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Abstract

We describe an approach for incorporating prior knowledge into machine learning algorithms. We 

aim at applications in physics and signal processing in which we know that certain operations 

must be embedded into the algorithm. Any operation that allows computation of a gradient or sub-

gradient towards its inputs is suited for our framework. We derive a maximal error bound for deep 

nets that demonstrates that inclusion of prior knowledge results in its reduction. Furthermore, we 

also show experimentally that known operators reduce the number of free parameters. We apply 

this approach to various tasks ranging from CT image reconstruction over vessel segmentation to 

the derivation of previously unknown imaging algorithms. As such the concept is widely 

applicable for many researchers in physics, imaging, and signal processing. We assume that our 

analysis will support further investigation of known operators in other fields of physics, imaging, 

and signal processing.

1 Introduction

Pattern analysis and machine intelligence have been focussed predominantly on tasks that 

mimic perceptual problems. These are typically modelled as classification or regression 

tasks in which the actual reference stems from a human observer that defines the ground-
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truth. As we have only limited understanding on how these man-made classes emerge from 

the human mind, there is only limited knowledge available. As such, pattern recognition has 

relied on expert knowledge to design features that are suited towards a particular recognition 

task [1]. In order to alleviate the task of feature-design, researchers started also learning 

feature descriptors as a part of the training procedure [2]. Implementation of such on 

efficient hardware gave rise to first models that could outperform classical feature extraction 

methods significantly [3] and was one of the milestone works in the emerging field of deep 
learning.

With the rise of deep learning [4], researchers became aware that these methods of general 

function learning are applicable to a much wider range than mere perceptual tasks. Today, 

machine learning is applied in a much wider range of applications. Examples range from 

image super resolution [5], image denoising and inpainting [6], or even computed 

tomography [7]. In these fields, the methods from deep learning are often directly applied 

and often show performances that are either en par or even significantly better than results 

found with state-of-the-art methods. Yet, there are also reports that present surprising results 

in which parts of the image are hallucinated [8, 9]. In particular [9] demonstrates that 

mismatches in training and test data leads to dramatic changes in the produced result. Hence, 

blind deep learning methods have to be performed with care in order to be successful.

In this article, we explore the use of known operations within machine learning algorithms. 

First, we analyze the problem from a theoretical perspective and study the effect of prior 

knowledge in terms of maximal error bounds. This is followed by three applications in 

which we use prior operators to study to their effect on the respective regression or 

classification problem. Lastly, we discuss our observations in relation to other works in 

literature and give an outlook on future work. Note that some of the work presented here is 

based on prior conference publications [10, 11, 12, 13].

2 Known Operator Learning

The general idea of known operator learning is to embed entire operations into a learning 

problem. Figure 1 presents the idea graphically. We generally refer to the ND-dimensional 

input of our trained algorithm as x′ ∈ ℝND. In order to increase readability, we use an 

extended version x ∈ ℝND+1 such that inner products with some weight vector w′ plus bias 

w 0 can be conveniently written, i. e. w′ ⊤ x′ + w 0 = w ⊤ x. Before looking into the 

properties of this approach and in particular maximal error bounds, we shortly summarize 

the Universal Approximation Theorem as it is closely related to our analysis. Note that the 

supplementary material to this article contains all proofs for the presented the-orems in this 

section.

2.1 Universal Approximation

Theorem 1 (Universal Approximation Theorem). Let φ(t) : ℝ → ℝ be a non-constant, 
bounded, and continuous function and u(x) be a continuous function on a compact set  ⊂ 
ℝND+1. Then, there exist an integer N, weights w ∈ ℝND+1, and ui ∈ ℝ that form an 
approximation u(x)
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u(x) = ∑
i = 0

N − 1

uiφ(wi
⊤x) (1)

such that the inequality

|u(x) − u(x) | ≤ ϵu (2)

holds for all x ∈  and ϵu > 0.

Theorem 1 states that for any continuous function u(x) an approximation u(x) can be found 

such that the difference between true function and approximation is bounded by ϵu. With 

increasing number of nodes N, ϵu will decrease. In literature, this result is often referred to 

as Universal Approximation Theorem [14, 15] and forms the fundamental result that neural 

networks with just a single hidden layer are general function approximators. Yet, this type of 

approximation may result in a very high requirement for the choice of N which is the reason 

why stacked layers of different type are known to be more successful [16].

