both on the misclassification expected
error of the solution, as well as the hard and soft margin errors are shown.

This will provide a unified theoretical justification and statistical analysis of RN
and SVM. Other loss functions, and therefore other kernel machines, will also be
justified within this unified framework. This will be the end of the first part of the
thesis.

Learning using ensembles of Kernel Machines

The second part of the thesis, chapter 4, probes into the following question: what
happens when instead of training one machine using the available examples we train
many of them, each in a different way, and then combine the machines found? There
are a number of reasons for considering such a scenario. One intuition is that if a
number of machines are trained so that each machine uses different information -
that is, for example, different training data or features – then a combination of such
machines may be more robust to noise. Another justification is based on the following
problem. When training a learning machine, often the problem of choosing parameters
(i.e. features or kernels) arises. One approach is to find a way to estimate the right
parameters. Another is to train many machines each with different parameters, and
then find a way to combine the machines. Finally, it is generally not clear whether
an ensemble of many machines would perform better than a single machine.

Chapter 4 studies ensembles of general kernel machines (1.1) for the problem of
classification. It considers the general case where each of the machines in the ensemble
uses a different kernel. Let T be the number of machines, and let K(t) be the kernel
used by machine t. Notice that, as a special case, appropriate choices of K(t) lead
to machines that may have different features. Let f (t)(x) be the optimal solution

15

of machine t. Chapter 4 considers ensembles that are linear combinations of the
individual machines, that is, the “overall” machine F (x) is of the form:

F (x) =
T∑

t=1

βtf
(t)(x) (1.7)

Two types of ensembles are considered:

1. Voting Combination of Classifiers (VCC): this is the case where the coefficients
βt in 1.7 are not learned (i.e. βt = 1

T
).

2. Adaptive Combinations of Classifiers (ACC): these are ensembles of the form
(1.7) with the coefficients βt also learned (adapted) from the training data.

The chapter theoretically studies the statistical properties of VCC, and experimen-
tally characterizes both VCC and ACC. In particular, chapter 4:

• Shows new theoretical bounds on the expected error of VCC for kernel machines
- voting combinations of SVMs are considered as a special case.

• Presents experiments validating the theoretical findings.

• Experimentally characterizes both VCC and ACC, and compares them with
single machines in the case of SVM.

Representations for learning: an application to object detec-
tion

An important issue that arises when kernel machines are used is that of the choice
of the kernel and the data representation. In fact the two issues are closely related,
since a kernel effectively defines a feature space where the data are mapped to [Wahba,
1990, Vapnik, 1998]. Finding appropriate kernels and data representations is very
much problem specific. Chapter 5 studies this issue in the particular case of object
detection in images.

The trainable system for object detection used in chapter 5 is based on [Papa-
georgiou et al., 1998b] and can be used to learn any class of objects. The overall
framework has been motivated and successfully applied in the past [Papageorgiou et
al., 1998b]. The system consists of three parts:

• A set of (positive) example images of the object class considered (i.e. images
of frontal faces) and a set of negative examples (i.e. any non-face image) are
collected.

• The images are transformed into vectors in a chosen representation (i.e. in a
simple case this can be a vector of the size of the image with the values at each
pixel location).

• The vectors (examples) are used to train a SVM classifier to learn the classifi-
cation task of separating positive from negative examples.

16

Two choices need to be made: the representation in the second stage, and the ker-
nel of the SVM in the third stage. These are the main issues addressed experimentally
in chapter 5. The object detection system is trained with different representations:
in the simplest case the pixel values of the images are used, while in a different case
features and kernels extracted from probabilistic models describing the class of images
considered (i.e. images of faces) are used. The chapter also addresses the following
questions: can feature selection improve performance of the SVM classifier? can SVM
perform well even when many (possibly irrelevant) features are used? Based on the
experimental findings and the theoretical results of the thesis, chapter 5 discusses a
number of topics and suggest conjectures regarding representations and learning.

1.3.1 Contributions of the thesis

To summarize, the thesis will consist of three main parts. First (chapter 2) the ba-
sic theoretical tools are reviewed: standard Statistical Learning Theory (SLT) and
a technical extension of it. Within the extended SLT a theoretical justification and
statistical analysis of kernel learning machines, including Support Vector Machines
(SVM) and Regularization Networks (RN), is provided (chapter 3). In the second
part other learning architectures, namely ensembles of learning machines, are inves-
tigated (chapter 4). Finally an application to object detection provides a testbed
to discuss important practical issues involved in using learning machines, in partic-
ular the problem of finding appropriate data representations (chapter 5). The main
contributions of the thesis can be summarized as follows:

1. The thesis reviews standard Statistical Learning Theory and develops an exten-
sion within which a new (unified) theoretical justification of a number of kernel
machines, including RN and SVM, is provided.

2. Within the extended SLT framework, new bounds on the expected error (per-
formance) of a large class of kernel machines and particularly SVM, the main
learning machines considered in the thesis, are proven.

3. In the second part ensembles of machines are studied. Two types of ensembles
are defined: voting combinations, and adaptive combinations. New theoretical
results on the statistical properties of voting ensembles of kernel machines for
classification are shown.

4. The new theoretical findings on voting ensembles of machines are experimen-
tally validated. Both voting and adaptive combinations of machines are further
characterized experimentally.

5. The third part discusses some important practical issues, particularly the prob-
lem of finding appropriate data representations for learning. A trainable system
for object detection in images provides the main experimental setup where ideas
are tested and discussed.

17

Chapter 2

Statistical Learning Theory

2.1 A Mathematical formulation of learning

We consider the case of learning from examples as defined in the statistical learning
theory framework [Vapnik, 1982, Vapnik, 1995, Vapnik, 1998]. We have two sets of
variables x ∈ X ⊆ Rd and y ∈ Y ⊆ R that are related by a probabilistic relationship.
We say that the relationship is probabilistic because generally an element of X does
not determine uniquely an element of Y , but rather a probability distribution on Y .
This can be formalized assuming that a probability distribution P (x, y) is defined
over the set X × Y . The probability distribution P (x, y) is unknown, and under
very general conditions can be written as P (x, y) = P (x)P (y|x) where P (y|x) is the
conditional probability of y given x, and P (x) is the marginal probability of x. We
are provided with examples of this probabilistic relationship, that is with a data set
D� ≡ {(xi, yi) ∈ X × Y }�

i=1 called the training data, obtained by sampling � times
the set X × Y according to P (x, y). The problem of learning consists in, given the
data set D�, providing an estimator, that is a function f : X → Y , that can be used,
given any value of x ∈ X, to predict a value y.

In statistical learning theory, the standard way to solve the learning problem
consists in defining a risk functional, which measures the average amount of error
associated with an estimator, and then to look for the estimator, among the allowed
ones, with the lowest risk. If V (y, f(x)) is the loss function measuring the error we
make when we predict y by f(x), then the average error is the so called expected risk:

I[f] ≡
∫

X,Y
V (y, f(x))P (x, y) dxdy (2.1)

We assume that the expected risk is defined on a “large” class of functions F and we
will denote by f0 the function which minimizes the expected risk in F :

f0(x) = arg min
F

I[f] (2.2)

The function f0 is our ideal estimator, and it is often called the target function.

2.1.1 The Empirical Risk Minimization learning principle

Unfortunately the target function cannot be found in practice, because the probability
distribution P (x, y) that defines the expected risk is unknown, and only a sample of

18

it, the data set D�, is available. To overcome this shortcoming we need an induction
principle that we can use to “learn” from the limited number of training data we have.
Statistical learning theory as developed by Vapnik builds on the so-called empirical
risk minimization (ERM) induction principle. The ERM method consists in using
the data set D� to build a stochastic approximation of the expected risk, which is
usually called the empirical risk, and is defined as:

Iemp[f ; �] =
1

�

�∑
i=1

V (yi, f(xi)). (2.3)

The central question is whether the expected risk of the minimizer of the empirical
risk in F is close to the expected risk of f0. Notice that the question is not necessarily
whether we can find f0 but whether we can “imitate” f0 in the sense that the expected
risk of our solution is close to that of f0. Formally the question is finding under which
conditions the method of ERM satisfies:

lim
�→∞

Iemp[f̂�; �] = lim
�→∞

I[f̂�] = I[f0] (2.4)

in probability (all statements are probabilistic since we start with P (x, y) on the
data), where we note with f̂� the minimizer of the empirical risk (2.3) in F .

It can been shown (see for example [Vapnik, 1998]) that in order for the limits in eq.
(2.4) to hold true in probability, or more precisely, for the empirical risk minimization
principle to be non-trivially consistent (see [Vapnik, 1998] for a discussion about
consistency versus non-trivial consistency), the following uniform law of large numbers
(which “translates” to one-sided uniform convergence in probability of empirical risk
to expected risk in F) is a necessary and sufficient condition:

lim
�→∞

P

{
sup
f∈F

(I[f] − Iemp[f ; �]) > ε

}
= 0 ∀ε > 0 (2.5)

Intuitively, if F is very “large” then we can always find f̂� ∈ F with 0 empirical error.
This however does not guarantee that the expected risk of f̂� is also close to 0, or
close to I[f0].

Typically in the literature the two-sided uniform convergence in probability:

lim
�→∞

P

{
sup
f∈F

|I[f] − Iemp[f ; �]| > ε

}
= 0 ∀ε > 0 (2.6)

is considered, which clearly implies (2.5). We focus on the stronger two-sided case
and note that one can get one-sided uniform convergence with some minor technical
changes to the theory. We will not discuss the technical issues involved in the rela-
tions between consistency, non-trivial consistency, two-sided and one-sided uniform
convergence (a discussion can be found in [Vapnik, 1998]), and from now on we con-
centrate on the two-sided uniform convergence in probability, which we simply refer
to as uniform convergence.

The theory of uniform convergence of ERM has been developed in [Vapnik and
Chervonenkis, 1971, Vapnik and Chervonenkis, 1981, Vapnik and Chervonenkis, 1991,

19

Vapnik, 1982, Vapnik, 1998]. It has also been studied in the context of empirical
processes [Dudley, 1984, Pollard, 1984, Dudley et al., 1991]. Here we summarize the
main results of the theory. Before doing so, we present some early results on uniform
convergence for a particular case, that of density estimation.

2.1.2 Uniform convergence for density estimation:
Glivenko-Cantelli and Kolmogorov

Uniform convergence has been studied by Glivenko, Cantelli, and Kolmogorov [Glivenko,
1933, Cantelli, 1933, Kolmogorov, 1933] in a particular case of hypothesis spaces F
considered for the problem of density estimation.

Let X be a 1-dimensional random variable (the results can be generalized to
many dimensions), and consider the problem of estimating the probability distribution
function of X:

F (x) = P (X < x)

from a set of random independent samples

x1, x2, ..., x�.

obtained in accordance with F (x). Notice that the distribution function F (x) can be
written as

F (x) =
∫ ∞

−∞
θ(x − ξ) p(ξ) dξ

where p(ξ) is the probability density of r.v. X according to which the examples
x1, x2, ..., x� are drawn.

Following the general learning method outlined above, we consider the empirical
distribution function

Femp(x; �) =
1

�

�∑
i=1

θ(x − xi)

with θ being the Heaviside function. Figure 2-1 shows the true and empirical prob-
ability distribution functions. As in the general case outlined above, we pose the
following question:

How different is the empirical distribution from the true one?

This question can be answered in the framework outlined above by redefining the
density estimation problem as follows. Consider the set of functions (hypothesis
space):

F = {fα(x) = θ(α − x) ; α ∈ (−∞,∞)}
and define the loss function V to be simply V (y, fα(x)) = fα(x) = θ(α − x) (notice
that there is no y in this special case). With this definition, the empirical error
Iemp[fα; �] and the expected error I[fα] considered above become the empirical and

20

1

xx1

 emp

 F (x)

F (x ; l)

Figure 2-1: The empirical distribution and the true distribution function.

true distribution functions Femp(α; �) and F (α), respectively. Uniform convergence
(2.5) can now be rewritten as:

lim
�→∞

P

{
sup
f∈F

|I[f] − Iemp[f ; �]| > ε

}
= lim

�→∞
P

{
sup

α∈(−∞,∞)
|F (α) − Femp(α; �)| > ε

}

(2.7)
It turns out that for the particular hypothesis space and loss function constructed
here, the limit of (2.7) is 0 for every ε > 0, namely uniform convergence takes place.
In particular the following theorems, shown within a few months difference in 1933,
hold:

Theorem 2.1.1 (Glivenko-Cantelli, 1933) The convergence

lim
�→∞

P

(
sup

α∈(−∞,∞)
| F (α) − Femp(α; �) |

)
= 0

takes place.

Theorem 2.1.2 (Kolmogorov-Smirnov Distribution) The rate of convergence of the
empirical to the true distribution function follows the following law:

lim
�→∞

P

(√
� sup

α∈(−∞,∞)
| F (α) − Femp(α; �) | < ε

)
= 1 − 2

∞∑
k=1

(−1)k−1e−2ε2k2

.

We do not show the proof of these theorems here, but we only show part of the
proof of theorem 2.1.2. Theorem 2.1.2 is based on the following simple observation:

Lemma 2.1.1 (Kolmogorov, 1933) The probability function

P{
√

� sup
α∈(−∞,∞)

|F (α) − Femp(α; �)| < ε}

is independent of the distribution function F (x) on condition the latter is continuous.

21

xxi x

�
�
�
�

����

��

x i

Figure 2-2: The indicator functions considered for the problem of density estimation
have the simple “shapes” of orthants shown on the left, while in the general case con-
sidered in statistical learning theory the shape and number of the indicator functions
can be arbitrary as schematically indicated on the right. Top is a 1-d example, and
bottom a 2-d one (bottom left is a 2-d density estimation problem).

Proof. Let X be a random variable with continuous distribution function F (x). For
the random variable Y = F (x) corresponds the distribution function F 0(y) such that:

F 0(y) = 0 y ≤ 0; (2.8)

F 0(y) = y 0 ≤ y ≤ 1; (2.9)

F 0(y) = 0 y ≥ 1; (2.10)

Given empirical distribution functions Femp(x; �) and F 0
emp(y; �) for X and Y after �

observations, the following hold

Femp(x; �) − F (x) = F 0
emp[F (x); �] − F 0[F (x)] = F 0

emp(y; �) − F (y) ⇒

⇒ sup
x

|Femp(x; �) − F (x)| = sup
y

|F 0
emp(y; �) − F 0(y)|.

So the probability function P{
√

� supα |Femp(α; �) − F (α)| < ε} for any continuous
distribution function is identical to that when the true distribution is the uniform one

22

F 0(x). �

Using this trick of transforming all distributions to uniform ones, Kolmogorov
proved theorem 2.1.2 in a short paper in 1933 ([Kolmogorov, 1933] - see translation
[Kolmogorov, 1992]).

Before discussing uniform convergence for general sets of functions (hypothesis
spaces), it is worth providing some intuition about the relation between the density
estimation case considered in this section and the general case of the previous and next
sections. In the case of density estimation the set of functions considered are indicator
function (take values 0 or 1) that have particular shapes: the functions take the value
1 inside an orthant (for example in the 1-d case this is the space x < α – see figure
2-2 also for a 2-d example), and the value 0 outside. Uniform convergence in this case
means that as the number of examples increases, the empirical number of points that
“fall within an orthant” approach the expected one for all orthants simultaneously.
In the general case considered in statistical learning theory, the indicator functions
do not necessarily have the simple shape of an orthant (see figure 2-2). In this case
uniform convergence implies that as the number of examples increases, the empirical
number of points that “fall within a function (shape)” approaches the expected one
simultaneously for all indicator functions in the hypothesis space.

Although, as shown by Glivenko, Cantelli, and Kolmogorov, uniform convergence
takes places for indicator functions corresponding to orthants, it does not necessarily
take place for any space of indicator functions. Statistical learning theory provides the
conditions under which uniform convergence takes place for a set (hypothesis space)
of indicator functions: the conditions are given in terms of quantities that character-
ize hypothesis spaces, namely VC-entropy, growth function, and VC-dimension of a
hypothesis space (see below). In the more general case, real-valued functions (instead
of indicator ones) are also considered. From this point of view, statistical learning the-
ory, as we outline below, is a generalization of the Glivenko-Cantelli and Kolmogorov
theorems that hold only for the particular case of indicator functions corresponding
to orthants. We now turn to discuss the general case of uniform convergence in the
framework of statistical learning theory.

2.1.3 Uniform convergence for supervised learning

Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971, Vapnik and Chervonenkis,
1981] studied under what conditions uniform convergence of the empirical risk to
expected risk takes place. The results are formulated in terms of three important
quantities that measure the complexity of a set of functions: the VC entropy, the
annealed VC entropy, and the growth function. We begin with the definitions of these
quantities. First we define the minimal ε-net of a set, which intuitively measures the
“cardinality” of a set at “resolution” ε:

Definition 2.1.1 Let A be a set in a metric space A with distance metric d. For a
fixed ε > 0, the set B ⊆ A is called an ε-net of A in A, if for any point a ∈ A there
is a point b ∈ B such that d(a, b) < ε. We say that the set B is a minimal ε-net of A

23

in A, if it is finite and contains the minimal number of elements.

Given a training set D� = {(xi, yi) ∈ X × Y }�
i=1, consider the set of �-dimensional

vectors:
q(f) = (V (y1, f(x1)), ..., V (y�, f(x�))) (2.11)

with f ∈ F , and define the number of elements of the minimal ε-net of this set under
the metric:

d(q(f), q(f ′)) = max
1≤i≤�

|V (yi, f(xi)) − V (yi, f
′(xi))|

to be NF(ε; D�) (which clearly depends both on F and on the loss function V).
Intuitively this quantity measures how many different functions effectively we have
at “resolution” ε, when we only care about the values of the functions at points in
D�. Using this quantity we now give the following definitions:

Definition 2.1.2 Given a set X × Y and a probability P (x, y) defined over it, the
VC entropy of a set of functions V (y, f(x)), f ∈ F , on a data set of size � is defined
as:

HF(ε; �) ≡
∫

X,Y
ln NF(ε; D�)

�∏
i=1

P (xi, yi)dxidyi

Definition 2.1.3 Given a set X × Y and a probability P (x, y) defined over it, the
annealed VC entropy of a set of functions V (y, f(x)), f ∈ F , on a data set of size �
is defined as:

HF
ann(ε; �) ≡ ln

∫
X,Y

NF(ε; D�)
�∏

i=1

P (xi, yi)dxidyi

Definition 2.1.4 Given a set X × Y , the growth function of a set of functions
V (y, f(x)), f ∈ F , on a data set of size � is defined as:

GF(ε; �) ≡ ln

(
sup

D�∈(X×Y)�

NF(ε; D�)

)

Notice that all three quantities are functions of the number of data � and of ε,
and that clearly:

HF(ε; �) ≤ HF
ann(ε; �) ≤ GF(ε; �) .

These definitions can easily be extended in the case of indicator functions, i.e. func-
tions taking binary values1 such as {−1, 1}, in which case the three quantities do not
depend on ε for ε < 1, since the vectors (2.11) are all at the vertices of the hypercube
{0, 1}�.

Using these definitions we can now state three important results of statistical
learning theory [Vapnik, 1998]:

1In the case of indicator functions, y is binary, and V is 0 for f(x) = y, 1 otherwise.

24

• For a given probability distribution P (x, y):

1. The necessary and sufficient condition for uniform convergence is that

lim
�→∞

HF(ε; �)

�
= 0 ∀ε > 0

2. A sufficient condition for fast asymptotic rate of convergence2 is that

lim
�→∞

HF
ann(ε; �)

�
= 0 ∀ε > 0

It is an open question whether this is also a necessary condition.

• A sufficient condition for distribution independent (that is, for any P (x, y)) fast
rate of convergence is that

lim
�→∞

GF(ε; �)

�
= 0 ∀ε > 0

For indicator functions this is also a necessary condition.

According to statistical learning theory, these three quantities are what one should
consider when designing and analyzing learning machines: the VC-entropy and the
annealed VC-entropy for an analysis which depends on the probability distribution
P (x, y) of the data, and the growth function for a distribution independent analysis.
We consider only distribution independent results, although the reader should keep
in mind that distribution dependent results are likely to be important in the future.

Unfortunately the growth function of a set of functions is difficult to compute in
practice. So the standard approach in statistical learning theory is to use an upper
bound on the growth function which is given using another important quantity, the
VC-dimension, which is another (looser) measure of the complexity, capacity, of a set
of functions. We concentrate on this quantity, but it is important that the reader
keeps in mind that the VC-dimension is in a sense a “weak” measure of complexity of
a set of functions, so it typically leads to loose upper bounds on the growth function:
in general one is better off, theoretically, using directly the growth function. We now
discuss the VC-dimension and its implications for learning.

The VC-dimension was first defined for the case of indicator functions and then
was extended to real valued functions.

Definition 2.1.5 The VC-dimension of a set {θ(f(x)), f ∈ F}, of indicator func-
tions is the maximum number h of vectors x1, . . . ,xh that can be separated into two
classes in all 2h possible ways using functions of the set.
If, for any number N , it is possible to find N points x1, . . . ,xN that can be separated
in all the 2N possible ways, we will say that the VC-dimension of the set is infinite.

2This means that for any � > �0 we have that P{supf∈F |I[f]− Iemp[f ; �]| > ε} < e−cε2� for some
constant c > 0. Intuitively, fast rate is typically needed in practice.

25

The remarkable property of this quantity is that, although as we mentioned the
VC-dimension only provides an upper bound to the growth function, in the case of
indicator functions, finiteness of the VC-dimension is a necessary and sufficient
condition for uniform convergence (eq. (2.6)) independent of the underlying distri-
bution P (x, y).

Definition 2.1.6 Let A ≤ V (y, f(x)) ≤ B, f ∈ F , with A and B < ∞. The VC-
dimension of the set {V (y, f(x)), f ∈ F} is defined as the VC-dimension of the set
of indicator functions {θ (V (y, f(x)) − α) , α ∈ (A, B)}.

Sometimes we refer to the VC-dimension of {V (y, f(x)), f ∈ F} as the VC di-
mension of V in F . It can be easily shown that for y ∈ {−1, +1} and for V (y, f(x)) =
θ(−yf(x)) as the loss function, the V C dimension of V in F computed using definition
2.1.6 is equal to the V C dimension of the set of indicator functions {θ(f(x)), f ∈ F}
computed using definition 2.1.5. In the case of real valued functions, finiteness of the
VC-dimension is only sufficient for uniform convergence. Later in this chapter we will
discuss a measure of capacity that provides also necessary conditions.

An important outcome of the work of Vapnik and Chervonenkis is that the uniform
deviation between empirical risk and expected risk in a hypothesis space can be
bounded in terms of the VC-dimension, as shown in the following theorem:

Theorem 2.1.3 (Vapnik and Chervonenkis 1971) Let A ≤ V (y, f(x)) ≤ B, f ∈ F ,
F be a set of bounded functions and h the VC-dimension of V in F . Then, with
probability at least 1 − η, the following inequality holds simultaneously for all the
elements f of F :

Iemp[f ; �] − (B − A)

√
h ln 2e�

h
− ln(η

4
)

�
≤ I[f] ≤ Iemp[f ; �] + (B − A)

√
h ln 2e�

h
− ln(η

4
)

�
(2.12)

The quantity |I[f]− Iemp[f ; �]| is often called estimation error, and bounds of the
type above are usually called VC bounds3. From eq. (2.12) it is easy to see that with
probability at least 1 − η:

I[f̂�]−2(B−A)

√
h ln 2e�

h
− ln(η

4
)

�
≤ I[f0] ≤ I[f̂�]+2(B−A)

√
h ln 2e�

h
− ln(η

4
)

�
(2.13)

where f̂� is, as in (2.4), the minimizer of the empirical risk in F .
A very interesting feature of inequalities (2.12) and (2.13) is that they are non-

asymptotic, meaning that they hold for any finite number of data points �, and that
the error bounds do not necessarily depend on the dimensionality of the variable x.

Observe that theorem (2.1.3) and inequality (2.13) are meaningful in practice only
if the VC-dimension of the loss function V in F is finite and less than �. Since the

3It is important to note that bounds on the expected risk using the annealed VC-entropy also
exist. These are tighter than the VC-dimension ones.

26

space F where the loss function V is defined is usually very large (i.e. all functions
in L2), one typically considers smaller hypothesis spaces H. The cost associated with
restricting the space is called the approximation error (see below). In the literature,
space F where V is defined is called the target space, while H is what is called
the hypothesis space. Of course, all the definitions and analysis above still hold for
H, where we replace f0 with the minimizer of the expected risk in H, f̂� is now the
minimizer of the empirical risk in H, and h the VC-dimension of the loss function V in
H. Inequalities (2.12) and (2.13) suggest a method for achieving good generalization:
not only minimize the empirical risk, but instead minimize a combination of the
empirical risk and the complexity of the hypothesis space. This observation leads
us to the method of Structural Risk Minimization that we describe below. Before
doing so, we first present a technical extension of the standard SLT of Vapnik that
will provide the basis for developing a unified justification of the kernel machines in
chapter 3.

