
ABSTRACT

Title of dissertation: LEARNING WITH MULTIPLE SIMILARITIES

Abhishek Kumar, Doctor of Philosophy, 2013

Dissertation directed by: Professor Hal Daumé III

Department of Computer Science

The notion of similarities between data points is central to many classification and clustering

algorithms. We often encounter situations when there are more than one set of pairwise similarity

graphs between objects, either arising from different measures of similarity between objects or

from a single similarity measure defined on multiple data representations, or a combination of

these. Such examples can be found in various applications in computer vision, natural language

processing and computational biology. Combining information from these multiple sources is

often beneficial in learning meaningful concepts from data.

This dissertation proposes novel methods to effectively fuse information from these multiple

similarity graphs, targeted towards two fundamental tasks in machine learning - classification

and clustering. In particular, I propose two models for learning spectral embedding from mul-

tiple similarity graphs using ideas from co-training and co-regularization. Further, I propose a

novel approach to the problem of multiple kernel learning (MKL), converting it to a more familiar

problem of binary classification in a transformed space. The proposed MKL approach learns a

“good” linear combination of base kernels by optimizing a quality criterion that is justified both

empirically and theoretically. The ideas of the proposed MKL method are also extended to learn-

ing nonlinear combinations of kernels, in particular, polynomial kernel combination and more

general nonlinear kernel combination using random forests.

Learning with Multiple Similarities

by

Abhishek Kumar

Dissertation presented to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:

Professor Hal Daumé III, Chair/Adviser
Professor Ramani Duraiswami
Professor Lise Getoor
Professor David W. Jacobs
Professor P. S. Krishnaprasad

To my parents and my wife.

ii

Acknowledgments

I consider myself extremely fortunate to have Hal Daumé III as my advisor. Hal has given me
enough freedom to explore different problems and pursue my own research interests, and I am
grateful to him for having faith in my abilities. It was always a pleasure stepping into his office
and have immediate access to his immense breadth of knowledge, thorough technical expertise
and sharp intuitions that would turn out to be crucial in shaping up my thoughts for subsequent
research. The interactions with him always left me filled with positive energy. I thank him for
being a great advisor throughout my graduate studies – I could not have asked for anyone better.

I thank Professors Ramani Duraiswami, Lise Getoor, David Jacobs and P. S. Krishnaprasad for
serving on my Ph.D. committee, asking insightful questions and providing helpful feedback. I
have learned a great deal from a few people during my graduate studies who I want to thank
here. I had the absolute pleasure of working with Thomas P. Fletcher in my first year of Ph.D., and
whatever little I know of matrix manifolds, I owe it to Tom. I greatly admire his style of teaching
and some of the best talks, I have ever been to, are by him. I also had the privilege of working
with John H.L. Hansen during my Masters and I thank him for teaching me Speech Recognition.
I had two wonderful internship experiences during my Ph.D. I thank Alexandru Niculescu-Mizil
for having me as a summer intern at NEC Labs. It was a delightful learning experience working
with Alex and I greatly admire his ability to think deep on a problem and his enthusiasm about
research. The work I did there ended up being part of this thesis. I thank Vikas Sindhwani for
having me as a summer intern at IBM Research, for many thought-provoking discussions that we
had, and for his valuable advice on matters related to work and beyond. Vikas has so many qual-
ities I would like to emulate as a researcher.

I would also like to thank Piyush Rai, Avishek Saha and Abhishek Sharma for collaborating
with me on different projects. My first paper in machine learning was in collaboration with
Avishek and it was a good learning experience. I have turned to Piyush for help and advice
on several occasions over the years and I thank him for always being there. It is always a plea-
sure working with him. I thank Abhishek for numerous lively discussions on topics ranging from
highly technical to philosophical, material, political, etc. I appreciate his enthusiasm and eager-
ness for learning. I would like to acknowledge the help and support of my lab-mates at various
points in time, and thank them for many enjoyable conversations. I also thank the administra-
tive and computing staff at Computer Science department and UMIACS, in particular to Jennifer
Story, Fatima Bangura, Arlene Schenk, Janice Perrone, Petra Zapf and Joe Webster, for being ut-
terly helpful and accommodating.

I am grateful to Praveen Noojipady and Yuanjie Li for always being there when I needed them.
Special thanks to their sweet little daughter Meghana for several fun-filled moments. I will never
forget the wonderful gatherings and engaging conversations we had with our other friends, which
were a refresher from routine graduate life.

I will fall short of words in expressing my indebtedness to my parents whose love, nurturing
and guidance was pivotal in my formative years and enabled me to embark on this journey. Fi-
nally, this thesis would not have been possible without constant love and support of my wife,
Sumita, who has always encouraged me to pursue my dreams.

iii

Table of Contents

List of Figures vi

List of Tables vii

List of Abbreviations ix

1 Introduction 1

1.1 Learning with Similarities . 1
1.2 Multiple Views of an Entity . 2

1.2.1 Examples from Computer Vision . 2
1.2.2 Examples from Natural Language Processing 2

1.3 An Overview of This Dissertation . 3

2 Background 5

2.1 Spectral Clustering . 5
2.2 Support Vector Machines . 5

2.2.1 Large Margin Classification . 6
2.2.2 History . 6
2.2.3 SVM optimization problem . 6
2.2.4 Feature spaces and the kernel trick . 7

2.3 Multiple Kernel Learning . 8
2.3.1 One stage MKL . 8
2.3.2 Two stage MKL . 9

Part I Spectral Embeddings from Multiple Similarity Graphs 10

3 Co-trained Spectral Embedding 11

3.1 Co-training . 11
3.2 Co-training for Spectral Clustering . 12

3.2.1 Computational Efficiency . 14
3.3 When will co-training help in spectral clustering? . 14

3.3.1 Correlated Features . 14
3.3.2 Complementary corruption in the similarity graphs 15
3.3.3 Low quality or contradictory individual views 16

3.4 Experiments . 17
3.5 Related Work . 22
3.6 Discussion . 22

4 Co-regularized Spectral Embedding 24

4.1 Co-regularized Spectral Clustering . 24
4.1.1 Pairwise Co-regularization . 25
4.1.2 Extension to Multiple Views . 26
4.1.3 Centroid-Based Co-regularization . 27

4.2 When will co-regularization help in spectral clustering? 28
4.2.1 Correlated Features . 28

iv

4.2.2 Complementary corruption in the similarity graphs 28
4.2.3 Low quality or contradictory individual views 29

4.3 Experiments . 30
4.3.1 Results . 31

4.4 Discussion . 33

Part II Supervised Learning with Multiple Kernels 34

5 Multiple Kernel Learning via Binary Classification 35

5.1 Method . 36
5.1.1 Connection to Target Alignment . 37
5.1.2 Connection to Learning with Hyperkernels . 38

5.2 Theoretical Results . 38
5.3 Empirical Evaluation . 42

5.3.1 Methodology for TS-MKL . 42
5.3.2 Caltech-101 and Caltech-256 . 44
5.3.3 Bioinformatics datasets . 46
5.3.4 UCI datasets . 46
5.3.5 Computational Efficiency . 47

5.4 Discussion . 47

6 Learning Nonlinear Combination of Kernels 49

6.1 Related work . 49
6.2 Binary classification approach to nonlinear MKL . 50

6.2.1 Positive semidefinite kernel using polynomial kernel combination 50
6.2.1.1 Polynomial kernel combination: a toy experiment 51
6.2.1.2 Polynomial kernel combination: empirical findings 51

6.2.2 Indefinite similarity functions . 53
6.2.2.1 Theoretical perspective . 54
6.2.2.2 Random Forests . 55
6.2.2.3 Empirical findings . 55

6.3 Discussion . 57

7 Conclusions and Future Work 58

7.1 Future Directions . 58

Bibliography 60

v

List of Figures

3.1 General framework for co-training based clustering 12
3.2 NMI scores for best single view and for multiview co-trained spectral clustering vs

the feature correlation ρ . 15
3.3 NMI scores for best single view and for multiview co-trained spectral clustering vs

the noise level α . 16
3.4 NMI scores in different views vs number of iterations of co-trained spectral cluster-

ing for Synthetic data . 21
3.5 NMI scores in different views vs number of iterations of co-trained spectral cluster-

ing for Reuters multilingual data . 21

4.1 NMI scores for best single view and for multiview co-trained spectral clustering vs
the feature correlation ρ . 29

4.2 NMI scores of Co-regularized Spectral Clustering as a function of λ for Reuters

multilingual data . 32

5.1 The K-space for two base kernels (p = 2). Points represent positive and negative
K-examples zxx′ . The coordinates are the values of K1(x, x

′) and K2(x, x
′). 36

5.2 Top: Test data accuracy as a function of number of sub-gradient iterations in Pe-
gasos. Bottom: Correlation between hinge loss (and accuracy) on K-examples and
test data accuracy on Caltech-101. 43

5.3 Top: Caltech-101 results: mean accuracy over all classes for different sample sizes,
averaged over 5 splits. Bottom: Caltech-256 results: mean accuracy over all classes
for different sample sizes . 45

6.1 Left: Two circles data. Middle: K-examples zij = [K1(xi,xj), K2(xi,xj)]. Right:

Polynomial K-examples zij = [K2
1 (xi,xj), [K

2
2 (xi,xj)]. 52

vi

List of Tables

3.1 Clustering performance on synthetic data. Number (2) or (3) indicates the number
of views used in the approach. Std. deviations of all performance metrics are zero
for this synthetic data. 18

3.2 Clustering performance on Reuters multilingual data. The languages used are En-
glish, French, and German. Number (2) or (3) indicates the number of views used
in the approach. Numbers in parentheses are the std. deviations. 19

3.3 Clustering performance on Handwritten digits data. Numbers in parentheses are
the std. deviations. 19

3.4 Clustering performance on BBC data. Numbers in parentheses are the std. deviations. 20
3.5 Clustering performance on BBCSPORTS data. Numbers in parentheses are the std.

deviations. 20

4.1 NMI results on various datasets for different baselines and the proposed approaches.
Numbers in parentheses are the std. deviations. The numbers (2), (3) and (4) indi-
cate the number of views used in our co-regularized spectral clustering approach.
Other multi-view baselines were run with maximum number of views available (or
maximum number of views they can handle). Letters (P) and (C) indicate pairwise
and centroid based regularizations respectively. 31

5.1 Average accuracy measures (%) over 10 splits for Psort+, Psort- and Plant datasets.
Numbers in parentheses are the std. deviations. The accuracy measures for MC-
MKL (Zien & Ong, 2007) are taken from their paper. 46

5.2 Average accuracy (%) over 10 random splits on UCI datasets. p denotes the number
of base kernels. Numbers in parentheses are the std. deviations. 47

5.3 Running time in seconds. In parenthesis we show the time taken by the kernel
learning stage alone. 48

6.1 Average accuracy (%) over 10 random splits on UCI datasets. Numbers in paren-
theses are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5.
TS-MKL Polynomial-2 and Polynomial-3 learn linear K-classifiers on polynomial
K-examples (Eq. 6.1) of degree 2 and degree 3 respectively and thus learn a polyno-
mial kernel combination. 53

6.2 Average accuracy (%) over 5 random splits on Caltech-101 data. Numbers in paren-
theses are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5.
TS-MKL Polynomial-2 and Polynomial-3 learn linear K-classifiers on polynomial
K-examples (Eq. 6.1) of degree 2 and degree 3 respectively and thus learn a polyno-
mial kernel combination. 53

6.3 Average accuracy (%) over 10 random splits on UCI datasets. Numbers in paren-
theses are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5.
TS-MKL Polynomial-2 and Polynomial-3 learn linear K-classifiers on polynomial
K-examples (Eq. 6.1) of degree 2 and degree 3 respectively and thus learn a polyno-
mial kernel combination. TS-MKL RF learn a random forest over linear K-examples,
thus learning similarities in a nonlinear fashion. 56

vii

6.4 Average accuracy (%) over 5 random splits on Caltech-101 data. Numbers in paren-
theses are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5.
TS-MKL Polynomial-2 and Polynomial-3 learn linear K-classifiers on polynomial
K-examples (Eq. 6.1) of degree 2 and degree 3 respectively and thus learn a polyno-
mial kernel combination. TS-MKL RF learn a random forest over linear K-examples,
thus learning similarities in a nonlinear fashion. 57

viii

List of Abbreviations

Adj-RI Adjusted Rand Index
CCA Canonical Correlation Analysis
Fisher-LDA Fisher Linear Discriminant Analysis
LSA Latent Semantic Analysis
LWS Learning with Similarity Functions
MKL Multiple Kernel Learning
NMI Normalized Mutual Information
PCA Principle Component Analysis
RKHS Reproducing Kernel Hilbert Space
SIFT Scale Invariant Feature Transform
SVD Singular Value Decomposition
SVM Support Vector Machine
TS-MKL Two Stage Multiple Kernel Learning

ix

Chapter 1

Introduction

Recent few years have witnessed rapid growth in the amount of content and associated data.
In many cases, the data representing an entity originates from diverse sources and manifest itself
in different views or modalities. One example of this phenomena is content on wikipedia, where
a topic or event is described in many different languages. Images on the Internet often have tags
or captions associated with them, which represent another view of the same underlying content.
Other than aforementioned examples where data is naturally present in multiple views, we can
also extract different sets of features or define different similarity measures between two data ob-
jects which results in multiple views of data. Combining information from these multiple views or
modalities is often beneficial in learning meaningful concepts from data. For the scope of this dis-
sertation, we will work with the setting where all the information is given to us in the form of real
valued similarities for each pair of data points. If we are given feature representations of individ-
ual data examples, it is assumed that appropriate similarity measures can be applied on pairs of
data points to give us the similarity representation of data. This dissertation proposes novel meth-
ods to effectively fuse information from these multiple similarity views of data, targeted towards
two fundamental tasks in machine learning – classification and clustering.

Machine learning, on a broad level, is concerned with learning meaningful concepts from data.
The problems arising in the field of machine learning can be broadly classified under two cate-
gories: (i) Supervised learning, where data is accompanied by concept class labels that can used in
guiding the learning process, and (ii) Unsupervised learning, where data comes unlabeled and the
learning process has to discover meaningful concepts from unlabeled data. Labeled data is usu-
ally in the form of a collection of labeled examples (xi,yi)

n
i=1 where xi is the feature vector and yi is

the associated label (scalar or vector). Unlabeled data is a collection of unlabeled examples (xi)
m
i=1.

Classification is a supervised learning problem in which the training data contains labeled exam-
ples with discrete-valued labels and the goal is predict the class labels of future test examples.
Regression is also a supervised learning problem where the training data consists of input features
(explanatory variables) and associated continuous-valued labels (response variables), and the goal
is to predict the responses for future test examples. Clustering is an unsupervised learning problem
in which the learner is given a pool of unlabeled examples and the goal is to learn “meaningful”
grouping structure or cluster boundaries to unravel patterns in the data.

1.1 Learning with Similarities

A machine learning algorithm normally uses either labeled examples ((xi,yi)
n
i=1) or unlabeled

examples (xi)
n
i=1 to learn an underlying concept. A similarity function S : Rd × R

d 7→ R takes a

1

pair of examples (the feature vectors xi, xj ∈ R
d) as input and maps to a real value that acts as

a measure of similarity between example pairs. In similarity based learning, the learning algo-
rithm works with similarities between example pairs instead of working with individual example
features.

A typical example of similarity based learning is Support Vector Machine (SVM) (Boser et al.,
1992; Cortes & Vapnik, 1995) which is a widely used learning algorithm for classification. Nonlin-
ear SVM uses the so-called “kernel trick” to map the example pairs to real valued similarities that
are used in learning nonlinear classifier boundaries. The similarity function used in the kernel-
trick is a positive semidefinite function k : R

d × R
d 7→ R referred to as the kernel. The func-

tion space induced by a positive semidefinite kernel is called a Reproducing Kernel Hilbert Space
(RKHS), and the subject enjoys a rich history in the literature (Aronszajn, 1950). The theory of
positive semidefinite kernels and the associated RKHS has been applied to a great success in ma-
chine learning, especially in classification problems through SVMs.The notion of similarity is also
a basis for many clustering algorithms which aim to put “similar” examples under same cluster
and “dissimilar” examples in different clusters (Dhillon et al., 2004; Biehl et al., 2009).

1.2 Multiple Views of an Entity

With the increase in the amount of data, it is becoming more likely to encounter scenarios where
we have more than one set of observations for a single entity, also referred as views. Below we give
some application instances of this scenario.

1.2.1 Examples from Computer Vision

Computer vision is broadly concerned with processing and analyzing visual information, mostly
in the form of images or videos, to make decisions or to discover meaningful concepts. Images or
videos available on the Internet (e.g., images on flicker, videos on youtube) are often accom-
panied with tags and description of the content in text form. In this case, the visual content and
the associated text describing it are the two views of the same entity or content, both of which can
be used in tasks of interest.

It is also common to have a scene captured from different camera angles, e.g., face images of a
person in different poses (front, side-left, side-right, etc.). Incorporating all these views of a scene
in the learning process can lead to better performance than using only a single view. One of the
many examples is the problem of image segmentation where images from multiple camera angles
can be used to improve segmentation of the scene (Xiao & Quan, 2009).

Apart from the above scenarios where the multiple views happen to occur more naturally, it is
also common in many object recognition problems to extract multiple feature sets from images
capturing information at different levels (SIFT features, Gabor features, wavelet features, etc.) and
use all of these to improve recognition accuracy (Gehler & Nowozin, 2009). Each feature set can
be treated as a view of the same underlying content in this case.

1.2.2 Examples from Natural Language Processing

Natural Language Processing (NLP) is broadly concerned with computational understanding
of human languages. There has been an explosion in the amount of text data available on the

2

Internet due to increasing popularity of web-logs, wikipedia, etc. and a significant portion is
in languages other than English. It is not uncommon to encounter situations where a single topic
or event is described in multiple languages. A typical example is articles on wikipedia where
same topic or event is described in multiple languages. Description in each language can serve as
a view of the underlying content and information from all these views can be utilized to improve
the performance of the tasks of interest (Boyd-Graber & Blei, 2009; Ni et al., 2009; Jagarlamudi &
Daumé III, 2010).

It is also possible to have information in multiple views to be organized in different forms, e.g.,
features of individual examples, relationships between multiple examples, etc. A typical instance
of this is data on World Wide Web where each web page has the text content as one view (and
if applicable, image content as second view) and the incoming-outgoing links between web pages
as another view (Blum & Mitchell, 1998). Another instance is found in scientific literature data
where text of a publication serves as one view and the past publications that it cites (or future
publications that cite it), serve as another view (Mei et al., 2008).

Multi-view examples are also encountered in Bio-informatics where multiple similarity mea-
sures can be derived from data pertaining to a single phenomenon (Zien & Ong, 2007; Mostafavi
& Morris, 2010).

1.3 An Overview of This Dissertation

This dissertation presents novel methods for the problem of learning with multiple views when
data in each view is available as pairwise similarities of examples. The goal is to effectively com-
bine information from multiple views so as to improve the performance of the end task. In par-
ticular, all the proposed methods are targeted towards one of the two machine learning tasks –
classification and clustering.

Several machine learning methods or algorithms exist in the literature for classification task.
The framework of large margin classification and Support Vector Machines (SVM) have been par-
ticularly popular with both users and researchers of machine learning. Support Vector Machines
offer a principled way to build linear and nonlinear classifiers and also enjoy strong theoreti-
cal guarantees. They have been applied in numerous application domains (Moguerza & Munoz,
2006; Yang, 2004; Joachims, 1998; Tay & Cao, 2001) and have also been a founding base for a rich
body of follow-on work. Due to its popularity and wide applicability, the methods proposed in
this dissertation are designed to be used in conjunction with Support Vector Machine as the data
classifier.

Several algorithms have been proposed in the literature for the problem of clustering as well.
Compared to traditional algorithms like k-means or single linkage clustering, spectral clustering
has many fundamental advantages (von Luxburg, 2007). Besides being easy to implement, it is
also theoretically motivated from a graph cut point of view and has efficient implementations us-
ing fast linear algebraic methods. Spectral clustering has been widely used in various application
domains (Ning et al., 2007; Valgren et al., 2007; Bach & Jordan, 2006; Wang et al., 2012; Ekin et al.,
2004). A rich body of literature has been built up around spectral clustering which is evident from
the fact that one of the earliest spectral clustering papers in the machine learning literature (Ng
et al., 2002) has close to 3000 citations in the last 10 years. The multiview methods proposed in
this dissertation for clustering task are specifically targeted to work for spectral clustering, again

3

due to its wide applicability and popularity.

The rest of this dissertation is organized as the following Chapters.

Chapter 2: This chapter provides a brisk background on spectral clustering, Support Vector
Machine (SVM) and the kernel trick, and Multiple Kernel Learning (MKL) that is needed for the
subsequent chapters. Relevant previous work is also discussed.

Part I: Spectral Embeddings from Multiple Similarity Graphs

Chapter 3: Co-training was first introduced by Blum & Mitchell (1998) for the problem of semi-
supervised learning with multiple views and has enjoyed significant empirical success since then
(Nigam & Ghani, 2000; Sarkar, 2001; Müller et al., 2002; Callison-Burch & Osborne, 2003; Chen
et al., 2011). However, the potential of co-training has not been explored much in unsupervised
learning problems except in a few prior works (de Sa, 2005; Bickel & Scheffer, 2004). In this Chap-
ter, I present a novel co-training based approach to learn spectral embeddings by fusing informa-
tion from multiple similarity graphs. The learned spectral embedding is evaluated on the problem
of clustering and can be seen as a multi-view spectral clustering approach.