We can extend Theorem 1 to vector-valued functions u(x) :  → ℝNO on  by postulating 

Theorem 1 for each of their components k

|Uk(x) − uk(x) | ≤ ϵuk . (3)

Hence, universal approximation generally also applies to NO-dimensional functions.

2.2 Known Operator Error Bounds

Knowing the limits of general function approximation, we are now interested in finding 

limits for mixing known and approximated operators. As previously mentioned, deep 

networks are never constructed out of a single layer, but rather take the form of the 

configuration shown in Figure 1. Hence, we need to consider layered networks to analyze 

the maximal error bounds. Instead of investigating entire networks, we choose to simplify 

our theoretical analysis to the special case

f(x) = g(u(x)):D ℝ

with g(x) : S → ℝ, u(x) :  → , and compact sets  ⊂ ℝNI+1 and  ⊂ ℝND+1. Note that 

this simplification does not limit the generality of our analysis, as we can map any 

knowledge on the structure of the network architecture either onto the output function g(x), 

the intermediate function u(x), or directly as a transform of the inputs x. Generalisation to 

NO-dimensional functions is also possible following the idea shown in Eq. 3.

Previous definition of f(x) allows us to investigate different forms of approximation. In 

particular, we are able to introduce approximations u(x) and g(x) following Theorem 1:

fg(x) = g(u(x)) = f(x) − eg (4)
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fu(x) = g(u(x)) = f(x) − eu (5)

f(x) = g(u(x)) = f(x) − ef (6)

Here |eu| ≤ ϵu, |eg| ≤ ϵg, and |ef | ≤ ϵf denote the errors that are introduced by respective 

approximation of u, g, and f.

Next, we are interested in finding bounds on |ef | using above approximations. For the case 

of known u(x), we can substitute x* ≔ u(x), as u(x) is a fixed function. In this case Theorem 

1 directly applies and a bound on |ef | is found as |ef | ≤ ϵg with |eg| ≤ ϵg. If we would know 

g(x) in addition, eg would be 0 and the bound would shrink to the case of equality.

The case described in Eq. 5 is slightly more complicated, but we are also able to find general 

bounds as shown in Theorem 2.

Theorem 2 (Known Output Operator Theorem). Let φ(x) : ℝ → ℝ be a non-constant, 
bounded, and continuous function and f (x) = g(u(x)) :  → ℝ be a continuous function on 

 ⊂ ℝND+1. Further let g(x) :  → ℝ be Lipschitz-continuous function with Lipschitz 
constant lg = sup{‖∇g(x)‖p} with p ∈ {1, 2} on  ⊂ ℝNI+1 and

uk(x) = ∑
i = 0

Nuk − 1

uiφ(wi, k
⊤ x) (7)

be a general function approximator of u(x) with integer Nuk, weight w i,k ∈ ℝND+1 , and ui 

∈ ℝ. Then, ef = f(x) − f(x) witℎ f(x) = g( u (x)) = g( u (x)) — as g is known — is generally 

bounded for all x ∈  by

ef ≤ ℓg ⋅ eu p (8)

with eu = ef and component-wise approximation errors e u = [e u0, … e uNI
]⊤.

The bound for |ef | is found using a Lipschitz constant lg on g(x) which implies that the 

theorem will only hold, if Lipschitz-bounded functions are used for g(x). Analysis of Eq. 8 

reveals that knowing u(x) in this case, would imply e u = 0 which also yields equality on 

both sides.

We further explore this idea in Theorem 3. It describes a bound for the case that both g(x) 

and u(x) are approximated.