ε-uniform convergence and the Vγ dimension

As mentioned above finiteness of the VC-dimension is not a necessary condition for
uniform convergence in the case of real valued functions. To get a necessary condition
we need a slight extension of the VC-dimension that has been developed (among
others) in [Kearns and Shapire, 1994, Alon et al., 1993], known as the Vγ–dimension4.
Here we summarize the main results of that theory that we will also use later on to
design regression machines for which we will have distribution independent uniform
convergence.

Definition 2.1.7 Let A ≤ V (y, f(x)) ≤ B, f ∈ F , with A and B < ∞. The Vγ-
dimension of V in F (of the set {V (y, f(x)), f ∈ F}) is defined as the the maximum
number h of vectors (x1, y1) . . . , (xh, yh) that can be separated into two classes in all
2h possible ways using rules:

class 1 if: V (yi, f(xi)) ≥ s + γ
class 0 if: V (yi, f(xi)) ≤ s − γ

for f ∈ F and some s ≥ 0. If, for any number N , it is possible to find N points
(x1, y1) . . . , (xN , yN) that can be separated in all the 2N possible ways, we will say that
the Vγ-dimension of V in F is infinite.

Notice that for γ = 0 this definition becomes the same as definition 2.1.6 for VC-
dimension. Intuitively, for γ > 0 the “rule” for separating points is more restrictive
than the rule in the case γ = 0. It requires that there is a “margin” between the
points: points for which V (y, f(x)) is between s + γ and s − γ are not classified. As
a consequence, the Vγ dimension is a decreasing function of γ and in particular is
smaller than the VC-dimension.

4In the literature, other quantities, such as the fat-shattering dimension and the Pγ dimension,
are also defined. They are closely related to each other, and are essentially equivalent to the Vγ

dimension for our purpose. The reader can refer to [Alon et al., 1993, Bartlett et al., 1996] for an
in-depth discussion on this topic.

27

If V is an indicator function, say θ(−yf(x)), then for any γ definition 2.1.7 reduces
to that of the VC-dimension of a set of indicator functions.

Generalizing slightly the definition of eq. (2.6) we will say that for a given ε > 0
the ERM method converges ε-uniformly in F in probability, (or that there is ε-uniform
convergence) if:

lim
�→∞

P

{
sup
f∈F

|Iemp[f ; �] − I[f]| > ε

}
= 0. (2.14)

Notice that if eq. (2.14) holds for every ε > 0 we have uniform convergence (eq.
(2.6)). It can be shown (variation of [Vapnik, 1998]) that ε-uniform convergence in
probability implies that:

I[f̂�] ≤ I[f0] + 2ε (2.15)

in probability, where, as before, f̂� is the minimizer of the empirical risk and f0 is the
minimizer of the expected expected risk in F5.

The basic theorems for the Vγ-dimension are the following:

Theorem 2.1.4 (Alon et al. , 1993) Let A ≤ V (y, f(x))) ≤ B, f ∈ F , F be a set of
bounded functions. For any ε > 0, if the Vγ dimension of V in F is finite for γ = αε
for some constant α ≥ 1

48
, then the ERM method ε-converges in probability.

Theorem 2.1.5 (Alon et al. , 1993) Let A ≤ V (y, f(x))) ≤ B, f ∈ F , F be a set
of bounded functions. The ERM method uniformly converges (in probability) if and
only if the Vγ dimension of V in F is finite for every γ > 0. So finiteness of the
Vγ dimension for every γ > 0 is a necessary and sufficient condition for distribution
independent uniform convergence of the ERM method for real-valued functions.

Theorem 2.1.6 (Alon et al. , 1993) Let A ≤ V (y, f(x)) ≤ B, f ∈ F , F be a set
of bounded functions. For any ε ≥ 0, for all � ≥ 2

ε2
we have that if hγ is the Vγ

dimension of V in F for γ = αε (α ≥ 1
48

), hγ finite, then:

P

{
sup
f∈F

|Iemp[f ; �] − I[f]| > ε

}
≤ G(ε, �, hγ), (2.16)

where G is an increasing function of hγ and a decreasing function of ε and �, with
G → 0 as � → ∞ 6.

From this theorem we can easily see that for any ε > 0, for all � ≥ 2
ε2

:

P
{
I[f̂�] ≤ I[f0] + 2ε

}
≥ 1 − 2G(ε, �, hγ), (2.17)

where f̂� is, as before, the minimizer of the empirical risk in F . An important obser-
vations to keep in mind is that theorem 2.1.6 requires the Vγ dimension of the loss

5This is like ε-learnability in the PAC model [Valiant, 1984].
6Closed forms of G can be derived (see for example [Alon et al., 1993]) but we do not present

them here for simplicity of notation.

28

function V in F . In the case of classification, this implies that if we want to derive
bounds on the expected misclassification we have to use the Vγ dimension of the loss
function θ(−yf(x)) (which is the V C − dimension of the set of indicator functions
{sgn (f(x)), f ∈ F}), and not the Vγ dimension of the set F . It will be important to
keep this observation in mind when studying classification machines in chapter 3.

2.2 The Structural Risk Minimization learning prin-

ciple

The idea of SRM is to define a nested sequence of hypothesis spaces H1 ⊂ H2 ⊂
. . . ⊂ Hn(�) with n(�) a non-decreasing integer function of �, where each hypothesis
space Hi has VC-dimension finite and larger than that of all previous sets, i.e. if hi

is the VC-dimension of space Hi, then h1 ≤ h2 ≤ . . . ≤ hn(�). For example Hi could
be the set of polynomials of degree i, or a set of splines with i nodes, or some more
complicated nonlinear parameterization. For each element Hi of the structure the
solution of the learning problem is:

f̂i,� = arg min
f∈Hi

Iemp[f ; �] (2.18)

Because of the way we define our structure it should be clear that the larger i is
the smaller the empirical error of f̂i,� is (since we have greater “flexibility” to fit our
training data), but the larger the VC-dimension part (second term) of the right hand
side of (2.12) is. Using such a nested sequence of more and more complex hypothesis
spaces, the SRM learning technique consists of choosing the space Hn∗(�) for which
the right hand side of inequality (2.12) is minimized. It can be shown [Vapnik, 1982]

that for the chosen solution f̂n∗(�),� inequalities (2.12) and (2.13) hold with probability
at least (1−η)n(�) ≈ 1−n(�)η 7, where we replace h with hn∗(�), f0 with the minimizer

of the expected risk in Hn∗(�), namely fn∗(�), and f̂� with f̂n∗(�),�.
With an appropriate choice of n(�)8 it can be shown that as � → ∞ and n(�) → ∞,

the expected risk of the solution of the method approaches in probability the minimum
of the expected risk in H =

⋃∞
i=1 Hi, namely I[fH]. Moreover, if the target function

f0 belongs to the closure of H, then eq. (2.4) holds in probability (see for example
[Vapnik, 1998]).

However, in practice � is finite (“small”), so n(�) is small which means that H =⋃n(�)
i=1 Hi is a small space. Therefore I[fH] may be much larger than the expected risk

of our target function f0, since f0 may not be in H. The distance between I[fH]
and I[f0] is called the approximation error and can be bounded using results from
approximation theory. We do not discuss these results here and refer the reader to
[Lorentz, 1986, DeVore, 1998].

7We want (2.12) to hold simultaneously for all spaces Hi, since we choose the best f̂i,�.
8Various cases are discussed in [Devroye et al., 1996], i.e. n(�) = �.

29

2.2.1 Structural Risk Minimization using the Vγ dimension

The theory of the Vγ dimension justifies the “extended” SRM method we describe
below. It is important to keep in mind that the method we describe is only of
theoretical interest and will only be used later as a theoretical motivation for RN and
SVM. It should be clear that all the definitions and analysis above still hold for any
hypothesis space H, where we replace f0 with the minimizer of the expected risk in
H, f̂� is now the minimizer of the empirical risk in H, and h the VC-dimension of the
loss function V in H.

Let � be the number of training data. For a fixed ε > 0 such that � ≥ 2
ε2

,
let γ = 1

48
ε, and consider, as before, a nested sequence of hypothesis spaces H1 ⊂

H2 ⊂ . . . ⊂ Hn(�,ε), where each hypothesis space Hi has Vγ-dimension finite and
larger than that of all previous sets, i.e. if hi is the Vγ-dimension of space Hi, then
h1 ≤ h2 ≤ . . . ≤ hn(�,ε). For each element Hi of the structure consider the solution of
the learning problem to be:

f̂i,� = arg min
f∈Hi

Iemp[f ; �]. (2.19)

Because of the way we define our structure the larger i is the smaller the empirical
error of f̂i,� is (since we have more “flexibility” to fit our training data), but the larger
the right hand side of inequality (2.16) is. Using such a nested sequence of more and
more complex hypothesis spaces, this extended SRM learning technique consists of
finding the structure element Hn∗(�,ε) for which the trade off between empirical error
and the right hand side of (2.16) is optimal. One practical idea is to find numerically
for each Hi the “effective” εi so that the bound (2.16) is the same for all Hi, and then
choose f̂i,� for which the sum of the empirical risk and εi is minimized.

We conjecture that as � → ∞, for appropriate choice of n(�, ε) with n(�, ε) → ∞
as � → ∞, the expected risk of the solution of the method converges in probability
to a value less than 2ε away from the minimum expected risk in H =

⋃∞
i=1 Hi. Notice

that we described an SRM method for a fixed ε. If the Vγ dimension of Hi is finite
for every γ > 0, we can further modify the extended SRM method so that ε → 0
as � → ∞. We conjecture that if the target function f0 belongs to the closure of
H, then as � → ∞, with appropriate choices of ε, n(�, ε) and n∗(�, ε) the solution
of this SRM method can be proven (as before) to satisfy eq. (2.4) in probability.
Finding appropriate forms of ε, n(�, ε) and n∗(�, ε) is an open theoretical problem
(which is mostly a technical matter). Again, as in the case of “standard” SRM, in

practice � is finite so H =
⋃n(�,ε)

i=1 Hi is a small space and the solution of this method
may have expected risk much larger that the expected risk of the target function.
Approximation theory can be used to bound this difference [Niyogi and Girosi, 1996].

The proposed method is difficult to implement in practice since it is difficult to
decide the optimal trade off between empirical error and the bound (2.16). If we had
constructive bounds on the deviation between the empirical and the expected risk
like that of theorem 2.1.3 then we could have a practical way of choosing the optimal
element of the structure. Unfortunately existing bounds of that type [Alon et al., 1993,
Bartlett et al., 1996] are not tight. So the final choice of the element of the structure

30

may be done in practice using other techniques such as cross-validation [Wahba, 1990].
This “extended” structural risk minimization method with the theorems outlined

above will provide the basic tools for theoretically justifying and analyzing a number
of kernel machines. This is the topic of the next chapter.

31

Chapter 3

Learning with Kernel Machines

This chapter studies a particular type of learning machines, namely kernel machines, within
the SRM framework presented in chapter 2. These are learning machines for which the
hypothesis space is a subspace of a Reproducing Kernel Hilbert Space (hence the name kernel
machines). Two particular cases in this family of machines are Regularization Networks
(RN) and Support Vector Machines (SVM). The chapter discusses general kernel machines,
and, based on the theory presented in chapter 2, presents a theoretical justification and
statistical analysis particularly of RN and SVM. A large part of this chapter can be found
in [Evgeniou et al., 1999].

3.1 Setup of kernel machines

Following the mathematical formulation of learning considered in Statistical Learning
Theory, two are the key choices to be made when designing a learning machine:

1. Choose the loss function V .

2. Choose the set of possible functions – hypothesis space.

This chapter considers hypothesis spaces that are subsets of a Reproducing Kernel
Hilbert Space (RKHS) H defined by a kernel K (see below for an overview of RKHS).
Within the RKHS H, we perform structural risk minimization by first defining a
structure of hypothesis spaces.

The basic idea is to define a structure in terms of a nested sequence of hypothesis
spaces H1 ⊂ H2 ⊂ . . . ⊂ Hn(�) with Hm being the set of functions f in the RKHS H
with:

‖f‖2
K ≤ A2

m, (3.1)

where ‖f‖2
K is a norm in H defined by the positive definite function K (see below),

and Am is a monotonically increasing sequence of positive constants. Following the
SRM method outlined in chapter 2, for each m we solve the following constrained
minimization problem:

min
f∈H

1

�

�∑
i=1

V (yi, f(xi))

‖f‖2
K ≤ A2

m (3.2)

32

Machines of the form (3.2) are called kernel machines. Learning using kernel ma-
chines of the form (3.2) leads to using the Lagrange multiplier λm and to minimizing

1

�

�∑
i=1

V (yi, f(xi)) + λm(‖f‖2
K − A2

m),

with respect to f ∈ H and maximizing with respect to λm ≥ 0 for each element of
the structure. As discussed in chapter 2, we can then choose the optimal n∗(�) and
the associated λ∗(�), and get the optimal solution f̂n∗(�).

The solution we get using this method is clearly the same as the solution of:

min
f∈H

1

�

�∑
i=1

V (yi, f(xi)) + λ∗(�)‖f‖2
K (3.3)

where λ∗(�) is the optimal Lagrange multiplier corresponding to the optimal element
of the structure An∗(�). We also define kernel machines to be machines of the general
form:

min
f∈H

1

�

�∑
i=1

V (yi, f(xi)) + λ‖f‖2
K (3.4)

We discuss more formally the relations between machines (3.2) and (3.4) at the end
of the chapter, and for the moment we call kernel machines to be either of the two
formulations. Furthermore, it turns out that the solution of the kernel machines (3.4)
for any differentiable loss function V (this is the case for the loss functions considered
in this thesis) has always the same form, that is:

f(x) =
�∑

i=1

ciK(x,xi), (3.5)

with the coefficients ci found by solving the minimization problem (3.4) [Girosi, 1998].
Often the term kernel machines will refer also to machines of the form (3.5).

(y-f(x)) |y-f(x)| |1-yf(x)|

yf(x)(y-f(x)) (y-f(x))ε 1

 ε
2

+

− ε

Figure 3-1: The three loss functions considered: L2 for RN (left), Lε for SVMR
(middle), and soft margin for SVMC (right).

Notice that the choice of the loss function V leads to a family of learning machines.
In particular it leads to classical L2 Regularization Networks, to SVM regression, and
to SVM classification, for the following specific choices of the loss function V :

33

• V (y, f(x)) = (y − f(x))2 for Regularization Networks.

• V (y, f(x)) = |y − f(x)|ε for SVM regression.

• V (y, f(x)) = |1 − yf(x)|+ for SVM classification.

where | · |ε is Vapnik’s ε-insensitive loss function Lε [Vapnik, 1998] with |x|ε = |x| − ε
for |x| ≥ ε and 0 otherwise, while | · |+ is the soft margin loss function [Vapnik, 1998,
Cortes and Vapnik, 1995] with |x|+ = x for x ≥ 0 and 0 otherwise. These loss
functions are shown in figure 3-1. For SVM classification the loss functions:

• V (y, f(x)) = θ(1 − yf(x)) (hard margin loss function), and

• V (y, f(x)) = θ(−yf(x)) (misclassification loss function)

will also be discussed. These particular kernel machines are reviewed in this chapter.
First an overview of RKHS, which are the hypothesis spaces considered in the thesis,
is presented.

3.1.1 Reproducing Kernel Hilbert Spaces: a brief overview

A Reproducing Kernel Hilbert Space (RKHS) [Aronszajn, 1950] is a Hilbert space H
of functions defined over some bounded domain X ⊂ Rd with the property that, for
each x ∈ X, the evaluation functionals Fx defined as

Fx[f] = f(x) ∀f ∈ H
are linear, bounded functionals. The boundedness means that there exists a U =
Ux ∈ R+ such that:

|Fx[f]| = |f(x)| ≤ U ||f ||
for all f in the RKHS.

It can be proved [Wahba, 1990] that to every RKHS H there corresponds a unique
positive definite function K(x,y) of two variables in X, called the reproducing kernel
of H (hence the terminology RKHS), that has the following reproducing property:

f(x) =< f(y), K(y,x) >H ∀f ∈ H, (3.6)

where < ·, · >H denotes the scalar product in H. The function K behaves in H as the
delta function does in L2, although L2 is not a RKHS (the functionals Fx are clearly
not bounded).

To make things clearer we sketch a way to construct a RKHS, which is relevant to
this thesis. The mathematical details (such as the convergence or not of certain series)
can be found in the theory of integral equations [Hochstadt, 1973, Cochran, 1972,
Courant and Hilbert, 1962].

Let us assume that we have a sequence of positive numbers λn and linearly in-
dependent functions φn(x) such that they define a function K(x,y) in the following
way 1:

1When working with complex functions φn(x) this formula should be replaced with K(x,y) ≡∑∞
n=0 λnφn(x)φ∗

n(y)

34

K(x,y) ≡
∞∑

n=0

λnφn(x)φn(y), (3.7)

where the series is well defined (for example it converges uniformly). A simple calcu-
lation shows that the function K defined in eq. (3.7) is positive definite. Let us now
take as our Hilbert space to be the set of functions of the form:

f(x) =
∞∑

n=0

anφn(x) (3.8)

for any an ∈ R, and define the scalar product in our space to be:

<
∞∑

n=0

anφn(x),
∞∑

n=0

dnφn(x) >H≡
∞∑

n=0

andn

λn
. (3.9)

Assuming that all the evaluation functionals are bounded, it is now easy to check
that such an Hilbert space is a RKHS with reproducing kernel given by K(x,y). In
fact we have:

< f(y), K(y,x) >H=
∞∑

n=0

anλnφn(x)

λn
=

∞∑
n=0

anφn(x) = f(x), (3.10)

hence equation (3.6) is satisfied.
Notice that when we have a finite number of φn, the λn can be arbitrary (finite)

numbers, since convergence is ensured. In particular they can all be equal to one.
Generally, it is easy to show [Wahba, 1990] that whenever a function K of the form

(3.7) is available, it is possible to construct a RKHS as shown above. Vice versa, for
any RKHS there is a unique kernel K and corresponding λn, φn, that satisfy equation
(3.7) and for which equations (3.8), (3.9) and (3.10) hold for all functions in the
RKHS. Moreover, equation (3.9) shows that the norm of the RKHS has the form:

‖f‖2
K =

∞∑
n=0

a2
n

λn

(3.11)

The φn consist a basis for the RKHS (not necessarily orthonormal), and the kernel
K is the “correlation” matrix associated with these basis functions. It is in fact
well known that there is a close relation between Gaussian processes and RKHS
[Marroquin et al., 1987, Girosi et al., 1991, Poggio and Girosi, 1998]. Wahba [Wahba,
1990] discusses in depth the relation between regularization, RKHS and correlation
functions of Gaussian processes. The choice of the φn defines a space of functions –
the functions that are spanned by the φn.

We also call the space {(φn(x))∞n=1 , x ∈ X} the feature space induced by the kernel
K. The choice of the φn defines the feature space where the data x are “mapped”. We
refer to the dimensionality of the feature space as the dimensionality of the RKHS.
This is clearly equal to the number of basis elements φn, which does not necessarily
have to be infinite. For example, with K a Gaussian, the dimensionality of the RKHS
is infinite (φn(x) are the Fourier components ein·x), while when K is a polynomial of

35

degree k (K(x,y) = (1 + x · y)k), the dimensionality of the RKHS is finite, and all
the infinite sums above are replaced with finite sums.

It is well known that expressions of the form (3.7) actually abound. In fact, it
follows from Mercer’s theorem [Hochstadt, 1973] that any function K(x,y) which
is the kernel of a positive operator in L2(Ω) has an expansion of the form (3.7), in
which the φi and the λi are respectively the orthogonal eigenfunctions and the positive
eigenvalues of the operator corresponding to K. In [Stewart, 1976] it is reported that
the positivity of the operator associated to K is equivalent to the statement that the
kernel K is positive definite, that is the matrix Kij = K(xi,xj) is positive definite for
all choices of distinct points xi ∈ X. Notice that a kernel K could have an expansion
of the form (3.7) in which the φn are not necessarily its eigenfunctions. The only
requirement is that the φn are linearly independent but not necessarily orthogonal.

In the case that the space X has finite cardinality, the “functions” f are evaluated
only at a finite number of points x. If M is the cardinality of X, then the RKHS
becomes an M-dimensional space where the functions f are basically M-dimensional
vectors, the kernel K becomes an M × M matrix, and the condition that makes it
a valid kernel is that it is a symmetric positive definite matrix (semi-definite if M is
larger than the dimensionality of the RKHS). Positive definite matrices are known to
be the ones which define dot products, i.e. fKfT ≥ 0 for every f in the RKHS. The
space consists of all M-dimensional vectors f with finite norm fKfT .

Summarizing, RKHS are Hilbert spaces where the dot product is defined using a
function K(x,y) which needs to be positive definite just like in the case that X has
finite cardinality. The elements of the RKHS are all functions f that have a finite
norm given by equation (3.11). Notice the equivalence of a) choosing a specific RKHS
H b) choosing a set of φn and λn c) choosing a reproducing kernel K. The last one
is the most natural for most applications.

Finally, it is useful to notice that the solutions of the methods discussed in this
chapter can be written both in the form (3.5), and in the form (3.8). Often in the
literature formulation (3.5) is called the dual form of f , while (3.8) is called the primal
form of f .

3.2 Regularization Networks

In this section we consider the approximation scheme that arises from the minimiza-
tion of the quadratic functional

min
f∈H

H[f] =
1

�

�∑
i=1

(yi − f(xi))
2 + λ‖f‖2

K (3.12)

for a fixed λ. Formulations like equation (3.12) are a special form of regularization
theory developed by Tikhonov, Ivanov [Tikhonov and Arsenin, 1977, Ivanov, 1976]

and others to solve ill-posed problems and in particular to solve the problem of ap-
proximating the functional relation between x and y given a finite number of examples
D� = {xi, yi}�

i=1.

36

In classical regularization the data term is an L2 loss function for the empirical
risk, whereas the second term – called stabilizer – is usually written as a functional
Ω(f) with certain properties [Tikhonov and Arsenin, 1977, Poggio and Girosi, 1989,
Girosi et al., 1995]. Here we consider a special class of stabilizers, that is the norm
‖f‖2

K in a RKHS induced by a symmetric, positive definite function K(x,y). This
choice allows us to develop a framework of regularization which includes most of
the usual regularization schemes. The only significant omission in this treatment –
that we make here for simplicity – is the restriction on K to be symmetric positive
definite so that the stabilizer is a norm. However, the theory can be extended without
problems to the case in which K is positive semidefinite, in which case the stabilizer is
a semi-norm [Wahba, 1990, Madych and Nelson, 1990a, Dyn, 1991, Dyn et al., 1986].
This approach was also sketched in [Smola and Schölkopf, 1998].

The stabilizer in equation (3.12) effectively constrains f to be in the RKHS defined
by K. It is possible to show (see for example [Poggio and Girosi, 1989, Girosi et al.,
1995]) that the function that minimizes the functional (3.12) has the form:

f(x) =
�∑

i=1

ciK(x,xi), (3.13)

where the coefficients ci depend on the data and satisfy the following linear system
of equations:

(K + λI)c = y (3.14)

where I is the identity matrix, and we have defined

(y)i = yi , (c)i = ci , (K)ij = K(xi,xj).

It is remarkable that the solution of the more general case of

min
f∈H

H[f] =
1

�

�∑
i=1

V (yi − f(xi)) + λ‖f‖2
K , (3.15)

where the function V is any differentiable function, is quite similar: the solution
has exactly the same general form of (3.13), though the coefficients cannot be found
anymore by solving a linear system of equations as in equation (3.14) [Girosi, 1991,
Girosi et al., 1991, Smola and Schölkopf, 1998]. For a proof see [Girosi, 1998].

The approximation scheme of equation (3.13) has a simple interpretation in terms
of a network with one layer of hidden units [Poggio and Girosi, 1992, Girosi et al.,
1995]. Using different kernels we get various RN’s. A short list of examples is given
in Table 1.