Chapter 4: The idea of co-regularization has also been popular in the semi-supervised learning
literature (Sindhwani et al., 2005; Daumé III et al., 2010). However it has not been explored for
unsupervised learning problems, especially in the context of spectral clustering. This chapter
presents an approach based on the idea of co-regularization to learn spectral embeddings from
multiple similarity graphs. The learned spectral embedding is again evaluated on the problem of
clustering, giving rise to a multi-view spectral clustering method.

Part II: Learning with Multiple Kernels

Chapter 5: Multiple Kernel Learning (MKL) was introduced in Cristianini et al. (2001); Kandola
et al. (2002); Lanckriet et al. (2004); Bach et al. (2004) and it has generated significant activity in the
machine learning community since then (Rakotomamonjy et al., 2007; Sonnenburg et al., 2006;
Cortes et al., 2010a; Kloft et al., 2011; Bach, 2008; Zien & Ong, 2007; Cortes et al., 2009a; Sindhwani
& Lozano, 2011). In the MKL problem, we are given labeled data with multiple kernel functions
and the goal is to combine these multiple kernels so as to improve the prediction performance.
Most of the effort in the area has been on faster optimization methods for the MKL framework
proposed in Lanckriet et al. (2004). Unfortunately, MKL has not achieved the expected empirical
success in terms of prediction performance. This Chapter presents a novel two stage framework
for the MKL problem that transforms the MKL problem into the familiar classification problem
in a transformed space. The proposed approach shows better empirical performance despite its
simplicity. Theoretical guarantees are also provided.

Chapter 6: This chapter extends the ideas of previous chapter to learn nonlinear kernel com-
binations. I study two types of kernel combinations: (i) polynomial kernel combinations that
result in positive semidefinite kernels, (ii) more general nonlinear kernel combination using ran-
dom forests that result in indefinite kernel, which is used with learning-with-similarity functions
(LWS) framework of Balcan & Blum (2006).

Chapter 7: This chapter summarizes the contributions of the dissertation and outlines direc-
tions for future study.

4

Chapter 2

Background

This chapter introduces the background that will be needed for subsequent chapters. First, I
briefly introduce spectral clustering, which forms the basis for Chapters 3 and 4. The subsequent
sections give a brief introduction to Support Vector Machines, kernels and Multiple Kernel Learn-
ing which will be needed to put Chapters 5 and 6 in right perspective with respect to the existing
work.

2.1 Spectral Clustering

Spectral clustering is a technique that exploits the properties of the Laplacian of the graph
whose edges denote the similarities between the data points. The bottom k eigenvectors of the
normalized graph Laplacian are relaxations of the indicator vectors that assign each node in the
graph to one of the k clusters. Apart from being theoretically well-motivated, spectral clustering
has the advantage of performing well on arbitrary shaped clusters, which is otherwise a short-
coming with several other clustering algorithms such as the k-means algorithm. Here we briefly
outline the spectral clustering algorithm due to Ng et al. (2002):

• Construct an n × n non-negative symmetric matrix K, where Kij quantifies the similarity
between samples i and j.

• Construct the matrix L = D−1/2KD−1/2, where D is a diagonal matrix with Dii =
∑

j Kij .
The matrix (I − L) is also called normalized graph Laplacian.

• Let U denote a n× k matrix with columns as the top k eigenvectors of L
• Normalize each row of U to obtain V.
• Run the k-means algorithm to cluster the row vectors of V.
• Assign example i to cluster c if the i-th row of V is assigned to cluster c by the k-means

algorithm.

For a detailed introduction to both theoretical and practical aspects of spectral clustering, the
reader is referred to the excellent tutorial by von Luxburg (2007).

2.2 Support Vector Machines

In this section, we give a brief introduction to Support Vector Machine (SVM) for classification
and the use of kernels for nonlinear classification, which will set the foundation to motivate and
introduce the subject of multiple kernel learning (MKL) later in this chapter.

5

2.2.1 Large Margin Classification

Let {x1, x2, . . . ,xn} ∈ R
d be the features of training data with {y1, y2, . . . , yn} ∈ {−1,+1} as

their corresponding class labels. The goal in classification is to learn a function f : Rd 7→ R that
maps input features to a real value whose sign can be used to determine the label of the concerned
example. For so-called linear classifiers, f is just an affine function with f(x) = w′x+ b and vector
w is the normal to the decision hyperplane (or separating hyperplane). The margin of i’th example is
defined as yi(w

′xi + b) which indicates the confidence of the classifier on that particular example.

The ℓp distance of point xi from the separating hyperplane is |w′xi+b|
‖w‖q where ℓp and ℓq norms are

dual to each other (1/p + 1/q = 1). The quantity mini yi(w
′xi + b) is the minimum margin over all

the examples. We say that a classifier is a large margin classifier if it maximizes the minimum
margin with some norm constraint on ‖w‖.

2.2.2 History

The support Vector Machine (SVM) classifier learns a linear hyperplane, either in the original
feature space or in a higher dimensional space induced by a kernel, that separates the positive and
negative examples by maximum margin. The fundamental ideas underlying the present Support
Vector Machine (SVM) including the large margin separation, support vectors (referred as extreme
vectors then) were first introduced in the Generalized Portrait algorithm by Vapnik & Lerner (1963);
Vapnik & Chervonenkis (1964). Mangasarian (1965) proposed a linear programming approach to
large margin classification of linearly separable data by constraining the ℓ∞ norm of the weight
vector. A linear program making use of slack variables to learn a classifier for non-separable data
was proposed by Smith (1968). The ideas of large margin classification and controlling the ca-
pacity or expressive power of the hypothesis class (i.e., family of functions to which the classifier
belongs) to get better generalization were formalized in statistical learning theory by Vapnik (1979)
and the principle of structural risk minimization (SRM) was introduced. Vapnik (1979) showed that
the expected error of a classifier can be upper bounded by its training error plus a term depending
on the complexity of the hypothesis class measured in terms of VC-dimension. The SRM princi-
ple asked to choose a classifier that minimizes this upper bound striking a right balance between
training error and complexity term. It was shown that VC-dimension of linear classifiers with
unit norm constrained weight vectors and with minimum margin ρ can be upper bounded by
min{R2/ρ2, d} + 1 where R = maxi‖xi‖ (Vapnik, 1979). This justified the idea of large margin
classifiers formally from structural risk minimization point of view. The SVM for linearly sepa-
rable data, as we know it today, was introduced by Boser et al. (1992) which presented the well
known quadratic program to solve the SVM in the dual. Cortes & Vapnik (1995) presented soft
margin SVM for non-separable data using slack variables.

2.2.3 SVM optimization problem

For linearly separable classes, we want to look for a w such that w′xi + b > 0 for positive class
examples and w′xi + b < 0 for negative class examples. The ℓ2 distance of a point xi from such

a decision hyperplane w′xi + b = 0 is given as |w′
xi+b|

‖w‖2 = yi(w
′
xi+b)

‖w‖2 . As discussed earlier, large

margin classifiers maximize the minimum distance of points from the decision hyperplane, which

6

gives rise to the following optimization problem:

{w∗, b∗} = argmin
w,b

1

2
‖w‖2 s.t. yi(w

′xi + b) ≥ 1 (2.1)

The dual problem of the constrained optimization problem of Eq. 2.1 is given as

max
α≥0

n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjx
′
ixj s.t.

n∑

i=1

αiyi = 0. (2.2)

For non-separable classes, we can introduce slack variables {ξi}ni=1 and relax the margin con-
straints to yi(w

′xi+b) ≥ 1−ξi with ξi ≥ 0 for all i. The primal problem now becomes minw,b,ξ
1
2‖w‖2+

C
∑n

i=1 ξi subject to these relaxed margin constraints, where C is a trade-off hyperparameter.
Forming the dual for this soft margin problem as above, we get the following optimization prob-
lem.

max
0≤α≤C

n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjx
′
ixj s.t.

n∑

i=1

αiyi = 0 (2.3)

The decision hyperplane is given by w =
∑n

i=1 αiyixi, and the predicted class label for a test
example x is given as

ŷ = sign(w′x+ b) = sign(
n∑

i=1

αiyix
′
ix+ b). (2.4)

KKT complementary slackness conditions ensure that αi’s are zero for those data points for which
the margin constraints are inactive, i.e., yi(w

′xi + b) > 1. The rest of the points, for which the mar-
gin constraints are active, are called support vectors and have their corresponding αi’s positive.
The SVM decision hyperplane only depends on these support vectors.

2.2.4 Feature spaces and the kernel trick

If the data is not linearly separable, it might be possible to nonlinearly transform the input
features xi ∈ X ⊂ R

d to another, possibly higher dimensional, feature space using a transform
φ : X 7→ F and do linear classification there. It can be noticed that in the optimization prob-
lem of Eq. 2.3 as well as in the prediction function of Eq. 2.4, the inputs make appearance only
in pairwise manner through dot products. This has important consequences as we do not need
to compute the transformed features explicitly for using SVMs and it suffices to just compute
the dot products in the transformed feature space. The new feature space F should be a dot
product space. For some feature spaces, it is possible to directly evaluate the dot products us-
ing a symmetric kernel function k : X × X 7→ R without explicitly computing the features
(k(xi,xj) = 〈φ(xi), φ(xj)〉) (Aizerman et al., 1964; Poggio, 1975; Boser et al., 1992). Such ker-
nels are called positive semidefinite kernels or Mercer kernels (Mercer, 1909; Aizerman et al.,
1964) after James Mercer who proved that kernel of a positive linear operator can be expanded

as series sum of products of its eigenfunctions {ψi(·)}Ei=1, i.e., k(xi,xj) =
∑E

e=1 λeψe(xi)ψe(xj),
where E is the number of positive eigenvalues of the linear operator. One possibility for implic-
itly mapped feature corresponding to the dot product obtained by this kernel function can be

7

φ(xi) = [
√
λ1ψ1(xi),

√
λ2ψ2(xi), . . . ,

√
λEψE(xi)]. Another possibility is to think of mapped fea-

ture as φ(xi) = k(xi, ·) which is a function. For the kernel to evaluate the dot product in the feature
space, we should have k(xi,xj) = 〈φ(xi), φ(xj)〉 = 〈k(xi, ·), k(xj , ·)〉. This property of the kernel
function is called reproducing kernel property and it holds for Mercer kernels. The linear span of
all {k(xi, ·)}ni=1 is called reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950).

For any Mercer kernel k(·, ·) that induces an implicit feature map φ : X 7→ F , we can write the
SVM optimization problem of Eq. 2.3 as

max
0≤α≤C

n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjk(xi,xj) s.t.
n∑

i=1

αiyi = 0. (2.5)

The prediction for an example x is given by ŷ = sign(
∑n

i=1 αiyik(xi,x) + b). Some of the pop-
ular kernel functions used in practice are Gaussian kernel or radial basis function (RBF) kernel

(k(xi,xj) = e−‖xi−xj‖2/2σ2
), polynomial kernel (k(xi,xj) = (x′

ixj + 1)g), etc. Occasionally, people
also use kernels that do not satisfy Mercer requirement, like Sigmoid “kernel”. While these often
work well in practice, in theory the use of a indefinite kernel results in non-convexity of the SVM
objective. Also, it loses the intuitive interpretation of a dot product in an induced feature space.

For a detailed description of the theory and practice of large margin classification and Support
Vector Machines, the reader is referred to (Burges, 1998; Smola et al., 1999).

2.3 Multiple Kernel Learning

A crucial component of the SVM learning is the kernel function that maps the inputs to a feature
space where a linear classifier is expected to separate the data. Although SVMs have been applied
to many applications with significant empirical success, its performance critically hinges upon
the choice of the kernel function, which is usually hard to select even when the user has a good
familiarity with the problem domain. For this reason, automated learning of the kernel function
has been an active area of research. The majority of the previous work in this area has focused
on the Multiple Kernel Learning (MKL) setting, where the user is only tasked with specifying
a set of base kernels, and the learning algorithm is in charge of finding a combination of these
base kernels that is appropriate for the problem at hand. Most of the methods proposed in the
literature work with nonnegative linear combination of base kernels to ensure that the final kernel
is positive semidefinite. Next, we briefly describe two main lines of work in this area.

2.3.1 One stage MKL

In one stage MKL, both the weights of the linear combination of base kernels and the parame-
ters of the SVM classifier are learned by solving a single joint optimization problem. This one-stage
approach was first proposed by Lanckriet et al. (2004) and has since received significant attention
(Rakotomamonjy et al., 2007; Sonnenburg et al., 2006; Cortes et al., 2010a; Kloft et al., 2011; Bach,
2008; Zien & Ong, 2007; Cortes et al., 2009a; Sindhwani & Lozano, 2011). The basic optimization
problem in one stage MKL is given as

min
µ∈A

max
α

α
′1− 1

2
α

′Y′K′
µYα, s.t. 0 ≤ α ≤ C, α′y = 0, (2.6)

8

where y is a length n vector containing the class labels of training examples, Y = diag(y),
α = [α1, α2, . . . , αn], Kµ is the training kernel matrix parameterized by µ and 1 is a vector of
appropriate length containing all ones. The kernel quality in the optimization problem of Eq. 2.6
is measured by the SVM objective (as given in Eq. 2.5). If A is a convex set and the map µ 7→ Kµ

is a concave function in µ, the problem in convex in µ as point-wise maximum preserves convex-
ity. Nonnegative linear combination assumes Kµ =

∑p
i=1 µiKi, µ ≥ 0 where p is the number of

base kernels (Lanckriet et al., 2004). There has been considerable amount of work investigating
other possibilities for set A, e.g., µ lying on the simplex (Sonnenburg et al., 2006; Rakotomamonjy
et al., 2007; Zien & Ong, 2007), ‖µ‖q norm penalty on the combination weights (Kloft et al., 2011;
Orabona & Jie, 2011) for any q ≥ 1, etc. A significant effort has also been invested in coming up
with more efficient optimization methods for various MKL formulations having basic skeleton of
Eq. 2.6 (Sonnenburg et al., 2006; Rakotomamonjy et al., 2007).

2.3.2 Two stage MKL

The second line of work in kernel learning follows a two-stage approach: first learn a “good”
combination of base kernels using the training data, then use the learned kernel with a standard
kernel method such as SVM to obtain a classifier. This approach has been initially proposed in
Cristianini et al. (2001) and Kandola et al. (2002), and recently revisited by Cortes et al. (2010b).
The two-stage kernel leaning approaches so far have been based on the notion of target alignment.
Intuitively, target alignment is a measure of similarity (agreement) between a kernel and the target
kernel, which is derived from the training labels and represents the optimal kernel for the training
sample. The target alignment approach proposed in Cortes et al. (2010b) solves the following
optimization problem to get the combination weights

max
µ∈A

〈Kµc ,yy
′〉

‖Kµc‖F
, (2.7)

where A = {µ : µ ≥ 0, ‖µ‖2 = 1}, Kµ =
∑p

i=1 µiKi and Kµc is the centered version of Kµ. The
matrix yy′ is taken as the target kernel whose (ij)th entry is +1 if xi and xj are from same class
and −1 otherwise. This target kernel is optimal for the training samples since the prediction for
a training sample x reduces to

∑n
i=1 αiyik(xi,x) = sign(x)

∑n
i=1 αi which is always correct irre-

spective of the α as αi ≥ 0. We want the learned kernel Kµ to be as close as possible to the target
kernel on the training samples, and due to high probability concentration bounds (probability of
deviation of a random variable from its mean decaying fast enough) we can hope to maintain a
high target alignment on the unseen test examples as well (in expectation) (Cortes et al., 2010b).

In spite of a large amount of work over the past ten years (or so) on the problem of MKL, it is
still an active research area, mainly due to the fact that the MKL methods have not yet realized
their full potential that the research community believes they possess. MKL has achieved signif-
icant empirical success in a few application areas like bio-informatics and computer vision but it
is still far from the state where MKL can be used as a reliable black-box in a variety of applica-
tions. In fact, it has become a challenge to make MKL perform better than simple well-established
baselines like averaging the base kernels and best kernel selection using cross-validation. For a
detailed survey of the existing multiple kernel learning algorithms, the reader is referred to Gonen
& Alpaydin (2011).

9

Part I

Spectral Embeddings from Multiple
Similarity Graphs

10

Chapter 3

Co-trained Spectral Embedding

This chapter describes an approach to learn spectral embeddings from multiple similarity
graphs. The proposed co-training based framework can be seen as a multi-view generalization
of the spectral embedding proposed in Belkin & Niyogi (2003). The approach is presented in the
context of spectral clustering (using a particular type of graph Laplacian), which essentially learns
spectral embedding followed by k-means clustering. However, the proposed co-training based
framework is more general and can be used for general dimensionality reduction tasks.

3.1 Co-training

Co-training was originally proposed for the problem of semi-supervised learning, where we
have access to labeled as well as unlabeled data (Blum & Mitchell, 1998). It considers a setting in
which each example can be partitioned into two distinct views, and makes three main assumptions
for its success: (a) Sufficiency: Each view is sufficient for classification on its own, (b) Compatibility:
the target functions in both views predict same labels for co-occurring features with high prob-
ability, and (c) Conditional independence: the views are conditionally independent given the class
label. Some of these assumptions, including conditional independence, were significantly relaxed
in Balcan et al. (2004).

The central idea of co-training algorithms is to limit the search for target hypothesis to the
set of “compatible hypotheses” that predict same labels for co-occurring patterns in each view.
Unlabeled data allows us to do this pruning of the hypothesis space. In the original co-training
algorithm (Blum & Mitchell, 1998), two initial hypotheses h1 and h2 are trained in the individual
views using the labeled data. Both hypotheses then label a certain number of unlabeled examples
on which they are most confident. These examples are added to the labeled pool, and h1, h2 are
retrained. This process is repeated for a pre-chosen number of iterations. The intuition behind
co-training algorithm is that h1 adds examples to the labeled set that are used for training h2, and
vice versa. This process should slowly drive h1 and h2 to agree with each other on labels.

Variants of the original co-training algorithm were also proposed later and evaluated on differ-
ent datasets. We specifically mention the co-EM algorithm (Nigam & Ghani, 2000). It differs with
the original co-training algorithm in a couple of places. Firstly, it is not incremental in nature, i.e.,
all of unlabeled data is labeled in each iteration for further use. Secondly, only the data labeled by
h2 is used to retrain h1 (and vice versa), unlike the original co-training algorithm that uses data
labeled by both h1 and h2 in retraining each of these. Nigam & Ghani (2000) observe that co-EM is
a closer match to the theoretical argument of Blum & Mitchell (1998) than the original co-training
algorithm.

11

3.2 Co-training for Spectral Clustering

In this section, the idea of co-training is applied to the problem of multi-view spectral cluster-
ing. There is no labeled data in unsupervised learning problems, so semi-supervised co-training
cannot be applied directly. However, the motivation still remains the same as in semi-supervised
problems: to limit our search to hypotheses (in our problem, clusterings) that agree with those in
other views. Specifically, we want the relationship within a pair of points to be consistent across
the views. If two points are assigned in same cluster in one view, it should be so in all the views.
On the other hand, if two points belong to different clusters, it should be so in all the views. This
is a reasonable approach to take in the light of compatibility assumption of co-training.

We know that the first k eigenvectors of a graph Laplacian with exactly k number of connected
components are the component (or cluster) indicator vectors, i.e., each vector is associated to a
cluster and has non-zero values only at positions that correspond to points in the cluster. In an-
other words, these eigenvectors only contain discriminative information about the clusters, ignor-
ing the within-cluster details. For a fully connected graph (one connected component), spectral
clustering solves a relaxed version of the min-cut problem (normalized or unnormalized). The
eigenvectors in this case are not the cluster indicator vectors, yet they still contain discriminative
information which is used in spectral clustering. In the multi-view setting, we can make use of
eigenvectors obtained from one view to “label” the points in other view, and vice versa. Our
proposed multi-view algorithm aims to work along the lines of Figure 3.1.

1. Solve spectral clustering on individual graphs to get the discriminative eigenvectors in each
view, say U1 and U2.
2. Cluster points using U1 and use this clustering to modify the graph structure in view 2.
3. Cluster points using U2 and use this clustering to modify the graph structure in view 1.
4. Go to Step 1 and repeat for a number of iterations.

Figure 3.1: General framework for co-training based clustering

Now, the question remains of how to modify the graph structure using clustering information
from the other view. One naı̈ve way could be to reduce the edge-weight of a pair in a graph if its
points belong to different clusters according to the other view. Alternatively, we can amplify the
edge-weight of a pair if the other view puts it in same cluster. A similar idea could be applied for
the other graph. However, this would require us to cluster points at each step, which may not be
computationally efficient. In addition, there is also a question of how to decide the amounts or
factors by which to reduce the different edge weights.

Instead of completely solving the clustering at each iteration and then “labeling” the other
graph, an indirect approach is taken that results in extra computational savings, and is also more
elegant. For a similarity matrix Kn×n, we can consider each column ki of it as an n-dimensional
vector that indicates the similarities of ith point with all the points in the graph. The eigen-
vectors of the graph Laplacian are vectors in the n-dimensional space. Since we know that the
first k eigenvectors have the discriminative information for clustering, we can project the similar-
ity vectors along these directions to retain the information needed for clustering and throw away
the within cluster details that might confuse us in clustering. We back-project to the original n-
dimensional space to get back the modified graph. Since the projection matrix is orthogonal, the
inverse projection can be done using its transpose. This process is equivalent to steps 2 and 3 in

12

Figure 3.1. Algorithm 1 gives a detailed description of the algorithm. A symmetrization step is
performed on S1 and S2 in the algorithm since the projection of similarity matrix K on the eigen-
vectors does not yield a symmetric matrix. Symmetrization operator on a matrix S is defined as
sym(S) = (S+ ST)/2.