Theorem 3 (Unknown Operator Theorem). Let φ(x) : ℝ → ℝ be a non-constant, bounded, 
and continuous function with Lipschitz-bound lφ and f(x) = g(u(x)) :  → ℝ be a continuous 
function on  ⊂ ℝND+1 Further let
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g(x) = ∑
j = 0

Ng − 1

gjφ(wj
⊤x) and (9)

uk(x) = ∑
i = 0

Nuk − 1

uiφ(wi, k
⊤ x) (10)

be general function approximators of g(x) :  → ℝ and u(x) :  →  with integers 
Ng and Nuk, weights w j ∈ ℝNI+1, w i,k ∈ ℝND+1, gj, ui ∈ ℝ, and compact sets  ⊂ ℝNI+1 

and  ⊂ ℝND+1. Then, ef = f(x) − f(x) witℎ f(x) = g(u(x)) is generally bounded for all x ∈ 

by

|ef | ≤ ∑
j = 0

Ng − 1

|gj | ⋅ lφ ⋅ | euj | + ϵg . (11)

where ϵg ≥ eg , euj = wj
⊤eu, and e u = [e u0, … e uNI

 ]⊤ is the vector of errors introduced by 

the components of u (x) .

The bound is comprised of two terms in an additive relation:

∑
j = 0

Ng − 1

gj ⋅ lφ ⋅ euj

only dependent on u(x)

+ ϵg

only dependent on g(x)
(12)

where the first term vanishes, if u(x) is known as |e uj| = 0 ∀j and the second term vanishes 

for known g(x) as eg = 0. Hence for all of the considered cases, knowing g(x) or u(x) is 

beneficial and allows to shrink the maximal training error bounds.

Given the previous observations, we can now also explore deeper networks that try to mimic 

the structure of the original function. This gives rise to Theorem 4.

Theorem 4 (Unknown Operators in Deep Networks). Let u ℓ(x ℓ) : ℓ → ℓ−1 be a 
continuous function with Lipschitz-bound luℓ on compact set ℓ ⊂ ℝNℓ with integer ℓ > 0. 

Further let f ℓ(x ℓ) : ℓ →  be a function composed of ℓ layers / function blocks defined as 
recursion f ℓ(x ℓ) = f ℓ−1(u ℓ(x ℓ)) with f ℓ=0(x) = x on compact set  ⊂ ℝND+1 bound by 
Lipschitz constant ℓfℓ witℎ ℓfℓ = 0 = 1. Recursive function 

fℓ (xℓ) = fℓ − 1 ( uℓ (xℓ)) witℎ fℓ = 0 (x) = x is then an approximation of f ℓ(x ℓ). Then, 

ef, ℓ = fℓ (xℓ) − fℓ (xℓ) is generally bounded for all x ℓ ∈ ℓ and for all ℓ > 0 in each 

component k by
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|ef, ℓ, k | ≤ ∑
ℓi = 1

ℓ

| | eu, ℓi | |p ⋅ lfℓi − 1 (13)

where e u,ℓ = [e u,ℓ,0, … e u,ℓ,NI]
⊤ is the vector of errors introduced by uℓ (xℓ) .

If we investigate Theorem 4 closely, we identify similar properties to Theorem 3. The errors 

of each layer / function block u ℓ(x ℓ) are additive. If a layer is known, the respective error 

vector e u,ℓ ≔ 0 vanishes and the respective part of the bound cancels out. Furthermore, later 

layers have a multiplier effect on the error as their Lipschitz constants amplify ‖e u,ℓ‖p. Note 

that the relation lfℓ ≤ ∏ℓi = 1
ℓ

luℓi
 is shown in the supplementary material. A large 

advantage of Theorem 4 over Theorem 3 is that the Lipschitz constants l fℓ that appear in the 

error term eu, ℓi p ⋅ lfℓi−1 are the ones of the true function f ℓ(x ℓ). Therefore, the 

amplification effects are only dependent of the structure of the true function and independent 

of the actual choice of the universal function approximator. The approximator only 

influences the actual error e u,ℓi.

Above observations pave the way to incorporating prior operators into different 

architectures. In the following, we will highlight several applications in which we explore 

blending deep learning with prior operators.

3 Application Examples

We believe that known operators have a wide range of applications in physics and signal 

processing. Here, we highlight three approaches to use such operators. All three applications 

are from the domain of medical imaging, yet the method is applicable to many more 

disciplines to be discovered in the future. The results presented here are based on conference 

contributions [10, 11, 13]. Note that the supplementary material contains descriptions of 

experiments, data, and additional figures that were omitted here for brevity.