When the kernel K is positive semidefinite, there is a subspace of functions f
which have norm ‖f‖2

K equal to zero. They form the null space of the functional
‖f‖2

K and in this case the minimizer of (3.12) has the form [Wahba, 1990]:

f(x) =
�∑

i=1

ciK(x,xi) +
k∑

α=1

bαψα(x), (3.16)

37

Kernel Function Regularization Network
K(x − y) = exp(−‖x − y‖2) Gaussian RBF

K(x − y) = (‖x− y‖2 + c2)−
1
2 Inverse Multiquadric

K(x − y) = (‖x− y‖2 + c2)
1
2 Multiquadric

K(x − y) = ‖x− y‖2n+1 Thin plate splines
K(x − y) = ‖x− y‖2n ln(‖x− y‖)
K(x,y) = tanh(x · y − θ) (only for some values of θ)

Multi Layer Perceptron
K(x,y) = (1 + x · y)d Polynomial of degree d
K(x, y) = B2n+1(x − y) B-splines

K(x, y) = sin(d+1/2)(x−y)

sin
(x−y)

2

Trigonometric polynomial of degree d

Table 3.1: Some possible kernel functions. The first four are radial kernels. The
multiquadric and thin plate splines are positive semidefinite and thus require an
extension of the simple RKHS theory presented here. The last three kernels were
proposed by Vapnik (Vapnik,1998), originally for SVM. The last two kernels are
one-dimensional: multidimensional kernels can be built by tensor products of one-
dimensional ones. The functions Bn are piecewise polynomials of degree n, whose
exact definition can be found in (Schumaker,1981).

where {ψα}k
α=1 is a basis in the null space of the stabilizer, which in most cases is a set

of polynomials, and therefore will be referred to as the “polynomial term” in equation
(3.16). The coefficients bα and ci depend on the data. For the classical regularization
case of equation (3.12), the coefficients of equation (3.16) satisfy the following linear
system:

(K + λI)c + ΨTb = y, (3.17)

Ψc = 0, (3.18)

where I is the identity matrix, and we have defined

(y)i = yi , (c)i = ci , (b)i = bi ,

(K)ij = K(xi,xj) , (Ψ)αi = ψα(xi).

When the kernel is positive definite, as in the case of the Gaussian, the null space of
the stabilizer is empty. However, it is often convenient to redefine the kernel and the
norm induced by it so that the induced RKHS contains only zero-mean functions,
that is functions f1(x) s.t.

∫
X f1(x)dx = 0. In the case of a radial kernel K, for

instance, this amounts to considering a new kernel

K ′(x,y) = K(x,y) − λ0

38

without the zeroth order Fourier component, and a norm

‖f‖2
K′ =

∞∑
n=1

a2
n

λn
. (3.19)

The null space induced by the new K ′ is the space of constant functions. Then the
minimizer of the corresponding functional (3.12) has the form:

f(x) =
�∑

i=1

ciK
′(x,xi) + b, (3.20)

with the coefficients satisfying equations (3.17) and (3.18), that respectively become:

(K ′ + λI)c + 1b = (K − λ0I + λI)c + 1b = (K + (λ − λ0)I)c + 1b = y, (3.21)

�∑
i=1

ci = 0. (3.22)

Equations (3.20) and (3.22) imply that the the minimizer of (3.12) is of the form:

f(x) =
�∑

i=1

ciK
′(x,xi) + b =

�∑
i=1

ci(K(x,xi) − λ0) + b =
�∑

i=1

ciK(x,xi) + b. (3.23)

Thus we can effectively use a positive definite K and the constant b, since the only
change in equation (3.21) just amounts to the use of a different λ. Choosing to use a
non-zero b effectively means choosing a different feature space and a different stabilizer
from the usual case of equation (3.12): the constant feature is not considered in the
RKHS norm and therefore is not “penalized”. This choice is often quite reasonable,
since in many regression and, especially, classification problems, shifts by a constant
in f should not be penalized.

In summary, the argument of this section shows that using a RN of the form
(3.23) (for a certain class of kernels K) is equivalent to minimizing functionals such
as (3.12) or (3.15). The choice of K is equivalent to the choice of a corresponding
RKHS and leads to various classical learning techniques such as RBF networks. We
discuss connections between regularization and other techniques later in this section.

Notice that in the framework we use here the kernels K are not required to be
radial or even shift-invariant. Regularization techniques used to solve supervised
learning problems [Poggio and Girosi, 1989, Girosi et al., 1995] were typically used
with shift invariant stabilizers (tensor product and additive stabilizers are exceptions,
see [Girosi et al., 1995]). We now turn to such kernels.

3.2.1 Examples of Regularization Networks

Radial Basis Functions

Let us consider a special case of the kernel K of the RKHS, which is the standard case
in several papers and books on regularization [Wahba, 1990, Poggio and Girosi, 1990,

39

Girosi et al., 1995]: the case in which K is shift invariant, that is K(x,y) = K(x−y)
and the even more special case of a radial kernel K(x,y) = K(||x − y||). A radial
positive definite K defines a RKHS in which the ”features” φn are Fourier components
that is

K(x,y) ≡
∞∑

n=0

λnφn(x)φn(y) ≡
∞∑

n=0

λne
i2πn·xe−i2πn·y. (3.24)

Thus any positive definite radial kernel defines a RKHS over [0, 1] with a scalar
product of the form:

< f, g >H≡
∞∑

n=0

f̃(n)g̃∗(n)

λn
, (3.25)

where f̃ is the Fourier transform of f . The RKHS becomes simply the subspace of
L2([0, 1]d) of the functions such that

‖f‖2
K =

∞∑
n=1

|f̃(n)|2
λn

< +∞. (3.26)

Functionals of the form (3.26) are known to be smoothness functionals. In fact,
the rate of decrease to zero of the Fourier transform of the kernel will control the
smoothness property of the function in the RKHS. For radial kernels the minimizer
of equation (3.12) becomes:

f(x) =
�∑

i=1

ciK(||x− xi||) + b (3.27)

and the corresponding RN is a Radial Basis Function Network. Thus Radial Basis
Function networks are a special case of RN [Poggio and Girosi, 1989, Girosi et al.,
1995].

In fact all translation-invariant stabilizers K(x,xi) = K(x − xi) correspond to
RKHS’s where the basis functions φn are Fourier eigenfunctions and only differ in
the spectrum of the eigenvalues (for a Gaussian stabilizer the spectrum is Gaussian,
that is λn = Ae(−n2/2) (for σ = 1)). For example, if λn = 0 for all n > n0, the
corresponding RKHS consists of all bandlimited functions, that is functions with zero
Fourier components at frequencies higher than n0

2. Generally λn are such that they
decrease as n increases, therefore restricting the class of functions to be functions
with decreasing high frequency Fourier components.

In classical regularization with translation invariant stabilizers and associated ker-
nels, the common experience, often reported in the literature, is that the form of the
kernel does not matter much. It is a conjecture that this may be because all transla-
tion invariant K induce the same type of φn features - the Fourier basis functions.

2The simplest K is then K(x, y) = sinc(x − y), or kernels that are convolution with it.

40

Regularization, generalized splines and kernel smoothers

A number of approximation and learning techniques can be studied in the framework
of regularization theory and RKHS. For instance, starting from a reproducing kernel
it is easy [Aronszajn, 1950] to construct kernels that correspond to tensor products
of the original RKHS; it is also easy to construct the additive sum of several RKHS
in terms of a reproducing kernel.

• Tensor Product Splines: In the particular case that the kernel is of the form:

K(x,y) = Πd
j=1k(xj , yj)

where xj is the jth coordinate of vector x and k is a positive definite function
with one-dimensional input vectors, the solution of the regularization problem
becomes:

f(x) =
∑

i

ciΠ
d
j=1k(xj

i , x
j)

Therefore we can get tensor product splines by choosing kernels of the form
above [Aronszajn, 1950].

• Additive Splines: In the particular case that the kernel is of the form:

K(x,y) =
d∑

j=1

k(xj , yj)

where xj is the jth coordinate of vector x and k is a positive definite function
with one-dimensional input vectors, the solution of the regularization problem
becomes:

f(x) =
∑

i

ci(
d∑

j=1

k(xj
i , x

j)) =
d∑

j=1

(
∑

i

cik(xj
i , x

j)) =
d∑

j=1

fj(x
j)

So in this particular case we get the class of additive approximation schemes of
the form:

f(x) =
d∑

j=1

fj(x
j)

A more extensive discussion on relations between known approximation methods and
regularization can be found in [Girosi et al., 1995].

41

Dual representation of Regularization Networks

Every RN can be written as

f(x) = c · K(x) (3.28)

where K(x) is the vector of functions such that (K(x))i = K(x,xi). Since the
coefficients c satisfy the equation (3.14), equation (3.28) becomes

f(x) = (K + λI)−1y · K(x) .

We can rewrite this expression as

f(x) =
�∑

i=1

yibi(x) = y · b(x) (3.29)

in which the vector b(x) of basis functions is defined as:

b(x) = (K + λI)−1K(x) (3.30)

and now depends on all the data points and on the regularization parameter λ. The
representation (3.29) of the solution of the approximation problem is known as the
dual3 of equation (3.28), and the basis functions bi(x) are called the equivalent ker-
nels, because of the similarity with the kernel smoothing technique [Silverman, 1984,
Härdle, 1990, Hastie and Tibshirani, 1990]. Notice that, while in equation (3.28) the
difficult part is the computation of coefficients ci, the kernel function K(x,xi) being
predefined, in the dual representation (3.29) the difficult part is the computation of
the basis function bi(x), the coefficients of the expansion being explicitly given by the
yi.

As observed in [Girosi et al., 1995], the dual representation of a RN shows clearly
how careful one should be in distinguishing between local vs. global approximation
techniques. In fact, we expect (see [Silverman, 1984] for the 1-D case) that in most
cases the kernels bi(x) decrease with the distance of the data points xi from the evalu-
ation point, so that only the neighboring data affect the estimate of the function at x,
providing therefore a “local” approximation scheme. Even if the original kernel K is
not “local”, like the absolute value |x| in the one-dimensional case or the multiquadric

K(x) =
√

1 + ‖x‖2, the basis functions bi(x) are bell shaped, local functions, whose
locality will depend on the choice of the kernel K, on the density of data points, and
on the regularization parameter λ. This shows that apparently “global” approxima-
tion schemes can be regarded as local, memory-based techniques (see equation 3.29)
[Mhaskar, 1993a].

3.2.2 From regression to classification

In the particular case that the unknown function takes only two values, i.e. -1 and
1, we have the problem of binary pattern classification, i.e. the case where we are

3Notice that this “duality” is different from the one mentioned at the end of section 3.1.1.

42

given data that belong to one of two classes (classes -1 and 1) and we want to find a
function that separates these classes. It can be shown [Duda and Hart, 1973] that, if
V in equation (3.15) is (y−f(x))2, and if K defines a finite dimensional RKHS, then
the minimizer of the equation

H[f] =
1

�

�∑
i=1

(f(xi) − yi)
2 + λ‖f‖2

K , (3.31)

for λ → 0 approaches asymptotically the function in the RKHS that is closest in the
L2 norm to the regression function:

f0(x) = Pr(y = 1|x) − Pr(y = −1|x) (3.32)

The optimal Bayes rule classifier is given by thresholding the regression function,
i.e. by sign(f0(x)). Notice that in the case of infinite dimensional RKHS asymptotic
results ensuring consistency are available (see [Devroye et al., 1996], theorem 29.8)
but depend on several conditions that are not automatically satisfied in the case we
are considering. The Bayes classifier is the best classifier, given the correct probability
distribution P . However, approximating function (3.32) in the RKHS in L2 does not
necessarily imply that we find the best approximation to the Bayes classifier. For
classification, only the sign of the regression function matters and not the exact value
of it. Notice that an approximation of the regression function using a mean square
error criterion places more emphasis on the most probable data points and not on
the most “important” ones which are the ones near the separating boundary.

In the next section we will study Vapnik’s more natural approach to the problem
of classification that is based on choosing a loss function V different from the square
error. This approach leads to solutions that emphasize data points near the separating
surface.

3.3 Support Vector Machines

In this section we first discuss the technique of Support Vector Machines (SVM) for
Regression (SVMR) [Vapnik, 1995, Vapnik, 1998] in terms of the SVM functional.
We will characterize the form of the solution, and then discuss SVM for Classification
(SVMC). We also show that SVM for binary pattern classification can be derived as
a special case of the regression formulation.

3.3.1 SVM in RKHS

Once again the problem is to learn a functional relation between x and y given a
finite number of examples D� = {xi, yi}�

i=1.
The method of SVMR [Vapnik, 1998] corresponds to the following functional

H[f] =
1

�

�∑
i=1

|yi − f(xi)|ε + λ‖f‖2
K (3.33)

43

which is a special case of equation (3.15) and where

V (x) = |x|ε ≡
{

0 if |x| < ε
|x| − ε otherwise,

(3.34)

is the ε−Insensitive Loss Function (ILF) (also noted with Lε). Note that the ILF
assigns zero cost to errors smaller then ε. In other words, for the cost function | · |ε
any function closer than ε to the data points is a perfect interpolant. We can think of
the parameter ε as the resolution at which we want to look the data. For this reason
we expect that the larger ε is, the simpler the representation will be [Girosi, 1997].

The minimizer of H in the RKHS H defined by the kernel K has the general form
given by equation (3.23), that is

f(x) =
�∑

i=1

ciK(xi,x) + b, (3.35)

where we can include the constant b for the same reasons discussed in the previous
section.

In order to find the solution of SVM we have to minimize functional (3.33) (with
V given by equation (3.34)) with respect to f . Since it is difficult to deal with
the function V (x) = |x|ε, the above problem is replaced by the following equivalent
problem (by equivalent we mean that the same function minimizes both functionals),
in which an additional set of variables is introduced:

Problem 3.3.1

min
f,ξ,xi∗

Φ(f, ξ, ξ∗) =
C

�

�∑
i=1

(ξi + ξ∗i) +
1

2
‖f‖2

K (3.36)

subject to the constraints:

f(xi) − yi ≤ ε + ξi i = 1, . . . , �
yi − f(xi) ≤ ε + ξ∗i i = 1, . . . , �
ξi, ξ

∗
i ≥ 0 i = 1, . . . , �.

(3.37)

The parameter C in (3.36) has been introduced in order to be consistent with the
standard SVM notations [Vapnik, 1998]. Note that λ in eq. (3.33) corresponds to
1

2C
. The equivalence is established just noticing that in problem (3.3.1) a (linear)

penalty is paid only when the absolute value of the error exceeds ε (because of the Lε

loss function). Notice that if either of the two top constraints is satisfied with some
non-zero ξi (or ξ∗i), the other is automatically satisfied with a zero value for ξ∗i (or ξi).

Problem (3.3.1) can be solved through the technique of Lagrange multipliers. For
details see [Vapnik, 1998]. The result is that the function which solves problem (3.3.1)
can be written as:

f(x) =
�∑

i=1

(α∗
i − αi)K(xi,x) + b,

where α∗
i and αi are the solution of the following QP-problem:

44

Problem 3.3.2

min
α,α�

W(α, α�) = ε
�∑

i=1

(α∗
i + αi)−

�∑
i=1

yi(α
∗
i −αi) +

1

2

�∑
i,j=1

(α∗
i −αi)(α

∗
j −αj)K(xi,xj),

subject to the constraints:

�∑
i=1

(α∗
i − αi) = 0,

0 ≤ α∗
i , αi ≤

C

�
, i = 1, . . . , �.

The solutions of problems (3.3.1) and (3.3.2) are related by the Kuhn-Tucker condi-
tions:

αi(f(xi) − yi − ε − ξi) = 0 i = 1, . . . , � (3.38)

α∗
i (yi − f(xi) − ε − ξ∗i) = 0 i = 1, . . . , � (3.39)

(
C

�
− αi)ξi = 0 i = 1, . . . , � (3.40)

(
C

�
− α∗

i)ξ
∗
i = 0 i = 1, . . . , �. (3.41)

The input data points xi for which αi or α∗
i are different from zero are called support

vectors (SVs). Observe that αi and α∗
i cannot be simultaneously different from zero,

so that the constraint αiα
∗
i = 0 holds true. Any of the SVs for which 0 < αj < C

�

(and therefore ξj = 0) can be used to compute the parameter b. In fact, in this case
it follows from the Kuhn-Tucker conditions that:

f(xj) =
�∑

i=1

(α∗
i − αi)K(xi,xj) + b = yj + ε.

from which b can be computed. The SVs are those data points xi at which the error
is either greater or equal to ε4. Points at which the error is smaller than ε are never
support vectors, and do not enter in the determination of the solution. A consequence
of this fact is that if the SVM were run again on the new data set consisting of only
the SVs the same solution would be found.

3.3.2 From regression to classification

In the previous section we discussed the connection between regression and classifica-
tion in the framework of regularization. In this section, after stating the formulation
of SVM for binary pattern classification (SVMC) as developed by Cortes and Vap-
nik [Cortes and Vapnik, 1995], we discuss a connection between SVMC and SVMR.

4In degenerate cases however, it can happen that points whose error is equal to ε are not SVs.

45

We will not discuss the theory of SVMC here; we refer the reader to [Vapnik, 1998].
We point out that the SVM technique has first been proposed for binary pattern
classification problems and then extended to the general regression problem [Vapnik,
1995].

SVMC can be formulated as the problem of minimizing:

H(f) =
1

�

�∑
i

|1 − yif(xi)|+ +
1

2C
‖f‖2

K , (3.42)

which is again of the form (3.4). Using the fact that yi ∈ {−1, +1} it is easy to see
that formulation (3.42) is equivalent to the following quadratic programming problem,
originally proposed by Cortes and Vapnik [Cortes and Vapnik, 1995]:

Problem 3.3.3

min
f∈H,ξ

Φ(f, ξ) =
C

�

�∑
i=1

ξi +
1

2
‖f‖2

K

subject to the constraints:

yif(xi) ≥ 1 − ξi, i = 1, . . . , �
ξi ≥ 0, i = 1, . . . , �.

(3.43)

The solution of this problem is again of the form:

f(x) =
�∑

i=1

ciK(xi,x) + b, (3.44)

where it turns out that 0 ≤ ci ≤ C
�
. The input data points xi for which ci is different

from zero are called, as in the case of regression, support vectors (SVs). It is often
possible to write the solution f(x) as a linear combination of SVs in a number of
different ways (for example in case that the feature space induced by the kernel K
has dimensionality lower than the number of SVs). The SVs that appear in all these
linear combinations are called essential support vectors.

Roughly speaking the motivation for problem (3.3.3) is to minimize the empirical
error measured by

∑�
i=1 ξi

5 while controlling capacity measured in terms of the norm
of f in the RKHS. In fact, the norm of f is related to the notion of margin, an
important idea for SVMC for which we refer the reader to [Vapnik, 1998, Burges,
1998].

We now address the following question: what happens if we apply the SVMR
formulation given by problem (3.3.1) to the binary pattern classification case, i.e. the
case where yi take values {−1, 1}, treating classification as a regression on binary
data?

5For binary pattern classification the empirical error is defined as a sum of binary numbers which
in problem (3.3.3) would correspond to

∑�
i=1 θ(ξi). However in such a case the minimization

problem becomes computationally intractable. This is why in practice in the cost functional Φ(f, ξ)
we approximate θ(ξi) with ξi. We discuss this further at the end of this chapter.

46

Notice that in problem (3.3.1) each example has to satisfy two inequalities (which
come out of using the Lε loss function), while in problem (3.3.3) each example
has to satisfy one inequality. It is possible to show that for a given constant C in
problem (3.3.3), there exist C and ε in problem (3.3.1) such that the solutions of
the two problems are the same, up to a constant factor. This is summarized in the
following theorem:

Theorem 3.3.1 Suppose the classification problem (3.3.3) is solved with parameter
C, and the optimal solution is found to be f . Then, there exists a value a ∈ (0, 1)
such that for ∀ε ∈ [a, 1), if the regression problem (3.3.1) is solved with parameter
(1 − ε)C, the optimal solution will be (1 − ε)f .

We refer to [Pontil et al., 1998] for the proof. A direct implication of this result is
that one can solve any SVMC problem through the SVMR formulation. It is an open
question what theoretical implications theorem 3.3.1 may have about SVMC and
SVMR. In particular, chapter 4 presents some recent theoretical results on SVMC
that have not yet been extended to SVMR. It is possible that theorem 3.3.1 may help
to extend them to SVMR.

3.4 SRM for RNs and SVMs

At the beginning of this chapter we outlined how one should implement both RN and
SVM according to SRM. The idea is to solve a series of constrained minimization
problems of the form (3.2), namely:

min
f∈H

1

�

�∑
i=1

V (yi, f(xi))

‖f‖2
K ≤ A2

m (3.45)

for a sequence of constants A1 < A2 < . . .An(�), and then pick among the solutions
found the optimal one according to the SRM principle presented in chapter 2. The
solution found is the same as the one found by solving directly the minimization
problem (3.4), namely:

min
f∈H

1

�

�∑
i=1

V (yi, f(xi)) + λ‖f‖2
K , (3.46)

where λ is the regularization parameter that, according to the SRM principle, should
be equal to the optimal Lagrange multiplier found for the optimal An∗(�) (see the
beginning of the chapter). We come back to this issue at the end of this chapter, and
for the moment we consider only kernel machines of the form (3.45).

For the SRM principle to be used it is required that the hypothesis spaces consid-
ered do indeed define a structure. It is required, in other words, that the “complexity”
of the set of functions: {

V (y, f(x)) ; f ∈ H , ‖f‖2
K ≤ A2

}
(3.47)

47

is an increasing function of A. Thus, we need to show that either the VC-dimension
or the Vγ dimension of the set of functions (3.47) is an increasing function of A for the
loss functions considered. This would theoretically justify the chosen loss functions
(for RN and SVM), so we now turn to this issue. We first consider the problem of
regression with RN and SVMR. Classification with SVMC is considered later.

3.4.1 Why not use the VC-dimension

Unfortunately it can be shown that when the loss function V is (y − f(x))2 (L2) and
also when it is |yi−f(xi)|ε (Lε), the VC-dimension of V (y, f(x)) with ‖f‖2

K ≤ A2 does
not depend on A, and is infinite if the RKHS is infinite dimensional. More precisely
we have the following theorem (also shown in [Williamson et al., 1998]):

Theorem 3.4.1 Let D be the dimensionality of a RKHS H. For both the L2 and the
ε-insensitive loss function, the VC-dimension of the set of functions {V (y, f(x)) ; f ∈
H, ||f ||2K ≤ A2} is O(D), independently of A. Moreover, if D is infinite, the VC-
dimension is infinite for any A �= 0.

Proof
Consider first the case of Lp loss functions. Consider an infinite dimensional

RKHS, and the set of functions with norm ‖f‖2
K ≤ A2. If for any N we can find N

points that we can shatter using functions of our set according to the rule:

class 1 if : |y − f(x)|p ≥ s

class − 1 if : |y − f(x)|p ≤ s

then clearly the V C dimension is infinite. Consider N distinct points (xi, yi) with
yi = 0 for all i, and let the smallest eigenvalue of matrix G with Gij = K(xi,xj) be
λ. Since we are in infinite dimensional RKHS, matrix G is always invertible [Wahba,
1990], so λ > 0 since G is positive definite and finite dimensional (λ may decrease as
N increases, but for any finite N it is well defined and �= 0).

For any separation of the points, we consider a function f of the form f(x) =∑N
i=1 αiK(xi,x), which is a function of the form (3.8). We need to show that we can

find coefficients αi such that the RKHS norm of the function is ≤ A2. Notice that
the norm of a function of this form is αTGα where (α)i = αi (throughout the proofs
bold letters are used for noting vectors). Consider the set of linear equations

xj ∈ class 1 :
∑N

i=1 αiGij = s
1
p + η η > 0

xj ∈ class − 1 :
∑N

i=1 αiGij = s
1
p − η η > 0

Let s = 0. If we can find a solution α to this system of equations such that αTGα ≤
A2 we can perform this separation, and since this is any separation we can shatter
the N points. Notice that the solution to the system of equations is G−1η where η
is the vector whose components are (η)i = η when xi is in class 1, and −η otherwise.
So we need (G−1η)TG(G−1η) ≤ A2 ⇒ ηTG−1η ≤ A2. Since the smallest eigenvalue

48

of G is λ > 0, we have that ηTG−1η ≤ ηTη
λ

. Moreover ηTη = Nη2. So if we choose

η small enough such that Nη2

λ
≤ A2 ⇒ η2 ≤ A2λ

N
, the norm of the solution is less than

A2, which completes the proof.
For the case of the Lε loss function the argument above can be repeated with

yi = ε to prove again that the VC dimension is infinite in an infinite dimensional
RKHS.

Finally, notice that the same proof can be repeated for finite dimensional RKHS
to show that the V C dimension is never less than the dimensionality D of the RKHS,
since it is possible to find D points for which matrix G is invertible and repeat the
proof above. As a consequence the VC dimension cannot be controlled by A. �

It is thus impossible to use the standard SRM with this kind of hypothesis spaces:
in the case of finite dimensional RKHS, the RKHS norm of f cannot be used to
define a structure of spaces with increasing VC-dimensions, and in the (typical) case
that the dimensionality of the RKHS is infinite, it is not even possible to use the
bounds on the expected error that the theory gives (the bounds in chapter 2). So the
VC-dimension cannot be used directly neither for RN nor for SVMR.