Algorithm 1 Co-trained Multi-view Spectral Clustering

Input:

Similarity matrix for both views: K1, K2

Output: Assignments to k clusters

Initialize: Lv = D
−1/2
v KvD

−1/2
v for v = 1, 2

U0
v = argmaxU ∈ R

n×k tr(UTLvU), s.t. UTU = I for v = 1, 2
for i = 1 to iter do

1: S1 = sym
(

Ui−1
2 Ui−1T

2 K1

)

2: S2 = sym
(

Ui−1
1 Ui−1T

1 K2

)

3: Use S1 and S2 as the new graph similarities and compute the Laplacians. Solve for the
largest k eigenvectors to obtain Ui

1 and Ui
2.

end for
4: Row-normalize Ui

1 and Ui
2.

5: Form matrix V = Ui
v, where v is believed to be the most informative view a priori. If there

is no prior knowledge on the view informativeness, matrix V can also be set to be column-wise
concatenation of the two Ui

vs.
6: Assign example j to cluster c if the j-th row of V is assigned to cluster c by the k-means
algorithm.

To further reinforce the idea of projection along the eigenvectors, let us consider a simple case
where the first graph has exactly k components in it, i.e., the weights of across cluster edges are 0.
As we know, the Laplacian of this graph would have the top k eigenvectors as the cluster indicator
vectors (von Luxburg, 2007). Let us assume that the second view has a fully connected graph with
similarity matrix as follows:

K2 =

0 b c d
b 0 e f
c e 0 g
d f g 0

(3.1)

The self-similarities of all points are assumed to be same and equal to 0, since they do not affect

the min-cut solution. Suppose the second graph gives u1
1 =

1√
3
(1 1 1 0)T and u2

1 = (0 0 0 1)T as the

top two eigenvectors. This implies that first 3 points are in one cluster and the fourth point is in
the second cluster. Let U1 =

(
u1
1 u

2
1

)
. The projection of K2 onto the subspace spanned by U1 and

the subsequent symmetrization yields the following modified graph in view 2:

1
3

b+c b+(c+e)/2 c+(b+e)/2 2d+(f+g)/2

b+(c+e)/2 b+e e+(b+c)/2 2f+(d+g)/2

c+(b+e)/2 e+(b+c)/2 c+e 2g+(d+f)/2

2d+(f+g)/2 2f+(d+g)/2 2g+(d+f)/2 0

Let us pay attention to the shaded sub-matrix in the above matrix. The new weight of edge (i, j) is
obtained by averaging out the edges within the cluster. The across cluster edges are also averaged

13

out in the new graph. This implies that the projection in the subspace of discriminative eigenvec-
tors makes edges within a cluster close to each other, throwing away the intra-cluster information
that is irrelevant for clustering. As the number of iterations increase, the edges within a cluster
diffuse to one another. The across cluster edges also diffuse to one another. All points within a
cluster are treated in a similar way, and different from points in other clusters. In other words,
this process “glues” all the points in a cluster, and they tend to appear together in the subsequent
spectral clustering solution.

It is possible to extend the proposed co-training framework for more than two views. We can
take the similarity matrix Kv of a view, and project it onto the union of subspaces spanned by top
k discriminative eigenvectors of the other views. More formally, steps 1 and 2 in Algorithm 1 are

replaced by Sv = sym
((
∑

i 6=v UiU
T
i

)

Kv

)

for all the views.

3.2.1 Computational Efficiency

The projection of the similarity matrix K using the projection matrix UUT gives a matrix that
has a rank of k. After symmetrization, each of the new similarity matrices S1 and S2 has a max-
imum rank of 2k. Hence, the normalized Laplacian L = D−1/2SD−1/2 also has a maximum rank
of 2k. This can be of advantage in large scale problems, since there exist efficient randomized
algorithms for doing SVD if the original matrix is low rank and a good upper bound on the rank
is known in advance (Liberty et al., 2007). The matrix S̃ = UUTK is a diagonalizable matrix and
has all real non-negative eigenvalues (refer to Theorem 7.6.3 in (Horn & Johnson, 1990)). How-
ever, it is not necessary for sym(S) = (S̃+S̃T)/2 to have non-negative eigenvalues. The individual
entries of sym(S) can also be negative, and so the corresponding Laplacian can be non-positive
definite. In the experiments, a rank-1 matrix is added to sym(S) that has all its entries equal to the
minimum negative entry of sym(S). This makes sure that the corresponding Laplacian is positive
semidefinite at each iteration.

3.3 When will co-training help in spectral clustering?

Blum & Mitchell (1998) state the assumptions under which co-training will succeed for clas-
sification (also mentioned in Sec. 3.1). It was shown later by Balcan et al. (2004) that these as-
sumptions can be substantially weakened with stronger assumptions on the learning algorithm
for co-training to succeed. In this section, I will construct some example scenarios to better un-
derstand when co-training can be expected to help in spectral clustering. I also construct some
negative examples for which co-training does not help.

3.3.1 Correlated Features

Here I simulate the scenario when we have correlated features across views given the cluster
label. Suppose there are two views and two clusters in each view. Data points in each view lie in
two dimensions. To generate a multiview sample, first a cluster label is sampled from a Bernoulli
distribution. Then, depending on the cluster label, a multiview sample is generated according to
the corresponding Gaussian distribution. The mean vectors and covariance matrices for the two
clusters are given as follows, where µi and Σi are the mean and covariance for cluster i, with the
first two dimensions corresponding to the first view and the last two dimensions corresponding to

14

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parameter ρ
N

M
I

Spectral clustering on best single view

Co−trained spectral clustering

Figure 3.2: NMI scores for best single view and for multiview co-trained spectral clustering vs the
feature correlation ρ

the second view. After generating a multiview sample x, it is split into two views as x(1) = x(1 : 2)
and x(2) = x(3 : 4).

µ1 = (1 1 1 1) , µ2 = (3 3 3 3)

Σ1 =

1 0 ρ 0
0 1 0 ρ
ρ 0 1 0
0 ρ 0 1

, Σ2 =

1 0 ρ 0
0 1 0 ρ
ρ 0 1 0
0 ρ 0 1

The parameter ρ controls the correlation between the features of two views given the cluster la-
bel. I vary the parameter ρ from −1 to 1 in the steps of 0.1. For each value of ρ, 1000 multiview
data points are generated as discussed above and split into two views. Gaussian kernel is used
for computing the graph similarities in each view. The standard deviation of the kernel is taken
to be the median of the pair-wise Euclidean distances between the data points. The plot of nor-
malized mutual information (NMI) versus the parameter ρ is shown in Fig. 3.2. A higher value
of NMI indicates better clustering accuracy. Please see the next section for details regarding NMI
and other clustering measures. The red and blue plots show the NMI obtained with best single
view and with co-trained spectral clustering algorithm, respectively. The improvement obtained

with co-training decreases with the increase in the parameter ρ. This is not unexpected: a neg-
ative correlation between features in the two views in this case ensures that if a sample is more
confusable with the other cluster in one view, it will be less confusable with the other cluster in
the second view. Thus each view provides complementary information that helps improve the
clustering. Totally uncorrelated features (ρ = 0) also help co-training improve beyond the best
single view. On the other hand, when ρ is high, both views provide similar information and we
do not gain much by the use of co-training.

3.3.2 Complementary corruption in the similarity graphs

Let us start with two identical similarity matrices of block diagonal structure, one for each view.

K(1) =

(

1n
2
×n

2
0n

2
×n

2

0n
2
×n

2
1n

2
×n

2

)

, K(2) =

(

1n
2
×n

2
0n

2
×n

2

0n
2
×n

2
1n

2
×n

2

)

15

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Parameter α
N

M
I

Spectral clustering on best single view

Co−trained spectral clustering

Figure 3.3: NMI scores for best single view and for multiview co-trained spectral clustering vs the
noise level α

Here both K(1) and K(2) are of size n × n, the matrix 1 is a matrix of all 1’s of size n
2 × n

2 and
matrix 0 is a matrix of all 0’s. I assume a ground truth clustering that first n

2 points belong to
one cluster and the last n

2 points belong to the second cluster. The two similarity matrices are
identical so we will not gain anything by using two views in clustering. Now, let us inject noise
in the off-diagonal blocks of both similarity matrices. I randomly select half of the entries in the
off-diagonal blocks of K(1) (maintaining the symmetry of the matrix) and put a similarity value
of α in these positions. I also put similarity values of α in the off-diagonal blocks of K(2) but
in the complementary positions (where K(1) off-diagonal blocks have zeros). Thus, for every
position (i, j) in the off-diagonal blocks, one of similarity matrices has α while the other has 0.
The number of points n is taken to be 1000 and the parameter α is varied from 0.5 to 200. The plot
of NMI against variation in α is shown in Fig. 3.3. The NMI obtained with single view spectral
clustering is 1 for α ≤ 1.5 and suddenly decreases to the order of 10−3 at α = 2 observing a phase
transition. The co-trained spectral clustering is able to improve the NMI making use of the

complementary information in the similarity matrices of the two views. Note that the simple
baseline of “similarity addition” (adding the two similarity matrices and doing spectral clustering
on the resultant matrix) does not work for this case and actually gives worse NMI than single
view spectral clustering. However, another simple baseline of “similarity product” (taking the
Hadamard product of the two similarity matrices) will work well for this case due to the particular
nature of corruption.

3.3.3 Low quality or contradictory individual views

Two of the assumptions in semi-supervised co-training are that each view should be sufficient
on its own to give a reasonably good classification performance (sufficiency) and the target func-
tions in both views predict same labels for co-occurring features with high probability (compati-
bility). Here I test these assumptions for co-trained spectral clustering. To this end, I simulate a
scenario where one of the similarity matrices does not have any useful information for clustering
or may even indicate a different clustering of data. The similarity matrices in the two views are

16

given as follows.

K(1) =

(

1n
2
×n

2
0n

2
×n

2

0n
2
×n

2
1n

2
×n

2

)

, K(2) =

(

1n
2
×n

2
1n

2
×n

2

1n
2
×n

2
1n

2
×n

2

)

I assume a ground truth clustering that first n
2 points belong to one cluster and the last n

2 points

belong to the second cluster. The matrix K(2) has equal similarity for all pairs of points and does
not have any useful information for clustering. For this case, the first view gives a perfect NMI
of 1 and the second view gives extremely low NMI of the order of 10−4. The co-trained spectral
clustering gives an NMI of 0.35. This example illustrates that co-training will not work well in the
presence of a “bad” view as it can influence the subsequent iterations of the co-trained spectral
clustering algorithm.

As a second example, consider the following similarity matrices for the two views that indicate
contradictory clusterings.

K(1) =

(

1n
2
×n

2
0n

2
×n

2

0n
2
×n

2
1n

2
×n

2

)

, K(2) =

1n
4
×n

4
0n

4
×n

2
1n

4
×n

4

0n
2
×n

4
1n

2
×n

2
0n

2
×n

4

1n
4
×n

4
0n

4
×n

2
1n

4
×n

4

These similarity matrices indicate significantly different clustering assignments. In this case, the
co-trained spectral clustering algorithm oscillates heavily across its iterations and does not help.
Of course, no multiview algorithm can be expected to work in this case since the two views admit
significantly different clusterings and no sharing is possible.

3.4 Experiments

In this section, the co-trained multi-view spectral clustering approach is compared with the
following baselines.

• Single View: Using the most informative view, i.e., one that achieves the best spectral clus-
tering performance using a single view of the data.

• Feature Concatenation: Concatenating the features of each view, and then running standard
spectral clustering using the graph Laplacian derived from the joint view representation of
the data.

• Kernel Addition: Combining different kernels by adding them, and then running standard
spectral clustering on the corresponding Laplacian. As suggested in earlier findings (Cortes
et al., 2009b), even this seemingly simple approach often leads to near optimal results as
compared to more sophisticated approaches for classification. It can be noted that kernel ad-
dition reduces to feature concatenation for the special case of linear kernel. In general, kernel
addition is same as concatenation of features in the Reproducing Kernel Hilbert Space.

• Kernel Product (element-wise): Multiplying the corresponding entries of kernels and ap-
plying standard spectral clustering on the resultant Laplacian. For the special case of Gaus-
sian kernel, element-wise kernel product would be same as simple feature concatenation if
both kernels use same width parameter σ. However, in the experiments, different width
parameters are used for different views so the performances of kernel product may not be
directly comparable to feature concatenation.

17

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.971 0.975 0.968 0.097 0.898 0.942

Feature Concat 0.980 0.983 0.977 0.068 0.928 0.960

Kernel Addition 0.996 0.996 0.996 0.020 0.973 0.992

Kernel Product 0.990 0.988 0.991 0.041 0.959 0.980

CCA 0.984 0.984 0.984 0.067 0.932 0.968

Min-Disagreement 0.984 0.986 0.983 0.062 0.936 0.968

Co-trained spectral(2) 0.996 0.995 0.996 0.019 0.981 0.992

Co-trained spectral(3) 0.998 0.998 0.997 0.010 0.989 0.996

Table 3.1: Clustering performance on synthetic data. Number (2) or (3) indicates the number of
views used in the approach. Std. deviations of all performance metrics are zero for this synthetic
data.

• CCA based Feature Extraction: Applying CCA for feature fusion from multiple views of the
data (Blaschko & Lampert, 2008), and then running spectral clustering using these extracted
features. I apply both standard CCA and kernel CCA for feature extraction and report the
clustering results for whichever method gives the best performance on test data.

• Minimizing-Disagreement Spectral Clustering: Last baseline is the minimizing-disagreement
approach to spectral clustering (de Sa, 2005), and is perhaps most closely related to the prop-
soed co-training based approach to spectral clustering. This algorithm is discussed more in
Sec. 3.5.

I report experimental results on one synthetic and three real-world datasets.

• Synthetic data: The synthetic data consists of three views and is generated as follows. I first

choose the cluster ci each sample belongs to, and then generate each of the views x
(1)
i , x

(2)
i

and x
(3)
i from a two-component Gaussian mixture model. These views are combined to form

the sample (x
(1)
i , x

(2)
i , x

(3)
i , ci). Total 1000 points are sampled from each view. The cluster

means in view 1 are µ
(1)
1 = (1 1) , µ

(1)
2 = (3 4); in view 2 are µ

(2)
1 = (1 2) , µ

(2)
2 = (2 2); and

in view 3 are µ
(3)
1 = (1 1) , µ

(3)
2 = (3 3). The covariances for the three views are given below.

The notation Σ
(v)
c denotes the parameter for cth cluster in vth view.

Σ
(1)
1 =

(
1 0.5
0.5 1.5

)

, Σ
(1)
2 =

(
0.3 0.2
0.2 0.6

)

Σ
(2)
1 =

(
1 −0.2

−0.2 1

)

, Σ
(2)
2 =

(
0.6 0.1
0.1 0.5

)

Σ
(3)
1 =

(
1.2 0.2
0.2 1

)

, Σ
(3)
2 =

(
1 0.4
0.4 0.7

)

• Reuters Multilingual data: The test collection contains feature characteristics of documents
originally written in five different languages (English, French, German, Spanish and Ital-
ian), and their translations, over a common set of 6 categories (Amini et al., 2009). I use
documents originally in English as the first view, and their French and German translations
as the second and third views. I randomly sample 1200 documents from this collection in
a balanced manner, with each of the 6 clusters having 200 documents. The documents are
in bag-of-words representation which implies that the features are extremely sparse and

18

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.342(0.010) 0.296(0.015) 0.407(0.025) 1.878(0.052) 0.287(0.019) 0.186(0.014)

Feature Concat 0.368(0.012) 0.330(0.016) 0.416(0.017) 1.841(0.057) 0.298(0.020) 0.225(0.017)

Kernel Addition 0.386(0.012) 0.358(0.017) 0.420(0.023) 1.770(0.058) 0.323(0.021) 0.252(0.016)

Kernel Product 0.258(0.003) 0.198(0.011) 0.381(0.058) 2.306(0.034) 0.123(0.010) 0.052(0.014)

CCA 0.262(0.007) 0.222(0.005) 0.322(0.034) 2.232(0.009) 0.147(0.003) 0.082(0.003)

Min-Disagreement 0.381(0.014) 0.341(0.004) 0.435(0.035) 1.736(0.052) 0.342(0.024) 0.240(0.012)

Co-trained spectral(2) 0.401(0.009) 0.363(0.007) 0.450(0.030) 1.651(0.024) 0.373(0.012) 0.267(0.007)

Co-trained spectral(3) 0.412(0.001) 0.369(0.001) 0.467(0.003) 1.616(0.017) 0.388(0.007) 0.279(0.001)

Table 3.2: Clustering performance on Reuters multilingual data. The languages used are English,
French, and German. Number (2) or (3) indicates the number of views used in the approach.
Numbers in parentheses are the std. deviations.

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.577(0.015) 0.569(0.020) 0.586(0.012) 1.198(0.029) 0.641(0.008) 0.530(0.017)

Feature Concat 0.536(0.027) 0.514(0.026) 0.561(0.032) 1.283(0.050) 0.619(0.015) 0.480(0.026)

Kernel Addition 0.707(0.052) 0.688(0.065) 0.727(0.037) 0.862(0.110) 0.744(0.030) 0.673(0.059)

Kernel Product 0.719(0.049) 0.698(0.064) 0.742(0.032) 0.832(0.102) 0.754(0.026) 0.687(0.055)

CCA 0.638(0.027) 0.616(0.037) 0.662(0.020) 1.073(0.071) 0.682(0.019) 0.596(0.031)

Min-Disagreement 0.693(0.047) 0.663(0.066) 0.729(0.026) 0.870(0.096) 0.745(0.024) 0.658(0.053)

Co-trained spectral 0.726(0.048) 0.709(0.058) 0.745(0.039) 0.793(0.109) 0.765(0.031) 0.695(0.054)

Table 3.3: Clustering performance on Handwritten digits data. Numbers in parentheses are the
std. deviations.

high-dimensional. The standard similarity measures (like Gaussian kernel) in very high di-
mensions are often unreliable. Since spectral clustering essentially works with similarities
of the data, we first project the data using Latent Semantic Analysis (LSA) (Hofmann, 1999)
to a 100-dimensional space and compute similarities in this lower dimensional space. This
is akin to a computing topic based similarity of documents (Blei et al., 2003).

• UCI Handwritten digits data: The second real-world dataset is taken from the handwritten
digits (0-9) data from the UCI repository. The dataset consists of 2000 examples, with view-
1 being the 76 Fourier coefficients, and view-2 being the 216 profile correlations of each
example image.

• BBC and BBCSPORTS data: These datasets consist of news articles from the BBC (Greene
& Cunningham, 2005). BBC data contains 2225 complete news articles corresponding to
stories in five topical areas (business, entertainment, politics, sport, tech). BBCSPORTS data
consists of 737 sports news articles in five classes (athletics, cricket, football, rugby, tennis).
These are synthetic multi-view datasets, wherein each document is segmented and segments
are randomly assigned to the two views (Greene & Cunningham, 2009).

The approaches are compared on a number of evaluation measures. Here, I report precision,
recall, F-score, normalized mututal information (NMI), average entropy, and adjusted rand in-
dex (Manning et al., 2008; Hubert & Arabie, 1985). For all these measures, the higher value indi-
cates better clustering quality, except for average cluster entropy, for which lower value signifies
better clustering quality. Each evaluation measure penalizes or favors different properties in the
clustering, hence I report results on these diverse measures to do a comprehensive evaluation.

19

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.546(0.001) 0.522(0.001) 0.572(0.001) 1.221(0.003) 0.478(0.001) 0.424(0.001)

Feature Concat 0.559(0.019) 0.526(0.016) 0.598(0.022) 1.152(0.027) 0.512(0.013) 0.439(0.024)

Kernel Addition 0.558(0.013) 0.525(0.013) 0.595(0.013) 1.166(0.016) 0.506(0.008) 0.437(0.017)

Kernel Product 0.572(0.033) 0.536(0.028) 0.614(0.039) 1.132(0.053) 0.522(0.025) 0.455(0.042)

CCA 0.220(0.001) 0.193(0.001) 0.257(0.002) 1.861(0.003) 0.214(0.001) 0.178(0.001)

Min-Disagreement 0.854(0.047) 0.849(0.065) 0.860(0.026) 0.479(0.093) 0.794(0.033) 0.816(0.062)

Co-trained spectral 0.898(0.000) 0.894(0.000) 0.902(0.000) 0.369(0.000) 0.841(0.000) 0.873(0.000)

Table 3.4: Clustering performance on BBC data. Numbers in parentheses are the std. deviations.

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.387(0.015) 0.405(0.021) 0.370(0.015) 1.565(0.066) 0.286(0.028) 0.210(0.022)

Feature Concat 0.609(0.040) 0.636(0.019) 0.585(0.059) 0.919(0.009) 0.575(0.004) 0.497(0.047)

Kernel Addition 0.604(0.038) 0.634(0.020) 0.578(0.054) 0.898(0.014) 0.584(0.004) 0.491(0.045)

Kernel Product 0.603(0.036) 0.635(0.018) 0.575(0.053) 0.910(0.011) 0.578(0.003) 0.490(0.043)

CCA 0.173(0.008) 0.187(0.010) 0.161(0.006) 1.89(0.074) 0.115(0.011) 0.089(0.005)

Min-Disagreement 0.718(0.082) 0.751(0.051) 0.690(0.109) 0.646(0.080) 0.697(0.045) 0.638(0.102)

Co-trained spectral 0.850(0.078) 0.866(0.057) 0.836(0.095) 0.392(0.091) 0.817(0.047) 0.807(0.099)

Table 3.5: Clustering performance on BBCSPORTS data. Numbers in parentheses are the std.
deviations.

