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Abstract
In this paper, we theoretically study the problem of binary classification in the
presence of random classification noise — the learner, instead of seeing the true la-
bels, sees labels that have independently been flipped with some small probability.
Moreover, random label noise is class-conditional — the flip probability depends
on the class. We provide two approaches to suitably modify any given surrogate
loss function. First, we provide a simple unbiased estimator of any loss, and ob-
tain performance bounds for empirical risk minimization in the presence of iid
data with noisy labels. If the loss function satisfies a simple symmetry condition,
we show that the method leads to an efficient algorithm for empirical minimiza-
tion. Second, by leveraging a reduction of risk minimization under noisy labels
to classification with weighted 0-1 loss, we suggest the use of a simple weighted
surrogate loss, for which we are able to obtain strong empirical risk bounds. This
approach has a very remarkable consequence — methods used in practice such
as biased SVM and weighted logistic regression are provably noise-tolerant. On
a synthetic non-separable dataset, our methods achieve over 88% accuracy even
when 40% of the labels are corrupted, and are competitive with respect to recently
proposed methods for dealing with label noise in several benchmark datasets.

1 Introduction
Designing supervised learning algorithms that can learn from data sets with noisy labels is a problem
of great practical importance. Here, by noisy labels, we refer to the setting where an adversary has
deliberately corrupted the labels [Biggio et al., 2011], which otherwise arise from some “clean”
distribution; learning from only positive and unlabeled data [Elkan and Noto, 2008] can also be cast
in this setting. Given the importance of learning from such noisy labels, a great deal of practical
work has been done on the problem (see, for instance, the survey article by Nettleton et al. [2010]).
The theoretical machine learning community has also investigated the problem of learning from
noisy labels. Soon after the introduction of the noise-free PAC model, Angluin and Laird [1988]
proposed the random classification noise (RCN) model where each label is flipped independently
with some probability ρ ∈ [0, 1/2). It is known [Aslam and Decatur, 1996, Cesa-Bianchi et al.,
1999] that finiteness of the VC dimension characterizes learnability in the RCN model. Similarly, in
the online mistake bound model, the parameter that characterizes learnability without noise — the
Littestone dimension — continues to characterize learnability even in the presence of random label
noise [Ben-David et al., 2009]. These results are for the so-called “0-1” loss. Learning with convex
losses has been addressed only under limiting assumptions like separability or uniform noise rates
[Manwani and Sastry, 2013].

In this paper, we consider risk minimization in the presence of class-conditional random label noise
(abbreviated CCN). The data consists of iid samples from an underlying “clean” distribution D.
The learning algorithm sees samples drawn from a noisy version Dρ of D — where the noise rates
depend on the class label. To the best of our knowledge, general results in this setting have not been
obtained before. To this end, we develop two methods for suitably modifying any given surrogate
loss function ℓ, and show that minimizing the sample average of the modified proxy loss function
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ℓ̃ leads to provable risk bounds where the risk is calculated using the original loss ℓ on the clean
distribution.

In our first approach, the modified or proxy loss is an unbiased estimate of the loss function. The
idea of using unbiased estimators is well-known in stochastic optimization [Nemirovski et al., 2009],
and regret bounds can be obtained for learning with noisy labels in an online learning setting (See
Appendix B). Nonetheless, we bring out some important aspects of using unbiased estimators of
loss functions for empirical risk minimization under CCN. In particular, we give a simple symmetry
condition on the loss (enjoyed, for instance, by the Huber, logistic, and squared losses) to ensure that
the proxy loss is also convex. Hinge loss does not satisfy the symmetry condition, and thus leads
to a non-convex problem. We nonetheless provide a convex surrogate, leveraging the fact that the
non-convex hinge problem is “close” to a convex problem (Theorem 6).

Our second approach is based on the fundamental observation that the minimizer of the risk (i.e.
probability of misclassification) under the noisy distribution differs from that of the clean distribu-
tion only in where it thresholds η(x) = P (Y = 1|x) to decide the label. In order to correct for the
threshold, we then propose a simple weighted loss function, where the weights are label-dependent,
as the proxy loss function. Our analysis builds on the notion of consistency of weighted loss func-
tions studied by Scott [2012]. This approach leads to a very remarkable result that appropriately
weighted losses like biased SVMs studied by Liu et al. [2003] are robust to CCN.

The main results and the contributions of the paper are summarized below:

1. To the best of our knowledge, we are the first to provide guarantees for risk minimization under
random label noise in the general setting of convex surrogates, without any assumptions on the
true distribution.

2. We provide two different approaches to suitably modifying any given surrogate loss function,
that surprisingly lead to very similar risk bounds (Theorems 3 and 11). These general results
include some existing results for random classification noise as special cases.

3. We resolve an elusive theoretical gap in the understanding of practical methods like biased SVM
and weighted logistic regression — they are provably noise-tolerant (Theorem 11).

4. Our proxy losses are easy to compute — both the methods yield efficient algorithms.
5. Experiments on benchmark datasets show that the methods are robust even at high noise rates.