On the other hand, we can still use the Vγ dimension and the extended SRM
method outlined in chapter 2. This is discussed next.

3.4.2 A theoretical justification of RN and SVM regression

It turns out that, under mild “boundedness” conditions, for both the (y − f(x))2

(L2) and the |yi − f(xi)|ε (Lε) loss functions, the Vγ dimension of V (y, f(x)) with
‖f‖2

K ≤ A2 does depend on A, and is finite even if the RKHS is infinite dimensional.
More precisely we have the following theorem (a tighter computation that holds under
some conditions is shown later in this section):

Theorem 3.4.2 Let D be the dimensionality of a RKHS H with kernel K. Assume
for both the input space X and the output space Y are bounded, let R be the radius
of the smallest ball containing the data x in the feature space induced by kernel K,
and assume y ∈ [0, 1]. For both the L2 and the ε-insensitive loss function, the Vγ

dimension of the set of functions {V (y, f(x)) ; f ∈ H, ||f ||2K ≤ A2} is finite for

∀ γ > 0, with h ≤ O(min (D, (R2+1)(A2+1)
γ2).

Proof
Let’s consider first the case of the L1 loss function. Let B be the upper bound on

the loss function (which exists for the loss functions considered since both spaces X
and Y are bounded). From definition 2.1.7 we can decompose the rules for separating
points as follows:

class 1 if yi − f(xi) ≥ s + γ
or yi − f(xi) ≤ −(s + γ)

class − 1 if yi − f(xi) ≤ s − γ
and yi − f(xi) ≥ −(s − γ)

(3.48)

49

for some γ ≤ s ≤ B − γ. For any N points, the number of separations of the points
we can get using rules (3.48) is not more than the number of separations we can
get using the product of two indicator functions with margin (of hyperplanes with
margin):

function (a) : class 1 if yi − f1(xi) ≥ s1 + γ
class − 1 if yi − f1(xi) ≤ s1 − γ

function (b) : class 1 if yi − f2(xi) ≥ −(s2 − γ)
class − 1 if yi − f2(xi) ≤ −(s2 + γ)

(3.49)

where ‖f1‖2
K ≤ A2 and ‖f2‖2

K ≤ A2 and γ ≤ s1, s2 ≤ B−γ. This is shown as follows.
Clearly the product of the two indicator functions (3.49) has less “separating

power” when we add the constraints s1 = s2 = s and f1 = f2 = f . Furthermore, even
with these constraints we still have more “separating power” than we have using rules
(3.48): any separation realized using (3.48) can also be realized using the product of
the two indicator functions (3.49) under the constraints s1 = s2 = s and f1 = f2 = f .
For example, if y − f(x) ≥ s + γ then indicator function (a) will give +1, indicator
function (b) will give also +1, so their product will give +1 which is what we get if
we follow (3.48). Similarly for all other cases.

As mentioned in chapter 2, for any N points the number of ways we can separate
them is bounded by the growth function. Moreover, for products of indicator functions
it is known [Vapnik, 1998] that the growth function is bounded by the product of the
growth functions of the indicator functions. Furthermore, the indicator functions
in (3.49) are hyperplanes with margin in the D + 1 dimensional space of vectors
{φn(x), y} where the radius of the data is R2 + 1, the norm of the hyperplane is
bounded by A2 +1, (where in both cases we add 1 because of y), and the margin is at

least γ2

A2+1
. The Vγ dimension hγ of these hyperplanes is known [Vapnik, 1998, Bartlett

and Shawe-Taylor, 1998b] to be bounded by hγ ≤ min((D + 1) + 1, (R2+1)(A2+1)
γ2). So

the growth function of the separating rules (3.48) is bounded by the product of the

growth functions (eN
hγ

)hγ , that is G(N) ≤
(
(eN

hγ
)hγ

)2
whenever N ≥ hγ. If hreg

γ is the Vγ

dimension, then hreg
γ cannot be larger than the larger number N for which inequality

2N ≤ (eN
hγ

)2hγ holds. From this, after some algebraic manipulations (take the log of

both sides) we get that N ≤ 5hγ, therefore hreg
γ ≤ 5 min (D + 2, (R2+1)(A2+1)

γ2) which
proves the theorem for the case of L1 loss functions.

For general Lp loss functions we can follow the same proof where (3.48) now needs
to be rewritten as:

class 1 if yi − f(xi) ≥ (s + γ)
1
p

or f(xi) − yi ≥ (s + γ)
1
p

class − 1 if yi − f(xi) ≤ (s − γ)
1
p

and f(xi) − yi ≤ (s − γ)
1
p

(3.50)

Moreover, for 1 < p < ∞, (s + γ)
1
p ≥ s

1
p + γ

pB
(since γ =

(
(s + γ)

1
p

)p
−

(
s

1
p

)p
=

= ((s + γ)
1
p − s

1
p)(((s + γ)

1
p)p−1 + . . . + (s

1
p)p−1) ≤ ((s + γ)

1
p − s

1
p)(B + . . . B) =

= ((s + γ)
1
p − s

1
p)(pB)) and (s − γ)

1
p ≤ s

1
p − γ

pB
(similarly). Repeating the

50

same argument as above, we get that the Vγ dimension is bounded by 5 min (D +

2, (pB)2(R2+1)(A2+1)
γ2). Finally, for the Lε loss function (3.48) can be rewritten as:

class 1 if yi − f(xi) ≥ s + γ + ε
or f(xi) − yi ≥ s + γ + ε

class − 1 if yi − f(xi) ≤ s − γ + ε
and f(xi) − yi ≤ s − γ + ε

(3.51)

where calling s′ = s+ ε we can simply repeat the proof above and get the same upper
bound on the Vγ dimension as in the case of the L1 loss function. (Notice that the
constraint γ ≤ s ≤ B − γ is not taken into account. Taking this into account may
slightly change the Vγ dimension for Lε. Since it is a constraint, it can only decrease
- or not change - the Vγ dimension). �

Notice that for fixed γ and fixed radius of the data the only variable that controls
the Vγ dimension is the upper bound on the RKHS norm of the functions, namely
A. Moreover, the Vγ dimension is finite for ∀ γ > 0; therefore, according to theorem
(2.1.5), ERM uniformly converges in {f ∈ H ; ‖f‖2

K ≤ A2} for any A < ∞, both for
RN and for SVMR.

Theoretically, we can use the extended SRM method with a sequence of hypothesis
spaces each defined for different As. To repeat, for a fixed γ > 0 (we can let γ go
to 0 as � → ∞) we first define a structure H1 ⊂ H2 ⊂ . . . ⊂ Hn(�) where Hm is the
set of bounded functions f in a RKHS with ||f ||2K ≤ A2

m, Am < ∞, and the numbers
Am form an increasing sequence. Then we minimize the empirical risk in each Hm by
solving the problem:

minimize
1

�

�∑
i=1

V (yi, f(xi))

subject to : ||f ||2K ≤ A2
m (3.52)

To solve this minimization problem we minimize

1

�

�∑
i=1

V (yi, f(xi)) + λm(||f ||2K − A2
m) (3.53)

with respect to f and maximize with respect to the Lagrange multiplier λm. If fm is
the solution of this problem, at the end we choose the optimal fn∗(�) in Fn∗(�) with the
associated λn∗(�), where optimality is decided based on a trade off between empirical
error and the bound (2.16) for the fixed γ (which, as we mentioned, can approach
zero). In the case of RN, V is the L2 loss function, whereas in the case of SVMR it
is the ε-insensitive loss function.

In practice it is difficult to implement the extended SRM for two main reasons.
First, as we discussed in chapter 2, SRM using the Vγ dimension is practically diffi-
cult because we do not have tight bounds to use in order to pick the optimal Fn∗(�)

(combining theorems 3.4.2 and 2.1.6, bounds on the expected risk of RN and SVMR

51

machines of the form (3.52) can be derived, but these bounds are not practically
useful). Second, even if we could make a choice of Fn∗(�), it is computationally diffi-
cult to implement SRM since (3.52) is a constrained minimization problem one with
non-linear constraints, and solving such a problem for a number of spaces Hm can be
computationally difficult. So implementing SRM using the Vγ dimension of nested
subspaces of a RKHS is practically a very difficult problem.

On the other hand, if we had the optimal Lagrange multiplier λn∗(�), we could
simply solve the unconstrained minimization problem:

1

�

�∑
i=1

V (yi, f(xi)) + λn∗(�)||f ||2K (3.54)

both for RN and for SVMR. This is exactly the problem we solve in practice, as
described earlier in this chapter. Since the value λn∗(�) is not known in practice,
we can only “implement” the extended SRM approximately by minimizing (3.54)
with various values of λ and then picking the best λ using techniques such as cross-
validation [Allen, 1974, Wahba, 1980, Wahba, 1985, Kearns et al., 1995], Generalized
Cross Validation, Finite Prediction Error and the MDL criteria (see [Vapnik, 1998]

for a review and comparison). An important remark to make is that for machine
(3.54), although as mentioned before it is equivalent to machine (3.2) for the “right”
choice of λn∗(�), because in general we do not know λn∗(�) without actually training
machine (3.2) we cannot directly use the theorems of chapter 2. We will come back
to this issue at the end of this chapter.

Summarizing, both the RN and the SVMR methods discussed can be seen as
approximations of the extended SRM method using the Vγ dimension, with nested
hypothesis spaces being of the form {f ∈ H : ‖f‖2

K ≤ A2}, H being a RKHS defined
by kernel K. For both RN and SVMR the Vγ dimension of the loss function V in
these spaces is finite for ∀ γ > 0, so the ERM method uniformly converges for any
A < ∞, and we can use the extended SRM method outlined in chapter 2.

The Vγ dimension in a special case

Before proceeding to the case of classification, we present one more computation of
the Vγ dimension for RN and SVMR that can be used to compute an “empirical” Vγ

dimension, as discussed below.
We assume that the data x are restricted so that for any finite dimensional matrix

G with entries Gij = K(xi,xj) the largest eigenvalue of G is always ≤ M2 for a given
constant M . We consider only the case that the RKHS is infinite dimensional. We
note with B the upper bound of V (y, f(x)). Under these assumptions we can show
that:

Theorem 3.4.3 The Vγ dimension for regression using L1 loss function and for hy-

pothesis space HA = {f(x) =
∑∞

n=1 wnφn(x)+ b | ∑∞
n=1

w2
n

λn
≤ A2} is finite for ∀γ > 0.

In particular:

1. If b is constrained to be zero, then Vγ ≤
[

M2A2

γ2

]

52

2. If b is a free parameter, Vγ ≤ 4
[

M2A2

γ2

]

Proof of part 1.
Suppose we can find N >

[
M2A2

γ2

]
points {(x1, y1), ..., (xN , yN)} that we can shatter.

Let s ∈ [γ, B − γ] be the value of the parameter used to shatter the points.
Consider the following “separation”6: if |yi| < s, then (xi, yi) belongs in class 1.

All other points belong in class -1. For this separation we need:

|yi − f(xi)| ≥ s + γ, if |yi| < s
|yi − f(xi)| ≤ s − γ, if |yi| ≥ s

(3.55)

This means that: for points in class 1 f takes values either yi+s+γ+δi or yi−s−γ−δi,
for δi ≥ 0. For points in the second class f takes values either yi + s − γ − δi or
yi − s + γ + δi, for δi ∈ [0, (s − γ)]. So (3.55) can be seen as a system of linear
equations:

∞∑
n=1

wnφn(xi) = ti. (3.56)

with ti being yi+s+γ+δi, or yi−s−γ−δi, or yi+s−γ−δi, or yi−s+γ+δi, depending
on i. We first use lemma 3.4.1 to show that for any solution (so ti are fixed now)
there is another solution with not larger norm that is of the form

∑N
i=1 αiK(xi,x).

Lemma 3.4.1 Among all the solutions of a system of equations (3.56) the solution
with the minimum RKHS norm is of the form:

∑N
i=1 αiK(xi,x) with α = G−1t.

Proof of lemma
We introduce the N ×∞ matrix Ain =

√
λnφn(xi) and the new variable zn = wn√

λn
.

We can write system (3.56) as follows:

Az = t. (3.57)

Notice that the solution of the system of equation 3.56 with minimum RKHS norm,
is equivalent to the Least Square (LS) solution of equation 3.57. Let us denote with
z0 the LS solution of system 3.57. We have:

z0 = (A�A)+A�t (3.58)

where + denotes pseudoinverse. To see how this solution looks like we use Singular
Value Decomposition techniques:

A = UΣV �,

A� = V ΣU�,

6Notice that this separation might be a “trivial” one in the sense that we may want all the points
to be +1 or all to be -1 i.e. when all |yi| < s or when all |yi| ≥ s respectively.

53

from which A�A = V Σ2V � and (A�A)+ = VNΣ−2
N V �

N , where Σ−1
N denotes the N ×

N matrix whose elements are the inverse of the nonzero eigenvalues. After some
computations equation (3.58) can be written as:

z0 = V Σ−1

N U�
N t = (V ΣNU�

N)(UNΣ−2

N U�
N)t = AG−1t. (3.59)

Using the definition of z0 we have that

∞∑
n=1

w0
nφn(x) =

∞∑
n=1

N∑
i=1

√
λnφn(x)Aniαi. (3.60)

Finally, using the definition of Ain we get:

∞∑
n=1

w0
nφn(x) =

N∑
i=1

K(x,xi)αi

which completes the proof of the lemma.

Given this lemma, we consider only functions of the form
∑N

i=1 αiK(xi,x). We
show that the function of this form that solves the system of equations (3.56) has
norm larger than A2. Therefore any other solution has norm larger than A2 which
implies we cannot shatter N points using functions of our hypothesis space.

The solution α = G−1t needs to satisfy the constraint:

αTGα = tTG−1t ≤ A2

Let λmax be the largest eigenvalue of matrix G. Then tTG−1t ≥ tT t
λmax

. Since λmax ≤
M2, tTG−1t ≥ tTt

M2 . Moreover, because of the choice of the separation, tT t ≥ Nγ2

(for example, for the points in class 1 which contribute to tT t an amount equal
to (yi + s + γ + δi)

2: |yi| < s ⇒ yi + s > 0, and since γ + δi ≥ γ > 0, then
(yi + s + γ + δi)

2 ≥ γ2. Similarly each of the other points ”contribute” to tT t at least
γ2, so tT t ≥ Nγ2). So:

tTG−1t ≥ Nγ2

M2
> A2

since we assumed that N > M2A2

γ2 . This is a contradiction, so we conclude that we
cannot get this particular separation.

Proof of part 2.
Consider N points that can be shattered. This means that for any separation, for

points in the first class there are δi ≥ 0 such that |f(xi)+b−yi| = s+γ+δi. For points
in the second class there are δi ∈ [0, s−γ] such that |f(xi)+b−yi| = s−γ−δi. As in the
case b = 0 we can remove the absolute values by considering for each class two types
of points (we call them type 1 and type 2). For class 1, type 1 are points for which
f(xi) = yi+s+γ+δi−b = ti−b. Type 2 are points for which f(xi) = yi−s−γ−δi−b =
ti − b. For class 2, type 1 are points for which f(xi) = yi + s − γ − δi − b = ti − b.
Type 2 are points for which f(xi) = yi − s + γ + δi − b = ti − b. Variables ti are as in

54

the case b = 0. Let S11, S12, S−11, S−12 denote the four sets of points (Sij are points
of class i type j). Using lemma 3.4.1, we only need to consider functions of the form
f(x) =

∑N
i=1 αiK(xi, x). The coefficients αi are given by α = G−1(t − b) there b is a

vector of b’s. As in the case b = 0, the RKHS norm of this function is at least

1

M2
(t − b)T (t − b). (3.61)

The b that minimizes (3.61) is 1
N

(
∑N

i=1 ti). So (3.61) is at least as large as (after
replacing b and doing some simple calculations) 1

2NM2

∑N
i,j=1(ti − tj)

2.
We now consider a particular separation. Without loss of generality assume that

y1 ≤ y2 ≤ . . . ≤ yN and that N is even (if odd, consider N − 1 points). Consider the
separation where class 1 consists only of the ”even” points {N, N − 2, . . . , 2}. The
following lemma holds:

Lemma 3.4.2 For the separation considered,
∑N

i,j=1(ti − tj)
2 is at least as large as

γ2(N2−4)
2

.

Proof of lemma

Consider a point (xi, yi) in S11 and a point (xj , yj) in S−11 such that yi ≥ yj (if
such a pair does not exist we can consider another pair from the cases listed below).
For these points (ti−tj)

2 = (yi+s+γ+δi−yj−s+γ+δj)
2 = ((yi−yj)+2γ+δi+δj)

2 ≥
4γ2. In a similar way (taking into account the constraints on the δi’s and on s) the
inequality (ti − tj)

2 ≥ 4γ2 can be shown to hold in the following two cases:

(xi, yi) ∈ S11, (xj , yj) ∈ S−11
⋃

S−12, yi ≥ yj

(xi, yi) ∈ S12, (xj , yj) ∈ S−11
⋃

S−12, yi ≤ yj
(3.62)

Moreover

∑N
i,j=1(ti − tj)

2 ≥ 2
[∑

i∈S11

(∑
j∈S−11

⋃
S−12,yi≥yj

(ti − tj)
2
)]

+

2
[∑

i∈S12

(∑
j∈S−11

⋃
S−12,yi≤yj

(ti − tj)
2
)]

.
(3.63)

since in the right hand side we excluded some of the terms of the left hand side. Using
the fact that for the cases considered (ti − tj)

2 ≥ 4γ2, the right hand side is at least

8γ2 ∑
i∈S11

(number of points j in class − 1 with yi ≥ yj)+
+8γ2 ∑

i∈S12
(number of points j in class − 1 with yi ≤ yj)

(3.64)

Let I1 and I2 be the cardinalities of S11 and S12 respectively. Because of the choice
of the separation it is clear that (3.64) is at least

8γ2 ((1 + 2 + . . . + I1)) + (1 + 2 + . . . + (I2 − 1)))

(for example if I1 = 2 in the worst case points 2 and 4 are in S11 in which case the
first part of (3.64) is exactly 1+2). Finally, since I1 + I2 = N

2
, (3.64) is at least

55

8γ2 N2−4
16

= γ2(N2−4)
2

, which proves the lemma.

Using lemma 3.4.2 we get that the norm of the solution for the considered sep-

aration is at least as large as γ2(N2−4)
4NM2 . Since this has to be ≤ A2 we get that

N − 4
N

≤ 4
[

M2A2

γ2

]
, which completes the proof (assume N > 4 and ignore additive

constants less than 1 for simplicity of notation).

In the case of Lp loss functions, using the same argument as in the proof of
theorem 3.4.2 we get that the Vγ dimension in infinite dimensional RKHS is bounded

by (pB)2M2A2

γ2 in the first case of theorem 3.4.3, and by 4 (pB)2M2A2

γ2 in the second case
of theorem 3.4.3. Finally for Lε loss functions the bound on the Vγ dimension is the
same as that for L1 loss function, again using the argument in the proof of theorem
3.4.2. �

Empirical Vγ dimension

Theorem 3.4.3 assumes a bound on the eigenvalues of any finite dimensional matrix
G. However such a bound may not be known a priori, or it may not even exist. In
practice we can still use the method presented above to measure the empirical Vγ

dimension given a set of � training points. This can provide an upper bound on the
random entropy of our hypothesis space [Vapnik, 1998].

More precisely, given a set of � training points we build the � × � matrix G as
before, and compute it’s largest eigenvalue λmax. We can then substitute M2 with
λmax in the computation above to get an upper bound of what we call the empirical
Vγ dimension. This can be used directly to get bounds on the random entropy (or
number of ways that the � training points can be separated using rules (3.48)) of our
hypothesis space. Finally the statistical properties of our learning machine can be
studied using the estimated empirical Vγ dimension (or the random entropy), in a
way similar in spirit as in [Williamson et al., 1998, Shawe-Taylor et al., 1998]. We
discuss this issue further in chapter 6.

3.4.3 A theoretical analysis of SVM classification

It is interesting to notice that a similar analysis can be used for the problem of
classification. In this case the following theorem holds:

Theorem 3.4.4 The Vγ dimension h for |1−yf(x)|σ+ in hypothesis spaces HA = {f ∈
H ; ‖f‖2

K ≤ A2} (of the set of function {|1 − yf(x)|σ+ ; f ∈ HA}) and y ∈ {−1, 1},
is finite for ∀ 0 < γ. If D is the dimensionality of the RKHS H, and R2 is the radius
of the smallest sphere centered at the origin containing the data x in the RKHS, then
h is upper bounded by:

• O(min(D, R2A2

γ
2
σ

)) for σ < 1

• O(min(D, σ2R2A2

γ2)) for σ ≥ 1

56

Proof
The proof is based on the following theorem [Gurvits, 1997] (proved for the fat-

shattering dimension, but as mentioned in chapter 2, we use it for the “equivalent”
Vγ one).

Theorem [Gurvits, 1997]: The Vγ dimension h of the set of functions7 HA = {f ∈
H ; ‖f‖2

K ≤ A2} is finite for ∀ γ > 0. If D is the dimensionality of the RKHS, then
h ≤ O(min(D, R2A2

γ2)), where R2 is the radius of the smallest sphere in the RKHS
centered at the origin where the data belong to.

Let 2N be the largest number of points {(x1, y1), . . . , (x2N , y2N)} that can be
shattered using the rules:

class 1 if θ(1 − yif(xi))(1 − yif(xi))
σ ≥ s + γ

class − 1 if θ(1 − yif(xi))(1 − yif(xi))
σ ≤ s − γ

(3.65)

for some s with 0 < γ ≤ s. After some simple algebra these rules can be decomposed
as:

class 1 if f(xi) − 1 ≤ −(s + γ)
1
σ (for yi = 1)

or f(xi) + 1 ≥ (s + γ)
1
σ (for yi = −1)

class − 1 if f(xi) − 1 ≥ −(s − γ)
1
σ (for yi = 1)

or f(xi) + 1 ≤ (s − γ)
1
σ (for yi = −1)

(3.66)

From the 2N points at least N are either all class -1, or all class 1. Consider the first
case (the other case is exactly the same), and for simplicity of notation let’s assume
the first N points are class -1. Since we can shatter the 2N points, we can also shatter
the first N points. Substituting yi with 1, we get that we can shatter the N points
{x1, . . . ,xN} using rules:

class 1 if f(xi) + 1 ≥ (s + γ)
1
σ

class − 1 if f(xi) + 1 ≤ (s − γ)
1
σ

(3.67)

Notice that the function f(xi)+1 has RKHS norm bounded by A2 plus a constant
C (equal to the inverse of the eigenvalue corresponding to the constant basis function
in the RKHS - if the RKHS does not include the constant functions, we can define a
new RKHS with the constant and use the new RKHS norm). Furthermore there is a

“margin” between (s + γ)
1
σ and (s − γ)

1
σ which we can lower bound as follows.

For σ < 1, assuming 1
σ

is an integer (if not, we can take the closest lower integer),

1

2

(
(s + γ)

1
σ − (s − γ)

1
σ

)
=

1

2
((s + γ) − (s − γ))

1
σ
−1∑

k=0

(s + γ)
1
σ
−1−k(s − γ)k

 ≥

≥ γγ
1
σ
−1 = γ

1
σ .

7In this case we can consider V (y, f(x)) = f(x).

57

For σ ≥ 1, σ integer (if not, we can take the closest upper integer) we have that:

2γ =
(
(s + γ)

1
σ

)σ
−

(
(s − γ)

1
σ

)σ
=

= ((s + γ)
1
σ − (s − γ)

1
σ)

(
σ−1∑
k=0

((s + γ)
1
σ)σ−1−k((s − γ)

1
σ)k

)
≤

≤ ((s + γ)
1
σ − (s − γ)

1
σ)σB

σ−1
σ

where B is an upper bound on the values of the loss function (which exists because
of the constraints on x and ‖f‖2

K),
from which we obtain:

1

2

(
(s + γ)

1
σ − (s − γ)

1
σ

)
≥ γ

σB
σ−1

σ

(3.68)

Therefore N cannot be larger than the Vγ dimension of the set of functions with

RKHS norm ≤ A2 +C and margin at least γ
1
σ for σ < 1 (from eq. (3.68)) and γ

σB
σ−1

σ

for σ ≥ 1 (from eq. (3.68)). Using Gurvits’ theorem, and ignoring constant factors
(also ones because of C) the theorem is proved. �

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

V

Sigma

Figure 3-2: Plot of the Vγ dimension as a function of σ for γ = .9

Figure 3-2 shows the Vγ dimension for R2A2 = 1 and γ = 0.9, and D infinite.
Notice that as σ → 0, the dimension goes to infinity. For σ = 0 the Vγ dimension
becomes the same as the VC dimension of hyperplanes, which is infinite for infinite
dimensional RKHS [Vapnik, 1998]. For σ increasing above 1, the dimension also
increases: intuitively the margin γ becomes smaller relatively to the values of the loss
function.