3.1 Deep Learning Computed Tomography

In computed tomography, we are interested in computing a reconstruction y from a set of 

projection images x. Both are related by the X-ray transfrom A:

Ay=x

Solving for y requires inversion of above formula. The Moore-Penrose inverse of A yields 

the following solution:

y=A⊤ AA⊤ −1
x

This type of inversion gives rise to the class of filtered back-projection methods, as it can be 

shown that (AA ⊤)−1 takes the form of a circulant matrix K, i. e. K= (AA ⊤)−1 = F H CF, 

where F denotes the Fourier transform, F H its inverse, and C a diagonal matrix that 
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corresponds to the Fourier transform of K. As K typically is associated with a large 

receptive field, it is typically implemented in Fourier space. In order to be applicable for 

other geometries, such as fan-beam reconstruction additional Parker and cosine weights have 

to be incorporated that can elegantly be summarised in an additional diagonal matrix W to 

yield

y = ReLu A⊤KWx (14)

where ReLu(·) suppresses negative values as the final reconstruction algorithm.

Following the paradigm of known operator learning, Eq. 14 can also interpreted as a neural 

network structure as it only contains diagonal, circulant, and fully connected matrix 

operators displayed in Figure 2. A practical limitation of A is that it typically is a very large 

and sparse matrix. In practice, it is therefore never instantiated, but only evaluated on the fly 

using fast ray-tracing methods. For 3-D problems, the full matrix size is way beyond the 

memory restrictions of today’s compute systems. Furthermore, none of the parameters need 

to be trained as all of them are known for complete data acquisitions.

Incomplete data cannot be reconstructed with this type of algorithm and would lead to 

strong artifacts. We can still tackle limited data problems if we apply additional training of 

our network. As A ⊤ is large, we treat it as fixed during the training and only allow 

modification of W and K. Results and experimental details are demonstrated in the 

supplementary material. Training of both matrices clearly improves the image reconstruction 

result. In particular, the trained algorithm learns to compensate for the loss of mass in areas 

of the reconstruction in which rays are missing.

As the trained algorithm is mathematically equivalent to the original filtered back-projection 

method, we are able to map the trained weights back onto their original interpretation which 

allows comparison to state-of-the-art weights. In Figure 3, we can see that the trained 

weights show similarity with the approach published by Schäfer et al. [18]. In contrast to 

Schäfer et al. who arrived at their weights following intuition, our approach is optimal with 

respect to our training data. In our present model, we have to re-train the algorithm for every 

new geometry. This could be avoided by modelling the weights using a continuous function 

which is sampled by the reconstruction network.

3.2 Learning from Heuristic Algorithms

Incorporating known operators generally allows blending of deep learning methods with 

traditional image processing approaches. In particular, we are able to choose heuristic 

methods that are well understood and augment them with neural network layers.

One example for such a heuristic method is Frangi’s vesselness [19]. The vesselness values 

for dark tubes are calculated using the following formula:
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V 0 σ =

0, if λ2 < 0,

exp(−
RB

2

2β2
)(1 − exp(−

S2

2c2
)), otherwise,

(15)

where |λ1| < |λ2| are the eigenvalues, S = λ1
2 + λ2

2  is the second order structureness, 

RB =
λ1
λ2

 is the blobness measure, β, c are image-dependent parameters for blobness and 

structureness terms, and V 0 stands for the vesselness value.

The entire multi-scale framework of Frangi filter can be mapped onto a neural network 

architecture [11]. In Frangi-Net, each step of the Frangi filter is replaced with a network 

counterpart and data normalization layers are added to enable end-to-end training. Multi-

scale analysis is formed as a series of trainable filters, followed by eigenvalue computation 

in specialized fixed function network blocks. This is followed by another fixed function – 

the actual vesselness measure as described in Eq. 15. Figure 4

We compare the segmentation result of the proposed Frangi-Net with the original Frangi 

filter, and show that the Frangi-Net outperforms Frangi filter regarding all evaluation 

metrics. In comparison to the state-of-the-art image segmentation model U-Net, Frangi-Net 

contains less than 6% the number of trainable parameters, while achieving an AUC score 

around 0.960, which is only 1% inferior to that of the U-Net. Adding a trainable guided-

filter before Frangi-Net as preprocessing step yields an AUC 0.972 with only 8.5% of the 

trainable parameters of U-Net which is statistically not distinguishable from U-Net’s AUC 

of 0.974.