Gaussian kernel is used for computing the graph similarities in all the experiments. The stan-
dard deviation of the kernel is taken equal to the median of the pair-wise Euclidean distances
between the data points, except for the BBC data for which it gives extremely low performance.
I use a kernel std. dev. of 100 for both BBC datasets. In all the result tables, the numbers in the
parentheses are the standard deviations of the performance measures obtained with 20 different
runs of k-means with random initializations.

The results for synthetic data are shown in Table 3.1. As it can be seen, the proposed approach
outperforms all the baselines. Baselines are run using first using two views and then using all three
views, and the best results are reported here. The closest performing approach is kernel addition.
For synthetic data, order-2 polynomial kernel based kernel-CCA gives best performance among all
CCA variants, while Gaussian kernel based kernel-CCA performs poorly. I do not report results
for Gaussian kernel CCA here. All the baselines outperform the single view case for the synthetic
data.

Table 3.2 shows the document clustering results on Reuters multilingual data with English,
French and German documents as the three views. On this dataset too, the proposed approach
outperforms all the baselines by a significant margin. The next best performance is attained by
minimum-disagreement spectral clustering (de Sa, 2005) approach. It should be noted that CCA
and element-wise kernel product performances are worse than that of single view.

Table 3.3 shows the results on UCI Handwritten digits dataset. On this dataset, quite a few ap-
proaches including kernel addition, element-wise kernel multiplication, and minimum-disagreement
are close to the co-training based spectral clustering approach. The proposed approach still man-
ages to perform marginally better than the best of these on all evaluation metrics. It can be noted
that feature concatenation performs worse than single view.

20

2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

N
M

I
s
c
o

re

Figure 3.4: NMI scores in different views vs number of iterations of co-trained spectral clustering
for Synthetic data

2 4 6 8 10 12 14 16 18 20 22
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Iterations

N
M

I
s
c
o
re

Figure 3.5: NMI scores in different views vs number of iterations of co-trained spectral clustering
for Reuters multilingual data

Finally, the results on BBC and BBCSPORTS data are shown in Tables 3.4 and 3.5. All baselines
perform better than single view. Our proposed approach outperforms the closest performing base-
line, which is minimum-disagreement approach, by a significant margin. CCA again performs
worse than single view as was the case for Reuters multilingual data.

I also show the variation in NMI score as the number of iterations increase in Figures 3.4 and
3.5. For the synthetic data, algorithm converges after four iterations for all the three views and re-
mains constant after that. For Reuters data, the major improvement in performance for all views
is obtained after the first iteration. It keeps varying around that value in the subsequent itera-
tions. In general, it was observed that the algorithm does not converge, as is also the case with
semi-supervised co-training algorithm, which is also not guaranteed to converge. In all the exper-
iments, it was observed that the biggest increment in performance is obtained in the first iteration.
I stop after a fixed number of iterations in the experiments. However, it is possible to apply some
heuristic clustering performance measures (e.g. cluster compactness measure) to decide the stop-
ping criterion.

21

3.5 Related Work

A number of clustering algorithms have been proposed in the past to learn with multiple views
of the data. Some of them first extract a set of shared features from the multiple views and then
apply any off-the-shelf clustering algorithm such as k-means on these features. The Canonical
Correlation Analysis (CCA) (Chaudhuri et al., 2009; Blaschko & Lampert, 2008) based approach
is an example of this. Alternatively, some other approaches exploit the multiple views of the data
as part of the clustering algorithm itself. For example, (Bickel & Scheffer, 2004) proposed a Co-
EM based framework for multi-view clustering in mixture models. Co-EM approach computes
expected values of hidden variables in one view and uses these in the M-step for other view, and
vice versa. This process is repeated until a suitable stopping criteria is met. The algorithm often
does not converge.

Multi-view clustering algorithms have also been proposed in the framework of spectral clus-
tering (Zhou & Burges, 2007; de Sa, 2005). In (Zhou & Burges, 2007), the authors obtain a graph
cut which is good on average over the multiple graphs but may not be the best for a single graph.
They give a random walk based formulation for the problem. (de Sa, 2005) approaches the prob-
lem of two-view clustering by constructing a bipartite graph from nodes of both views. Edges
of the bipartite graph connect nodes from one view to those in the other view. Subsequently,
they solve standard spectral clustering problem on this bipartite graph. In (Tang et al., 2009), the
information from multiple graphs are fused using Linked Matrix Factorization.

Our approach is in contrast with several other existing works on multiple kernel learning (Cortes
et al., 2009b; Zhao et al., 2009) that try to learn an optimal kernel matrix by a linear or non-linear
combination of base kernel matrices. It is possible to apply these approaches to multi-view spec-
tral clustering by learning a new similarity matrix (or kernel matrix) that combines information
from multiple kernels, and then solving the relaxed min-cut problem on this new graph. In con-
trast, our approach solves the relaxed min-cut problem (using spectral clustering) on individual
graphs and enforces these cuts (or clusters) to agree with each other. The multiple kernel learning
based approach to multi-view spectral clustering can be considered to have a generative flavor in
the sense that it focuses on the generation of a new graph, while our co-regularization based ap-
proach tries to explicitly minimize the disagreement between clusterings in different given graphs.

Consensus clustering approaches can also be applied to the problem of multi-view cluster-
ing (Strehl & Ghosh, 2002). These approaches do not generally work with original features. In-
stead, they take different clusterings of a dataset coming from different sources as input and rec-
oncile them to find a final clustering.

3.6 Discussion

This chapter presented a multi-view spectral clustering approach using the idea of co-training,
which has been widely used in semi-supervised learning problems. The general framework of the
proposed algorithm is to learn the clustering in one view and use it to “label” the data in other
view so as to modify the graph structure (similarity matrix). The modification to the graph is
dictated by the discriminative eigenvectors and is achieved by projection along these directions.

The key assumption that the true underlying clustering is same for all views is safe in most
scenarios, and is necessary for multi-view algorithms to succeed. This assumption can potentially
be violated in situations where the data assumes more than one natural clustering, and different

22

clusterings become prominent in different views. However, in this work, I am not concerned with
the problem of multiple clusterings so compatibility of clustering across views is safe to assume.

It is possible to extend the proposed framework to the case where some of the views have
missing data. For missing data points, the corresponding entries in the similarity matrices would
be unavailable. We can estimate these missing similarities by the corresponding similarities in
other views. One possible approach to estimate the missing entry could be to simply average the
similarities from views in which the data point is available. Proper normalization of similarities
(possibly by Frobenius norm of the whole matrix) might be needed before averaging to make them
comparable.

23

Chapter 4

Co-regularized Spectral Embedding

The previous chapter presented a co-training based formulation for learning spectral embed-
dings from multiple graphs using an assumption that object groupings are same in all the views.
This chapter describes an approach to learn spectral embeddings from multiple similarity graphs
using co-regularization ideas from semi-supervised learning. The proposed co-regularization
based framework can also be seen as a multi-view generalization of the spectral embedding pro-
posed in Belkin & Niyogi (2003). The approach is presented in the context of spectral clustering
(using a particular type of graph Laplacian), however the proposed framework is more general
and can be used for general dimensionality reduction tasks.

4.1 Co-regularized Spectral Clustering

Let X(v) = {x(v)
1 ,x

(v)
2 , . . . ,x

(v)
n } denote the examples in view v and K(v) denote the similar-

ity matrix of X(v) in this view. I use the normalized graph Laplacians for both views: L(v) =

D(v)−1/2
K(v)D(v)−1/2

following Ng et al. (2002), however other variants (von Luxburg, 2007) can
also be used without any change in the basic formulation. The single view spectral clustering al-
gorithm of (Ng et al., 2002) solves the following optimization problem for the normalized graph
Laplacian L(v):

max
U(v)∈Rn×k

tr
(

U(v)TL(v)U(v)
)

, s.t. U(v)TU(v) = I (4.1)

where tr denotes the matrix trace. The rows of matrix U(v) are the embeddings of the data points
that can be given to the k-means algorithm to obtain cluster memberships. For a detailed introduc-
tion to both theoretical and practical aspects of spectral clustering, the reader is referred to (von
Luxburg, 2007). The proposed multi-view spectral clustering framework builds on the standard
spectral clustering with a single view, by appealing to the co-regularization framework typically
used in the semi-supervised learning literature (Blum & Mitchell, 1998; Sindhwani et al., 2005).

Co-regularization in semi-supervised learning essentially works by making the hypotheses
learned from different views of the data agree with each other on unlabeled data (Sindhwani et al.,
2005). The framework employs two main assumptions for its success: (a) the true target functions
in each view should agree on the labels for the unlabeled data (compatibility), and (b) the views
are independent given the class label (conditional independence). The compatibility assumption al-
lows us to shrink the space of possible target hypotheses by searching only over the compatible
functions. The independence assumption makes it unlikely for compatible classifiers to agree on

24

wrong labels. In the case of clustering, this would mean that a data point in both views would be
assigned to the correct cluster with high probability.

Here, two co-regularization based approaches are presented that make the clustering hypothe-
ses on different graphs (i.e., views) agree with each other. The effectiveness of spectral clustering
hinges crucially on the construction of the graph Laplacian and the resulting eigenvectors that re-
flect the cluster structure in the data. Therefore, an objective function is constructed that consists
of the graph Laplacians from all the views of the data and regularized on the eigenvectors of the
Laplacians such that the cluster structures resulting from each Laplacian look consistent across all
the views.

The first co-regularization scheme (Section 4.1.1) enforces that the eigenvectors U(v) and U(w)of
a view pair (v,w) should have high pairwise similarity (using a pair-wise co-regularization crite-
ria we will define in Section 4.1.1). The second co-regularization scheme (Section 4.1.3) enforces
the view-specific eigenvectors to look similar by regularizing them towards a common consensus
(centroid based co-regularization). The idea is different from previously proposed consensus clus-
tering approaches (Strehl & Ghosh, 2002) that commit to individual clusterings in the first step and
then combine them to a consensus in the second step. We optimize for individual clusterings as
well as the consensus using a joint cost function.

4.1.1 Pairwise Co-regularization

In standard spectral clustering, the eigenvector matrix U(v) is the data representation for subse-
quent k-means clustering step (with i’th row mapping to the original i’th sample). In the proposed
objective function, the pairwise similarities of examples under the new representation (in terms
of rows of U(·)’s) are encouraged to be similar across all the views. This amounts to enforcing the
spectral clustering hypotheses (which are based on the U(·)’s) to be similar across all the views.

Let us work with two-view case for the ease of exposition. This will later be extended to more
than two views. Consider the following cost function as a measure of disagreement between
embeddings of two views:

D(U(v),U(w)) =

∥
∥
∥
∥

K
U(v)

||K
U(v) ||2F

− K
U(w)

||K
U(w) ||2F

∥
∥
∥
∥

2

F

. (4.2)

K
U(v) is the similarity matrix for U(v), and || · ||F denotes the Frobenius norm of the matrix. The

similarity matrices are normalized by their Frobenius norms to make them comparable across
views. Linear kernel, i.e., k(xi,xj) = xT

i xj is chosen as the similarity measure in Equation 4.2.

This implies that we have K
U(v) = U(v)U(v)T . The reason for choosing linear kernel to measure

similarity of U(·) is twofold. First, the similarity measure (or kernel) used in the Laplacian for
spectral clustering has already taken care of the non-linearities present in the data (if any), and the
embedding U(·) being real-valued cluster indicators, can be considered to obey linear similarities.
Secondly, we get a nice optimization problem by using linear kernel for U(·). It can be noticed that
||K

U(v) ||2F = k, where k is the number of clusters. Substituting this in Equation 4.2 and ignoring
the constant additive and scaling terms that depend on the number of clusters, we get

D(U(v),U(w)) = −tr
(

U(v)U(v)TU(w)U(w)T
)

We want to minimize the above disagreement between the embeddings of views v and w. Com-
bining this with the spectral clustering objectives of individual views, we get the following joint

25

maximization problem for two graphs:

max
U(v)∈Rn×k

U
(w)∈Rn×k

tr
(

U(v)TL(v)U(v)
)

+ tr
(

U(w)TL(w)U(w)
)

+ λ tr
(

U(v)U(v)TU(w)U(w)T
)

s.t. U(v)TU(v) = I, U(w)TU(w) = I

(4.3)

The hyperparameter λ trades-off the spectral clustering objectives and the spectral embedding
(dis)agreement term. The joint optimization problem given by Equation 4.3 can be solved using
alternating maximization w.r.t. U(v) and U(w). For a given U(w), we get the following optimization
problem in U(v):

max
U(v)∈Rn×k

tr
{

U(v)T
(

L(v) + λU(w)U(w)T
)

U(v)
}

, s.t. U(v)TU(v) = I. (4.4)

This is a standard spectral clustering objective on view v with graph Laplacian L(v)+λU(w)U(w)T .
This can be seen as a way of combining kernels or Laplacians. The difference from standard
kernel combination (kernel addition, for example) is that the combination is adaptive since U(w)

keeps getting updated at each step, as guided by the clustering algorithm. The solution U(v) is
given by the top-k eigenvectors of this modified Laplacian. Since the alternating maximization
can make the algorithm stuck in a local maximum (Niu et al., 2010), it is important to have a
sensible initialization. If there is no prior information on which view is more informative about the
clustering, we can start with any of the views. However, if we have some a priori knowledge on
this, we can start with the graph Laplacian L(w) of the more informative view and initialize U(w).
The alternating maximization is carried out after this until convergence. Note that one possibility
could be to regularize directly on the eigenvectors U(v)’s and make them close to each other (e.g.,
in the sense of the Frobenius norm of the difference between U(v) and U(w)). However, this type of
regularization could be too restrictive and could end up shrinking the hypothesis space of feasible
clusterings too much, thus ruling out many valid clusterings.

For fixed λ and n, the joint objective of Eq. 4.3 can be shown to be bounded from above by a
constant. Since the objective is non-decreasing with the iterations, the algorithm is guaranteed to
converge. In practice, the convergence is monitored by the difference in the value of the objective
between consecutive iterations, and stop when the difference falls below a minimum threshold
of ǫ = 10−4. In all the experiments, it converges within less than 10 iterations. Note that we
can use either U(v) or U(w) in the final k-means step of the spectral clustering algorithm. In the
experiments, a marginal difference in the clustering performance is noticed depending on which
U(·) is used in the final step of k-means clustering.

4.1.2 Extension to Multiple Views

The co-regularized spectral clustering proposed in the previous section can be naturally ex-
tended for more than two views. This can be done by employing pair-wise co-regularizers in the
objective function of Eq. 4.3. For m number of views, we have

max
U(1),U(2),...,U(m)∈Rn×k

m∑

v=1

tr
(

U(v)TL(v)U(v)
)

+ λ
∑

1≤v,w≤m
v 6=w

tr
(

U(v)U(v)TU(w)U(w)T
)

,

s.t. U(v)TU(v) = I, ∀ 1 ≤ v ≤ V

(4.5)

26

A common λ for all pair-wise co-regularizers is used for simplicity of exposition, however dif-
ferent λ’s can be used for different pairs of views. Similar to the two-view case, it can be optimized
by alternating maximization cycling over the views. With all but one U(v) fixed, we have the fol-
lowing optimization problem:

max
U(v)

tr
{

U(v)T
(

L(v) + λ
∑

1≤w≤m,
w 6=v

U(w)U(w)T
)

U(v)
}

, s.t. U(v)TU(v) = I
(4.6)

All U(v), 2 ≤ v ≤ m are initialized by solving the spectral clustering problem for single views.
The objective of Eq. 4.6 is solved for U(1) given all other U(v), 2 ≤ v ≤ m. The optimization is then
cycled over all views while keeping the previously obtained U(·)’s fixed.

4.1.3 Centroid-Based Co-regularization

In this section, an alternative regularization scheme is presented that regularizes each view-
specific set of eigenvectors U(v) towards a common centroid U∗ (akin to a consensus set of eigen-
vectors) . In contrast with the pairwise regularization approach which has

(
m
2

)
pairwise regular-

ization terms, where m is the number of views, the centroid based regularization scheme has m
pairwise regularization terms. The objective function can be written as:

max
U(1),U(2),...,U(m),U∗∈Rn×k

m∑

v=1

tr
(

U(v)TL(v)U(v)
)

+
∑

v

λvtr
(

U(v)U(v)TU∗U∗T
)

,

s.t. U(v)TU(v) = I, ∀ 1 ≤ v ≤ V, U∗TU∗ = I

(4.7)

This objective tries to balance a trade-off between the individual spectral clustering objectives
and the agreement of each of the view-specific eigenvectors U(v) with the consensus eigenvectors
U∗. Each regularization term is weighted by a parameter λv specific to that view, where λv can be
set to reflect the importance of view v.

Just like for Equation 4.6, the objective in Equation 4.7 can be solved in an alternating fashion
optimizing each of the U(v)’s one at a time, keeping all other variables fixed, followed by optimiz-
ing the consensus U∗, keeping all the U(v)’s fixed.

It is easy to see that with all other view-specific eigenvectors and the consensus U∗ fixed, opti-
mizing U(v) for view v amounts to solving the following:

max
U(v)∈Rn×k

tr
(

U(v)TL(v)U(v)
)

+ λvtr
(

U(v)U(v)TU∗U∗T
)

, s.t. U(v)TU(v) = I (4.8)

which is nothing but equivalent to solving the standard spectral clustering objective for U(v) with

a modified Laplacian L(v)+λvU
∗U∗T . Solving for the consensus U∗ requires solving the following

objective:

max
U∗∈Rn×k

∑

v

λvtr
(

U(v)U(v)TU∗U∗T
)

, s.t. U∗TU∗ = I (4.9)

Using the circular property of matrix trace, Equation 4.9 can be rewritten as:

max
U∗∈Rn×k

tr

{

U∗T
(
∑

v

λv

(

U(v)U(v)T
)
)

U∗
}

, s.t. U∗TU∗ = I (4.10)

27

which is equivalent to solving the standard spectral clustering objective for U∗ with a modified

Laplacian
∑

v λv

(

U(v)U(v)T
)

. In contrast with the pairwise co-regularization approach of Sec-

tion 4.1.1 which computes optimal view specific eigenvectors U(v)’s, which finally need to be
combined (e.g., via column-wise concatenation) before running the k-means step, the centroid-
based co-regularization approach directly finds an optimal U∗ to be used in the k-means step.
One possible downside of the centroid-based co-regularization approach is that noisy views could
potentially affect the optimal U∗ as it depends on all the views. To deal with this, careful selection
of the weighing parameter λv is required. If it is a priori known that some views are noisy, then it is
advisable to use a small value of λv for such views, so as to prevent them from adversely affecting
U∗.

4.2 When will co-regularization help in spectral clustering?

In this section, I will discuss some example scenarios to better understand when co-regularization
can be expected to help in spectral clustering. I also discuss some negative examples for which
co-regularization does not help. The examples discussed below are same as those constructed in
Sec. 3.3.

4.2.1 Correlated Features

Let us consider the example and experiment constructed in Sec. 3.3.1. This example simulates
the scenario when we have correlated features across views given the cluster label. The plot of nor-
malized mutual information (NMI) versus the correlation parameter ρ is shown in Fig. 4.1. (Please
refer to Sec. 3.3.1 for definition of ρ.) A higher value of NMI indicates better clustering accuracy.
The red and blue plots show the NMI obtained with best single view and with co-regularized
spectral clustering algorithm, respectively. The improvement obtained with co-regularization

decreases with the increase in the parameter ρ. This is not unexpected: a negative correlation
between features in the two views in this case ensures that if a sample is more confusable with
the other cluster in one view, it will be less confusable with the other cluster in the second view.
Thus each view provides complementary information that helps improve the clustering. Totally
uncorrelated features (ρ = 0) also help co-regularization improve beyond the best single view.
On the other hand, when ρ is high, both views provide similar information and we do not gain
much by the use of co-regularization. These observations are same as those for co-trained spectral
clustering.

4.2.2 Complementary corruption in the similarity graphs

Let us consider the example and experiment constructed in Sec. 3.3.2. We saw in the last chapter
that co-training was able to leverage on the fact that the noise was complementary in the two
similarity matrices and was able to improve performance significantly beyond the performance of
best single view. On the other hand, the co-regularized spectral clustering is not able to improve
the NMI beyond that of best single view. It can be attributed to the fact that the co-regularized
algorithm alters the graph Laplacians in an additive fashion and hence has a similar behavior
as “similarity addition” (adding the two similarity matrices and doing spectral clustering on the

28

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parameter ρ
N

M
I

Spectral clustering on best single view

Co−regularized spectral clustering

Figure 4.1: NMI scores for best single view and for multiview co-trained spectral clustering vs the
feature correlation ρ

resultant matrix) in this case which is also not able to improve performance beyond that of best
single view.

4.2.3 Low quality or contradictory individual views

Let us consider the examples and experiments constructed in Sec. 3.3.3. Here I test the as-
sumptions of sufficiency (i.e., each view should be sufficient on its own to give a reasonably good
clustering) and compatibility (the target clusterings in both views have same cluster assignments
for co-occurring features with high probability) for co-regularized spectral clustering. Consider
the first scenario where one of the similarity matrices does not have any useful information for
clustering. The similarity matrices in the two views are given as follows.