58

We now study classification kernel machines of the form (3.2), namely:

min
f∈H

1

�

�∑
i=1

V (yi, f(xi))

‖f‖2
K ≤ A2

m (3.69)

for particular loss functions V :

• Misclassification loss function:

V (y, f(x)) = V msc(yf(x)) = θ(−yf(x)) (3.70)

• Hard margin loss function:

V (y, f(x)) = V hm(yf(x)) = θ(1 − yf(x)) (3.71)

• Soft margin loss function:

V (y, f(x)) = V sm(yf(x)) = |1 − yf(x)|+, (3.72)

where θ is the Heavyside function. Loss functions (3.71) and (3.72) are “margin” ones
because the only case they do not penalize a point (x, y) is if yf(x) ≥ 1. For a given

f , these are the points that are correctly classified and have distance |f(x)|
‖f‖2

K
≥ 1

‖f‖2
K

from the surface f(x) = 0 (hyperplane in the feature space induced by the kernel K
[Vapnik, 1998]). For a point (x, y), quantity yf(x)

‖f‖K
is its margin, and the probability of

having yf(x)
‖f‖K

≥ δ is called the margin distribution of hypothesis f . In the case of SVM

Classification, quantity |1− yif(xi)|+ is known as the slack variable corresponding to
training point (xi, yi) [Vapnik, 1998].

We will also consider the following family of margin loss functions (nonlinear soft
margin loss functions):

V (y, f(x)) = V σ(yf(x)) = |1 − yf(x)|σ+. (3.73)

Loss functions (3.71) and (3.72) correspond to the choice of σ = 0, 1 respectively. Fig-
ure 3-3 shows some of the possible loss functions for different choices of the parameter
σ.

We first study the loss functions (3.70) - (3.73). For classification machines the
quantity we are interested in is the expected misclassification error of the solution f
of machine 3.69. With some notation overload we note this with Imsc[f]. Similarly
we will note with Ihm[f], Ism[f], and Iσ[f] the expected risks of f using loss functions
(3.71), (3.72) and (3.73), respectively, and with Ihm

emp[f ; �], Ism
emp[f ; �], and Iσ

emp[f ; �],

59

0

0.5

1

1.5

2

2.5

3

-4 -3 -2 -1 0 1 2 3 4

V

yf(x)

Figure 3-3: Hard margin loss (line with diamond-shaped points), soft margin loss
(solid line), nonlinear soft margin with σ = 2 (line with crosses), and σ = 1

2
(dotted

line)

the corresponding empirical errors. We will not consider kernel machines (3.69) with
V msc as the loss function, for a clear reason: the solution of the optimization problem:

min
∑�

i=1 θ(−yif(xi))

subject to ‖f‖2
K ≤ A2

is independent of A, since for any solution f we can always rescale f and have the
same cost

∑�
i=1 θ(−yif(xi)).

Using theorems 3.4.4 and 2.1.6 we can bound the expected error of the solution f
of machines (3.45):

Pr {|Iemp[f ; �] − I[f]| > ε} ≤ G(ε, �, hγ), (3.74)

where the error is measured using either V sm or V σ with hγ being the corresponding
Vγ dimension given by theorem 3.4.4. To get a bound on the expected misclassification
error Imsc[f] we use the following simple observation:

V msc(y, f(x)) ≤ V σ(y, f(x)) for ∀ σ, (3.75)

So we can bound the expected misclassification error of the solution of machine (3.69)
under V sm and V σ using the Vγ dimension of these loss functions and the empirical
error of f measured using again these loss functions. In particular we get that for ∀σ,
with probability 1 − G(ε, �, hγ):

Imsc[f] ≤ Iσ
emp[f ; �] + ε (3.76)

where ε and γ are related as stated in theorem 2.1.6, and hγ is the Vγ dimension given
by theorem 3.4.4 for the V σ loss function.

60

Unfortunately we cannot use theorems 3.4.4 and 2.1.6 for the V hm or V msc loss
functions. For these loss functions, since they are binary-valued, the Vγ dimension
is the same as the VC-dimension, which is not appropriate to use in this case: it
is not influenced by A, and in the case that H is an infinite dimensional RKHS,
the VC-dimension of these binary-valued loss functions turns out to be infinite (see
for example [Vapnik, 1998]). This implies that for infinite dimensional RKHS, since
the VC-dimension of the indicator functions V hm and V msc is infinite no uniform
convergence takes place, and furthermore the bounds of chapter 2 cannot be used to
bound the expected misclassification (or hard margin) error in terms of the empirical
misclassification (or hard margin) one.

Notice, however, that for σ → 0, V σ approaches V hm pointwise (from theorem
3.4.4 the Vγ dimension also increases towards infinity). Regarding the empirical error,
this implies that Rσ → Rhm, so, theoretically, we can still bound the misclassification
error of the solution of machines with V hm using:

Rmsc(f) ≤ Rhm
emp(f) + ε + max(Rσ

emp(f) − Rhm
emp(f), 0), (3.77)

where Rσ
emp(f) is measured using V σ for some σ. Notice that changing σ we get a

family of bounds on the expected misclassification error. Finally, as a last remark,
it could be interesting to extend theorem 3.4.4 to loss functions of the form g(|1 −
yf(x)|+), with g any continuous monotone function.

3.4.4 Discussion

In recent years there has been significant work on bounding the generalization per-
formance of classifiers using scale-sensitive dimensions of real-valued functions out
of which indicator functions can be generated through thresholding (see [Bartlett
and Shawe-Taylor, 1998a, Shawe-Taylor and Cristianini, 1998, Shawe-Taylor et al.,
1998],[Bartlett, 1998] and references therein). This is unlike the “standard” statistical
learning theory approach where classification is typically studied using the theory of
indicator functions (binary valued functions) and their VC-dimension [Vapnik, 1998].
The approach taken in this chapter is similar in spirit with that of [Bartlett, 1998],
but significantly different as we now briefly discuss.

In [Bartlett, 1998] a theory was developed to justify machines with “margin”.
The idea was that a “better” bound on the generalization error of a classifier can be
derived by excluding training examples on which the hypothesis found takes a value
close to zero (classification is performed after thresholding a real valued function). In-
stead of measuring the empirical misclassification error, as suggested by the standard
statistical learning theory, what was used was the number of misclassified training
points plus the number of training points on which the hypothesis takes a value close
to zero. Only points classified correctly with some “margin” are considered correct.
In [Bartlett, 1998] a different notation was used: the parameter A of machines (3.69)
was fixed to 1, while a margin ψ was introduced inside the hard margin loss, i.e
θ(ψ − yf(x)). Notice that the two notations are equivalent: given a value A in our
notation we have ψ = A−1 in the notation of [Bartlett, 1998]. Below we adapt the

61

results in [Bartlett, 1998] to the setup of this paper, that is, we set ψ = 1 and let A
vary. Two main theorems were proven in [Bartlett, 1998].

Theorem 3.4.5 (Bartlett, 1998) For a given A, with probability 1−δ, every func-
tion f with ‖f‖2

K ≤ A2 has expected misclassification error Imsc[f] bounded as:

Imsc[f] < Ihm
emp[f ; �] +

√
2

�
(dln(34e�/d) log2(578�) + ln(4/δ), (3.78)

where d is the fat-shattering dimension fatγ of the hypothesis space {f : ‖f‖2
K ≤ A2}

for γ = 1
16A

.

Unlike in this thesis, in [Bartlett, 1998] this theorem was proved without using theo-
rem 2.1.6. Although practically both bound (3.78) and the bounds derived above are
not tight and therefore not practical, bound (3.78) seems easier to use than the ones
presented in this paper.

It is important to notice that, like bounds (3.74), (3.76), and (3.77), theorem 3.4.5
holds for a fixed A [Bartlett, 1998]. In [Bartlett, 1998] theorem 3.4.5 was extended to
the case where the parameter A (or ψ in the notations of [Bartlett, 1998]) is not fixed,
which means that the bound holds for all functions in the RKHS. In particular the
following theorem gives a bound on the expected misclassification error of a machine
that holds uniformly over all functions:

Theorem 3.4.6 (Bartlett, 1998) For any f with ‖f‖K < ∞, with probability 1−δ,
the misclassification error Imcs(f) of f is bounded as:

Imsc[f] < Ihm
emp[f ; �] +

√
2

�
(dln(34e�/d) log2(578�) + ln(8‖f‖/δ), (3.79)

where d is the fat-shattering dimension fatγ of the hypothesis space consisting of all
functions in the RKHS with norm ≤ ‖f‖2

K, and with γ = 1
32‖f‖ .

Notice that the only differences between (3.78) and (3.79) are the ln(8‖f‖/δ) instead
of ln(4/δ), and that γ = 1

32‖f‖ instead of γ = 1
16A

.

So far we studied machines of the form (3.69), where A is fixed a priori. In practice
learning machines used, like SVM, do not have A fixed a priori. For example in the
case of SVM the problem is formulated [Vapnik, 1998] as minimizing:

minf∈H

�∑
i=1

|1 − yif(xi)|+ + λ‖f‖2
K (3.80)

where λ is known as the regularization parameter. In the case of machines (3.80) we
do not know the norm of the solution ‖f‖2

K before actually solving the optimization
problem, so it is not clear what the “effective” A is. Since we do not have a fixed
upper bound on the norm ‖f‖2

K a priori, we cannot use the bounds of chapter 2
or theorem 3.4.5 for machines of the form (3.80). Instead, we need to use bounds
that hold uniformly for all A (or ψ if we follow the setup of [Bartlett, 1998]), for

62

example the bound of theorem 3.4.6, so that the bound also holds for the solution
of (3.80) we find. In fact theorem 3.4.6 has been used directly to get bounds on the
performance of SVM [Bartlett and Shawe-Taylor, 1998a]. It is a (simple) conjecture
that a straightforward applications of the methods used to extend theorem 3.4.5 to
3.4.6 can also be used to extend the bounds of chapter 2 to the case where A is not
fixed (and therefore hold for all f with ‖f‖2

K < ∞).
There is another way to see the similarity between machines (3.69) and (3.80).

Notice that the formulation (3.69) the regularization parameter λ of (3.80) can be
seen as the Lagrange multiplier used to solve the constrained optimization problem
(3.69). That is, problem (3.69) is equivalent to:

maxλminf∈H

�∑
i=1

V (yi, f(xi)) + λ(‖f‖2
K − A2) (3.81)

for λ ≥ 0, which is similar to problem (3.80) that is solved in practice. However in
the case of (3.81) the Lagrange multiplier λ is not known before having the training
data, unlike in the case of (3.80).

So, to summarize, for the machines (3.2) studied in this thesis, A is fixed a priori
and the “regularization parameter” λ is not known a priori, while for machines (3.80)
the parameter λ is known a priori, but the norm of the solution (or the effective A)
is not known a priori. As a consequence we can use the theorems of chapter 2 for
machines (3.2) but not for (3.80). To do the second we need a technical extension
of the results of chapter 2 similar to the extension of theorem 3.4.5 to 3.4.6 done
in [Bartlett, 1998]. On the practical side, the important issue for both machines
(3.2) and (3.80) is how to choose A or λ. In general the theorems and bounds
discussed in chapter 2 cannot be practically used for this purpose. Criteria for the
choice of the regularization parameter exist in the literature - such as cross validation
and generalized cross validation - (for example see [Vapnik, 1998, Wahba, 1990] and
references therein), and is the topic of ongoing research.

Finally, for the case of classification, as theorem 3.4.4 indicates, the generaliza-
tion performance of the learning machines can be bounded using any function of the
slack variables and therefore of the margin distribution. Is it, however, the case that
the slack variables (margin distributions or any functions of these) are the quantities
that control the generalization performance of the kernel machines, or there are other
important geometric quantities involved? The next chapter follows a different ap-
proach to studying learning machines that leads to different type of bounds that are
practically shown to be tight and also depend on parameters other than the margin
distribution of the data.

63

Chapter 4

Learning with Ensembles of Kernel
Machines

This chapter studies the problem of learning using ensembles of kernel machines, for the
case of classification. Two types of ensembles are defined: voting combinations of classifiers,
and adaptive combinations of classifiers. Special cases considered are bagging and Support
Vector Machines. New theoretical bounds on the generalization performance of voting
ensembles of kernel machines are presented. Experimental results supporting the theoretical
bounds are shown. Finally, both voting and adaptive combinations of kernel machines are
further characterized experimentally. Among others, the experiments suggest how such
ensembles can be used to partially solve the problem of parameter selection for kernel
machines (by combining machines with different parameters), and for fast training with
very large datasets (by combining machines each trained on small subsets of the original
training data).

4.1 Introduction

Two major recent advances in learning theory are Support Vector Machines (SVM)
[Vapnik, 1998] and ensemble methods such as boosting and bagging [Breiman, 1996,
Shapire et al., 1998]. Distribution independent bounds on the generalization perfor-
mance of these two techniques have been suggested recently [Vapnik, 1998, Shawe-
Taylor and Cristianini, 1998, Bartlett, 1998, Shapire et al., 1998], and similari-
ties between these bounds in terms of a geometric quantity known as the margin
(see chapter 3) have been proposed. More recently bounds on the generalization
performance of SVM based on cross-validation have been derived [Vapnik, 1998,
Chapelle and Vapnik, 1999]. These bounds depend also on geometric quantities other
than the margin (such as the radius of the smallest sphere containing the support
vectors).

The goal of this chapter is to study ensemble methods for the particular case
of kernel machines. As in the previous chapter, the kernel machines considered are
learning machines of the form (3.5), namely:

f(x) =
�∑

i=1

ciK(xi,x), (4.1)

where, as discussed at the beginning of chapter 3, the coefficients ci are learned by

64

solving the following optimization problem:

min
f∈H

1

�

�∑
i=1

V (yi, f(xi)) + λ‖f‖2
K (4.2)

It turns out that for particular choices of the loss function V , the minimization prob-
lem (4.2) is equivalent to the dual one:

maxcH(c) =
∑�

i=1 S(ci) − 1
2

∑�
i,j=1 cicjyiyiK(xi,xj)

subject to : 0 ≤ ci ≤ C
(4.3)

where S(·) is a cost function depending on V , and C a constant depending on V and
λ [Jaakkola and Haussler, 1998a]. For example, in the particular case of SVM (that
we are mostly interested in here), S(ci) = ci and C = 1

2λ
as discussed in chapter 3.

The theoretical results presented in this chapter hold only for loss functions for which
machines (4.2) and (4.3) are equivalent. Notice that the bias term (threshold b in
the general case of machines f(x) =

∑�
i=1 ciK(xi,x) + b) is often incorporated in the

kernel K (see also chapter 3 for a discussion on this issue).
The types of ensembles considered are linear combinations of the individual ma-

chines, that is, the “overall” machine F (x) is of the form:

F (x) =
T∑

t=1

βtf
(t)(x) (4.4)

where T is the number of machines in the ensemble, and f (t)(x) is the tth machine.
Two types of ensembles are considered:

1. Voting Combination of Classifiers (VCC): this is the case where the coefficients
βt in 4.4 are not learned (i.e. βt = 1

T
).

2. Adaptive Combinations of Classifiers (ACC): these are ensembles of the form
(4.4) with the coefficients βt also learned (adapted) from the training data.

The first part of the chapter presents new bounds on the generalization perfor-
mance of voting ensembles of kernel machines (4.3). The bounds are derived using
cross-validation arguments, so they can be seen as generalizations of the bounds for
single kernel machines derived in [Vapnik, 1998, Jaakkola and Haussler, 1998a]. Par-
ticular cases considered are that of bagging kernel machines each trained on different
subsamples of the initial training set, or that of voting kernel machines each using
a different kernel (also different subsets of features/components of the initial input
features). Among others, the bounds presented can be used, for example, for model
selection in such cases.

For the case of adaptive combinations no bounds are proven (it remains an open
question). However model selection can still be done by using a validation set. This
chapter also shows experimental results showing that a validation set can be used for
model selection for kernel machines and their ensembles, without having to decrease
the training set size in order to create a validation set. Finally, both voting and
adaptive combinations are further characterized experimentally.

65

4.1.1 Ensemble learning methods: Bagging and Boosting

Before presenting the theoretical and experimental analysis of ensembles of kernel ma-
chines, an overview of some common ensembles of learning machines is given briefly.

Combining machines instead of using a single one is an idea used by many re-
searchers in recent years [Breiman, 1993, Breiman, 1996, Shapire et al., 1998, Fried-
man et al., 1998]. In the spirit of VCC, bagging [Breiman, 1996] is a particular
ensemble architecture where a voting combination of a number of learning machines
each trained using a subset with replacement of the initial training data is used. The
size of the subsample is equal to the size of the original training set, but repetitions
of points occur. Bagging has also been used for regression in which case the average
real output of the individual regressors is taken.

Although there does not exist a well-accepted theory of bagging, there are some
theoretical and experimental indications that bagging works better when the individ-
ual classifiers are “unstable” [Breiman, 1996]. Instability in this case means that the
solution of the learning machine changes a lot with changes of the training data. A
theoretical view of bagging developed by Breiman [Breiman, 1996] suggests that the
overall performance of a “bagging system” depends on the instability of the individual
classifiers (called variance in [Breiman, 1996]) as well as on the so called bias of the
classifiers used, which is the error of the ”best” possible classifier in the hypothesis
space in which the individual classifiers belong to (i.e. the ”best” decision tree, or
linear classifier). According to the theory, bagging decreases the variance, therefore
improving performance. This analysis of bagging is asymptotic, in the sense that the
theory does not provide small-size characterizations of the performance of bagging,
for example in the forms of bounds on the generalization error of bagging machines
like the ones discussed in chapter 2.

A different type of ensembles of learning machines is that of boosted machines.
Boosting [Shapire et al., 1998, Friedman et al., 1998] has been used to describe the
following method of training and combining machines: each machine is trained on all
the data, but each of the data points has a weight that signifies the ”importance”
that each of the machines gives to that point. Initially, that is for the first learning
machine, all points have typically the same weight. After each machine is trained on
the weighted data, the weights of the data are updated typically in such a way that
future machines put more weight on the points that previous machines made a mistake
on. After a number of such iterations the overall machine consists of a weighted vote of
the individual machines, where the weights are computed typically in such a way that
machines with large training error have small weights. Various ”update” and ”weight”
rules have been proposed (see for example [Shapire et al., 1998]). Theoretical analysis
of boosting has lead to non-asymptotic bounds of the boosted (overall) machine of
the form discussed in chapter 2 [Shapire et al., 1998]. More recently, boosting has
been studied in the context of gradient descent minimization of cost functions, where
each of the individual machines (iterations) corresponds to a gradient descent step
[Friedman et al., 1998]. Within this framework new boosting methods have been
proposed.

The approach taken in this chapter defers from both aforementioned ones. In

66

particular, the theoretical analysis of ensembles of machines leads to bounds on the
expected error of the ensembles (like in the case of boosting), but the bounds shown
depend on quantities different from the ones in [Shapire et al., 1998]. The bounds
are derived using the leave-one-out approach similarly to [Vapnik, 1998, Jaakkola and
Haussler, 1998a].

4.2 Generalization performance of voting ensem-

bles

The theoretical results of the chapter are based on the cross-validation (or leave-one-
out) error. The cross-validation procedure consists of removing from the training
set one point at a time, training a machine on the remaining points and then test-
ing on the removed one. The number of errors counted throughout this process,
L ((xi, y1), . . . (x�, y�)), is called the cross-validation error [Wahba, 1980, Kearns et
al., 1995]. It is known that this quantity provides an estimate of the generalization
performance of a machine [Wahba, 1980, Vapnik, 1998]. In particular the expecta-
tion of the generalization error of a machine trained using � points is bounded by the
expectation of the cross validation error of a machine trained on � + 1 points (Luntz
and Brailovsky theorem [Vapnik, 1998]).

We begin with some known results on the cross-validation error of kernel machines.
The following theorem is from [Jaakkola and Haussler, 1998a]:

Theorem 4.2.1 The cross-validation error of a kernel machine (4.3) is upper bounded
as:

L ((xi, y1), . . . (x�, y�)) ≤
�∑

i=1

θ(ciK(xi,xi) − yif(xi)) (4.5)

where θ is the Heavyside function, and the ci are found by solving maximization
problem (4.3).

In the particular case of SVM where the data are separable (4.5) can be bounded
by geometric quantities, namely [Vapnik, 1998]:

L ((xi, y1), . . . (x�, y�)) ≤
�∑

i=1

θ(ciK(xi,xi) − yif(xi)) ≤
D2

sv

ρ2
(4.6)

where Dsv is the radius of the smallest sphere in the feature space induced by kernel
K [Wahba, 1990, Vapnik, 1998] centered at the origin containing the support vectors,
and ρ is the margin (ρ2 = 1

‖f‖2
K

) of the SVM.

Using this result, the following theorem is a direct application of the Luntz and
Brailovsky theorem [Vapnik, 1998]:

Theorem 4.2.2 The average generalization error of an SVM (with zero threshold b,
and in the separable case) trained on � points is upper bounded by

1

� + 1
E

(
D2

sv(�)

ρ2(�)

)
,

67

where the expectation E is taken with respect to the probability of a training set of
size �.

Notice that this result shows that the performance of SVM does not depend only
on the margin, but also on other geometric quantities, namely the radius Dsv. In the
non-separable case, it can be shown (the proof is similar to that of corollary 4.2.2
below) that equation (4.6) can be written as:

L ((xi, y1), . . . (x�, y�)) ≤
�∑

i=1

θ(ciK(xi,xi) − yif(xi)) ≤ EE1 +
D2

sv

ρ2
(4.7)

where EE1 is the hard margin empirical error of the SVM (the number of training
points with yf(x) < 1, that is

∑�
i=1 θ(1 − yif(xi))).

We now extend these results to the case of ensembles of kernel machines. We
consider the general case where each of the machines in the ensemble uses a different
kernel. Let T be the number of machines, and let K(t) be the kernel used by machine
t. Notice that, as a special case, appropriate choices of K(t) lead to machines that may
have different subsets of features from the original ones. Let f (t)(x) be the optimal

solution of machine t (real-valued), and c
(t)
i the optimal weight that machine t assigns

to point (xi, yi) (after solving problem (4.3)). We consider ensembles that are linear
combinations of the individual machines. In particular, the separating surface of the
ensemble is:

F (x) =
T∑

t=1

βtf
(t)(x) (4.8)

and the classification is done by taking the sign of this function. The coefficients
βt are not learned (i.e. βt = 1

T
), and

∑T
t=1 βt = 1 (for scaling reasons), βt > 0.

All parameters (C’s and kernels) are fixed before training. In the particular case of
bagging, the subsampling of the training data should be deterministic. With this we
mean that when the bounds are used for model (parameter) selection, for each model
the same subsample sets of the data need to be used. These subsamples, however, are
still random ones. It is a conjecture that the results presented below also hold (with
minor modifications) in the general case that the subsampling is always random. We
now consider the cross-validation error of such ensembles.

Theorem 4.2.3 The cross-validation error L ((xi, y1), . . . (x�, y�)) of a kernel ma-
chines ensemble is upper bounded by:

L ((xi, y1), . . . (x�, y�)) ≤
�∑

i=1

θ(
T∑

t=1

βtc
(t)
i K(t)(xi,xi) − yiF (xi)) (4.9)

The proof of this theorem is based on the following lemma shown in [Vapnik, 1998,
Jaakkola and Haussler, 1998a]:

68

Lemma 4.2.1 Let ci be the coefficient of the solution f(x) of machine (4.3) corre-
sponding to point (xi, yi), ci �= 0. Let fi(x) be the solution of machine (4.3) found
when point (xi, yi) is removed from the training set. Then: yifi(xi) ≥ yif(xi) −
ciK(xi,xi).

Using lemma 4.2.1 we can now prove theorem 4.2.3.
Proof of theorem 4.2.3
Let Fi(x) =

∑T
t=1 βtf

(t)
i (x) be the final machine trained with all initial training data

except (xi, yi). Lemma 4.2.1 gives that

yiFi(xi) = yi

T∑
t=1

βtf
(t)
i (xi) ≥ yi

T∑
t=1

βtf
(t)(x) −

T∑
t=1

βtc
(t)
i K(t)(xi,xi) =

= yiF (xi) −
T∑

t=1

βtc
(t)
i K(t)(xi,xi) ⇒ θ(−yiFi(xi)) ≤ θ(

T∑
t=1

βtc
(t)
i K(t)(xi,xi) − yiF (xi))

therefore the leave one out error
∑�

i=1 θ(−yiFi(xi)) is not more than∑�
i=1 θ(

∑T
t=1 βtc

(t)
i K(t)(xi,xi) − yiF (xi)), which proves the theorem. �

Notice that the bound has the same form as bound (4.5): for each point (xi, yi)

we only need to take into account its corresponding parameter c
(t)
i and “remove” the

effects of c
(t)
i from the value of F (xi).