Hence using our approach of known operators, we are able to augment heuristic methods by 

blending them with methods of deep learning saving many trainable parameters.

3.3 Deriving Networks

A third application of known operator learning that we would like to highlight in this paper, 

is the derivation of new network architectures from mathematical relations of the signal 

processing problem at hand. In the following, we are interested in hybrid imaging of 

magnetic resonance imaging (MRI) and X-ray imaging simultaneously. One major problem 

is that MRI k-space acquisitions typically allow parallel projection geometries, i. e. a line 

through the center k-space, while X-rays are associated with a divergent geometry such as 

fan- or cone-beam geometries. Both modalities allow different contrast mechanisms and 

simultaneous acquisition and overlay in the same image would be highly desirable for 

improved interventional guidance.

In the following, we assume to have sampled MRI projections x in k-space. By inverse 

Fourier Transform F H, they can be transformed into parallel projections p PB = F H x. Both 

parallel and cone-beam projections p CB are related to the volume under consideration v by 

associated projection operations A PB and A CB:
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pPB=APBv (16)

pCB = ACBv (17)

As v appears in both relations, we can solve Eq. 16 for v using the Moore-Penrose Pseudo 

Inverse:

v=APB
⊤ APBAPB

⊤ −1
pPB = APB

⊤ APBAPB
⊤ −1

FHx

Next, we can use v in Eq. 17 to yield

pCB = ACBAPB
⊤ APBAPB

⊤ −1
FHx.

Note that all operations on the path from k-space to p CB are known. Yet, APBAPB
⊤ −1

 is 

expensive to determine and may need significant amounts of memory. As we know from 

reconstruction theory, this matrix often takes the form of a circulant matrix, i. e. a 

convolution. As such, we can approximate it with the chain of operations F H CF where C is 

a diagonal matrix. In order to add a few more degrees of freedom, we further add another 

diagonal operator in spatial domain W to yield

pCB = ACBAPB
⊤ WFHCFFH x=ACB APB

⊤ WFHCx (18)

as parallel to cone rebinning formula. In this formulation, only C and W are unknown and 

need to be trained. By design both matrices are diagonal and therewith only have few 

unknown parameters.

Even though the training was conducted merely on numerical phantoms we can apply the 

learned algorithm on data acquired with a real MRI system without any loss of generality. 

Using only 15 parallel-beam MR projections we were able to compute a stacked fan-beam 

projection with both approaches. In Figure 5 the results of the analytical and learned 

algorithms are shown. The result of the learned algorithm has much sharper visual 

impression compared to the analytical approach which intrinsically suffers from ray-by-ray 

interpolation and thus from a blurring effect. Note that additional smoothing could be 

incorporated into the network by regularization of the filter or additional hard-coded filter 

steps at request.

4 Discussion

For many applications, we do not know which operation is required in the ideal processing 

pipeline. Most machine learning tasks focus either on perceptual problems or man-made 

classes. Therefore, we only have limited knowledge on the ideal processing chain. In many 

cases, the human brain seems to have identified suitable solutions. Yet, our knowledge of the 

human brain is incomplete and search for well-suited deep architectures is a process of trial 

Maier et al. Page 9

Nat Mach Intell. Author manuscript; available in PMC 2020 February 09.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



and error. Still, deep learning has shown to be able to solve tasks that were deemed as hard 

or close to impossible [20].

Now that deep learning also starts addressing fields of physics and classical signal 

processing, we are entering areas in which we have much better understanding of the 

underlying processes and therefore know that kind of mathematical operations need to be 

present in order to solve specific problems. Yet, during the derivation of our mathematical 

models, we often introduce simplifications that allow more compact descriptions and a more 

elegant solution. Still these simplifications introduce slight errors along the way and are 

often compensated using heuristic correction methods [21].