K(1) =

(

1n
2
×n

2
0n

2
×n

2

0n
2
×n

2
1n

2
×n

2

)

, K(2) =

(

1n
2
×n

2
1n

2
×n

2

1n
2
×n

2
1n

2
×n

2

)

I assume a ground truth clustering that first n
2 points belong to one cluster and the last n

2 points

belong to the second cluster. The matrix K(2) has equal similarity for all pairs of points and does
not have any useful information for clustering. For this case, the first view gives a perfect NMI
of 1 and the second view gives extremely low NMI of the order of 10−4. While the co-trained
spectral clustering of the last chapter gave an NMI of 0.35 for this data, the co-regularized spectral
clustering algorithm gives a perfect NMI of 1. This example illustrates that the uninformative
second view does not affect co-regularized spectral clustering. Explicit tying of the eigenvector
subspaces (UUT) is able to overcome the effect of an uninformative Laplacian. Having uniformly
distributed random numbers in K(2) instead of all 1’s also gives the same result.

As a second example, consider the following similarity matrices for the two views that indicate
contradictory clusterings.

K(1) =

(

1n
2
×n

2
0n

2
×n

2

0n
2
×n

2
1n

2
×n

2

)

, K(2) =

1n
4
×n

4
0n

4
×n

2
1n

4
×n

4

0n
2
×n

4
1n

2
×n

2
0n

2
×n

4

1n
4
×n

4
0n

4
×n

2
1n

4
×n

4

29

These similarity matrices indicate significantly different clustering assignments. In this case, the
co-trained spectral clustering algorithm oscillates heavily across its iterations and does not help.
The centroid version of co-regularized spectral clustering algorithm converges to an NMI value of
0.35 (assuming a ground truth clustering of first n

2 points belonging to one cluster and the last n
2

points belonging to the other cluster), which lies between the perfect NMI of 1 obtained with K(1)

and NMI of 0 obtained with K(2). This is worse than the baseline of best single view which is also
expected since one of the similarity matrices admits a significantly different clustering.

4.3 Experiments

Both of the co-regularization based multi-view spectral clustering approaches are compared
with the same baselines as in previous chapter. To distinguish between the results of our two
co-regularization based approaches, in the tables containing the results, I use symbol “P” to
denote the pairwise co-regularization method and symbol “C” to denote the centroid based co-
regularization method. For datasets with more than two views, the number of views are explicitly
mentioned in parentheses.

Here, experimental results on two synthetic and three real-world datasets are reported. For
more experimental results, the reader is referred to Kumar et al. (2011).

I give a brief description of the synthetic datasets here. The real datasets are same as used in
the previous chapter.

• Synthetic data 1: The first synthetic dataset consists of two views and is generated in a
manner akin to (Yi et al., 2005) which first chooses the cluster ci each sample belongs to,

and then generates each of the views x
(1)
i and x

(2)
i from a two-component Gaussian mixture

model. These views are combined to form the sample (x
(1)
i , x

(2)
i , ci). We sample 1000 points

from each view. The cluster means in view 1 are µ
(1)
1 = (1 1) , µ

(1)
2 = (2 2), and in view 2

are µ
(2)
1 = (2 2) , µ

(2)
2 = (1 1). The covariances for the two views are given below.

Σ
(1)
1 =

(
1 0.5
0.5 1.5

)

,Σ
(2)
1 =

(
0.3 0
0 0.6

)

,Σ
(1)
2 =

(
0.3 0
0 0.6

)

,Σ
(2)
2 =

(
1 0.5
0.5 1.5

)

• Synthetic data 2: The second synthetic dataset consists of three views. Moreover, the fea-
tures are correlated. Each view still has two clusters. Each view is generated by a two com-

ponent Gaussian mixture model. The cluster means in view 1 are µ
(1)
1 = (1 1) , µ

(1)
2 = (3 4);

in view 2 are µ
(2)
1 = (1 2) , µ

(2)
2 = (2 2); and in view 3 are µ

(3)
1 = (1 1) , µ

(3)
2 = (3 3). The

covariances for the three views are given below. The notation Σ
(v)
c denotes the parameter for

c’th cluster in v’th view.

Σ
(1)
1 =

(
1 0.5
0.5 1.5

)

, Σ
(2)
1 =

(
1 −0.2

−0.2 1

)

, Σ
(3)
1 =

(
1.2 0.2
0.2 1

)

Σ
(1)
2 =

(
0.3 0.2
0.2 0.6

)

, Σ
(2)
2 =

(
0.6 0.1
0.1 0.5

)

, Σ
(3)
2 =

(
1 0.4
0.4 0.7

)

Here, I report only normalized mutual information (NMI) as the clustering quality evaluation
measure, which gives the mutual information between obtained clustering and the true clustering

30

Method Synth data 1 Synth data 2 Reuters Handwritten BBC

Best Single View 0.267 (0.0) 0.898 (0.0) 0.287 (0.019) 0.641 (0.008) 0.478 (0.001)

Feature Concat 0.294 (0.0) 0.923 (0.0) 0.298 (0.020) 0.619 (0.015) 0.512 (0.013)

Kernel Addition 0.339 (0.0) 0.973 (0.0) 0.323 (0.021) 0.744 (0.030) 0.506 (0.008)

Kernel Product 0.277 (0.0) 0.959 (0.0) 0.123 (0.010) 0.754 (0.026) 0.522 (0.025)

CCA 0.330 (0.0) 0.932 (0.0) 0.147 (0.003) 0.682 (0.019) 0.214 (0.001)

Min-Disagreement 0.313 (0.0) 0.936 (0.0) 0.342 (0.024) 0.745 (0.024) 0.794 (0.033)

Co-trained (2) 0.375 (0.0) 0.981 (0.0) 0.373 (0.012) 0.765 (0.031) 0.841 (0.000)

Co-trained (3) – 0.989 (0.0) 0.388 (0.007) – –

Co-regularized (P) (2) 0.378 (0.0) 0.981 (0.0) 0.375 (0.02) 0.759 (0.031) 0.625 (0.006)

Co-regularized (P) (3) – 0.989 (0.0) 0.376 (0.01) – –

Co-regularized (C) (2) 0.367 (0.0) 0.955 (0.0) 0.360 (0.025) 0.768 (0.025) 0.613(0.001)

Co-regularized (C) (3) – 0.989 (0.0) 0.351 (0.021) – –

Table 4.1: NMI results on various datasets for different baselines and the proposed approaches.
Numbers in parentheses are the std. deviations. The numbers (2), (3) and (4) indicate the number
of views used in our co-regularized spectral clustering approach. Other multi-view baselines were
run with maximum number of views available (or maximum number of views they can handle).
Letters (P) and (C) indicate pairwise and centroid based regularizations respectively.

normalized by the cluster entropies. NMI ranges between 0 and 1 with higher value indicating
closer match to the true clustering. Gaussian kernel is used for computing the graph similari-
ties in all the experiments, unless mentioned otherwise. The standard deviation of the kernel is
taken equal to the median of the pair-wise Euclidean distances between the data points. In the
experiments, the co-regularization parameter λ is varied from 0.0005 to 0.002 and the best result
is reported (λ is kept same for all views; one can however also choose different λ’s based on the
importance of individual views). The range of λ values is explored more exhaustively later in
this Section where it is shown that the proposed approach outperforms other baselines for a wide
range of λ. In the results table, the numbers in the parentheses are the standard deviations of the
performance measures obtained with 20 different runs of k-means with random initializations.

4.3.1 Results

The results for all datasets are shown in Table 4.1. For two-view synthetic data (Synthetic
Data 1), both the co-regularized spectral clustering approaches outperform all the baselines by a
significant margin, with the pairwise approach doing marginally better than the centroid-based
approach. The closest performing approaches are kernel addition and CCA. For synthetic data,
order-2 polynomial kernel based kernel-CCA gives best performance among all CCA variants,
while Gaussian kernel based kernel-CCA performs poorly. I do not report results for Gaussian
kernel CCA here. All the multi-view baselines outperform the single view case for the synthetic
data.

For three-view synthetic data (Synthetic Data 2), it can be seen that simple feature concatenation
does not help much. In fact, it reduces the performance when the third view is added, so we
report the performance with only two views for feature concatenation. Kernel addition with three
views gives a good improvement over single view case. As compared to other baselines (with two
views), both the co-regularized spectral clustering approaches with two views perform better. For

31

both approaches, addition of third view also results in improving the performance beyond the
two view case.

For the document clustering results on Reuters multilingual data, English and French lan-
guages are used as the two views. On this dataset too, both the propsoed approaches outperform
all the baselines by a significant margin. The next best performance is attained by minimum-
disagreement spectral clustering (de Sa, 2005) approach. It should be noted that CCA and element-
wise kernel product performances are worse than that of single view.

For UCI Handwritten digits dataset, quite a few approaches including kernel addition, element-
wise kernel multiplication, and minimum-disagreement are close to both of our co-regularized
spectral clustering approaches. It can be also be noted that feature concatenation actually performs
worse than single view on this dataset. For BBC data, the proposed co-regularized approaches per-
form better than other baselines except de Sa (2005) and co-trained spectral clustering approach
of previous chapter.

0 0.02 0.04 0.06 0.08 0.1
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Co−regularization parameter λ

N
M

I
S

c
o

re

Co−regularization approach

Closest performing baseline

Figure 4.2: NMI scores of Co-regularized Spectral Clustering as a function of λ for Reuters multi-

lingual data

Next, I show experiments with various values of co-regularization parameter λ observing its ef-
fect on the clustering performance. The reported results are for the pairwise co-regularization ap-
proach. Similar trends were observed for the centroid-based co-regularization approach. Fig. 4.3.1
shows the plot for Reuters multilingual data. The NMI score shoots up right after λ starts increas-
ing from 0 and reaches a peak at λ = 0.01. After reaching a second peak at about 0.025, it starts
decreasing and hovers around the second best baseline (Minimizing-disagreement in this case)
for a while. The NMI becomes worse than the second best baseline after λ = 0.075. These results
indicate that although the performance of our algorithms depends on the weighing parameter λ,
it is reasonably stable across a wide range of λ. For more experiments on the robustness with
respect λ, please see Kumar et al. (2011).

32

4.4 Discussion

This chapter presented a multi-view clustering approach in the framework of spectral cluster-
ing. The approach uses the philosophy of co-regularization to make the clusterings in different
views agree with each other. Co-regularization idea has been used in the past for semi-supervised
learning problems. To the best of my knowledge, this is the first work to apply the idea to the
problem of unsupervised learning, in particular to spectral clustering. The co-regularized spectral
clustering has a joint optimization function for spectral embeddings of all the views. An alter-
nating maximization framework reduces the problem to the standard spectral clustering objective
which is efficiently solvable using state-of-the-art eigensolvers. The approaches of this chapter
can be extended to the missing data scenario. It can also be applied to dimensionality reduction
similar to kernel PCA (Smola & Muller, 1999) and Laplacian eigenmaps (Belkin & Niyogi, 2003).

33

Part II

Supervised Learning with Multiple
Kernels

34

Chapter 5

Multiple Kernel Learning via Binary
Classification

In this chapter, I consider the problem of learning with multiple set of similarities in the context
of classification. The similarities used in this chapter are positive (semi)definite kernel functions
that are used in kernel methods (e.g., SVM, kernel ridge regression). The goal of this chapter is
learn a “good” linear combination of the given multiple kernel functions so that the final kernel
performs well on the SVM classification task.

Here, I introduce TS-MKL, a general approach to Two-Stage Multiple Kernel Learning that en-
compasses the previous work based on target alignment (Cortes et al., 2010b) as special cases. The
kernel learning problem is formulated as a standard linear classification problem in a new instance
space. In this space, any linear classifier with weights µ directly corresponds to a linear combina-
tion of base kernels with weights µ. To avoid confusions, let us denote this new instance space as
the K-space, and a classifier in the K-space as a K-classifier. Thus the problem of finding a “good”
kernel combination reduces to finding a “good” linear classifier in the K-space, a very familiar
problem. One big advantage of this approach is that one can easily adapt techniques from binary
classification to solve the MKL problem. For instance, one can use familiar and well understood
max-margin methods to obtain better performing MKL algorithms, or take advantage of the re-
cent advances in large scale learning to scale up and/or parallelize the MKL implementations. For
the results presented in this chapter, K-classifiers are learned (and hence kernels) by training L2

regularized linear SVMs with positive weights using the stochastic projected sub-gradient descent
method from Pegasos Shalev-Shwartz et al. (2007).

On the theoretical side, a finite sample generalization bound is shown for the original classi-
fication task in terms of the expected hinge loss and the margin of a K-classifier in the K-space.
This justifies the proposed approach of training a K-classifier that has low hinge loss and high
margin in the K-space in order to learn a good kernel for the original classification problem. To
the best of my knowledge, this result represent the first finite sample bound for two-stage kernel
learning, improving on previous bounds that were only asymptotic. A concentration bound for
the expected hinge loss of a K-classifier is also given.

On the empirical side, a comprehensive evaluation on two object recognition datasets (Caltech
101 and 256), three bioinformatics datasets (Psort+, Psort-, Plant) and four UCI datasets is shown.
On all these datasets the proposed method performs better than, or the same as target align-
ment, showing that choosing a better K-classifier is beneficial. The proposed method also fares
well against one-stage multiple kernel learning approaches significantly outperforming them on
Caltech-101 and Caltech-256 and being essentially tied on the others.

35

Figure 5.1: The K-space for two base kernels (p = 2). Points represent positive and negative
K-examples zxx′ . The coordinates are the values of K1(x, x

′) and K2(x, x
′).

5.1 Method

Let us consider a classification problem where instances (x, y) are drawn from a distribution P
over X × Y , with Y a finite discrete set of labels. Let us assume that we have access to p positive
semi-definite (PSD) base kernel functions K1, · · · ,Kp with Ki : X × X → R. The goal is to learn a
combination of these kernel functions that is itself a positive semi-definite function and is a “good”
kernel for the classification task at hand. To achieve this, let us define a new binary classification
problem over a new instance space {(zxx′ , tyy′)|((x, y), (x′, y′)) ∼ P × P} ⊂ R

p × {±1} where
zxx′ =

(
K1(x, x

′), · · · ,Kp(x, x
′)
)

tyy′ = 2 · 1{y = y′} − 1
(5.1)

Let us call this space the K-space, and call zxx′ a K-example or K-instance and tyy′ a K-label. Any
function h : R

p → R in this space induces a similarity function K̃h between instances in the
original space:

K̃h(x, x
′) = h(zxx′) = h(K1(x, x

′), · · · ,Kp(x, x
′))

If K̃h is also positive semi-definite, hence a valid kernel, we say that h is a K-classifier. For example,
all linear functions with positive coefficients (i.e. hµ(zxx′) = µ · zxx′ with µ ≥ 0) are K-classifiers
with the induced kernels K̃µ being linear combinations of the p base kernels. Figure 5.1 shows
a toy example for the case of two base kernels. Each point in the figure is a labeled K-example
(zxx′ , tyy′) corresponding to a pair (x, y), (x′, y′) of original instances. Note that the figure is drawn
in K-space, not in input space. For a linear K-classifier hµ, the value of its induced kernel for a
parir of original instances, K̃µ(x, x

′), is the projection of the corresponding K-example zxx′ on the
vector µ (represented by the green line). The left and center sub-figures show the cases where µ
is (0, 1) and (1, 0) respecively. In both cases the induced kernel combination is suboptimal. The
linear combination in the right sub-figure corresponds to µ = (1, 1) and is a good combination
because the kernel values of pairs of instances in the same class are separated from the kernel
values of pairs of instances in different classes.

The key insight behind the proposed method is that, if a K-classifier h is a good classifier in the
K-space, then the induced kernel K̃h(x, x

′) = h(zxx′) will likely be positive when x and x′ belong to
the same class and negative otherwise. This makes K̃h a good kernel for the original classification
task. This intuition is made more precise in Section 5.2 where a generalization bound is given that
shows that a K-classifier that separates the positive and negative K-examples with high margin
will indeed induce a kernel that allows learning a good classifier for the original task. Note that
having a good K-classifier is a sufficient condition, not a necessary one. There can very well exist
combinations of base kernels that do not correspond to a good K-classifier, but are good kernels

36

nevertheless. Unlike one-stage kernel learning approaches, the proposed method will not be able
to find such combinations and it might miss on some good kernels. The results in Section 5.3,
however, show that this does not seem to be the case in practice, as it consistently matched or
exceeded the performance of one-stage MKL.

Thus the problem of learning a good kernel can be reduced to the problem of learning a good
K-classifier in the newly defined K-space: given a training sample (xi, yi)

n
i=1 for the original classi-

fication task, construct a K-training set (zij , tij)1≤i≤j≤n and learn a K-classifier h from this sample.
Any learning algorithm can be used for learning h provided that the induced kernel can be guar-
anteed to be a valid PSD kernel1.

In line with the majority of the MKL work, here we focus on learning linear K-classifiers, and
hence linear combinations of base kernels. The results in Section 5.2 suggest that it is desirable
to have a maximum margin K-classifier, so we will use L2 regularized linear SVM to learn the
K-classifier, and ensure that the induced kernel is PSD by constraining the weights to be positive.
One could, however, use a sparsity promoting regularizer (e.g.,L1 penalty) if a sparse combination
of kernels is desired.

The optimization problem for learning the kernel weights µ is thus given by

min
µ≥0

λ

2
||µ||2 + 1

(n
2

)
+ n

∑

1≤i≤j≤n

[1− tijµ · zij]+ (5.2)

where [1− s]+ = max{0, 1 − s} is the hinge loss.

The stochastic projected sub-gradient descent implemented in Pegasos Shalev-Shwartz et al.
(2007) is used to optimize this objective, with an additional projection to the non-negative con-
straint set after every gradient step. Using a stochastic optimization method allows it to scale very
well despite the quadratic number of K-examples: computation time is not directly dependent on
the number of instances, linear in the number of base kernels, and independent of the number
of classes. If needed, memory usage can be reduced through streaming tecshniques or on the fly
construction of the K-examples.

5.1.1 Connection to Target Alignment

Previous two-stage kernel learning approaches Cristianini et al. (2001); Cortes et al. (2010b)
learn a non-negative linear combination of base kernels that maximizes the alignment with the
target kernel K(t)(xi,xj) = yiyj on the training set. This is achieved by solving the optimization
problem

max
µ≥0

〈∑p
l=1 µlKl,K

(t)〉
||∑p

l=1 µlKl||F
, s.t. ||µ||2 = 1, (5.3)

where A is the Gram matrix of kernel A on the training set, 〈A,B〉 = tr(ABT) and ||A||2F =
tr(AAT).

1One could drop the PSD requirement and use any classifier, even a non-linear one, to obtain a similarity function
rather than a proper kernel. The theory of learning with similarity functions Balcan & Blum (2006) can be then applied
to learn a classifier for the original task. Generalization bounds similar to the ones in Section 5.2 would also hold for
this case.

37

The above optimization problem can be re-written in the terminology of K-examples as follows:

max
µ≥0

µ
T
(
∑

tij=1 zij −
∑

tij=−1 zij

)

√

µT
(
∑

∀i,j zijz
T
ij

)

µ

, s.t. ||µ||2 = 1

When the base kernels are centered, as proposed in Cortes et al. (2010b), the denominator repre-
sents the overall standard deviation of the projections of the K-examples on the vector µ. Hence
target alignment attempts to find a projection direction µ that maximize the difference between
the sums of the projections of the positive and negative K-examples, while minimizing the overall
variance of the projected K-examples. This is very similar to using Fisher-LDA in the K-space,
with non-negativity constraints on µ. In fact, viewing target alignment from this perspective,
makes it clear that it implicitly makes the assumption that the data is homoscedastic (the posi-
tive and negative K-examples have the same covariance), which might not be appropriate in real
applications.

5.1.2 Connection to Learning with Hyperkernels

The approach proposed here can also be cast in the framework of learning with hyperkernels
Ong et al. (2005) which provides a general recipe for kernel learning and includes Multiple Kernel
Learning as a special case. It introduces the notions of kernel quality functional, a measure of
“goodness” of a kernel that depends on the training data, and Hyper Reproducing Kernel Hilbert
Space, an RKHS over kernel functions that defines the class of kernels that can be learned. Once
the desired Hyper-RKHS and quality functional are specified, one has to solve a semi-definite
program (SDP) to optimize the quality functional regularized by the norm induced by the Hyper-
RKHS.

When using an SVM as the K-classifier, TS-MKL can be put in the learning with hyperkernels
framework by defining the Hyper-RKHS to be the set of non-negative linear combinations of base
kernels, and the quality functional to be the hinge loss in K-space. Considering this specific setting
has significant advantages: it enables the use of simple and well understood binary classification
techniques to learn the kernel, it enables a theoretical analysis, and it allows a significantly more
scalable implementation. Equally important, all these advantages do not seem to come at the
cost of reduced performance, as it is still performing on par with or better than competing MKL
techniques.

5.2 Theoretical Results

In this section we make the connection between the performance a K-classifier in the K-space
and the performance on the original problem precise. Thus justifying the approach taken in this
paper not only intuitively, but also from a theoretical standpoint. Specifically, we bound the gen-
eralization error of an SVM that uses the kernel induced by a K-classifier in terms of the expected
hinge loss and the margin of the K-classifier in the K-space:

Theorem 5.2.1. Let P be a distribution on X×{±1}, zxx′ and tyy′ be as in Equation 5.1, h be a K-classifier,
and R be a constant s.t. h(zxx) ≤ R2 ∀x ∈ X . Let

HLh,γ = E((x,y),(x′,y′))∈P×P

s[
1− tyy′h(zxx′)

γ

]

+

{

38

be the expected K-space hinge loss relative to margin γ of the K-classifier h. Then, with probability 1− δ, a
classifier f̂ with generalization error

P(x,y)

r
yf̂(x) ≤ 0

z
≤ HLh,γ +O

(√

R4 ln(1/δ)

γ2n

)

can be learned efficiently from a training sample of n instances drawn IID from P .