The outline of the paper is as follows. We introduce the problem setting and terminology in Section
2. In Section 3, we give our first main result concerning the method of unbiased estimators. In
Section 4, we give our second and third main results for certain weighted loss functions. We present
experimental results on synthetic and benchmark data sets in Section 5.

1.1 Related Work
Starting from the work of Bylander [1994], many noise tolerant versions of the perceptron algorithm
have been developed. This includes the passive-aggressive family of algorithms [Crammer et al.,
2006], confidence weighted learning [Dredze et al., 2008], AROW [Crammer et al., 2009] and the
NHERD algorithm [Crammer and Lee, 2010]. The survey article by Khardon and Wachman [2007]
provides an overview of some of this literature. A Bayesian approach to the problem of noisy labels
is taken by Graepel and Herbrich [2000] and Lawrence and Schölkopf [2001]. As Adaboost is very
sensitive to label noise, random label noise has also been considered in the context of boosting. Long
and Servedio [2010] prove that any method based on a convex potential is inherently ill-suited to
random label noise. Freund [2009] proposes a boosting algorithm based on a non-convex potential
that is empirically seen to be robust against random label noise.

Stempfel and Ralaivola [2009] proposed the minimization of an unbiased proxy for the case of
the hinge loss. However the hinge loss leads to a non-convex problem. Therefore, they proposed
heuristic minimization approaches for which no theoretical guarantees were provided (We address
the issue in Section 3.1). Cesa-Bianchi et al. [2011] focus on the online learning algorithms where
they only need unbiased estimates of the gradient of the loss to provide guarantees for learning with
noisy data. However, they consider a much harder noise model where instances as well as labels
are noisy. Because of the harder noise model, they necessarily require multiple noisy copies per
clean example and the unbiased estimation schemes also become fairly complicated. In particular,
their techniques break down for non-smooth losses such as the hinge loss. In contrast, we show
that unbiased estimation is always possible in the more benign random classification noise setting.
Manwani and Sastry [2013] consider whether empirical risk minimization of the loss itself on the
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noisy data is a good idea when the goal is to obtain small risk under the clean distribution. But
it holds promise only for 0-1 and squared losses. Therefore, if empirical risk minimization over
noisy samples has to work, we necessarily have to change the loss used to calculate the empirical
risk. More recently, Scott et al. [2013] study the problem of classification under class-conditional
noise model. However, they approach the problem from a different set of assumptions — the noise
rates are not known, and the true distribution satisfies a certain “mutual irreducibility” property.
Furthermore, they do not give any efficient algorithm for the problem.

2 Problem Setup and Background
Let D be the underlying true distribution generating (X,Y ) ∈ X × {±1} pairs from which n iid
samples (X1, Y1), . . . , (Xn, Yn) are drawn. After injecting random classification noise (indepen-

dently for each i) into these samples, corrupted samples (X1, Ỹ1), . . . , (Xn, Ỹn) are obtained. The
class-conditional random noise model (CCN, for short) is given by:

P (Ỹ = −1|Y = +1) = ρ+1, P (Ỹ = +1|Y = −1) = ρ−1, and ρ+1 + ρ−1 < 1

The corrupted samples are what the learning algorithm sees. We will assume that the noise rates

ρ+1 and ρ−1 are known1 to the learner. Let the distribution of (X, Ỹ ) be Dρ. Instances are denoted

by x ∈ X ⊆ R
d. Noisy labels are denoted by ỹ.

Let f : X → R be some real-valued decision function. The risk of f w.r.t. the 0-1 loss is given by
RD(f) = E(X,Y )∼D

[
1{sign(f(X)) 6=Y }

]
. The optimal decision function (called Bayes optimal) that

minimizes RD over all real-valued decision functions is given by f⋆(x) = sign(η(x) − 1/2) where
η(x) = P (Y = 1|x). We denote by R∗ the corresponding Bayes risk under the clean distribution
D, i.e. R∗ = RD(f∗). Let ℓ(t, y) denote a loss function where t ∈ R is a real-valued prediction and

y ∈ {±1} is a label. Let ℓ̃(t, ỹ) denote a suitably modified ℓ for use with noisy labels (obtained using
methods in Sections 3 and 4). It is helpful to summarize the three important quantities associated
with a decision function f :

1. Empirical ℓ̃-risk on the observed sample: R̂ℓ̃(f) :=
1
n

∑n
i=1 ℓ̃(f(Xi), Ỹi).

2. As n grows, we expect R̂ℓ̃(f) to be close to the ℓ̃-risk under the noisy distribution Dρ:

Rℓ̃,Dρ
(f) := E(X,Ỹ )∼Dρ

[
ℓ̃(f(X), Ỹ )

]
.

3. ℓ-risk under the “clean” distribution D: Rℓ,D(f) := E(X,Y )∼D [ℓ(f(X), Y )].
Typically, ℓ is a convex function that is calibrated with respect to an underlying loss function such as
the 0-1 loss. ℓ is said to be classification-calibrated [Bartlett et al., 2006] if and only if there exists a
convex, invertible, nondecreasing transformationψℓ (with ψℓ(0) = 0) such that ψℓ(RD(f)−R∗) ≤
Rℓ,D(f)−minf Rℓ,D(f). The interpretation is that we can control the excess 0-1 risk by controlling
the excess ℓ-risk.