In this paper, we have shown that inclusion of known operators is beneficial in terms of 

maximal error bounds. We demonstrated that in all cases in which we are able to use partial 

knowledge on the function at hand, the maximal errors that may remain after training of the 

network are reduced even for networks of arbitrary depth. Note that in the future tighter 

error bounds than the ones described in this work might be identified that are independent of 

the use of known operators. Yet, our error analysis is still useful, as for the case of increasing 

number of known operations in the network, the magnitude of the bound shrinks up to the 

point of identity, if all operations are known. To the knowledge of the authors, this is the first 

paper to attempt such a theoretical analysis of the use of known operators in neural network 

training.

In our experiments with CT reconstruction, we could demonstrate that we are able to tackle 

limited angle reconstructions using a standard filtered back-projection-type of algorithm. In 

fact, we only adopted weights while run-time, behaviour, and computational complexity 

remained unchanged. As we can map the trained algorithm back onto its original 

interpretation, we could also investigate shape and function of the learned weights. They 

demonstrated similarity to a heuristic method that could previously only be explained by 

intuition rather than by showing optimality. For the case, of our trained weights, we can 

demonstrate that they are optimal with respect to the training data.

Based on Frangi’s vesselness, we could develop a trainable network for vessel detection. In 

our experiments, we could demonstrate that training of this net already yields improved 

filters for vessel detection that are close in terms of performance with a much more complex 

U-Net. Further inclusion of a trainable denoising step yielded an accuracy that is statistically 

not distinguishable from U-Net.

As last application of our approach, we investigated rebinning of MR data to a divergent 

beam geometry. For this kind of rebinning procedure, a fast convolution-based algorithm 

was previously unknown. Prior approaches relied on ray-by-ray interpolation that is 

typically introducing blurring. With our hypothesis that the inverse matrix operator takes the 

form of a circulant matrix in spatial domain in combination with an additional multiplicative 

weight, we could train a new algorithm successfully. The new approach is not just 

computationally efficient, it also features images of a degree of sharpness that was 

previously not reported in literature.
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Although only applications from the medical domain are shown in this paper, this does not 

limit the generality of our theoretical analysis. Similar problems are found in many fields, e. 

g. computer vision [22], image super resolution [23], or audio signal processing [24].

Obviously, known operators have been embedded into neural networks already for a long 

time. Already, LeCun et al. [2] suggested convolution and pooling operators. Janderberg et 

al. introduced differentiable spatial transformations and their resampling into deep learning 

[25]. Lin et al. use this for image generation [26]. Kulkarni et al. developed an entire deep 

convolutional graphics pipeline [27]. Zhu et al. include differentiable projectors to 

disentangle 3D shape information from appearance [28]. Tewari et al. integrate a 

differentiable model-based image generator to synthesize facial images [29]. Adler et al. 

shows an approach to partially learn the solution for ill-posed inverse problems[30]. Ye et al. 

[31] introduced the Wavelet transform as multi-scale operator, Hammernik et al. [32] 

mapped entire energy minimization problems onto networks, and Wu et al. even included the 

guided filter as layer into a network [33]. As this list could be continued with many more 

references, we see this as an emerging trend in deep learning. In fact, any operation that 

allows the computation of a sub-gradient [34] is suited to be used in combination with the 

back-propagation algorithm. In order to integrate a new operator, only the partial 

derivatives / sub-gradients with respect to its inputs and its parameters have to be 

implemented. This allows inclusion of a wide range of operations. To the best of our 

knowledge, this is the first paper giving a general argument for the effectiveness of such 

approaches.

Next, the introduction of a known operator is also associated with a reduction of trainable 

parameters. We demonstrate this in this paper in all of our experiments. This allows us to 

work with much fewer training data and helps us to create models that can be transferred 

from synthetic training data to real measured data. Zarei et al. [35] drive this approach so far 

that they are able to train user-dependent image denoising filters using only few clicks from 

alternate forced-choice experiments. Thus, we believe that known operators may be a 

suitable approach to problems for which only limited data is available.