The theorem follows from the two lemmas stated below. The first lemma shows that a K-
classifier that has low expected hinge loss in the K-space will induce a “good” kernel. The second
lemma shows that a good kernel allows for a classifier with low generalization error to be effi-
ciently learned from a finite training sample. The following definition states formally what we
mean by a good kernel Srebro (2007).2

Definition 5.2.1. A kernel K is an (ǫ, γ) good kernel in hinge loss with respect to a distribution P on
X × {±1} if there exist a classifier w ∈ HK with ‖w‖HK

= 1 s.t.

E(x,y)

s[
1− y〈w,φ(x)〉

γ

]

+

{
≤ ǫ

where HK is the Hilbert space and φ(·) is the feature mapping corresponding to K .

Lemma 5.2.1. Let P , h, HLh,γ , R be as in Theorem 5.2.1. Then the K̃h is a (HLh,γ , γ/R) good kernel in
hinge loss with respect to P .

Proof. Let w = E(x′,y′)(y
′φ̃(x′)) ∈ HK̃h

. We have:

ǫ = E(x,y),(x′,y′)

s[
1− tyy′hxx′

γ

]

+

{

= E(x,y),(x′,y′)

t[
1− yy′K̃(x, x′)

γ

]

+

|

= E(x,y)

t
E(x′,y′)

t[
1− yy′K̃(x, x′)

γ

]

+

∣
∣
∣
∣
(x, y)

||

(Jensen’s inequality)

≥ E(x,y)

u
v

1−
E(x′,y′)

r
yy′〈φ̃(x′), φ̃(x)〉|(x, y)

z

γ

+

}
~

= E(x,y)

t[
1− y〈w/||w||H, φ̃(x)〉

γ/||w||H

]

+

|

To conclude the proof, we bound ‖w‖H by R:

‖w‖2H = E(x,y)

r
yφ̃(x)

z
·E(x′,y′)

r
y′φ̃(x′)

z

2A kernel that does not satisfy this definition is not necessarily a “bad” kernel. We just can not make any formal
statements with respect to its performance.

39

= E(x,y),(x′,y′)

r
yy′K̃(x, x′)

z

≤
√

E(x,y),(x′,y′) Jy2y′2K · E(x,y),(x′,y′)

r
K̃2(x, x′)

z

=

√

E(x,y),(x′,y′)

r
K̃2(x, x′)

z
≤ R2

Lemma 5.2.2. Let K be an (ǫ, γ) good kernel in hinge loss, with K(x, x) ≤ R2 ∀x ∈ X . Let (xi, yi)
n
i=1

be an IID training sample, and f̂(x) = ŵ · φ(x) with

ŵ = argmin
||w||HK

≤1

1

n

n∑

i=1

[

1− yiw · φ(xi)
γ

]

+

be a kernel classifier that minimizes the average hinge loss relative to γ on the training sample. Then, with
probability at least 1− δ, we have:

P(x,y)

r
yf̂(x) ≤ 0

z
≤ ǫ+O

(√

R2 ln(1/δ)

γ2n

)

Lemma 5.2.2 follows directly from Theorem 21 in Bartlett & Mendelson (2002).

Thus, in the case of learning a linear combination of kernels, the following generalization
bound applies:

Corollary 5.2.1. Let hµ(zxx′) = µ · zxx′ be a K-classifier with ‖µ‖2 = 1. Then, with probability at least

1− δ, a classifier f̂ with generalization error

P(x,y)

r
yf̂(x) ≤ 0

z
≤ HLhµ,γ +O

(√

p ln(1/δ)

γ2n

)

can be learned efficiently from a training sample of n instances drawn IID from P .

Corollary 5.2.2. Let hµ(zxx′) = µ · zxx′ be a K-classifier with ‖µ‖1 = 1. Then, with probability at least

1− δ, a classifier f̂ with generalization error

P(x,y)

r
yf̂(x) ≤ 0

z
≤ HLhµ,γ +O

(√

ln(1/δ)

γ2n

)

can be learned efficiently from a training sample of n instances drawn IID from P .

Note that, unlike in the one-stage kernel learning case, the generalization bound in Theo-
rem 5.2.1 is in terms of the expected hinge loss of the K-classifier not the training hinge loss.
Recently, a generalization bound for the classification problem in the K-space was given by Kar
(2013).

We can, however, prove a concentration bound for the expected hinge loss of a K-classifier. This
is the analog of the concentration bounds for target alignment in Cortes et al. (2010b); Cristianini
et al. (2001).3

3This is not a regular generalization bound as the K-classifier is not allowed to depend on the training sample.

40

Theorem 5.2.2. Let P , h, HLh,γ, R be as in Theorem 5.2.1. Let (xi, yi)
n
i=1 be an IID sample distributed

according to P . Then the following inequality holds with probability at least 1− δ

HLh,γ ≤ 2

n2 − n

∑

i<j

[

1− tijh(zij)

γ

]

+

+

√
√
√
√2

(

1 + R2

γ

)2
ln 1

δ

n

Proof. We will prove the concentration bound using McDiarmid’s inequality. Let

f((x1, y1), · · · , (xn, yn)) =

=
2

n(n− 1)

∑

1≤i<j≤n

[

1− yiyjK̃(xi, xj)

γ

]

+

Let (x′l, y
′
l) be a new sample drawn at random from P . We have

|f((x1, y1), ..., (xl, yl), ..., (xn, yn))−
− f((x1, y1), ..., (x

′
l, y

′
l), ..., (xn, yn))| ≤

≤ 2

n(n− 1)

(
l−1∑

i=1

∣
∣
∣
∣
∣

[

1− yiylK̃(xi, xl)

γ

]

+

−

−
[

1− yiy
′lK̃(xi, x

′
l)

γ

]

+

∣
∣
∣
∣
∣

)

+

+
2

n(n− 1)

(
n∑

i=l+1

∣
∣
∣
∣
∣

[

1− ylyiK̃(xl, xi)

γ

]

+

−
[

1− y′lyiK̃(x′l, xi)

γ

]

+

∣
∣
∣
∣
∣

)

≤ 2

n

(

1 +
R2

γ

)

Where the last inequality comes from the fact that for any (x, y) and (x′, y′)

0 ≤
[

1− yy′K̃(x, x′)
γ

]

+

≤ 1 +
R2

γ

Applying McDiarmid’s inequality gives

P JE Jf((x1, y1), · · · , (xn, yn))K−
−f((x1, y1), · · · , (xn, yn)) ≥ ǫ1K ≤

≤ exp

−nǫ21
2
(

1 + R2

γ

)2

The statement of the theorem is obtained by equating the right side with δ, and observing that for
any i 6= j

E(xi,yi),(xj ,yj)

s[
1− tijh(zij)

γ

]

+

{
=

41

= E(x,y),(x′,y′)

s[
1− tyy′h(zx,x′)

γ

]

+

{

which implies

E Jf((x1, y1), · · · , (xn, yn))K =

= E(x,y),(x′,y′)

s[
1− tyy′h(zx,x′)

γ

]

+

{

5.3 Empirical Evaluation

The proposed method is evaluated on two object recognition datasets (Caltech-101 and Caltech-
256), three bioinformatics datasets (Psort+, Psort- and Plant), and four UCI datasets (Sonar, Pima,
Vertebral and Ionosphere). The method is compared with several baselines: best kernel, uni-
form combination of base kernels (Average), target alignment, and the one-stage MKL algorithms
SILP Sonnenburg et al. (2006), SimpleMKL Rakotomamonjy et al. (2007), L2-Norm MLK Kloft
et al. (2011), and UFO-MKL Orabona & Jie (2011). For two-stage methods, LIBSVM Chang &
Lin (2011) is used to train the data classifier and select the regularization parameter C via 4-fold
cross-validation for all datasets except Caltech where it is fixed at 1000. On multi-class problems,
a one-vs-rest SVM is used. For one-stage approaches other than UFO-MKL, C is selected as above
and a one-vs-rest scheme is used for multi-class problems. For UFO-MKL, the joint multi-class
formulation is used and α and C are searched over a bi-dimensional grid. Following Orabona &
Jie (2011), the optimization is run for 20 epochs on UCI datasets, 30 epochs on Caltech-101 and 100
epochs on Caltech-256. All kernels used in the experiments are centered and standardized to have
zero mean and unit variance in feature space.

5.3.1 Methodology for TS-MKL

To learn kernel combination weights µ with TS-MKL, the objective in Eq. 5.2 is optimized using
Pegasos Shalev-Shwartz et al. (2007) with an additional projection to the non-negative constraint
set after each sub-gradient step. A batch size of 100 is used for each sub-gradient computation
and 103 sub-gradient steps are run for UCI datasets and 105 for all others. Figure 5.2, plots the
test data accuracy versus the number of gradient iterations on Caltech-101, showing that after 105

iterations the change in accuracy is minimal. For the bigger Caltech-256 there is also essentially no
change after 105 iterations. Subsampling is used to balance the positive and negative K-examples.

To select the parameter λ, a single 80%-20% random split of the Pegasos training set is used
and the λ with the lowest validation hinge loss4s selected5. The search grid for λ is taken to be in
the range of 100 to 10−8 dividing in each step by 4. A big advantage of this selection scheme for
λ is that it is completely independent from the data classifier that will ultimately use the learned
kernel. This keeps the setup simple and avoids intricate multi-level multi-dimensional validation
schemes across the parameters of the data classifier and the K-classifier. Fig. 5.2, shows the hinge-
loss in K-space, the accuracy of the K-classifier, and the accuracy of the data classifier that uses

4i
5Since the K-examples are dependent, the training and validation set will not be fully independent. Nevertheless,

this does not seem to negatively affect the performance.

42

100 10^3 10^4 10^5 10^6

0.65

0.7

0.75

0.8

Number of iterations in PEGASOS

T
e

s
t

 A
c
c
u

ra
c
y

0 0.005 3.12e−4 1.9e−5 1.2e−6 7.6e−81.9e−8
0.65

0.7

0.75

0.8

0.85

K−classifier regularization parameter (λ)

Test accuracy on data

K−classifier accuracy

K−classifier hinge loss

Figure 5.2: Top: Test data accuracy as a function of number of sub-gradient iterations in Pegasos.
Bottom: Correlation between hinge loss (and accuracy) on K-examples and test data accuracy on
Caltech-101.

43

the learned kernel, as a function of λ. The plot shows a clear correlation between hinge loss in
K-space and data accuracy with the learned kernel. The data accuracy increases when the hinge
loss in K-space decreases and vice versa. This experiment provides further emprical evidence
for our theoretical results that show that a good K-classifier (having low hinge loss in K-space)
corresponds to a good learned kernel.

After λ is selected, Pegasos is retrained on the full training set of K-examples. The obtained
weight vector µ is then used to linearly combine the base kernels, and the SVM data classifier is
trained using this learned kernel with C selected as described above.

5.3.2 Caltech-101 and Caltech-256

Both these datasets contain pictures of objects and the task is to recognize the object category.
Caltech-101 has 102 classes and Caltech-256 has 256 classes. Caltech-101 is perceived as an easier
dataset than Caltech-256 in which images are not left-right aligned and there are more categories.
The experimental setup used here is based on Gehler & Nowozin (2009) and use the same 39 base
kernels and train test splits.

Results are reported using all 102 classes for Caltech-101 averaged over five splits. For Caltech-
256, the results are for 256 classes (excluding the clutter category), for a single split. The perfor-
mance measure used is mean prediction rate per class. The number of training images per class
is varied in the range 5, 10, 15, 20, 25, 30 for Caltech-101, and in the range 5, 10, 15, 20, 25, 30, 40, 50
for Caltech-256. The number of test images used is up to 50 images per class for Caltech-101 and
25 images per class for Caltech-256. The regularization parameter for the data SVM, C, is fixed to
1000 for all methods6.

The results for Caltech-101 and Caltech-256 are shown in Fig. 5.3.7 On Caltech-101, the pro-
posed approach yields a mean accuracy of 0.512, 0.630, 0.691, 0.725, 0.752, 0.772 for 5, 10, 15,
20, 25, 30 samples per class respectively. Comparing to UFO-MKL, the performance of TS-MKL is
higher for 5 samples per class, and very similar for all other sample sizes. One-stage MKL methods
using the one-vs-all multi-class scheme perform significantly worse and do not even outperform
the average kernel until the training set has 25 samples per class. This is probably because data
is too scarce to allow learning a separate kernel for each class. Target alignment performs a little
better than the average kernel, but is still significantly worse than TS-MKL. Fig. 5.3 also shows
the performance of LP-β (Gehler & Nowozin, 2009). The performance of TS-MKL and UFO-MKL
is almost on par with LP-β, especially for larger sample sizes. While LP-β is similar in spirit to
multiple-kernel learning, it is not a true kernel learning algorithm as it does not produce a kernel,
but rather learns an ensemble of SVM classifiers, each of which is trained on an individual kernel.
The best reported accuracy on Caltech-101 with 30 training samples per class is 82.5% (Bo et al.,
2012).

On Caltech-256 dataset, TS-MKL performs better than all competing kernel learning baselines.
It achieves 0.245, 0.320, 0.370, 0.426, 0.448, 0.475, 0.494 mean accuracy for 5, 10, 15, 20, 25, 30, 40, 50
training samples per class. This performance is significantly higher than the best results reported
in the literature for 5, 10, and 15 training samples, after which it again performs on par with LP-β.
On this dataset, UFO-MKL performance8 is similar to that of the average kernel, while the rest of
the one-stage MKL techniques perform worse. Exact target alignment is worst among all other

6C = 1000 is the best setting for the one-stage MKL algorithms (Gehler & Nowozin, 2009)
7The results for LP-β and MKL are taken from Gehler & Nowozin (2009).
8The UFO-MKL performance at 40 and 50 samples is missing because the code we are using runs out of memory.

44

5 10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of samples per class

M
e

a
n

 a
c

c
u

ra
c

y

Caltech−101 (39 kernels)

Best Kernel

Average

Targ. Align

MKL (Simple/SILP)

LP−β
L

2
 MKL

UFO−MKL

TS−MKL

0 10 20 30 40 50

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of samples per class

M
e

a
n

 a
c

c
u

ra
c

y

Caltech−256 (39 kernels)

Best Kernel

Average

Targ. Align

Targ. Align Approx.

MKL (Simple/SILP)

LP−β
UFO−MKL

TS−MKL

Figure 5.3: Top: Caltech-101 results: mean accuracy over all classes for different sample sizes,
averaged over 5 splits. Bottom: Caltech-256 results: mean accuracy over all classes for different
sample sizes

45

approaches, however approximate target alignment is able to at least match the performance of
the average kernel. The best reported accuracy on Caltech-256 with 30 training samples per class
is 50.7% (Bo et al., 2012).

Psort+ Psort– Plant
Full test Filtered Full test Filtered Full test

Best Kernel 81.30(4.69) 86.26(4.96) 85.95(1.54) 91.53(1.04) 72.19(3.94)

Average 84.75(3.97) 89.48(4.97) 88.03(1.10) 93.95(1.14) 86.72(3.38)

Target Alignment 88.14(3.99) 92.82(3.99) 89.91(1.42) 95.22(1.33) 89.13(2.75)

MKL (SILP/Simple) 89.05(3.02) 93.89(3.37) 91.01(1.10) 96.01(1.51) 89.32(2.76)

MC-MKL – 93.8 – 96.1 89.1

TS-MKL(Our Approach) 89.08(3.32) 93.50(2.74) 90.15(1.33) 95.63(1.31) 88.86(3.26)

Table 5.1: Average accuracy measures (%) over 10 splits for Psort+, Psort- and Plant datasets.
Numbers in parentheses are the std. deviations. The accuracy measures for MC-MKL (Zien &
Ong, 2007) are taken from their paper.

5.3.3 Bioinformatics datasets

The proposed method is evaluated on a problem relevant to cell-biology predicting: the sub-
cellular localization of proteins, which is crucial in making inference about protein function and
protein interactions. The experimental setup of Zien & Ong (2007) is followed with the same 69
kernels. The kernels used are: 2 kernels on phylogenetic trees, 3 kernels from BLAST E-values and
64 sequence motif kernels.

Experiments with three datasets are shown. The first two datasets are for the problem of bac-
terial protein locations Gardy et al. (2004). The Psort+ dataset has 541 data points with 4 classes
and Psort– dataset has 1444 data points with 5 classes. Average F1 score over all classes over 10
random splits is reported for both these datasets as done in Zien & Ong (2007). The third dataset
used is the original plant dataset of TargetP Emanuelsson et al. (2000), and has 940 examples with
4 classes. The performance measure of Matthew’s Correlation Coefficient (MCC) is used following
the evaluation in Zien & Ong (2007). Again, average MCC score over all 4 classes is reported.

The results are shown in Table 5.1. The papers that have used the Psort datasets in the past
Gardy et al. (2004); Zien & Ong (2007), reported results after filtering out the most unsure predic-
tions in the test set. For Psort+ and Psort-, about 15% and 13.3% of the test examples were filtered
out respectively and the performance is reported only for the remaining predictions. The same
procedure is followed here to be able to compare with these methods. Performance for full test set
is also reported. On these datasets, all the kernel learning methods have similar performance, and
are better than the best kernel and average kernel baselines. Multi-class multiple kernel learning
(MC-MKL) of Zien & Ong (2007) is also close to TS-MKL and other baselines.

5.3.4 UCI datasets

Four UCI datasets are used: Sonar, Ionosphere, Pima and Vertebral (the three class version).
For each of these datasets, two types of MKL experiments are performed. In first setting, we

construct a total of 13 kernels on the full feature vectors: 9 Gaussian kernels (e−γ||xi−xj ||2) with
γ = {2−10, 2−9, . . . , 2−2}, 3 polynomial kernels of degree 2,3 and 4, and a linear kernel. In the

46

Sonar Ionosphere Pima Vertebral
p = 793 p = 13 p = 442 p = 13 p = 117 p = 13 p = 91 p = 13

Best Kernel 86.90(4.23) 86.90(4.24) 95.00(2.04) 95.00(2.04) 76.10(2.63) 76.10(2.63) 83.65(5.73) 83.67(5.73)

Average 85.00(4.5) 86.42(3.73) 92.00(2.87) 94.28(3.01) 76.82(2.76) 76.30(2.62) 81.58(5.92) 82.03(5.03)

Targ. Align 80.24(4.2) 85.47(3.26) 91.57(2.28) 94.42(2.17) 75.97(3.03) 76.82(3.15) 82.88(6.18) 80.90(4.18)

MKL(SILP/Simple) 85.23(5.11) 84.76(2.55) 92.54(1.56) 95.42(2.50) 75.71(3.28) 75.97(3.16) 82.72(4.16) 78.42(3.55)

L2-MKL 86.42(4.05) 85.71(4.04) 91.85(1.51) 95.14(2.04) 75.45(2.31) 76.55(2.23) 79.68(4.84) 80.87(5.1)

UFO-MKL 82.85(6.7) 86.19(4.3) 91.85(2.86) 96.14(1.9) 74.28(2.47) 74.02(3.46) 79.16(6.57) 79.09(6.03)

TS-MKL(Our Approach) 86.43(3.9) 86.19(3.38) 92.43(1.18) 94.29(2.12) 75.78(3.02) 76.42(2.87) 82.82(5.63) 81.10(4.42)

Table 5.2: Average accuracy (%) over 10 random splits on UCI datasets. p denotes the number of
base kernels. Numbers in parentheses are the std. deviations.

second setting, we augment these 13 kernels with another set of Gaussian, polynomial and linear
kernels constructed on individual features of the data. The range of parameter γ for Gaussian and
degree parameter for polynomial kernel is kept same as before. If the data has d features, we have
total 13d+13 kernels in the second setting. Average accuracy over 10 random 80%−20% train-test
splits is reported.

The results are shown in Table 5.2. On all these datasets, no kernel learning approach seems
to improve performance over the straightforward baselines of best kernel and average kernel.
Although further study is needed to reach a definite conclusion, these results seem to indicate that
blindly using a kitchen sink of standard kernels is not beneficial if the goal is to combine these
kernels using an MKL approach. This highlights the importance of evaluating MKL techniques
using datasets like Caltech and PSORT, where the kernels have been carefully designed using
domain knowledge to capture different, potentially useful, notions of similarity in the data.

5.3.5 Computational Efficiency

Since the number of K-examples is quadratic in the number of training instances, one might
worry about the scalability of the TS-MKL method. This section compares the running time of TS-
MKL with Target Alignment, and UFO-MKL (Ultra-Fast Optimization MKL) which is arguably
the fastest one-stage MKL technique to date.

Table 5.3 shows the running times for the Sonar, Pima and Caltech 101 datasets. The running
time is for a single run using the best setting of parameters (i.e. it does not include the time for
parameter selection). For TS-MKL and Target Alignment we also show in parenthesis the time
taken by the kernel learning stage alone, without the final data SVM, on Caltech-101. For Sonar,
which has only 166 training samples, the running time of UFO-MKL and TS-MKL is comparable.
However, on Pima, which has 614 samples, and on Caltech, which has 3060 samples and 102
classes, TS-MKL is more than an order of magnitude faster than UFO-MKL. This shows that, by
taking advantage of the advances in large scale stochastic optimization, TS-MKL is not only able
to gracefully handle the quadratic increase in the number of K-examples, but it is actually the
fastest MKL method to date.