The cross-validation error can also be bounded using geometric quantities. To
this purpose we introduce one more parameter that we call the ensemble margin (in
contrast to the margin of a single SVM). For each point (xi, yi) we define its ensemble
margin to be simply yiF (xi). This is exactly the definition of margin in [Shapire et
al., 1998]. For any given δ > 0 we define EEδ to be the number of training points
with ensemble margin < δ (empirical error with margin δ), and by Nδ the set of the
remaining training points - the ones with ensemble margin ≥ δ. Finally, we note by
Dt(δ) to be the radius of the smallest sphere in the feature space induced by kernel K(t)

centered at the origin containing the points of machine t with c
(t)
i �= 0 and ensemble

margin larger than δ (in the case of SVM, these are the support vectors of machine
t with ensemble margin larger than δ). A simple consequence of theorem 4.2.3 and

of the inequality K(t)(xi,xi) ≤ D2
t(δ) for points xi with c

(t)
i �= 0 and ensemble margin

yiF (xi) ≥ δ is the following:

Corollary 4.2.1 For any δ > 0 the cross-validation error L ((xi, y1), . . . (x�, y�)) of
a kernel machines ensemble is upper bounded by:

L ((xi, y1), . . . (x�, y�)) ≤ EEδ +
1

δ

 T∑

t=1

βtD
2
t(δ)(

∑
i∈Nδ

c
(t)
i)

 (4.10)

Proof:

69

For each training point (xi, yi) with ensemble margin yiF (xi) < δ we upper bound

θ(
∑T

t=1 βtc
(t)
i K(t)(xi,xi)− yiF (xi)) with 1 (this is a trivial bound). For the remaining

points (the points in Nδ) we show that:

θ(
T∑

t=1

βtc
(t)
i K(t)(xi,xi) − yiF (xi)) ≤

1

δ

(
T∑

t=1

βtc
(t)
i K(t)(xi,xi)

)
(4.11)

If
∑T

t=1 βtc
(t)
i K(t)(xi,xi) − yiF (xi) < 0 then (trivially):

θ

(
T∑

t=1

βtc
(t)
i K(t)(xi,xi) − yiF (xi)

)
= 0 ≤ 1

δ

T∑
t=1

βtc
(t)
i K(t)(xi,xi).

On the other hand, if
∑T

t=1 βtc
(t)
i K(t)(xi,xi) − yiF (xi) ≥ 0 then

θ(
T∑

t=1

βtc
(t)
i K(t)(xi,xi) − yiF (xi)) = 1

while
T∑

t=1

βtc
(t)
i K(t)(xi,xi) ≥ yiF (xi) ≥ δ ⇒ 1

δ

T∑
t=1

βtc
(t)
i K(t)(xi,xi) ≥ 1.

So in both cases inequality (4.11) holds. Therefore:

�∑
i=1

θ(
T∑

t=1

βtc
(t)
i K(t)(xi,xi) − yiF (xi)) ≤ EEδ +

1

δ

 ∑

i∈Nδ

T∑
t=1

βtK
(t)(xi,xi)c

(t)
i

 ≤

EEδ +
1

δ

 T∑

t=1

βtD
2
t(δ)(

∑
i∈Nδ

c
(t)
i)

which proves the corollary. �
Notice that equation (4.10) holds for any δ > 0, so the best bound is obtained

for the minimum of the right hand side with respect to δ > 0. Using the Luntz and
Brailovsky theorem, theorems 4.2.3 and 4.2.1 provide bounds on the generalization
performance of general kernel machines ensembles like that of theorem 4.2.2.

We now consider the particular case of SVM ensembles. In this case, for example
choosing δ = 1 (4.10) becomes:

Corollary 4.2.2 The leave-one-out error of an ensemble of SVMs is upper bounded
by:

L ((xi, y1), . . . (x�, y�)) ≤ EE1 +
T∑

t=1

βt
D2

t

ρ2
t

(4.12)

where EE1 is the margin empirical error with ensemble margin 1, Dt is the radius of
the smallest sphere centered at the origin, in the feature space induced by kernel K(t),
containing the support vectors of machine t, and ρt is the margin of SVM t.

70

This is because clearly Dt ≥ Dt(δ) for any δ, and
∑

i∈Nδ
c
(t)
i ≤ ∑�

i=1 c
(t)
i = 1

ρ2
t

(see

[Vapnik, 1998] for a proof of this equality). A number of remarks can be made from
equation (4.12).

First notice that the generalization performance of the SVM ensemble now de-
pends on the “average” (convex combination of) D2

ρ2 of the individual machines. In

some cases this may be smaller than the D2

ρ2 of a single SVM. For example, suppose
we train many SVMs on different subsamples of the training points and we want to
compare such an ensemble with a single SVM using all the points. If all SVMs (the
single one, as well as the individual ones of the ensemble) use most of their training
points as support vectors, then clearly the D2 of each SVM in the ensemble is smaller
than that of the single SVM. Moreover the margin of each SVM in the ensemble is
expected to be larger than that of the single SVM using all the points. So the “aver-
age” D2

ρ2 in this case is expected to be smaller than that of the single SVM. Another
case where an ensemble of SVMs may be better than a single SVM is the one where
there are outliers among the training data: if the individual SVMs are trained on
subsamples of the training data, some of the machines may have smaller D2

ρ2 because
they do not use some outliers. In general it is not clear when ensembles of kernel
machines are better than single machines. The bounds in this section may provide
some insight to this question.

Notice also how the ensemble margin δ plays a role for the generalization perfor-
mance of kernel machine ensembles. This margin is also shown to be important for
boosting [Shapire et al., 1998]. Finally, notice that all the results discussed hold for
the case that there is no bias (threshold b), or the case where the bias is included in
the kernel (as discussed in the introduction). In the experiments discussed below we
use the results also for cases where the bias is not regularized, which is common in
practice. It may be possible to use recent theoretical results [Chapelle and Vapnik,
1999] on the leave-one-out bounds of SVM when the bias b is taken into account in
order to study the generalization performance of kernel machines ensembles with the
bias b.

4.3 Experiments

To test how tight the bounds we presented are, we conducted a number of experiments
using datasets from UCI1, as well as the US Postal Service (USPS) dataset [LeCun
et al., 1989]. We show results for some of the sets in figures 4-1-4-5. For each dataset
we split the overall set in training and testing (the sizes are shown in the figures) in
50 different (random) ways, and for each split:

1. We trained one SVM with b = 0 using all training data, computed the leave-one-
bound given by theorem 4.2.1, and then compute the test performance using
the test set.

2. We repeated (1) this time with with b �= 0.

1Available from http://www.ics.uci.edu/ mlearn/MLRepository.html

71

3. We trained 30 SVMs with b = 0 each using a random subsample of size 40% of
the training data (bagging), computed the leave-one-bound given by theorem
4.2.3 using βt = 1

30
, and then compute the test performance using the test set.

4. We repeated (3) this time with with b �= 0.

We then averaged over the 50 training-testing splits the test performances and the
leave-one-out bounds found, and computed the standard deviations. All machines

were trained using a Gaussian kernel K(x,y) = e
‖x−y‖2

σ2 , and we repeated the proce-
dure for a number of different σ’s of the Gaussian, and for a fixed C (show in the
figures). We show the averages and standard deviations of the results in the figures.
In all figures we use the following notation: top left figure: bagging with b = 0; top
right figure: single SVM with b = 0; bottom left figure: bagging with b �= 0; and
bottom right figure: single SVM with b �= 0. In all plots the solid line is the mean
test performance and the dashed line is the error bound computed using the leave-
one-out theorems (theorems 4.2.1 and 4.2.3). The dotted line is the validation set
error discussed below. For simplicity, only one error bar (standard deviation over the
50 training-testing splits) is shown (the others were similar). The cost parameter C
used is given in each of the figures. The horizontal axis is the natural logarithm of
the σ of the Gaussian kernel used, while the vertical axis is the error.

−2 0 2 4
0.2

0.25

0.3

0.35

Bag l−o−o, b=0

er
ro

r

−2 0 2 4
0.2

0.25

0.3

0.35

svm l−o−o, b=0

−2 0 2 4
0.2

0.25

0.3

0.35

bag l−o−o

sigma

er
ro

r

−2 0 2 4
0.2

0.25

0.3

0.35

svm l−o−o

sigma

Breast Cancer data (C=0.5, Train= 200, Test = 77)

Figure 4-1: Breast cancer data: see text for description.

An interesting observation is that the bounds are always tighter for the case of
bagging than they are for the case of a single SVM. This is an interesting experimental
finding for which we do not have a theoretical explanation. It may be because the
generalization performance of a machine is related to the expected leave-one-out error
of the machine [Vapnik, 1998], and by combining many machines each using a different
(random) subset of the training data we better approximate the “expected” leave-
one-out than we do when we only compute the leave-one-out of a single machine. This

72

−2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3
Bag l−o−o, b=0

er
ro

r

−2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3
svm l−o−o, b=0

−2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

bag l−o−o

sigma

er
ro

r

−2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

svm l−o−o

sigma

Thyroid data (C=0.5, Train= 140, Test = 75)

Figure 4-2: Thyroid data: see text for description.

finding can practically justify the use of ensembles of machines for model selection:
parameter selection using the leave-one-out bounds presented in this chapter is easier
for ensembles of machines than it is for single machines.

Another interesting observation is that the bounds seem to work similarly in the
case that the bias b is not 0. In this case, as before, the bounds are tighter for
ensembles of machines than they are for single machines.

Experimentally we found that the bounds presented here do not work well in
the case that the C parameter used is large. An example is shown in figure 4-6.
Consider the leave-one-out bound for a single SVM given by theorem 4.2.1. Let
(xi, yi) be a support vector for which yif(xi) < 1. It is known [Vapnik, 1998] that
for these support vectors the coefficient ci is C. If C is such that CK(xi,xi) > 1
(for example consider Gaussian kernel with K(x,x) = 1 and any C > 1), the clearly
θ(CK(xi,xi)−yif(xi)) = 1. In this case the bound of theorem 4.2.1 effectively counts
all support vectors in the margin (plus some of the ones on the margin - yf(x) = 1).
This means that for “large” C (in the case of Gaussian kernels this can be for example
for any C > 1), the bounds of this chapter effectively are similar (not larger than) to
another known leave-one-out bound for SVMs, namely one that uses the number of
all support vectors to bound generalization performance [Vapnik, 1998]. So effectively
the experimental results show that the number of support vectors does not provide a
good estimate of the generalization performance of the SVMs and their ensembles.

4.4 Validation set for model selection

Instead of using bounds on the generalization performance of learning machines like
the ones discussed above, an alternative approach for model selection is to use a
validation set to choose the parameters of the machines. We consider first the simple

73

−1 0 1 2 3 4
0.2

0.25

0.3

0.35

0.4
Bag l−o−o, b=0

er
ro

r

−1 0 1 2 3 4
0.2

0.25

0.3

0.35

0.4
svm l−o−o, b=0

−1 0 1 2 3 4
0.2

0.25

0.3

0.35

0.4
bag l−o−o

sigma

er
ro

r

−1 0 1 2 3 4
0.2

0.25

0.3

0.35

0.4
svm l−o−o

sigma

Diabetes data (C=0.5, Train= 468, Test = 300)

Figure 4-3: Diabetes data: see text for description.

case where we have N machines and we choose the “best” one based on the error
they make on a fixed validation set of size V . This can be thought of as a special case
where we consider as the hypothesis space to be the set of the N machines, and then
we “train” by simply picking the machine with the smallest “empirical” error (in this
case this is the validation error). It is known that if V Ei is the validation error of
machine i and TEi is its true test error, then for all N machines simultaneously the
following bound holds with probability 1 − η [Devroye et al., 1996, Vapnik, 1998]:

TEi ≤ V Ei +

√
log(N) − log(η

4
)

V
(4.13)

So how “accurately” we pick the best machine using the validation set depends,
as expected, on the number of machines N and on the size V of the validation
set. The bound suggests that a validation set can be used to accurately estimate
the generalization performance of a relatively small number of machines (i.e. small
number of parameter values examined), as done often in practice.

We used this observation for parameter selection for SVM and for their ensembles.
Experimentally we followed a slightly different procedure from what is suggested by
bound (4.13): for each machine (that is, for each σ of the Gaussian kernel in this case,
both for a single SVM and for an ensemble of machines) we split the training set (for
each training-testing split of the overall dataset as described above) into a smaller
training set and a validation set (70-30% respectively). We trained each machine
using the new, smaller training set, and measured the performance of the machine
on the validation set. Unlike what bound (4.13) suggests, instead of comparing the
validation performance found with the generalization performance of the machines
trained on the smaller training set (which is the case for which bound (4.13) holds),
we compared the validation performance with the test performance of the machine
trained using all the initial (larger) training set. This way we did not have to use less

74

0 1 2 3
0.1

0.2

0.3

0.4

0.5
Bag l−o−o, b=0

er
ro

r

0 1 2 3
0.1

0.2

0.3

0.4

0.5
svm l−o−o, b=0

0 1 2 3
0.1

0.2

0.3

0.4

0.5
bag l−o−o

sigma

er
ro

r

0 1 2 3
0.1

0.2

0.3

0.4

0.5
svm l−o−o

sigma

Heart data (C=0.5, Train= 170, Test = 100)

Figure 4-4: Heart data: see text for description.

points for training the machines, which is a typical drawback of using a validation
set, and we could compare the validation performance with the leave-one-out bounds
and the test performance of the exact same machines used in the previous section.

We show the results of these experiments in figures 4-1-4-5: see the dotted lines in
the plots. We observe that although the validation error is that of a machine trained
on a smaller training set, it still provides a very good estimate of the test performance
of the machines trained on the whole training set. In all cases, including the case of
C > 1 for which the leave-one-out bounds discussed above did not work well, the
validation set error provided a very good estimate of the test performance of the
machines.

4.5 Adaptive combinations of classifiers

The ensemble kernel machines (4.8) considered so far are voting combinations where
the coefficients βt in (4.8) of the linear combination of the machines are fixed. We now
consider the case where these coefficients are also learned from the training subsets.
In particular we consider the following architecture:

• A number T of kernel machines is trained as before (for example using different
training data, or different parameters).

• The T outputs (real valued in the experiments, but could also be thresholded -
binary) of the machines at each of the training points are computed.

• A linear machine (i.e. linear SVM) is trained using as inputs the outputs of
the T machines on the training data, and as labels the original training labels.

75

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
Bag l−o−o, b=0

er
ro

r

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
svm l−o−o, b=0

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
bag l−o−o

sigma

er
ro

r

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
svm l−o−o

sigma

Postal data (C=0.5, Train= 791, Test = 2007)

Figure 4-5: USPS data: see text for description.

The solution is used as the coefficients βt of the linear combination of the T
machines.

Notice that for this type of machines the leave-one-out bound of theorem 4.2.3 does
not hold since the theorem assumes fixed coefficients βt. A validation set can still
be used for model selection for these machines. On the other hand, an important
characteristic of this type of ensembles is that independent of what kernels/parameters
each of the individual machines of the ensemble use, the “second layer” machine
(which finds coefficients βt) uses always a linear kernel. This may imply that the
overall architecture may not be very sensitive to the kernel/parameters of the machines
of the ensemble. This hypothesis is experimentally tested by comparing how the test
performance of this type of machines changes with the σ of the Gaussian kernel used
from the individual machines of the ensemble, and compared the behavior with that
of single machines and ensembles of machines with fixed βt. Figure 4-7 shows two
example. In the experiments, for all datasets except from one, learning the coefficients
βt of the combination of the machines using a linear machine (a linear SVM is used in
the experiments) made the overall machine less sensitive to changes of the parameters
of the individual machines (σ of the Gaussian kernel). This can be practically a useful
characteristic of the architecture outlined in this section: for example the choice of
the kernel parameters of the machines of the ensembles need not be tuned accurately.

4.6 Ensembles versus single machines

So far we concentrated on the theoretical and experimental characteristics of ensem-
bles of kernel machines. We now discuss how ensembles compare with single machines.

Table 4.1 shows the test performance of one SVM compared with that of an
ensemble of 30 SVMs combined with βt = 1

30
and an ensemble of 30 SVMs combined

76

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
Bag l−o−o, b=0

er
ro

r

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
svm l−o−o, b=0

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
bag l−o−o

sigma

er
ro

r

0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6
svm l−o−o

sigma

Postal data (C=100, Train= 791, Test = 2007)

Figure 4-6: USPS data: using a large C (C=50). In this case the bounds do not work
- see text for an explanation.

using a linear SVM for some UCI datasets (characteristic results). We only consider
SVM and ensembles of SVMs with the threshold b. The table shows mean test errors
and standard deviations for the best (decided using the validation set performance
in this case) parameters of the machines (σ’s of Gaussians and parameter C - hence
different from figures 4-1-4-5 which where for a given C). As the results show, the
best SVM and the best ensembles we found have about the same test performance.
Therefore, with appropriate tuning of the parameters of the machines, combining
SVM’s does not lead to performance improvement compared to a single SVM.

Dataset SVM VCC ACC

Breast 25.5 ± 4.3 25.6 ± 4.5 25 ± 4
thyroid 5.1 ± 2.5 5.1 ± 2.1 4.6 ± 2.7
diabetes 23 ± 1.6 23.1 ± 1.4 23 ± 1.8
heart 15.4 ± 3 15.9 ± 3 15.9 ± 3.2

Table 4.1: Average errors and standard deviations (percentages) of the “best” machines
(best σ of the Gaussian kernel and best C) - chosen according to the validation set per-
formances. The performances of the machines are about the same. VCC and ACC use 30
SVM classifiers.

Although the “best” SVM and the “best” ensemble (that is, after accurate pa-
rameter tuning) perform similarly, an important difference of the ensembles compared
to a single machine is that the training of the ensemble consists of a large number
of (parallelizable) small-training-set kernel machines - in the case of bagging. This
implies that one can gain performance similar to that of a single machine by training
many faster machines using smaller training sets. This can be an important practical

77

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

sigma

er
ro

r

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

sigma

er
ro

r

Figure 4-7: When the coefficients of the second layer are learned using a linear SVM
the system is less sensitive to changes of the σ of the Gaussian kernel used by the
individual machines of the ensemble. Solid line is one SVM, dotted is ensemble of 30
SVMs with fixed βt = 1

30
, and dashed line is ensemble of 30 SVMs with the coefficients

βt learned. The horizontal axis shows the natural logarithm of the σ of the Gaussian
kernel. Left is the heart dataset, and right is the diabetes one. The threshold b is
non-zero for these experiments.

advantage of ensembles of machines especially in the case of large datasets. Table
4.2 compares the test performance of a single SVM with that of an ensemble of SVM
each trained with as low as 1% of the initial training set (for one dataset). For fixed
βt the performance decreases only slightly in all cases (thyroid, that we show, was
the only dataset found in the experiments for which the change was significant for
the case of VCC), while in the case of ACC even with 1% training data the perfor-
mance does not decrease: this is because the linear machine used to learn coefficients
βt uses all the training data. Even in this last case the overall machine can still
be faster than a single machine, since the second layer learning machine is a lin-
ear one, and fast training methods for the particular case of linear machines exist
[Platt, 1998]. Finally, it may be the case that ensembles of machines perform bet-

Dataset VCC 10% VCC 5% VCC 1% SVM

Diabetes 23.9 26.2 - 23 ± 1.6
Thyroid 6.5 22.2 - 5.1 ± 2.5
Faces .2 .2 .5 .1

Dataset ACC 10% ACC 5% ACC 1% SVM

Diabetes 24.9 24.5 - 23 ± 1.6
Thyroid 4.6 4.6 - 5.1 ± 2.5
Faces .1 .2 .2 .1

Table 4.2: Comparison between error rates of a single SVM v.s. error rates of VCC and
ACC of 100 SVMs for different percentages of subsampled data. The last dataset is from
(Osuna et al., 1997).

ter [Osuna et al., 1997b] for some problems in the presence of outliers (as discussed

78

above), or, if the ensemble consists of machines that use different kernels and/or
different input features, in the presence of irrelevant features. The leave-one-out
bounds presented in this chapter may be used for finding these cases and for bet-
ter understanding how bagging and general ensemble methods work [Breiman, 1996,
Shapire et al., 1998].

4.7 Summary

This chapter presented theoretical bounds on the generalization error of voting en-
sembles of kernel machines. The results apply to the quite general case where each
of the machines in the ensemble is trained on different subsets of the training data
and/or uses different kernels or input features. Experimental results supporting the
theoretical findings have been shown. A number of observations have been made from
the experiments:

1. The leave-one-out bounds for ensembles of machines have a form similar to that
of single machines. In the particular case of SVMs, the bounds are based on an
“average” geometric quantity of the individual SVMs of the ensemble (average
margin and average radius of the sphere containing the support vectors).

2. The leave-one-out bounds presented are experimentally found to be tighter than
the equivalent ones for single machines.

3. For SVM, the leave-one-out bounds based on the number of support vectors are
experimentally found not to be tight.

4. It is experimentally found that a validation set can be used for accurate model
selection without having to decrease the size of the training set used in order
to create a validation set.

5. With accurate parameter tuning (model selection) single SVMs and ensembles
of SVMs perform similarly.

6. Ensembles of machines for which the coefficients of combining the machines
are also learned from the data are less sensitive to changes of parameters (i.e.
kernel) than single machines are.

7. Fast (parallel) training without significant loss of performance relatively to sin-
gle whole-large-training-set machines can be achieved using ensembles of ma-
chines.

A number of questions and research directions are open. An important theoretical
question is how the bounds presented in this chapter can be used to better characterize
ensembles of machines such as bagging [Breiman, 1996]. On the practical side, further
experiments using very large datasets are needed to support the experimental finding
that the ensembles of machines can be used for fast training without significant loss

79

in performance. Finally, other theoretical questions are how to extend the bounds or
VCC to the case of ACC, and how to use the more recent leave-one-out bounds for
SVM [Chapelle and Vapnik, 1999] to better characterize the performance of ensembles
of machines.

80

Chapter 5

Object Detection: a Case Study on
Representations for Learning

Two important choices when using a kernel machine are that of the data representation
and of the kernel of the machine. These choices are clearly problem specific, and a general
method for making them is unlikely to exist. This chapter discusses the issues of data
representation and kernel selection for the particular problem of object detection in images.
It presents experimental comparisons of various image representations for object detection
using kernel classifiers. In particular it discusses the use of support vector machines (SVM)
for object detection using as image representations raw pixel values, projections onto princi-
pal components, and Haar wavelets. General linear transformations of the images through
the choice of the kernel of the SVM are considered. Experiments showing the effects of
histogram equalization, a non-linear transformation, are presented. Image representations
derived from probabilistic models of the class of images considered, through the choice of
the kernel of the SVM, are also evaluated. Finally, the chapter presents a feature selection
heuristic using SVMs.

5.1 Introduction

Detection of real-world objects in images, such as faces and people, is a problem of
fundamental importance in many areas of image processing: for face recognition, the
face must first be detected before being recognized; for autonomous navigation, ob-
stacles and landmarks need to be detected; effective indexing into image and video
databases relies on the detection of different classes of objects. The detection of ob-
jects poses challenging problems: the objects are difficult to model, there is significant
variety in color and texture, and the backgrounds against which the objects lie are
unconstrained.

This chapter considers a learning based approach to object detection and focuses
on the use of Support Vector Machines (SVM) classifiers [Vapnik, 1998] as the core
engine of these systems [Papageorgiou et al., 1998b]. A major issue in such a system
is choosing an appropriate image representation. This chapter presents experimental
results comparing different image representations for object detection, in particular
for detecting faces and people.

Initial work on object detection used template matching approaches with a set
of rigid templates or handcrafted parameterized curves, Betke & Makris[Betke and
Makris, 1995], Yuille, et al.[Yuille et al., 1992]. These approaches are difficult to ex-

81

tend to more complex objects such as people, since they involve a significant amount
of prior information and domain knowledge. In recent research the detection problem
has been solved using learning-based techniques that are data driven. This approach
was used by Sung and Poggio[Sung and Poggio, 1994] and Vaillant, et al. [Vaillant
et al., 1994] for the detection of frontal faces in cluttered scenes, with similar archi-
tectures later used by Moghaddam and Pentland [Moghaddam and Pentland, 1995],
Rowley, et al.[Rowley et al., 1995], and Osuna et al.[Osuna et al., 1997b]. The image
representations used were either projections onto principal components (i.e. eigen-
faces [Moghaddam and Pentland, 1995]), projections on wavelets, raw pixel values,
or, finally, features derived from probabilistic models [Sung and Poggio, 1994]. This
chapter compares these representations, and also links them through the choice of
kernels in the SVM classifier.