At present we are unaware how to predict the benefit of using known operators before the 

actual experiment. Our analysis only focuses on maximum error bounds. Therefore, 

investigation of expected errors following for example the approach of Barron seems 

interesting for future work [36]. Also analysis of the bias variance trade-off seems 

interesting. In [37, Chapter 9] Duda and Hart already hinted at the positive effect of prior 

knowledge on this trade-off.

Lastly, we believe that known operators may be key in order to gain better understanding of 

deep networks. Similar to our experiments with Frangi-Net, we can start replacing layers 

with known operations and observe the effect on the performance of the network. From our 

theoretical analysis, we expect that inclusion of a known operation will not or only 

insignificantly reduce the system’s performance. This may allow us to find configurations 

for networks that only have few unknown operations while showing large parts that are 

explainable and understood. Figure 6 shows a variant of this process that is inspired by [38]. 

Here, we offer a set of known operations in parallel and determine their optimal 
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superposition by training of the network. In a second step, connections with low weights can 

be removed to iteratively determine the optimal sequence of operations. Furthermore, any 

known operator sequence can also be regarded as a hypothesis for a suitable algorithm for 

the problem at hand. By training, we are able to validate of falsify our hypothesis similar to 

our example of the derivation of a new network architecture.

5 Conclusion

We believe that the use of known operators in deep networks is a promising method. In this 

paper, we demonstrate that the use of such reduces maximal error bounds and 

experimentally show an reduction in the number of trainable parameters. Furthermore, we 

applied this to the case of learning CT reconstruction yielding networks that are interpretable 

and that can be analysed with classical signal processing tools. Also mixing of deep and 

known operator learning is beneficial, as it allows us to build smaller networks with only 6% 

of the parameters of a competing U-Net while being close with respect to their performance. 

Lastly, the known operators can also be found using mathematical derivation of networks. 

While keeping large parts of the mathematical operations, we only replace inefficient or 

unknown operations with deep learning techniques to find entirely new imaging formulas. 

While all of the applications shown in this paper stem only from the medical domain, we 

believe that this approach is applicable to all fields of physics and signal processing which is 

the focus of our future work.
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Figure 1. Schematic of the idea of known operator learning
One or more known operators (here Operator u and Operator g) are embedded into a 

network. Doing so, allows dramatic reduction of the number of parameters that have to be 

estimated during the learning process. The minimal requirement for the operator is that it 

must allow the computation of a sub-gradient for use in combination with the back-

propagation algorithm. This requirement is met by a large class of operations.
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Figure 2. Deep Learning Computed Tomography
Reconstruction network for y= ReLu(A ⊤ KWx) from projections x to image y. As W is a 

diagonal matrix, it is merely a point-wise multiplication followed by convolution K and 

back-projection A ⊤.
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Figure 3. Improved interpretability in deep networks
The trained reconstruction algorithm can be mapped back into its original interpretation. 

Hence, we can compare them to reconstruction weights after (a) Parker [17] and (b) Schäfer 

[18]. (c) expresses significant similarity to (b) which is also able to compensate for the loss 

of mass. While (b) was only arrived at heuristically (c) can be shown to be data optimal here.
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Figure 4. Architecture of Frangi-Net over 8 scales σ 

For each single-scale a Frangi-Net computes spatial derivatives ∂2g

∂x2
, ∂2g

∂x∂y
, and ∂2g

∂y2
. These 

are used to form a Hessian matrix of which eigenvalues λ1 and λ2 are extracted. Both are 

used to compute structureness S and blobness Rb which are required to compute the final 

vesselness at each pixel Vσ.
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Figure 5. Classical analytical rebinning vs. derived neural networks
The trained rebinning algorithm can directly applied to real MR projection data. Parallel-

beam MR projection data is rebinned to a stacked fan-beam geometry with the analytical (a) 

and the learned algorithm (b). Note that the result of the learned method is much sharper as 

it avoids ray-by-ray interpolation.
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Figure 6. Towards operator discovery and sequence analysis
We hypothesise that Known Operator Learning may also be used to disentangle information 

efficiently. Offering several operators in parallel allows the network to find the best sequence 

of operations during the training process. In a subsequent step, blocks can be removed step-

by-step to determine the minimal block networks.
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