5.4 Discussion

Framing kernel learning as a standard classification problem in a properly defined instance
space allows to easily adapt well understood classification techniques to obtain a scalable and high

47

Sonar Pima Caltech 101
p = 793 p = 117 Train 30

Targ. Align 133 93.71 607(579)

UFO-MKL 3.018 17.97 387

TS-MKL 1.09 1.3977 34(6)

Table 5.3: Running time in seconds. In parenthesis we show the time taken by the kernel learning
stage alone.

performing two-stage multiple kernel learning algorithm. The proposed approach is backed up
by formal theoretical guarantees, and by empirical evaluation that shows it always outperforms
or is on par with leading one-stage and two-stage kernel learning methods. This is a remarkable
feat for a method that is quite simple and intuitive.

This new perspective on multiple kernel learning opens the door to a number of interesting
questions to be addressed in subsequent research. A few examples are:

• Learning kernel in scarce data conditions: In many applications, we are faced with scarcity
of labeled data but may have access to plenty of unlabeled data, which can be used to suit-
ably regularize the hypothesis space and improve the prediction performance. In several
other cases, we have multiple “related” prediction problems or tasks with a only a few la-
beled samples per task (Caruana, 1997). In these situations, it is advantageous to simul-
taneously learn these multiple tasks and use the relatedness structure of tasks to suitably
regularize the joint hypothesis space (Bakker & Heskes, 2003; Jacob et al., 2008; Xue et al.,
2007). Automatically learning the kernel function in these scarce data conditions through
semi-supervised and multi-task multiple kernel learning is another interesting direction that
can be pursued by transforming the problem into semi-supervised and multi-task learning
of K-classifier.

• Learning kernel for semi-supervised clustering: In semi-supervised clustering and semi-
supervised dimensionality reduction (e.g., kernel PCA), the supervision signal is usually
given in terms of pairwise must-link and cannot-link constraints rather than labels for indi-
vidual examples. The approach presented in the previous Chapter can be naturally extended
to this setting as we just need to know whether a given pair of examples is from the same
class or not.

48

Chapter 6

Learning Nonlinear Combination of
Kernels

In the previous Chapter, an approach to learn a “good” linear combination of base kernels was
presented that works by transforming the problem of multiple kernel learning into a binary classi-
fication problem in another space Z (referred as K-space). For p number of base kernels, the exam-
ples in the K-space (referred as K-examples) are constructed as zij = (K1(xi,xj), K2(xi,xj), . . . ,
Kp(xi,xj)) with labels tij = 1 if training examples xi and xj belong to same class and −1 other-
wise. Finding a good linear classifier µ : Z 7→ R in K-space (referred as K-classifier) that assigns
high value to positive K-examples and low value to negative K-examples is equivalent to find-
ing a good linear combination of base kernels (µ′zij =

∑p
i=1 µiKi(xi,xj)). This approach always

outperformed or was on par with leading one-stage and two-stage kernel learning methods.

There are several research directions that can be pursued motivated by these ideas, some of
which were mentioned in Sec. 5.4. A particularly appealing direction is to extend the framework
proposed in the previous Chapter to learn a nonlinear combination of kernels. Even though there
has been a significant amount of work on learning linear combinations of base kernels (Rakotoma-
monjy et al., 2007; Sonnenburg et al., 2006; Cortes et al., 2010a; Kloft et al., 2011; Bach, 2008; Zien
& Ong, 2007; Sindhwani & Lozano, 2011), in many cases it has not been found to improve the
empirical performance considerably beyond the simple baselines of kernel averaging and single
kernel with parameter tuned by cross-validation (Gehler & Nowozin, 2008). One possible reason
for this could be that the space of linear combination of the given base kernels is not rich enough
to approximate the optimal kernel well. Investigating nonlinear combination of base kernels is a
natural next step that I would pursue in this Chapter.

6.1 Related work

There have been a few studies on learning nonlinear kernel combinations (Ong et al., 2005;
Tsang & Kwok, 2006; Varma & Babu, 2009; Cortes et al., 2009a). Ong et al. (2005) provide a general
recipe for kernel learning with Multiple Kernel Learning as a special case. It introduces the no-
tions of kernel quality functional, a measure of “goodness” of a kernel that depends on the training
data, and Hyper Reproducing Kernel Hilbert Space, an RKHS over kernel functions that defines
the class of kernels that can be learned. Once the desired Hyper-RKHS and quality functional are
specified, one has to solve a semi-definite program (SDP) to optimize the quality functional regu-
larized by the norm induced by the Hyper-RKHS. They show some encouraging empirical results
on UCI datasets (UCI) with two proposed hyperkernels. However, the method is computationally

49

very expensive and does not scale well. It was later shown to be equivalent to a second-order cone
program (SOCP) that improved on computational time (Tsang & Kwok, 2006), however it was still
not suitable for large scale problems.

Varma & Babu (2009) proposed a multiple kernel learning approach that worked with product
of RBF base kernels instead of linear combinations. It was mainly shown to be effective in doing
feature selection. However, when all features were used, it did not show any empirical perfor-
mance gains over the simple approach of assigning uniform weights to features chosen through
cross-validation. Cortes et al. (2009a) proposed a method to learn polynomial combinations of ker-
nels in the context of ridge regression that jointly learns the predictor and the kernel combination
weights. They also reported a few empirical results on UCI datasets showing minor improve-
ments over linear kernel combination in regression problems. However, a convincing empirical
study showing definite improvements over linear kernel combinations was lacking.

6.2 Binary classification approach to nonlinear MKL

Existing approaches for learning nonlinear kernel combinations are either computationally too
expensive to work with standard MKL datasets used in the previous Chapter (Ong et al., 2005;
Tsang & Kwok, 2006), or do not give desired performance gains over simple baseline methods
(Varma & Babu, 2009). In some cases, only a specific class of the nonlinear combinations is con-
sidered, e.g., polynomial combinations in regression setting (Cortes et al., 2009a) and products of
RBF kernels (Varma & Babu, 2009).

The proposed MKL method in the previous Chapter gave encouraging results with linear ker-
nel combinations, either outperforming or matching the leading MKL methods in terms of empir-
ical performance. It also outperformed the previous fastest MKL methods in terms of computa-
tional efficiency (Table 5.3). Inspired by this, I extend the framework of previous Chapter to learn
nonlinear kernel combinations. As described in the previous Chapter, a good K-classifier induces
a good similarity function. Further, if the resulting similarity function is positive semidefinite then
it is also a kernel function that can be directly used in kernel methods like SVM. Previous Chapter
focused on learning linear combination of kernels by learning a linear K-classifier. In this Chapter,
I extend this work to learn a nonlinear combination of kernels by learning a nonlinear K-classifier
and study the empirical performance gains in comparison to linear combination of kernels on
standard datasets.

Let us denote the nonlinear K-classifier by h : Z 7→ R that separates the positive and negative
K-examples and induces the similarity measure K̃h(xi,xj) = h(zij) where zij are the K-examples
for all 1 ≤ i, j ≤ n (Eq. 5.1). There can be multiple ways to learn a nonlinear K-classifier. I study
two types of nonlinear K-classifiers, one of these resulting in positive semidefinite kernel and the
other resulting in indefinite similarity function.

6.2.1 Positive semidefinite kernel using polynomial kernel combination

If the resulting similarity function is positive semidefinite, it can be treated as a kernel and di-
rectly used in the kernel based learning algorithms. However, making sure the positive semidefi-
niteness of the resulting similarity (K̃h(xi,xj) = h(zij)) is a difficult task and heavily depends on
the type of nonlinear K-classifier h(·) used and the way the K-examples are generated. Consider,
for example, a polynomial K-classifier of degree two. If we explicitly enumerate the polynomial

50

combinations to construct the K-examples as follows

zij = (K1(xi,xj), . . . ,Kp(xi,xj)
︸ ︷︷ ︸

p first-order terms

, K1(xi,xj)K1(xi,xj), K1(xi,xj)K2(xi,xj), . . . ,Kp(xi,xi)Kp(xi,xj)
︸ ︷︷ ︸

p2 second-order terms

),

(6.1)

and learn a linear K-classifier for these K-examples restricting the weights to be nonnegative, the
induced kernel K̃h(xi,xj) = h(zij) will be positive semidefinite (element-wise product of positive
semidefinite matrices is positive semidefinite). Let us call this method as Polynomial TS-MKL.
However, if we simply use an SVM with polynomial kernel as our nonlinear K-classifier h(·), it is
not clear how to guarantee positive semidefiniteness of K̃h(u,v) in an efficient manner.

6.2.1.1 Polynomial kernel combination: a toy experiment

This toy experiment considers an example scenario where polynomial kernel combination will
perform better than a linear combination. This two-class data is generated on two concentric
circles in two dimensions as {xi = r[cos(θi), sin(θi)]}ni=1 with r = 1 for positive class and r = 2 for
negative class. The angles θi are generated from a uniform distribution between 0 and 2π. Let us
take the two linear kernels on individual features as our base kernels, i.e., K1(xi,xj) = xi1xj1 and
K1(xi,xj) = xi2xj2 .

Fig. 6.1 shows the data points (left) and the K-examples (middle) for same class (K-label = 1)
and different class (K-label = −1). It is clear that positive and negative K-examples are not
separated from each other along any linear direction. The right figure shows two dimensions
[K2

1 (xi,xj), [K
2
2 (xi,xj)] of polynomial K-example (Eq. 6.1). The K-examples are more separated in

this space. For linear kernel combination, we construct the K-examples as zij = [K1(xi,xj), K2(xi,xj)]
and solve the following optimization problem to learn the kernel weights µ.

min
µ≥0

λ

2
||µ||2 + 1

(
n
2

)
+ n

∑

1≤i≤j≤n

[1− tijµ · zij]+ (6.2)

where [1− s]+ = max{0, 1 − s} is the hinge loss.

For polynomial kernel combination, we construct the K-examples as

zij = [K1(xi,xj), K2(xi,xj), K
2
1 (xi,xj), K

2
2 (xi,xj), K1(xi,xj)K2(xi,xj)],

and solve the above optimization problem to learn the five dimensional kernel weight vector µ,
which is used to get the final kernel. The linear kernel combination gives significantly low training
accuracy of 54%, as expected. On the other hand, using polynomial kernel combination, we are
able to get 100% accuracy on the training set.

6.2.1.2 Polynomial kernel combination: empirical findings

This section tests the performance of Polynomial TS-MKL on real datasets. For UCI datasets,
I construct linear kernels on individual features and use these as base kernels for the TS-MKL
method. Table 6.1 reports the results obtained using linear TS-MKL and Polynomial TS-MKL
(degree-2 and degree-3 expansion of K-examples). Polynomial TS-MKL of degree-2 improves the
accuracy over its linear counterpart for all the datasets. Polynomial TS-MKL of degree-3 performs

51

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

+ve K−examples

−ve K−examples

0 5 10 15 20
0

5

10

15

20

+ve K−examples

−ve K−examples

Figure 6.1: Left: Two circles data. Middle: K-examples zij = [K1(xi,xj), K2(xi,xj)]. Right:

Polynomial K-examples zij = [K2
1 (xi,xj), [K

2
2 (xi,xj)].

52

Sonar Ionosphere Pima Vertebral

Average Kernel 74.52(5.9) 87.14(3.4) 75.84(2.5) 81.02(5.3)

TS-MKL Linear 73.10(3.4) 87.00(3.3) 76.43(2.1) 81.13(4.7)

TS-MKL Polynomial-2 83.57(2.9) 90.43(3.1) 76.56(2.8) 82.48(5.3)

TS-MKL Polynomial-3 82.10(5.9) 89.21(3.8) 74.83(2.6) 78.20(4.2)

Table 6.1: Average accuracy (%) over 10 random splits on UCI datasets. Numbers in parentheses
are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5. TS-MKL Polynomial-
2 and Polynomial-3 learn linear K-classifiers on polynomial K-examples (Eq. 6.1) of degree 2 and
degree 3 respectively and thus learn a polynomial kernel combination.

Training samples per class
5 10 15 20 25 30

Average Kernel 44.40 (0.51) 55.69(0.57) 62.35(1.07) 66.22(0.95) 68.96(0.99) 71.68(1.38)

TS-MKL Linear 51.23 (0.51) 62.99(0.86) 69.05(0.88) 72.49(0.27) 75.21(0.66) 77.16(0.88)

TS-MKL Polynomial-2 50.75(0.41) 62.94(0.76) 67.71(0.88) 71.69(0.48) 74.87(0.81) 75.14(0.73)

TS-MKL Polynomial-3 49.36(0.63) 60.29(0.82) 67.23(0.75) 70.09(0.74) 73.61(0.93) 74.31(0.93)

Table 6.2: Average accuracy (%) over 5 random splits on Caltech-101 data. Numbers in parentheses
are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5. TS-MKL Polynomial-
2 and Polynomial-3 learn linear K-classifiers on polynomial K-examples (Eq. 6.1) of degree 2 and
degree 3 respectively and thus learn a polynomial kernel combination.

worse than its degree-2 counterpart for datasets. The deterioration in performance can be at-
tributed to overfitting in the K-space due to high dimensionality and limited number of samples.

Polynomial TS-MKL can be expected to give improvements over linear TS-MKL when the set
of base kernels is weak as it is the case in the experiments of Table 6.1. In these experiments I used
linear kernels on individual features as the base kernels. When the set of best kernels is already
rich, Polynomial TS-MKL does not seem to improve performance over linear TS-MKL. This was
observed when I used the full set of base kernels for UCI datasets that were used in Chapter 5.
Polynomial TS-MKL did not improve accuracy over the numbers reported in Table 5.2. In some
cases, it also suffered a loss in performance due to overfitting in K-space.

The same phenomenon was also observed on both Caltech datasets where Polynomial TS-MKL
does not improve beyond linear TS-MKL. Results for Caltech-101 are reported below.

6.2.2 Indefinite similarity functions

In the last Section, I experimented with polynomial kernel combinations in the framework
of TS-MKL using polynomial K-classifiers that resulted in positive semidefinite kernels. It was
observed on Caltech and UCI datasets that when the set of base kernels is rich, the polynomial
TS-MKL does not improve over linear TS-MKL. In this Section, I will experiment with other types
of nonlinear K-classifiers. In general for most nonlinear K-classifiers h(·), it is not possible to
guarantee positive semidefiniteness of the induced similarity function K̃h(·, ·) = h(zuv). This will
preclude it from being used as it is in a kernel based learning method such as SVM. There are
two ways to get around this problem. There exist methods that treat the indefinite kernel as a

53

noisy version of a positive semidefinite kernel and solve a joint objective for the “pure” positive
semidefinite kernel and the SVM dual coefficients Luss & dAspremont (2007); Chen & Ye (2008).
However, these methods are computationally expensive and so are not suitable for medium to
large scale problems.

Another way to use the indefinite kernels in supervised learning can be through the learning
with similarity functions framework of Balcan & Blum (2006) which seems more appealing due to
its applicability to large scale problems. The basic idea in this framework is to select a set of
“landmark” points which are not a part of the training data and represent all other points in terms
of their similarity with these landmark points. These landmark points consist of equal number of
positive and negative class examples. For example, if t1, . . . , tl are the l selected landmark points,
the feature representation of ith example is given as

φ(xi) = [K(xi, t1), K(xi, t2), . . . , K(xi, tl)] ∈ R
l, (6.3)

where K(·, ·) is a similarity function. Subsequently, a linear classifier is learned on the exam-
ples {φ(xi)}ni=1. For a “good” similarity function K(·, ·), learning with landmark similarity based
representation is guaranteed to have bounded generalization error with polynomial sample com-
plexities (Balcan & Blum, 2006). In Eq. 6.3, the similarity function K(·, ·) can be indefinite and
so the similarity K̃h(·, ·) induced by any nonlinear K-classifier h(·) can be used. Moreover, noth-
ing prevents us from using indefinite base kernels since we no longer have positive semidefinite
restriction on the final learned kernel.

6.2.2.1 Theoretical perspective

Let us recall the following definition of goodness of a kernel function.

Definition 6.2.1. A kernel K is an (ǫ, γ)-good kernel function if there exists a vector β, ‖β‖ ≤ 1 such
that

Pr(x,y)∼P [y〈φ(x), β〉 ≥ γ] ≥ 1− ǫ

A predictor with error at most ǫ + ǫacc can be learned with high probability from Õ((ǫ +
ǫacc)/(γ

2ǫ2acc)) examples using an (ǫ, γ)-good kernel function K (Defn. 6.2.1).

Balcan & Blum (2006) define the goodness of a similarity function as follows.

Definition 6.2.2. A pairwise function K is an (ǫ, γ)-good similarity function for a distribution P if
there exists a weighting function w : X 7→ [0, 1] such that at least a 1 − ǫ fraction of probability mass of
examples (x, y) satisfy

E(x′,y′)∼P [yy
′w(x′)K(x, x′)] ≥ γ

If we take the weighting function w(·) to be a constant 1 everywhere, this definition says that
average similarity between same class examples is 2γ more than the average similarity between
different class examples (under balanced class distribution). It was shown by Balcan & Blum
(2006) that a predictor with error at most ǫ + ǫacc can be learned with high probability from
Õ((ǫ + ǫacc)/(γ

2ǫ2acc)) examples using an (ǫ, γ)-good similarity function K (Defn. 6.2.2). This is
achieved by constructing a landmark based representation as outlined in (Balcan & Blum, 2006)
and learning a suitable linear predictor in this transformed space.

54

As mentioned above, kernel-based learning with (ǫ, γ)-good kernel and similarity-based learn-
ing with (ǫ, γ)-good similarity function have similar sample complexity guarantees. It is natural
to ask which learning framework is better (kernel-based learning or similarity-based learning of
Balcan & Blum (2006)) if the given similarity measure is also positive semidefinite. Srebro (2007)
proved the following result:

Theorem 6.2.1. If a kernel K is (ǫ, γ)-good kernel (Defn. 6.2.1) for a consistent input distribution (y is a
deterministic function of x), then it is also (ǫ + ǫ1, 1/2(1 − ǫ)ǫ1γ

2)-good similarity function (Defn. 6.2.2)
for the distribution (for any ǫ > 0).

This theorem says that there is a significant degradation in the margin when the kernel is used
in similarity based learning framework of Balcan & Blum (2006). Srebro (2007) also proved by
giving a counterexample that this result is tight up to a multiplication factor of 16 in the margin.

These results give an indication that although it may be possible to get a better similarity func-
tion by sacrificing positive semidefinite property, the gain here can be offset by the use of sim-
ilarity based representation and one might be better off working with the positive semidefinite
kernel based learning. In the following Section, we will test this by doing away with the positive
semidefiniteness of learned kernel and will use random forests as our K-classifier. The following
Section gives a brief overview of Random Forests for the sake of completeness.

6.2.2.2 Random Forests

Random forest is a collection of tree classifiers where each tree is generated using the same
training set but based on a random vector sampled independently from the same distribution
for all trees. The final prediction for an input x is taken to be the class label that is predicted by
maximum number of trees in the ensemble. It is defined formally as follows (Breiman, 2001):

Definition 6.2.3. A random forest is a classifier consisting of a collection of tree-structured classifiers
{h(x,Θk), k = 1, . . .} where the {Θk} are independent identically distributed random vectors and each
tree casts a unit vote for the most popular class at input x.

There can be several flavors of random forests based on the randomness injected in the building
of trees, as dictated by vectors {Θk}. I will use the flavor made popular by Breiman (2001) where
two sources of randomness are used: bagging and random features. In bagging, training data for
each tree classifier is drawn randomly (with replacement) from the original training set. Bagging
improves the performance of unstable predictors (Breiman, 1994). Since the training samples for
each tree are drawn randomly with replacement, the out-of-bag (OOB) samples can also be used
to get an estimate of the generalization error Breiman (2001). The second source of randomness is
the random selection of features at each node in the tree based on which the node is split. It was
shown by Breiman (2001) that random forests do not overfit with increasing number of trees and
the error converges to a limiting value.

6.2.2.3 Empirical findings

This section describes the experimental methodology and the results obtained on UCI and Cal-
tech datasets. The training data for the random forest are the K-examples constructed same as in
linear TS-MKL. Total 500 trees are grown and the minimum size of the terminal nodes is set to
3. For splitting each node in the tree, ten random features are sampled and the feature that gives

55

Sonar Ionosphere Pima Vertebral

Average Kernel 74.52(5.9) 87.14(3.4) 75.84(2.5) 81.02(5.3)

TS-MKL Linear 73.10(3.4) 87.00(3.3) 76.43(2.1) 81.13(4.7)

TS-MKL Polynomial-2 83.57(2.9) 90.43(3.1) 76.56(2.8) 82.48(5.3)

TS-MKL Polynomial-3 82.10(5.9) 89.21(3.8) 74.83(2.6) 78.20(4.2)

TS-MKL RF 82.86(4.2) 92.71(3.5) 75.39(2.9) 81.26(6.9)

Table 6.3: Average accuracy (%) over 10 random splits on UCI datasets. Numbers in parentheses
are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5. TS-MKL Polynomial-
2 and Polynomial-3 learn linear K-classifiers on polynomial K-examples (Eq. 6.1) of degree 2 and
degree 3 respectively and thus learn a polynomial kernel combination. TS-MKL RF learn a random
forest over linear K-examples, thus learning similarities in a nonlinear fashion.

maximum information gain is selected to split the node. The final similarity value for the example
pair is taken to be the ratio of number of trees that predict positive K-label for the corresponding
K-example divided by the total number of trees. Similarity values are computed for all pairs of
examples in this manner.