5.2 A trainable system for object detection

The trainable system for object detection used in this chapter is based on [Papa-
georgiou et al., 1998b] and can be used to learn any class of objects. The overall
framework has been motivated and successfully applied in the past [Papageorgiou et
al., 1998b]. The system consists of three parts:

• A set of (positive) example images of the object class considered (i.e. images
of frontal faces) and a set of negative examples (i.e. any non-face image) are
collected.

• The images are transformed into vectors in a chosen representation (i.e. a vector
of the size of the image with the values at each pixel location - below this is
called the “pixel” representation).

• The vectors (examples) are used to train a SVM classifier to learn the classifica-
tion task of separating positive from negative examples. A new set of examples
is used to test the system. The full architecture involves scanning an (test)
image over different positions and scales. [Papageorgiou et al., 1998b] has more
information.

Two choices need to be made: the representation in the second stage, and the
kernel of the SVM (see below) in the third stage. This chapter focuses on these two
choices.

In the experiments described below, the following data have been used:

• For the face detection systems, 2,429 positive images of frontal faces of size
19x19 (see figure 5-1), and 13,229 negative images randomly chosen from large
images not containing faces have been used. The systems were tested on new
data consisting of 105 positive images and around 4 million negative ones.

• For the people detection systems, 700 positive images of people of size 128x64
(see figure 5-1), and 6,000 negative images have been used. The systems were

82

tested on new data consisting of 224 positive images and 3,000 negative ones
(for computational reasons, only for Figure 5-6 more test points have been used:
123 positive and around 800,000 negative ones).

Figure 5-1: Top row: examples of images of faces in the training database. The
images are 19x19 pixels in size. Bottom row: examples of images of people in the
training database. The images are 128x64 pixels in size.

The performances are compared using ROC curves [Papageorgiou et al., 1998b]

generated by moving the hyperplane of the SVM solution by changing the threshold
b (see below), and computing the percentage of false positives and false negatives
for each choice of b. In the plots presented the vertical axis shows the percentage
of positive test images correctly detected (1 - false negative percentage), while the
horizontal axis shows one false positive detection per number of negative test images
correctly classified.

5.3 Comparison of representations for face and peo-

ple detection

5.3.1 Pixels, principal components and Haar wavelets

Using the experimental setup described above, experiments to compare the discrimi-
native power of three different image representations have been conducted:

• The pixel representation: train an SVM using the raw pixel values scaled be-
tween 0 and 1 (i.e. for faces this means that the inputs to the SVM machine
are 19 · 19 = 361 dimensional vectors with values from 0 to 1 - before scaling it
was 0 to 255).

• The eigenvector (principal components) representation: compute the correlation
matrix of the positive examples (their pixel vectors) and find its eigenvectors.
Then project the pixel vectors on the computed eigenvectors. We can either
do a full rotation by taking the projections on all 361 eigenvectors, or use the
projections on only the first few principal components. The projections are
rescaled to be between 0 and 1.

83

• The wavelet representation: consider a set of Haar wavelets at different scales
and locations (see Figure 5-2), and compute the projections of the image on the
chosen wavelets. For the face detection experiments all wavelets (horizontal,
vertical and diagonal) at scales 4 × 4 and 2 × 2 have been used, since their
dimensions correspond to typical features for the size of the face images con-
sidered. This gives a total of 1,740 coefficients for each image. For the people
detection system wavelets at scales 32×32 and 16×16 shifted by 8 and 4 pixels
respectively have been considered. This gives a total of 1,326 coefficients. The
outputs of the projections were rescaled to be between 0 and 1.

-1 1
1

-1 1 -1

(a) (b) (c)

Figure 5-2: The 3 types of 2-dimensional non-standard Haar wavelets; (a) “vertical”,
(b) “horizontal”, (c) “diagonal”.

Experiments

Figure 5-3 shows the results of the experiments comparing the representations de-
scribed above. In all these experiments a second order polynomial kernel was used.
The motivation for using such a kernel is based on the experimental results of [Osuna
et al., 1997a, Papageorgiou et al., 1998b]. Throughout the chapter, notice the range
of the axis in all the plots in the figures: the range varies in order to show clearer the
important parts of the curves.

These experiments suggest a few remarks. First notice that both the pixel and
eigenvector representations give almost identical results (small differences due to the
way the ROC curves are produced are ignored). This is an observation that has a
theoretical justification discussed below. Second, notice that for faces the wavelet
representation performs about the same as the other two, but in the case of people,
the wavelet representation is significantly better than the other two. This is a finding
that was expected [Papageorgiou et al., 1998b, Oren et al., 1997]: for people pixels
may not be very informative (i.e. people may have different color clothes), while
wavelets capture intensity differences that discriminate people from other patterns
[Papageorgiou et al., 1998b]. On the other hand, for faces at the scale used, pixel
values seem to capture enough of the information that characterizes faces. Notice
that all the three representations considered so far are linear transformations of the
pixels representation. This takes us to the next topic.

84

10
−6

10
−5

10
−4

10
−3

0.2

0.4

0.6

0.8

1
Pixels vs PCA vs Wavelets

D
et

ec
tio

n
R

at
e

10
−3

10
−2

10
−1

0.6

0.7

0.8

0.9

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Figure 5-3: ROC curves for face (top) and people (bottom) detection: solid lines are
for the wavelet representation, dashed lines for pixel representation, and dotted line
for eigenvector representation (all 361 eigenvectors).

5.3.2 Linear transformations and kernels

As presented in chapter 3, a key issue when using a SVM (and generally any kernel
machine) is the choice of the kernel K in equation (3.5), namely:

f(x) =
�∑

i=1

ciK(x,xi), (5.1)

The kernel K(xi,xj) defines a dot product between the projections of two inputs
xi,xj , in a feature space (see chapter 3). Therefore the choice of the kernel is very
much related to the choice of the “effective” image representation. So we can study
different representations of the images through the study of different kernels for SVM.

In particular there is a simple relation between linear transformations of the orig-
inal images, such as the ones considered above, and kernels. A point (image) x is
linearly decomposed in a set of features g = g1, . . . , gm by g = Ax, with A a real
matrix (we can think of the features g as the result of applying a set of linear filters to
the image x). If the kernel used is a polynomial of degree m1 (as in the experiments),

1Generally this holds for any kernel for which only dot products between input arguments are

85

then K(xi,xj) = (1+x

i ·xj)

m, while K(gi,gj) = (1+g

i ·gj)

m = (1+x

i (A
A)xj)

m.
So using a polynomial kernel in the “g” representation is the same as using a kernel
(1 + x

i (A
A)xj)
m in the original one. This implies that one can consider any linear

transformation of the original images by choosing the appropriate square matrix ATA
in the kernel K of the SVM.

As a consequence of this observation, we have a theoretical justification of why
the pixel and eigenvector representations lead to the same performance: in this case
the matrix A is orthonormal, therefore ATA = I which implies that the SVM finds
the same solution in both cases. On the other hand, if we choose only some of the
principal components (like in the case of eigenfaces [Turk and Pentland, 1991]), or if
we project the images onto a non-orthonormal set of Haar wavelets, the matrix A is
no longer orthonormal, so the performance of the SVM may be different.

5.3.3 Histogram Equalization

We now discuss the experimental finding that histogram equalization (H.E.), a non-
linear transformation of the “pixel” representation, improves the performance of the
detection system. Given an image, H.E. is performed in two steps: first the pixel
values (numbering 0 to 255) are grouped into the smallest number of bins so that the
distribution of the number of pixels in the image is uniform among the bins; then we
replace the pixel values of the original image with the values (rank) of the bins they
fall into. More information on H.E. can be found in the literature (i.e. [Jain, 1989]).
Figure 5-5 shows an image of a face used for training, and the same face after H.E.

Experiments with the object detection system using the aforementioned represen-
tations have been conducted, this time after performing H.E. on every input image.
Only for the wavelet representation, instead of projecting histogram equalized images
on the chosen wavelets, we transformed the outputs of the projections of the original
images on the wavelets using a sigmoid function. This operation is (almost) equiva-
lent to first performing H.E. and then projecting on the wavelet filters the histogram
equalized image (assuming Gaussian-like histogram of the original image). Figure 5-4
shows the performance of the detection system. Both for face and people detection
the performance increased dramatically.

H.E. has been extensively used for image compression and in this case it is straight-
forward to show that H.E. is a form of Vector Quantization [Gersho and Gray, 1991]

and is an effective coding scheme. Classification is however different from compression
and it is an open question of why H.E. seems to improve so much the performance of
the SVM classifier. Here is a conjecture:

Suppose that a transformation satisfies the following two conditions:

• it is a legal transformation of the input vector, that is it preserves the class
label;

• it increases the entropy of the input set, leading to a more compressed repre-
sentation.

needed - i.e. also for Radial Basis Functions.

86

It is a conjecture that such a transformation will improve the performance of a
SVM classifier.

Notice that H.E. is a transformation of the images that satisfies the above con-
ditions: i.e. faces remain faces, and non-faces remain non-faces (of course one can
design images where this does not hold, but such images are very unlikely and are
not expected to exist among the ones used for training and/or testing). Moreover
H.E. leads to a more compressed representation of the images (in terms of bits needed
to describe them). Of course the first condition relies on prior information. In the
case of H.E. applied to images it is known a priori that H.E. is a transformation
embedding ”illumination invariance”: images of the same face under different il-
luminations can be mapped into the same vector under H.E. Thus performing an
H.E. transformation is roughly equivalent to using a larger training set containing
many ”virtual examples” generated from the real examples [Girosi and Chan, 1995,
Vetter et al., 1994] by changing the global illumination (mainly the dynamic range).
Of course a larger training set in general improves the performance of a classifier. So
this may explain the improvement of the system.

In the case of the SVM classifier used, it is likely that H.E. makes the space of
images “more discrete”: there are fewer possible images. This may correspond to a
better (more uniform) geometry of the training data (for example, after H.E. there
may be a larger margin between the two classes) that leads to a better separating
surface found by the SVM.

Thus the conjecture claims that H.E. improves classification performance because
it does not change, say, faces into non-faces: this is “a priori” information about
the illumination invariance of face images. H.E. exploits this information. One may
be able to formalize this either through a compression argument, or through the
equivalence with virtual face examples, or possibly through a geometric argument.
This “a priori” information is true for face and people images, but may not hold for
other ones, in which case H.E. might not improve performance. In general, because
of the same arguments outlined above, it is expected that any transformation of
the original images that “effectively” takes advantage of prior information about the
class of images considered and compresses their signatures, is expected to improve
the performance of the system.

5.4 Input feature selection using SVM

This section addresses the following questions: can feature selection improve per-
formance of the SVM classifier? can SVM perform well even when many (possibly
irrelevant) features are used? One important problem with features selection is the
multiple use of the data: the same training set is used first to train the system using
all the features, then to select the important features, and finally to retrain the sys-
tem using only the selected features. The multiple use of training data may lead to
overfitting, so it is unclear a priori that selecting features can improve performance.

In order to investigate these issues, several experiments where the object detection
systems were trained with different numbers of input features have been performed.

87

10
−6

10
−5

10
−4

10
−3

0.2

0.4

0.6

0.8

1
Histogram Equalization

D
et

ec
tio

n
R

at
e

10
−3

10
−2

10
−1

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Figure 5-4: ROC curves for face (top) and people (bottom) detection after histogram
equalization: solid lines are for the wavelet representation, dashed lines for the pixel
representation, and dotted line for the eigenvector representation. The ROC curve
for the wavelet representation without histogram equalization (like in Figure 5-3) is
also shown; this is the bottom thick solid line. For people, the bottom thick dashed
line shows the performance of pixels without H.E..

To this purpose a method for automatically selecting a subset of the input features
within the framework of SVM has been developed.

5.4.1 A heuristic for feature selection using SVM

The idea of the proposed feature selection method is based on the intuition that
the most important input features are the ones for which, if removed or modified,
the separating boundary f(x) = 0 changes the most. Instead of the change of the
boundary we can consider the average change of the value of the function f(x) in a
region around the boundary (variations of f will affect classification only for points
near the boundary). To do so, we compute the derivative of f(x) with respect to an
input feature xr and integrate the absolute value (we are interested in the magnitude

88

Figure 5-5: An original image of a face on the left. The same image after histogram
equalization on the right.

of the derivative) in a volume V around the boundary:

Ir =
∫

V
dP (x)

∣∣∣∣∣ df

dxr

∣∣∣∣∣ .
where P is the (unknown) probability distribution of the input data. In practice we
cannot compute this quantity because we do not know the probability distribution
P (x). Instead we can approximate Ir with the sum over the support vectors2:

Ir ≈
Nsv∑
i=1

∣∣∣∣∣ df

dxr
i

∣∣∣∣∣ =
Nsv∑
i=1

∣∣∣∣∣∣
Nsv∑
j=1

cjK
r(xj,xi)

∣∣∣∣∣∣ . (5.2)

where Nsv is the number of support vectors and Kr(xj ,xi) is the derivative of the
kernel with respect to the rth dimension evaluated at xi. For example for K(xj,xi) =
(1+xj ·xi)

2, this is equal to Kr(xj ,xi) = (1+xj ·xi)x
r
i where xr

i is the rth component of
vector xi. Notice that this is only an approximation to the actual derivative: changing
the value of a feature may also lead to different solution of the SVM, namely different
ci’s in (5.1). We assume that this change is small and we neglect it.

To summarize, the feature selection method consists of computing the quantity in
(5.2) for all the input features and selecting the ones with the largest values Ir.

5.4.2 Experiments

For people detection, using the proposed heuristic, 29 of the initial set of 1,326 wavelet
coefficients have been selected. An SVM using only the 29 selected features was
trained, and the performance of the machine was compared with that of an SVM
trained on 29 coefficients selected using a manual method as described in [Papageor-
giou et al., 1998b]. The results are shown in Figure 5-6 (bottom plot).

The same heuristic was also tested for face detection. A total of30 of the initial
1,740 wavelet coefficients have been selected, and the performance of an SVM trained
using only these 30 features was compared with the performance of a SVM that uses
30 randomly selected features out of the initial 1,740. The performance of the system
when 500 of the wavelets were chosen is also shown. Notice that using the proposed
method we can select about a third (500) of the original input dimensions without

2For separable data these are also the points nearest to the separating surface. For non-separable
data we can take the sum over only the support vectors near the boundary.

89

significantly decreasing the performance of the system. The result is also shown in
Figure 5-6 (top plot). Finally for the eigenvector representation, the system was also
tested using few principal components. The results are also shown in Figure 5-6
(middle plot).

From all the experiments shown in Figure 5-6 we observe that SVMs are not
sensitive to large numbers of input dimensions. In fact in all cases, when using all
input dimensions (all wavelets or all eigenvectors) the system performed better (or
about the same) than when using few of the input features. This experimental finding
gives a first answer, although not general and theoretical, to the questions asked at the
beginning of this section: it confirms the difficulty of the feature selection problem,
and indicates that SVMs work well even when the input data are high-dimensional,
by automatically dealing with irrelevant features.

5.5 Features from probabilistic models

In this section we take a different approach to the problem of finding image repre-
sentations. Consider a specific class of images (i.e. faces, people, cars) and assume
that they are sampled according to a generative probabilistic model P (x|β), where β
indicates a set of parameters. As an example consider a Gaussian distribution:

P (x|β) =
1

2π
d
2 |Σ| 12

exp
{
−1

2
(x − x0)

Σ−1(x− x0)
}

(5.3)

where the parameters β are the average image x0 and the covariance Σ.
Recent work [Papageorgiou et al., 1998a] shows how the assumption of a specific

probabilistic model of the form (5.3) suggests a choice of the kernel – and therefore
of the “features” – to be used in order to reconstruct, through the SVM regression
algorithm, images of faces and people. The relevant features are the principal com-
ponents un of the set of examples (i.e. faces or people) scaled by the corresponding
eigenvalues λn. However, [Papageorgiou et al., 1998a] left open the question of what
features to choose in order to do classification as opposed to regression, that to dis-
criminate faces (or people) from non-faces (non-people), once the probabilistic model
is decided.

Very recently a general approach to the problem of constructing features for classi-
fication starting from probabilistic models describing the training examples has been
suggested [Jaakkola and Haussler, 1998b]. The choice of the features was made im-
plicitly through the choice of the kernel to be used for a kernel classifier. In [Jaakkola
and Haussler, 1998b] a probabilistic model for both the classes to be discriminated
was assumed, and the results were also used when a model of only one class was
available - which is the case we have.

Let us denote with L(x|β) the log of the probability function and define the Fisher
information matrix

I =
∫

dxP (x|β)∂iL(x|β)∂jL(x|β),

90

where ∂i indicates the derivative with respect to the parameter βi. A natural set of
features, φi, is found by taking the gradient of L with respect to the set of parameters,

φi(x) = I− 1
2
∂L(x|β))

∂β
. (5.4)

These features were theoretical motivated in [Jaakkola and Haussler, 1998b] and
shown to lead to kernel classifiers which are at least as discriminative as the Bayes
classifier based on the given generative model. We have assumed the generative model
(5.3) and rewritten it with respect to the average image x0 and the eigenvalues λn

and obtain the set of features according to equation (5.4). For simplicity the principal
components were kept fixed in the model. The features obtained in this way were
then used as a new input representation in the learning system. The resulting linear
kernel obtained by taking the dot product between the features (dot product for the
implicitly chosen representation) of a pair of images xi and xj is:

K(xi,xj) =
N∑

n=1

[−λ−1
n (cn(xi) − cn(xj))

2 + λ2
ncn(xi)cn(xj)], (5.5)

where cn(x) = (x−x0)

un and N is the total number of eigenvectors (principal com-

ponents) used. The parameters x0,un, λn were estimated using the training examples
of faces (or people). Note that the training data were used multiple times: once for
estimating the parameters of the probabilistic model (5.3), and once to train an SVM
classifier.

Notice also that the new features are a non-linear transformation of the pixel
representation and the eigenvalues appear in the denominator of each term in the
kernel. This is not surprising as the smaller principal components may be important
for discrimination: for example, in the problem of face recognition we expect that to
discriminate between two faces, we can get more benefit by looking at small details in
the image which may not be captured by the larger principal components. Similarly,
in the problem of face detection, the non-image class is expected to have the same
energy on each principal component, so the small principal components may still be
useful for classification. On the other hand, when the goal is to reconstruct or de-
noise the in-class images, we deal with a regression-type problem; in such a case the
top principal components capture the most important coefficients for reconstructing
the images and only few of them need to be consider.

Equation (5.5) indicates that only a limited number of principal components can
be used in practice because small λn create numerical instabilities in the learning
algorithm. Several experiments were performed by changing the number of principal
components used in the model (see Figure 5-7). The results were compared with
the image representations discussed above. Notice that the proposed representation
performs slightly better than the other ones (when 100 principal components were
used), but not significantly better. It may be the case that features from other (more
realistic) probabilistic models lead to better systems.

91

5.6 Summary

This chapter presented experiments for face and people detection with different im-
age representations and kernels using SVM. The main points can be summarized as
follows:

• For face detection, pixels, principal components, and Haar wavelets perform
almost equally well.

• For people detection, the Haar wavelet representation significantly outperforms
the other two.

• We can capture all linear transformation of the original images through the
kernel of the SVM.

• For both faces and for people, histogram equalization increases performance
dramatically for all the representations tested. Explanations for this result
were suggested.

• A feature selection method was proposed and tested.

• New image representations are derived from generative models. In particular,
starting from a Gaussian model for the images (i.e. for faces) suggested by
the regularization model for regression, new features, that are different from
eigenfaces, are derived. These features may have a slight advantage compared
to the other three representations tested.

A number of questions and future research directions are still open. What non-
linear transformations of the images (other than histogram equalization) can improve
the performance of the system? How can we include prior knowledge through such
transformations? It may be possible to design kernels that incorporate such transfor-
mations/prior knowledge. Regarding the probabilistic features, it may be interesting
to derive such features from other probabilistic models. There is no reason to believe
that one Gaussian is enough to model the space of faces images. For example in [Sung
and Poggio, 1994] a mixture of six Gaussians was used and shown to be satisfactory.

92

10
−5

10
−4

10
−3

0

0.5

1
Feature Selection

10
−6

10
−5

10
−4

10
−3

0

0.5

1

D
et

ec
tio

n
R

at
e

10
−4

10
−3

0.7

0.8

0.9

1

False Positive Rate

Figure 5-6: Top figure: solid line is face detection with all 1,740 wavelets, dashed
line is with 30 wavelets chosen using the proposed method, and dotted line is with
30 randomly chosen wavelets. The line with ×’s is with 500 wavelets, and the line
with ◦’s is with 120 wavelets, both chosen using the method based on equation (5.2).
Middle figure: solid line is face detection with all eigenvectors, dashed line is with
the 40 principal components, and dotted line is with the 15 principal components.
Bottom figure: solid line is people detection using all 1,326 wavelets, dashed line is
with the 29 wavelets chosen by the method based on equation 5.2 , and dotted line
is with the 29 wavelets chosen in ..

93

10
−6

10
−5

10
−4

10
−3

10
−2

0.4

0.5

0.6

0.7

0.8

0.9

1
Probabilistic Features

False Positive Rate

D
et

ec
tio

n
R

at
e

Figure 5-7: Face experiments: Solid line indicates the probabilistic features using 100
principal components, dashed line is for 30 principal components, and dotted for 15.
The ROC curves with all wavelets (line with circles) is also shown for comparison.
Histogram equalization was performed on the images.

94

Chapter 6

Further Remarks

The first part of the thesis presented a framework, based on the Statistical Learning
Theory (SLT) of Vapnik, within which the problem of learning can be studied and a
large family of learning methods can be analyzed. However, SLT, although it provides
powerful ideas and formal methods for analyzing learning methods, is not the only
approach to learning, as the second part of the thesis also suggests. In this second
part, learning was approached through the study of an important quantity describing
learning methods, namely the leave-one-out error. This approach is independent of
the SLT one. It is interesting to study the relations between the two: for example,
how can quantities, such as VC-dimension, suggested by SLT can be used to better
understand the behavior of the leave-one-out error of a learning machine? Preliminary
studies on this issue have been already done [Kearns and Ron, 1999], but more work
is needed. Generally, it is important to study the relations between SLT and other
approaches to learning (i.e. compression-based approaches [Floyd and Warmuth,
1995], the luckiness function approach [Shawe-Taylor et al., 1998], or the maximum
entropy approach [Jaakkola et al., 2000]) as well as to develop new ones.

6.1 Summary and Contributions

The thesis consisted of three main parts. First (chapter 2) some basic theoretical
tools were reviewed. In particular, standard Statistical Learning Theory (SLT) and
a technical extension of it were presented in chapter 2. Within the extended SLT a
theoretical justification and statistical analysis of a large family of learning machines,
namely kernel learning machines, was provided. Within this family of machines, two
important types were analyzed: Support Vector Machines (SVM) and Regularization
Networks (RN) (chapter 3). In the second part of the thesis (chapter 4), the problem
of learning was studied not using the tools of SLT but instead using the leave-one-
out error characterization of learning machines. Using this quantity other learning
architectures, namely ensembles of learning machines, were investigated. Finally, the
last part of the thesis discussed an application of learning to object detection. This
provided a testbed to discuss important practical issues involved in using learning ma-
chines, in particular the problem of finding appropriate data representations (chapter
5).

The contributions of the thesis, as outlined in the introduction, can be summarized
as follows:

95

1. The thesis reviewed standard Statistical Learning Theory and developed an
extension within which a new (unified) theoretical justification of a number of
kernel machines, including RN and SVM, was provided.

2. Within the extended SLT framework, new bounds on the expected error (per-
formance) of a large class of kernel machines and particularly SVM, the main
learning machines considered in the thesis, were proven.

3. In the second part ensembles of machines were studied. Two types of ensembles
were defined: voting combinations, and adaptive combinations. New theoretical
results on the statistical properties of voting ensembles of kernel machines for
classification were shown.

4. The new theoretical findings on voting ensembles of machines were experimen-
tally validated. Both voting and adaptive combinations of machines were further
characterized experimentally.

5. The third part discussed an important practical issue, namely the problem of
finding appropriate data representations for learning. A trainable system for
object detection in images provided the main experimental setup where ideas
were tested and discussed.

6.2 Extensions and conjectures

A number of conjectures have been suggested throughout the thesis. These, as well
as suggestions for future research, are listed below:

• A theoretical question is related to Kolmogorov’s lemmas and theorems (the-
orems 2.1.1 and 2.1.2, and lemma 2.1.1). As discussed in chapter 2, these
theorems and lemmas are about hypothesis spaces that consist of orthants. A
first question is whether lemma 2.1.1 can be extended to hypothesis spaces con-
sisting of other types of functions. If that is the case, then one would be able
to prove distribution independent bounds on the distance between empirical
and expected error (in the spirit of theorem 2.1.2 and of SLT) for the class of
hypothesis spaces for which lemma 2.1.1 still holds. That approach could lead
to a new analysis of a class of learning methods.

• Conjectures about the “extended” SRM: chapters 2 and 3 discussed a number
of conjectures on this framework that are listed again below:

– From section 2.2.1: we conjecture that as (the number of training data)
� → ∞, for appropriate choice of (the hypothesis space Hn in the defined
structure) n(�, ε) with n(�, ε) → ∞ as � → ∞, the expected risk of the
solution of the “extended” SRM method converges in probability to a
value less than 2ε away from the minimum expected risk in H =

⋃∞
i=1 Hi.

96

– From section 2.2.1: we conjecture that if the target function f0 belongs
to the closure of H, then as � → ∞, with appropriate choices of ε, n(�, ε)
and n∗(�, ε) the solution of the “extended” SRM method can be proven to
satisfy eq. (2.4) in probability. Finding appropriate forms of ε, n(�, ε) and
n∗(�, ε) is an open theoretical problem (which is mostly a technical matter)

– From section 3.4.4: it is a (simple) conjecture that a straightforward ap-
plications of the methods used to extend theorem 3.4.5 to 3.4.6 can also
be used to extend the bounds of chapter 2 to the case where A is not fixed
(and therefore hold for all f with ‖f‖2

K < ∞).

• Quantities characterizing kernel machines: a standard quantity used to study
kernel machines is that of the margin. The margin has been also studied in
the framework of “luckiness functions” [Shawe-Taylor et al., 1998] and boost-
ing [Shapire et al., 1998]. A possible direction of research is towards finding
other (geometric) quantities (or luckiness functions in the framework of [Shawe-
Taylor et al., 1998]) that describe learning methods. The radius of the support
vectors, as discussed in chapter 4, is such a quantity, but others may be more
appropriate.

• Compression and learning: as mentioned in chapter 4, an estimate of the ex-
pected error of an SVM is given in terms of the number of support vectors
[Vapnik, 1998]. The support vectors can be seen as a compressed representa-
tion of the training data. In fact, if one deletes the non-support vectors and
trains an SVM using only the support vectors, one gets the exact same solution
(same classifier) [Vapnik, 1998]. Therefore, the generalization error of an SVM
is closely related to the compression achieved measured as the percentage of
training data that are support vectors (in fact it is only the essential support
vectors that are important [Vapnik, 1998]). This is a particular case where the
performance of a classifier is related to a form of compression, the compres-
sion of the training data, called sample compression. This statement can be
rephrased in terms of bits used to describe the data: for � training data one
needs � bits. If n is the sample compression of a learning machine, then one
needs only n bits to describe the training data without influencing the classifier.
It has been generally shown that for any classifier, if one can find n out of the �
training data such that retraining the classifier using only those n points leads
to the exact same solution with the one found using all � training points, then
the generalization performance of the learning machine is related to the sample
compression rate n

�
[Floyd and Warmuth, 1995]. From a different point of view,

the complexity of a hypothesis space can also be seen in the framework of com-
pression: the growth function (VC-dimension) of a hypothesis space effectively
measures how many functions there are in the hypothesis space, therefore how
many bits one needs to enumerate these functions. Again, the performance of
a learning machine depends on the complexity of the machine, which implies
that it depends (as in the case of sample compression) on the number of bits
required to describe the hypothesis space of the machine. Instead of using � bits

97

to describe the data, we only need h bits to describe the function corresponding
to the data, where h is the number of bits required to describe the hypothe-
sis space (the complexity of the space). According to SLT, the generalization
performance of a learning machine depends on the ratio of the complexity of
the hypothesis space over the number � of training data, which is similar to
the aforementioned sample compression rate n

�
: in both cases the performance

of the learning machine depends on the compression achieved (instead of using
� bits to describe the data we use n in the first case or h in the second). An
interesting question is to find the relation between the sample compression rate
of a classifier and the complexity (i.e. VC-dimension) of the hypothesis space H
that the classifier uses: one would expect that the sample complexity of a learn-
ing machine is related to the complexity (i.e. VC dimension) of the machine
(this is shown to be the case in [Floyd and Warmuth, 1995] for a particular type
of hypothesis spaces). The direction of relating notions of compression, be it
sample compression or compressed representations of hypothesis spaces, with
the performance of a learning machine is an open one that may lead to new
ideas and views on learning.

• Learning with ensembles versus single machines: a question left open in chapter
4 is whether the bounds on the expected error of ensemble machines derived can
be used to describe under which conditions ensembles of machines is expected to
work better than single machines. It may be possible to show that the “average
geometry” (average D over ρ) is better than the geometry (D over ρ) of a single
machine - for example in the case that the training data contain a lot of outliers.

• In chapter 5, a conjecture about the influence of data transformations on the
performance of a learning method has been made. In particular, given data D� ≡
{(xi, yi) ∈ X × Y }�

i=1 and a transformation g(x) (i.e. histogram equalization of
images, as discussed in chapter 5), we conjecture the following:

Suppose that a transformation g satisfies the following two conditions:

– it is a legal transformation of the input vector, that is it preserves the class
label: if x has label y, then g(x) has the same label y;

– it increases the entropy of the input set, leading to a more compressed
representation.

It is a conjecture that such a transformation will improve the performance of
a learning method (classifier). It may be possible to approach this conjecture
within the recently developed Maximum Entropy Discrimination (MED) frame-
work for learning [Jaakkola et al., 2000].

• Finally, starting from the conjecture above, and possibly within the MED frame-
work, it is important to further study the twin problems of data representation
and learning in a more principled way. It is common experience that the choice
of a “good” data representation is as important as the (closely related) choice
of the learning method used (as chapter 5 also discussed).

98

Bibliography

[Allen, 1974] D. Allen. The relationship between variable selection and data augmen-
tation and a method for prediction. Technometrics, 16:125–127, 1974.

[Alon et al., 1993] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-
sensitive dimensions, uniform convergence, and learnability. Symposium on Foun-
dations of Computer Science, 1993.

[Aronszajn, 1950] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math.
Soc., 686:337–404, 1950.

[Bartlett and Shawe-Taylor, 1998a] P. Bartlett and J. Shawe-Taylor. Generalization
performance of support vector machine and other patern classifiers. In C. Burges
B. Scholkopf, editor, Advances in Kernel Methods–Support Vector Learning. MIT
press, 1998.

[Bartlett and Shawe-Taylor, 1998b] P. Bartlett and J. Shawe-Taylor. Generalization
performance of support vector machine and other patern classifiers. In ation per-
formance of support vector machine B. Scholkopf, C. Burges and other patern clas-
sifiers, editors, Advances in Kernel Methods–Support Vector Learning. MIT press,
1998.

[Bartlett et al., 1996] P. Bartlett, P.M. Long, and R.C. Williamson. Fat-shattering
and the learnability of real-valued functions. Journal of Computer and Systems
Sciences, 52(3):434–452, 1996.

[Bartlett, 1998] P. Bartlett. The sample complexity of pattern classification with
neural networks: the size of the weights is more important that the size of the
network. IEEE Transactions on Information Theory, 1998.

[Betke and Makris, 1995] M. Betke and N. Makris. Fast object recognition in noisy
images using simulated annealing. In Proceedings of the Fifth International Con-
ference on Computer Vision, pages 523–20, 1995.

[Bottou and Vapnik, 1992] L. Bottou and V. Vapnik. Local learning algorithms. Neu-
ral Computation, 4(6):888–900, November 1992.

[Breiman, 1993] L. Breiman. Stacked regression. Technical report, University of
California, Berkeley, 1993.

[Breiman, 1996] L. Breiman. Baggind predictors. Machine Learning, 26(2):123–140,
1996.

99

[Buhmann, 1990] M.D. Buhmann. Multivariate cardinal interpolation with radial
basis functions. Constructive Approximation, 6:225–255, 1990.

[Buhmann, 1991] M.D. Buhmann. On quasi-interpolation with Radial Basis Func-
tions. Numerical Analysis Reports DAMPT 1991/NA3, Department of Applied
Mathematics and Theoretical Physics, Cambridge, England, March 1991.

[Burges, 1998] C. Burges. A tutorial on support vector machines for pattern recog-
nition. In Data Mining and Knowledge Discovery. Kluwer Academic Publishers,
Boston, 1998. (Volume 2).

[Cantelli, 1933] F. P. Cantelli. Sulla determinazione empirica della leggi di proba-
bilita. G. Inst. Ital. Attuari, 4, 1933.

[Chapelle and Vapnik, 1999] O. Chapelle and V. Vapnik. Model selection for support
vector machines. In Advances in Neural Information Processing Systems, 1999.

[Cochran, 1972] J.A. Cochran. The analysis of linear integral equations. McGraw-
Hill, New York, 1972.

[Cortes and Vapnik, 1995] C. Cortes and V. Vapnik. Support vector networks. Ma-
chine Learning, 20:1–25, 1995.

[Courant and Hilbert, 1962] R. Courant and D. Hilbert. Methods of mathematical
physics. Vol. 2. Interscience, London, England, 1962.

[de Boor, 1990] C. de Boor. Quasi-interpolants and approximation power of multi-
variate splines. In M. Gasca and C.A. Micchelli, editors, Computation of Curves
and Surfaces, pages 313–345. Kluwer Academic Publishers, Dordrecht, Nether-
lands, 1990.

[DeVore, 1998] R.A. DeVore. Nonlinear approximation. Acta Numerica, pages 51–
150, 1998.

[Devroye et al., 1996] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory
of Pattern Recognition. Number 31 in Applications of mathematics. Springer, New
York, 1996.

[Duda and Hart, 1973] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. Wiley, New York, 1973.

[Dudley et al., 1991] R.M. Dudley, E. Gine, and J. Zinn. Uniform and universal
glivenko-cantelli classes. Journal of Theoretical Probability, 4:485–510, 1991.

[Dudley, 1984] R.M. Dudley. A course on empirical processes. Lecture Notes in
Mathematics, 1097:2–142, 1984.

[Dyn et al., 1986] N. Dyn, D. Levin, and S. Rippa. Numerical procedures for surface
fitting of scattered data by radial functions. SIAM J. Sci. Stat. Comput., 7(2):639–
659, April 1986.

100

[Dyn et al., 1989] N. Dyn, I.R.H. Jackson, D. Levin, and A. Ron. On multivariate ap-
proximation by integer translates of a basis function. Computer Sciences Technical
Report 886, University of Wisconsin–Madison, November 1989.

[Dyn, 1991] N. Dyn. Interpolation and approximation by radial and related functions.
In C.K. Chui, L.L. Schumaker, and D.J. Ward, editors, Approximation Theory, VI,
pages 211–234. Academic Press, New York, 1991.

[Evgeniou et al., 1999] T. Evgeniou, M. Pontil, and T. Poggio. A unified framework
for regularization networks and support vector machines. A.I. Memo No. 1654,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1999.

[Floyd and Warmuth, 1995] S. Floyd and M. Warmuth. Sample compression, learn-
ability, and the vapnik-chervonenkis dimension. Machine Learning, 21:269–304,
1995.

[Friedman et al., 1998] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting. Technical report, Stanford University,
Dept. of Statistics, 1998.

[Gersho and Gray, 1991] A. Gersho and R.M. Gray. Vector quantization and signal
compression. Kluwer Academic Publishers, Boston, 1991.

[Girosi and Chan, 1995] F. Girosi and N. Chan. Prior knowledge and the creation
of “virtual” examples for RBF networks. In Neural networks for signal processing,
Proceedings of the 1995 IEEE-SP Workshop, pages 201–210, New York, 1995. IEEE
Signal Processing Society.

[Girosi et al., 1991] F. Girosi, T. Poggio, and B. Caprile. Extensions of a theory
of networks for approximation and learning: outliers and negative examples. In
R. Lippmann, J. Moody, and D. Touretzky, editors, Advances in Neural information
processings systems 3, San Mateo, CA, 1991. Morgan Kaufmann Publishers.

[Girosi et al., 1995] F. Girosi, M. Jones, and T. Poggio. Regularization theory and
neural networks architectures. Neural Computation, 7:219–269, 1995.

[Girosi, 1991] F. Girosi. Models of noise and robust estimates. A.I. Memo 1287,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991.

[Girosi, 1997] F. Girosi. An equivalence between sparse approximation and Support
Vector Machines. A.I. Memo 1606, MIT Artificial Intelligence Laboratory, 1997.
(available at the URL: http://www.ai.mit.edu/people/girosi/svm.html).

[Girosi, 1998] F. Girosi. An equivalence between sparse approximation and Support
Vector Machines. Neural Computation, 10(6):1455–1480, 1998.

[Glivenko, 1933] V. I. Glivenko. Sulla determinazione empirica di probabilita. G.
Inst. Ital. Attuari, 4, 1933.

101

[Gurvits, 1997] L. Gurvits. A note on scale-sensitive dimension of linear bounded
functionals in banach spaces. In Proceedings of Algorithm Learning Theory, 1997.

[Härdle, 1990] W. Härdle. Applied nonparametric regression, volume 19 of Econo-
metric Society Monographs. Cambridge University Press, 1990.

[Hastie and Tibshirani, 1990] T. Hastie and R. Tibshirani. Generalized Additive Mod-
els, volume 43 of Monographs on Statistics and Applied Probability. Chapman and
Hall, London, 1990.

[Hochstadt, 1973] H. Hochstadt. Integral Equations. Wiley Classics Library. John
Wiley & Sons, 1973.

[Ivanov, 1976] V.V. Ivanov. The Theory of Approximate Methods and Their Appli-
cation to the Numerical Solution of Singular Integral Equations. Nordhoff Interna-
tional, Leyden, 1976.

[Jaakkola and Haussler, 1998a] T. Jaakkola and D. Haussler. Exploiting generative
models in discriminative classifiers. In Proc. of Neural Information Processing
Conference, 1998.

[Jaakkola and Haussler, 1998b] T. Jaakkola and D. Haussler. Probabilistic kernel
regression models. In Proc. of Neural Information Processing Conference, 1998.

[Jaakkola et al., 2000] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy
discrimination. In Advances in Neural Information Processing Systems 12. 2000.
to appear.

[Jackson, 1988] I.R.H. Jackson. Radial Basis Functions methods for multivariate ap-
proximation. Ph.d. thesis, University of Cambridge, U.K., 1988.

[Jain, 1989] Anil K. Jain. Fundamentals of digital image processing. Prentice-Hall
Information and System Sciences Series, New Jersey, 1989.

[Kearns and Ron, 1999] M. Kearns and D. Ron. Algorithmic stability and sanity-
check bounds for the leave-one-out cross validation. Submitted, 1999.

[Kearns and Shapire, 1994] M. Kearns and R.E. Shapire. Efficient distribution-free
learning of probabilistic concepts. Journal of Computer and Systems Sciences,
48(3):464–497, 1994.

[Kearns et al., 1995] M. Kearns, Y. Mansour, A. Ng, and D. Ron. An experimental
and theoretical comparison of model selection methods. In Proceedings of the Eighth
Annual ACM Conference on Computational Learning Theory, 1995.

[Kolmogorov, 1933] A. N. Kolmogorov. Sulla determinazione empirica di una leggi
di probabilita. G. Inst. Ital. Attuari, 4, 1933.

102

[Kolmogorov, 1992] A. N. Kolmogorov. On the empirical determination of a distribu-
tion. In S. Kotz and N. L. Johnson, editors, Breakthroughs in statistics. Springer-
Verlag, 1992.

[LeCun et al., 1989] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L.J. Jackel. Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551, 1989.

[Lorentz, 1986] G. G. Lorentz. Approximation of Functions. Chelsea Publishing Co.,
New York, 1986.

[Madych and Nelson, 1990a] W.R. Madych and S.A. Nelson. Polyharmonic cardinal
splines: a minimization property. Journal of Approximation Theory, 63:303–320,
1990a.

[Marroquin et al., 1987] J. L. Marroquin, S. Mitter, and T. Poggio. Probabilistic
solution of ill-posed problems in computational vision. J. Amer. Stat. Assoc.,
82:76–89, 1987.

[Mhaskar, 1993a] H.N. Mhaskar. Neural networks for localized approximation of real
functions. In C.A. Kamm et al., editor, Neural networks for signal processing III,
Proceedings of the 1993 IEEE-SP Workshop, pages 190–196, New York, 1993a.
IEEE Signal Processing Society.

[Moghaddam and Pentland, 1995] B. Moghaddam and A. Pentland. Probabilistic
visual learning for object detection. In Proceedings of 6th International Conference
on Computer Vision, 1995.

[Niyogi and Girosi, 1996] P. Niyogi and F. Girosi. On the relationship between gen-
eralization error, hypothesis complexity, and sample complexity for radial basis
functions. Neural Computation, 8:819–842, 1996.

[Oren et al., 1997] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio.
Pedestrian detection using wavelet templates. In Proc. Computer Vision and Pat-
tern Recognition, pages 193–199, Puerto Rico, June 16–20 1997.

[Osuna et al., 1997a] E. Osuna, R. Freund, and F. Girosi. An improved training
algorithm for support vector machines. In IEEE Workshop on Neural Networks
and Signal Processing, Amelia Island, FL, September 1997.

[Osuna et al., 1997b] E. Osuna, R. Freund, and F. Girosi. Support vector machines:
Training and applications. A.I. Memo 1602, MIT A. I. Lab., 1997.

[Papageorgiou et al., 1998a] C. Papageorgiou, F. Girosi, and T.Poggio. Sparse cor-
relation kernel based signal reconstruction. Technical Report 1635, Artificial In-
telligence Laboratory, Massachusetts Institute of Technology, 1998. (CBCL Memo
162).

103

[Papageorgiou et al., 1998b] C. Papageorgiou, M. Oren, and T. Poggio. A general
framework for object detection. In Proceedings of the International Conference on
Computer Vision, Bombay, India, January 1998.

[Platt, 1998] J. C. Platt. Fast training of support vector machines using sequential
minimal optimization. In C. Burges B. Scholkopf, editor, Advances in Kernel
Methods–Support Vector Learning. MIT press, 1998.

[Poggio and Girosi, 1989] T. Poggio and F. Girosi. A theory of networks for ap-
proximation and learning. A.I. Memo No. 1140, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 1989.

[Poggio and Girosi, 1990] T. Poggio and F. Girosi. Networks for approximation and
learning. Proceedings of the IEEE, 78(9), September 1990.

[Poggio and Girosi, 1992] T. Poggio and F. Girosi. Networks for Approximation and
Learning. In C. Lau, editor, Foundations of Neural Networks, pages 91–106. IEEE
Press, Piscataway, NJ, 1992.

[Poggio and Girosi, 1998] T. Poggio and F. Girosi. A Sparse Representation for Func-
tion Approximation. Neural Computation, 10(6), 1998.

[Pollard, 1984] D. Pollard. Convergence of stochastic processes. Springer-Verlag,
Berlin, 1984.

[Pontil et al., 1998] M. Pontil, R. Rifkin, and T. Evgeniou. From regression to clas-
sification in support vector machines. A.I. Memo 1649, MIT Artificial Intelligence
Lab., 1998.

[Powell, 1992] M.J.D. Powell. The theory of radial basis functions approximation in
1990. In W.A. Light, editor, Advances in Numerical Analysis Volume II: Wavelets,
Subdivision Algorithms and Radial Basis Functions, pages 105–210. Oxford Uni-
versity Press, 1992.

[Rabut, 1991] C. Rabut. How to build quasi-interpolants. applications to polyhar-
monic B-splines. In P.-J. Laurent, A. Le Mehautè, and L.L. Schumaker, editors,
Curves and Surfaces, pages 391–402. Academic Press, New York, 1991.

[Rabut, 1992] C. Rabut. An introduction to Schoenberg’s approximation. Computers
Math. Applic., 24(12):149–175, 1992.

[Rowley et al., 1995] H. Rowley, S. Baluja, and T. Kanade. Human Face Detection
in Visual Scenes. Technical Report 95–158, CMU CS, July 1995. Also in Advances
in Neural Information Processing Systems (8):875-881.

[Schoenberg, 1946a] I.J. Schoenberg. Contributions to the problem of approximation
of equidistant data by analytic functions, part a: On the problem of smoothing of
graduation, a first class of analytic approximation formulae. Quart. Appl. Math.,
4:45–99, 1946a.

104

[Schoenberg, 1969] I.J. Schoenberg. Cardinal interpolation and spline functions.
Journal of Approximation theory, 2:167–206, 1969.

[Schumaker, 1981] L.L. Schumaker. Spline functions: basic theory. John Wiley and
Sons, New York, 1981.

[Shapire et al., 1998] R. Shapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the
margin: A new explanation for the effectiveness of voting methods. The Annals of
Statistics, 1998. to appear.

[Shawe-Taylor and Cristianini, 1998] J. Shawe-Taylor and N. Cristianini. Robust
bounds on generalization from the margin distribution. Technical Report Neu-
roCOLT2 Technical Report NC2-TR-1998-029, NeuroCOLT2, 1998.

[Shawe-Taylor et al., 1998] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and
M. Anthony. Struc-
tural risk minimization over data-dependent hierarchies. IEEE Transactions on
Information Theory, 1998. To appear. Also: NeuroCOLT Technical Report NC-
TR-96-053, 1996, ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech reports.

[Silverman, 1984] B.W. Silverman. Spline smoothing: the equivalent variable kernel
method. The Annals of Statistics, 12:898–916, 1984.

[Smola and Schölkopf, 1998] A. Smola and B. Schölkopf. On a kernel-based method
for pattern recognition, regression, approximation and operator inversion. Algo-
rithmica, 22:211 – 231, 1998.

[Stewart, 1976] J. Stewart. Positive definite functions and generalizations, an histor-
ical survey. Rocky Mountain J. Math., 6:409–434, 1976.

[Sung and Poggio, 1994] K-K. Sung and T. Poggio. Example-based learning for view-
based human face detection. In Proceedings from Image Understanding Workshop,
Monterey, CA, November 1994.

[Tikhonov and Arsenin, 1977] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-
posed Problems. W. H. Winston, Washington, D.C., 1977.

[Turk and Pentland, 1991] M. Turk and A. Pentland. Face recognition using eigen-
faces. In Proceedings CVPR, pages 586–591, Hawaii, June 1991.

[Vaillant et al., 1994] R. Vaillant, C. Monrocq, and Y. Le Cun. Original approach
for the localisation of objects in images. IEEE Proc. Vis. Image Signal Process.,
141(4), August 1994.

[Valiant, 1984] L.G. Valiant. A theory of learnable. Proc. of the 1984 STOC, pages
436–445, 1984.

[Vapnik and Chervonenkis, 1971] V. N. Vapnik and A. Y. Chervonenkis. On the
uniform convergence of relative frequences of events to their probabilities. Th.
Prob. and its Applications, 17(2):264–280, 1971.

105

[Vapnik and Chervonenkis, 1981] V.N. Vapnik and A. Ya. Chervonenkis. The nec-
essary and sufficient conditions for the uniform convergence of averages to their
expected values. Teoriya Veroyatnostei i Ee Primeneniya, 26(3):543–564, 1981.

[Vapnik and Chervonenkis, 1991] V.N. Vapnik and A. Ya. Chervonenkis. The nec-
essary and sufficient conditions for consistency in the empirical risk minimization
method. Pattern Recognition and Image Analysis, 1(3):283–305, 1991.

[Vapnik, 1982] V. N. Vapnik. Estimation of Dependences Based on Empirical Data.
Springer-Verlag, Berlin, 1982.

[Vapnik, 1995] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
New York, 1995.

[Vapnik, 1998] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[Vetter et al., 1994] T. Vetter, T. Poggio, and H. Bülthoff. The importance of sym-
metry and virtual views in three-dimensional object recognition. Current Biology,
4(1):18–23, 1994.

[Wahba, 1980] G. Wahba. Spline bases, regularization, and generalized cross-
validation for solving approximation problems with large quantities of noisy data.
In J. Ward and E. Cheney, editors, Proceedings of the International Conference
on Approximation theory in honour of George Lorenz, Austin, TX, January 8–10
1980. Academic Press.

[Wahba, 1985] G. Wahba. A comparison of GCV and GML for choosing the smooth-
ing parameter in the generalized splines smoothing problem. The Annals of Statis-
tics, 13:1378–1402, 1985.

[Wahba, 1990] G. Wahba. Splines Models for Observational Data. Series in Applied
Mathematics, Vol. 59, SIAM, Philadelphia, 1990.

[Williamson et al., 1998] R. Williamson, A. Smola, and B. Scholkopf. Generalization
performance of regularization networks and support vector machines via entropy
numbers. Technical Report NC-TR-98-019, Royal Holloway College University of
London, 1998.

[Yuille et al., 1992] A. Yuille, P. Hallinan, and D. Cohen. Feature Extraction from
Faces using Deformable Templates. International Journal of Computer Vision,
8(2):99–111, 1992.

106