The similarities computed above are used in conjunction with learning with similarity func-
tions framework (Balcan & Blum, 2006). I randomly sample equal number of landmark points
from each class such that the total number of landmark points is equal to 1/3th of the total train-
ing samples. These landmark points are used to construct the new landmark based representation
as in Eq. 6.3. Although Balcan & Blum (2006) assume that landmark points do not belong to the
training set for ease of analysis, we include landmark points in the training set due to limited
amount of training data available in these datasets. This was also justified theoretically in a recent
work (Jain & Kar, 2012). The results are averaged over the five random selection of landmarks. I
denote this approach by TS-MKL RF (two stage multiple kernel learning - random forest).

Table 6.3 shows the results for UCI datasets. The set of base kernels is same as that used in
the previous Section. I also reproduce the results obtained with polynomial kernel combination
for the sake of comparison. The accuracies are slightly worse than polynomial TS-MKL for all
datasets except Ionosphere for which TS-MKL RF performs better.

The results for Caltech-101 are shown in Table 6.4. For this data, TS-MKL RF is better than av-
erage kernel but is worse than all other methods including linear TS-MKL. Although the 0-1 error
in the K-space is less than that for linear TS-MKL, resulting in better similarity, the advantage is
offset by the use of learning-with-similarity framework (Srebro, 2007). The loss in performance
is more pronounced than UCI datasets which may be because of limited number of samples per
class (102 classes and not more than 30 samples per class). In each one-vs-rest subproblem, there
are 10 landmark points from +ve class and 1010 landmark points from −ve class (for 30 samples
per class case), resulting in class imbalance in the similarity based representation. This imbalance
cannot be corrected without further loss in performance since correcting it results in too few num-
ber of total landmark points (20 from +ve class and 20 from −ve class). In these experiments, the
learning-with-similarity framework was not found to be performing comparably with traditional
learning-with-kernel framework for multi-class problems.

56

Training samples per class
5 10 15 20 25 30

Average Kernel 44.40 (0.51) 55.69(0.57) 62.35(1.07) 66.22(0.95) 68.96(0.99) 71.68(1.38)

TS-MKL Linear 51.23 (0.51) 62.99(0.86) 69.05(0.88) 72.49(0.27) 75.21(0.66) 77.16(0.88)

TS-MKL Polynomial-2 50.75(0.41) 62.94(0.76) 67.71(0.88) 71.69(0.48) 74.87(0.81) 75.14(0.73)

TS-MKL Polynomial-3 49.36(0.63) 60.29(0.82) 67.23(0.75) 70.09(0.74) 73.61(0.93) 74.31(0.93)

TS-MKL RF 48.18(1.21) 58.74(0.98) 64.18(1.13) 69.03(1.24) 71.63(1.05) 72.23(0.97)

Table 6.4: Average accuracy (%) over 5 random splits on Caltech-101 data. Numbers in parentheses
are the std. deviations. TS-MKL Linear is the method proposed in Chapter 5. TS-MKL Polynomial-
2 and Polynomial-3 learn linear K-classifiers on polynomial K-examples (Eq. 6.1) of degree 2 and
degree 3 respectively and thus learn a polynomial kernel combination. TS-MKL RF learn a random
forest over linear K-examples, thus learning similarities in a nonlinear fashion.

6.3 Discussion

The ideas of previous chapter were extended to learn nonlinear kernel combinations in two
ways – (i) learning positive definite kernels using polynomial kernel combination (TS-MKL Poly-
nomial), (ii) learning indefinite similarities using random forest (TS-MKL RF). Polynomial TS-
MKL of degree-2 improves the performance beyond linear TS-MKL if the set of base kernels is not
rich enough, as it was observed in experiments with UCI datasets (Table 6.1). Polynomial TS-MKL
of degree-3 tends to be a little worse than degree-2 variant. Indefinite similarities are learned us-
ing random forests in K-space and learning-with-similarity-functions (LWS) framework of Balcan
& Blum (2006) is used to build classifiers with these similarities. The LWS framework seems to
affect the prediction performance adversely and the obtained results are worse than polynomial
kernel combination for both UCI and Caltech datasets and worse than linear kernel combination
for Caltech datasets. This can be explained in the light of results in Srebro (2007). The hit in per-
formance was more pronounced for multi-class case with limited number of samples per class as
in Caltech data.

57

Chapter 7

Conclusions and Future Work

This thesis deals with the scenario where the data is available in terms of similarities between
pairs of examples and there are multiple similarities for each pair of examples. These multiple
similarities can originate either from different types of similarity measures defined on the example
pairs or from a single similarity measure defined on multiple data representations. The primary
contributions of this thesis lie in developing algorithms that can take advantage of this multi-
modal information in the context of supervised and unsupervised learning. The contributions of
this thesis include:

• Developing algorithms for spectral embedding from multiple similarity graphs, using the
ideas of co-training (Kumar & Daumé III, 2011) and co-regularization (Kumar et al., 2011).

• Developing a two-stage method for linear multiple kernel learning (TS-MKL) that trans-
forms the problem of kernel learning to that of binary classification in a transformed space
(K-space). The ideas of this method were also extended to nonlinear multiple kernel learn-
ing, specifically for polynomial kernel combinations resulting in positive semidefinite ker-
nels (TS-MKL Polynomial) and for general nonlinear kernel combinations using random
forests resulting in indefinite similarity (TS-MKL RF).

7.1 Future Directions

There are several interesting directions that can be explored in the future, some of which are
already mentioned in previous chapters. The other directions include:

• Extension of co-trained and co-regularized spectral embedding to missing data scenario:
It will be interesting to extend the proposed methods in Chapter 3 and Chapter 4 to the
setting where some of the similarities are missing in one of the views. Some recent works
have explored this direction (Rai et al., 2010).

• New quality functions for linear multiple kernel learning: The problem of linear MKL
is transformed into a binary classification problem in another space (K-space) and a novel
quality function is proposed for learning kernel weights that minimized hinge loss in the K-
space. The resulting approach, linear TS-MKL, performs better or on par with leading MKL
methods. It will be useful to investigate new criteria for measuring kernel quality.

• New methods for nonlinear multiple kernel learning: I studied two methods for learning
nonlinear kernel combinations building on ideas from linear TS-MKL. These methods were

58

not able to outperform linear TS-MKL on various benchmark datasets. It will be useful to
investigate new methods for learning nonlinear kernel combinations and show convincing
improvements over linear MKL methods.

Besides above directions, it will also be interesting to use the ideas of Chapter 5 for kernel
learning in scarce data conditions and kernel learning for semi-supervised clustering, as discussed
in Section 5.4.

59

Bibliography

Aizerman, M., Braverman, E., and Rozonoer, L. Theoretical foundations of the potential function
method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.

Amini, Massih-Reza, Usunier, Nicolas, and Goutte, Cyril. Learning from multiple partially ob-
served views - an application to multilingual text categorization. In Advances in Neural Informa-
tion Processing Systems, 2009.

Aronszajn, N. Theory of reproducing kernels. Transactions of the American Mathematical Society, pp.
337–404, 1950.

Bach, F. Consistency of the Group Lasso and Multiple Kernel Learning. Journal of Machine Learning
Research, 9:1179–1225, 2008.

Bach, F., Lanckriet, G. R. G., and Jordan, M. I. Multiple kernel learning, conic duality, and the smo
algorithm. In International Conference on Machine Learning, 2004.

Bach, Francis R and Jordan, Michael I. Learning spectral clustering, with application to speech
separation. The Journal of Machine Learning Research, 7:1963–2001, 2006.

Bakker, Bart and Heskes, Tom. Task Clustering and Gating for Bayesian Multitask Learning. Jour-
nal of Machine Learning Research, 4, 2003.

Balcan, Maria-Florina and Blum, Avrim. On a Theory of Learning with Similarity Functions. In
ICML, 2006.

Balcan, Maria-Florina, Blum, Avrim, and Yang, Ke. Co-training and expansion: Towards bridging
theory and practice. In NIPS, 2004.

Bartlett, P. and Mendelson, S. Rademacher and Gaussian Complexities: Risk Bounds and Struc-
tural Results. Journal of Machine Learning Research, 3, 2002.

Belkin, M. and Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural Computation, pp. 1373–1396, 2003.

Bickel, S. and Scheffer, T. Multi-View Clustering. In IEEE International Conference on Data Mining,
2004.

Biehl, Michael, Hammer, Barbara, Verleysen, Michel, and Villmann, Thomas. Similarity based clus-
tering. Springer, 2009.

Blaschko, M. B. and Lampert, C. H. Correlational Spectral Clustering. In Computer Vision and
Pattern Recognition, 2008.

Blei, David M., Ng, Andreq Y., and Jordan, Michael I. Latent Dirichlet Allocation. Journal of
Machine Learning Research, pp. 993–1022, 2003.

Blum, A. and Mitchell, T. Combining labeled and unlabeled data with co-training. In Conference
on Learning Theory, 1998.

Bo, Liefeng, Ren, Xiaofeng, and Fox, Dieter. Multipath sparse coding using hierarchical matching
pursuit. In NIPS workshop on deep learning, 2012.

60

Boser, Bernhard E., Guyon, Isabelle M., and Vapnik, Vladimir N. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory
(COLT), 1992.

Boyd-Graber, Jordan and Blei, David M. Multilingual topic models for unaligned text. In Uncer-
tainty in Artificial Intelligence (UAI), 2009.

Breiman, Leo. Bagging predictors. Machine Learning, 1994.

Breiman, Leo. Random forests. Machine Learning, 45, 2001.

Burges, C. J. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2:121–167, 1998.

Callison-Burch, Chris and Osborne, Miles. Co-training for statistical machine translation. In Pro-
ceedings of the 6th Annual CLUK Research Colloquium, 2003.

Caruana, Rich. Multitask Learning. Machine Learning, 28, 1997.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Chaudhuri, Kamalika, Kakade, Sham M., Livescu, Karen, and Sridharan, Karthik. Multi-view
Clustering via Canonical Correlation Analysis. In International Conference on Machine Learning,
2009.

Chen, Jianhui and Ye, Jieping. Training svm with indefinite kernels. In ICML, 2008.

Chen, Minmin, Weinberger, Kilian Q., and Blitzer, John C. Co-training for domain adaptation. In
Advances in Neural Information Processing Systems, 2011.

Cortes, C. and Vapnik, V. Support Vector Networks. Machine Learning, 20(3), 1995.

Cortes, C., Mohri, M., and Rostamizadeh, A. Learning non-linear combinations of kernels. In
Advances in Neural Information Processing Systems, 2009a.

Cortes, C., Mohri, M., and Rostamizadeh, A. Generalization bounds for learning kernels. In
International Conference on Machine Learning, 2010a.

Cortes, C., Mohri, M., and Rostamizadeh, A. Two-Stage Learning Kernel Algorithms. In Interna-
tional Conference on Machine Learning, 2010b.

Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. Learning non-linear combination of
kernels. In Advances in Neural Information Processing Systems, 2009b.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola, J. S. On Kernel-Target Alignment. In
NIPS, 2001.

Daumé III, H., Kumar, A., and Saha, A. Co-regularization Based Semi-supervised Domain Adap-
tation. In NIPS, 2010.

de Sa, Virginia R. Spectral Clustering with two views. In Proceedings of the Workshop on Learning
with Multiple Views, International Conference on Machine Learning, 2005.

61

Dhillon, Inderjit S., Guan, Yuqiang, and Kulis, Brian. Kernel k-means, spectral clustering and
normalized cuts. In KDD, 2004.

Ekin, Ahmet, Pankanti, Sharath, and Hampapur, Arun. Initialization-independent spectral clus-
tering with applications to automatic video analysis. In ICASSP, volume 3, pp. iii–641, 2004.

Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. Predicting subcellular localization
of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 300:
1005–1016, 2000.

Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M., and Brinkman, F. S. L. PSORTb
v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from
comparative proteome analysis. Bioinfomatics, 21:617–623, 2004.

Gehler, P. and Nowozin, S. On Feature Combination for Multiclass Object Detection. In Interna-
tional Conference on Computer Vision, 2009.

Gehler, P.V. and Nowozin, S. Infinite kernel learning. In NIPS 2008 Workshop on Kernel Learning:
Automatic Selection of Optimal Kernels, 2008.

Gonen, Mehmet and Alpaydin, Ethem. Multiple kernel learning algorithms. Journal of Machine
Learning Research, pp. 2211–2268, 2011.

Greene, D. and Cunningham, P. Producing accurate interpretable clusters from high-dimensional
data. In PKDD, 2005.

Greene, Derek and Cunningham, Pádraig. A matrix factorization approach for integrating multi-
ple data views. In European Conference on Machine learning, 2009.

Hofmann, Thomas. Probabilistic latent semantic analysis. In Uncertainty in Artificial Intelligence,
1999.

Horn, Roger A. and Johnson, Charles R. Matrix Analysis. 1990.

Hubert, Lawrence and Arabie, Phipps. Comparing Partitions. Journal of Classification, pp. 193–218,
1985.

Jacob, Laurent, Bach, Francis, and Vert, Jean-Philippe. Clustered Multi-task Learning: a Convex
Formulation. In NIPS, 2008.

Jagarlamudi, Jagadeesh and Daumé III, Hal. Extracting multilingual topics from unaligned cor-
pora. In Proceedings of the European Conference on Information Retrieval (ECIR), 2010.

Jain, Prateek and Kar, Purushottam. Supervised learning with similarity functions. In NIPS, 2012.

Joachims, T. Text categorization with support vector machines: learning with many relevant fea-
tures. In ECML, 1998.

Kandola, J. S., Shawe-Taylor, J., and Cristianini, N. Optimizing Kernel Alignment over Combina-
tion of Kernels. In Tech. Report 121, Dept. of CS, Univ. of London, UK, 2002.

Kar, Purushottam. Generalization guarantees for a binary classification framework for two-stage
multiple kernel learning. arXiv:1302.0406, 2013.

62

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. ℓp-Norm Multiple Kernel Learning. Journal of
Machine Learning Research, 12:953–997, 2011.

Kumar, Abhishek and Daumé III, Hal. A Co-training Approach for Multiview Spectral Clustering.
In International Conference on Machine Learning, 2011.

Kumar, Abhishek, Rai, Piyush, and Daumé III, Hal. Co-regularized multiview spectral clustering.
In NIPS, 2011.

Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L. El, and Jordan, M.I. Learning the Kernel
Matrix with Semidefinite Programming. Journal of Machine Learning Research, 5:27–72, 2004.

Liberty, Edo, Woolfe, Franco, Martinsson, Per-Gunnar, Rokhlin, Vladimir, and Tygert, Mark. Ran-
domized algorithms for the low-rank approximation of matrices. Proceedings of the National
Academy of Sciences, 2007.

Luss, Ronny and dAspremont, Alexandre. Support vector machine classification with indefinite
kernels. In NIPS, 2007.

Mangasarian, O. L. Linear and nonlinear separation of patterns by linear programming. Operations
Research, 13:444–452, 1965.

Manning, Christopher D., Raghavan, Prabhakar, and Schtze, Hinrich. Introduction to Information
Retrieval. 2008.

Mei, Qiaozhu, Cai, Deng, Zhang, Duo, and Zhai, ChengXiang. Topic modeling with network
regularization. In World Wide Web (WWW), 2008.

Mercer, James. Functions of positive and negative type and their connection with the theory of
integral equations. Philos. Trans. Royal Society London, 209:415–446, 1909.

Moguerza, Javier M. and Munoz, Alberto. Support vector machines with applications. Statistical
Science, 21:322–336, 2006.

Mostafavi, Sara and Morris, Quaid. Fast integration of heterogeneous data sources for predicting
gene function with limited annotation. Bioinformatics, pp. 1759–1765, 2010.

Müller, Christoph, Rapp, Stefan, and Strube, Michael. Applying co-training to reference resolu-
tion. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL
’02, 2002.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering: analysis and an algorithm. In Advances
in Neural Information Processing Systems, 2002.

Ni, Xiaochuan, Sun, Jian-Tao, Hu, Jian, and Chen, Zheng. Mining multilingual topics from
wikipedia. In World Wide Web (WWW), 2009.

Nigam, Kamal and Ghani, Rayid. Analyzing the Effectiveness and Applicability of Co-training.
In International Conference on Information and Knowledge Management, 2000.

Ning, Huazhong, Xu, Wei, Chi, Yun, Gong, Yihong, and Huang, Thomas S. Incremental spectral
clustering with application to monitoring of evolving blog communities. In SDM, 2007.

63

Niu, Donglin, Dy, Jennifer G., and Jordan, Michael I. Multiple non-redundant spectral clustering
views. In International Conference on Machine Learning, 2010.

Ong, C. S., Smola, A., and Williamson, R. Learning the kernel with hyperkernels. Journal of Machine
Learning Research, 6:1043–1071, 2005.

Orabona, F. and Jie, L. Ultra-fast optimization algorithm for sparse multi kernel learning. In
International Conference on Machine Learning (ICML), pp. 249–256, 2011.

Poggio, T. On optimal nonlinear associative recall. Biological Cybernetics, 19:201–209, 1975.

Rai, Piyush, Trivedi, Anusua, Daumé III, Hal, and DuVall, Scott L. Multiview clustering with
incomplete views. In NIPS 2010: Workshop on Machine Learning for Social Computing, 2010.

Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. More efficiency in multiple kernel
learning. In International Conference on Machine Learning, 2007.

Sarkar, Anoop. Applying co-training methods to statistical parsing. In Proceedings of the second
meeting of the North American Chapter of the Association for Computational Linguistics on Language
technologies, NAACL ’01, 2001.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos: Primal Estimated sub-GrAdient SOlver for
SVM. In International Conference on Machine Learning, 2007.

Sindhwani, V. and Lozano, A. C. Non-parametric group orthogonal matching pursuit for sparse
learning with multiple kernels. In NIPS, pp. 2519–2527, 2011.

Sindhwani, Vikas, Niyogi, Partha, and Belkin, Mikhail. A Co-regularization approach to semi-
supervised learning with multiple views. In Proceedings of the Workshop on Learning with Multiple
Views, International Conference on Machine Learning, 2005.

Smith, F. W. Pattern classifier design by linear programming. IEEE Transactions on Computers, pp.
367–372, 1968.

Smola, Alexander J., Bartlett, Peter, Schlkopf, Bernhard, and (Eds.), Dale Schuurmans. Advances
in large margin classifiers, 1999.

Smola, B. Scholkopf A. and Muller, K.-R. Kernel Principal Component Analysis. Advances in Kernel
Methods - Support Vector Learning, pp. 327–352, 1999.

Sonnenburg, S., Ratsch, G., Schafer, C., and Scholkopf, B. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7, 2006.

Srebro, N. How Good is a Kernel When Used as a Similarity Measure. In COLT, 2007.

Strehl, Alexander and Ghosh, Joydeep. Cluster Ensembles - A Knowledge Reuse Framework for
Combining Multiple Partitions. Journal of Machine Learning Research, pp. 583–617, 2002.

Tang, Wei, Lu, Zhengdong, and Dhillon, Inderjit S. Clustering with Multiple Graphs. In IEEE
International Conference on Data Mining, 2009.

Tay, Francis E.H and Cao, Lijuan. Application of support vector machines in financial time series
forecasting. Omega, 29(4):309–317, 2001.

64

Tsang, Ivor Wai-Hung and Kwok, James Tin-Yau. Efficient hyperkernel learning using second-
order cone programming. IEEE Transactions on Neural Networks, 17:48–58, 2006.

UCI. The UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/.

Valgren, Christoffer, Duckett, Tom, and Lilienthal, Achim. Incremental spectral clustering and its
application to topological mapping. In Robotics and Automation, 2007 IEEE International Confer-
ence on, pp. 4283–4288, 2007.

Vapnik, V. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow, 1979.

Vapnik, V. and Chervonenkis, A. A note on one class of perceptrons. Automation and Remote
Control, 25, 1964.

Vapnik, V. and Lerner, A. Pattern recognition using generalized portrait method. Automation and
Remote Control, 24:774–780, 1963.

Varma, Manik and Babu, Bodla Rakesh. More generality in efficient multiple kernel learning. In
International Conference on Machine Learning, 2009.

von Luxburg, Ulrike. A Tutorial on Spectral Clustering. Statistics and Computing, 2007.

Wang, Xiang, Qian, Buyue, and Davidson, Ian. On constrained spectral clustering and its applica-
tions. Data Mining and Knowledge Discovery, pp. 1–30, 2012.

Xiao, Jianxiong and Quan, Long. Multiple view semantic segmentation for street view images. In
ICCV, 2009.

Xue, Ya, Liao, Xuejun, Carin, Lawrence, and Krishnapuram, Balaji. Multi-Task Learning for Clas-
sification with Dirichlet Process Priors. Journal of Machine Learning Research, 8, 2007.

Yang, Z. R. Biological applications of support vector machines. Brief. Bioinform., 2004.

Yi, Xing, Xu, Yunpeng, and Zhang, Changshui. Multi-view em algorithm for finite mixture mod-
els. In ICAPR, Lecture Notes in Computer Science, Springer-Verlag, 2005.

Zhao, Bin, Kwok, James T., and Zhang, Changshui. Multiple Kernel Clustering. In SIAM Interna-
tional Conference on Data Mining, 2009.

Zhou, Dengyong and Burges, Christopher J. C. Spectral Clustering and Transductive Learning
with Multiple Views. In International Conference on Machine Learning, 2007.

Zien, A. and Ong, C. S. Multiclass Multiple Kernel Learning. In International Conference on Machine
Learning, 2007.

65