If f is not quantified in a minimization, then it is implicit that the minimization is over all measurable
functions. Though most of our results apply to a general function class F , we instantiate F to be the
set of hyperplanes of bounded L2 norm,W = {w ∈ R

d : ‖w‖2 ≤W2} for certain specific results.
Proofs are provided in the Appendix A.

3 Method of Unbiased Estimators
Let F : X → R be a fixed class of real-valued decision functions, over which the empirical risk is
minimized. The method of unbiased estimators uses the noise rates to construct an unbiased estima-
tor ℓ̃(t, ỹ) for the loss ℓ(t, y). However, in the experiments we will tune the noise rate parameters
through cross-validation. The following key lemma tells us how to construct unbiased estimators of
the loss from noisy labels.

Lemma 1. Let ℓ(t, y) be any bounded loss function. Then, if we define,

ℓ̃(t, y) :=
(1− ρ−y) ℓ(t, y)− ρy ℓ(t,−y)

1− ρ+1 − ρ−1

we have, for any t, y, Eỹ

[
ℓ̃(t, ỹ)

]
= ℓ(t, y) .

1This is not necessary in practice. See Section 5.
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We can try to learn a good predictor in the presence of label noise by minimizing the sample average

f̂ ← argmin
f∈F

R̂ℓ̃(f) .

By unbiasedness of ℓ̃ (Lemma 1), we know that, for any fixed f ∈ F , the above sample average
converges to Rℓ,D(f) even though the former is computed using noisy labels whereas the latter
depends on the true labels. The following result gives a performance guarantee for this procedure in
terms of the Rademacher complexity of the function class F . The main idea in the proof is to use
the contraction principle for Rademacher complexity to get rid of the dependence on the proxy loss

ℓ̃. The price to pay for this is Lρ, the Lipschitz constant of ℓ̃.

Lemma 2. Let ℓ(t, y) be L-Lipschitz in t (for every y). Then, with probability at least 1− δ,

max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| ≤ 2LρR(F) +

√
log(1/δ)

2n
where R(F) := EXi,ǫi

[
supf∈F

1
nǫif(Xi)

]
is the Rademacher complexity of the function class F

and Lρ ≤ 2L/(1 − ρ+1 − ρ−1) is the Lipschitz constant of ℓ̃. Note that ǫi’s are iid Rademacher
(symmetric Bernoulli) random variables.

The above lemma immediately leads to a performance bound for f̂ with respect to the clean distri-
bution D. Our first main result is stated in the theorem below.

Theorem 3 (Main Result 1). With probability at least 1− δ,

Rℓ,D(f̂) ≤ min
f∈F

Rℓ,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n
.

Furthermore, if ℓ is classification-calibrated, there exists a nondecreasing function ζℓ with ζℓ(0) = 0
such that,

RD(f̂)−R∗ ≤ ζℓ
(
min
f∈F

Rℓ,D(f)−min
f
Rℓ,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n

)
.

The term on the right hand side involves both approximation error (that is small if F is large) and
estimation error (that is small if F is small). However, by appropriately increasing the richness of

the class F with sample size, we can ensure that the misclassification probability of f̂ approaches
the Bayes risk of the true distribution. This is despite the fact that the method of unbiased estimators

computes the empirical minimizer f̂ on a sample from the noisy distribution. Getting the optimal

empirical minimizer f̂ is efficient if ℓ̃ is convex. Next, we address the issue of convexity of ℓ̃.

3.1 Convex losses and their estimators
Note that the loss ℓ̃ may not be convex even if we start with a convex ℓ. An example is provided

by the familiar hinge loss ℓhin(t, y) = [1 − yt]+. Stempfel and Ralaivola [2009] showed that ℓ̃hin is
not convex in general (of course, when ρ+1 = ρ−1 = 0, it is convex). Below we provide a simple

condition to ensure convexity of ℓ̃.

Lemma 4. Suppose ℓ(t, y) is convex and twice differentiable almost everywhere in t (for every y)
and also satisfies the symmetry property

∀t ∈ R, ℓ′′(t, y) = ℓ′′(t,−y) .

Then ℓ̃(t, y) is also convex in t.

Examples satisfying the conditions of the lemma above are the squared loss ℓsq(t, y) = (t− y)2, the
logistic loss ℓlog(t, y) = log(1 + exp(−ty)) and the Huber loss:

ℓHub(t, y) =





−4yt if yt < −1
(t− y)2 if − 1 ≤ yt ≤ 1

0 if yt > 1

Consider the case where ℓ̃ turns out to be non-convex when ℓ is convex, as in ℓ̃hin. In the online
learning setting (where the adversary chooses a sequence of examples, and the prediction of a learner
at round i is based on the history of i − 1 examples with independently flipped labels), we could
use a stochastic mirror descent type algorithm [Nemirovski et al., 2009] to arrive at risk bounds (See
Appendix B) similar to Theorem 3. Then, we only need the expected loss to be convex and therefore
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ℓhin does not present a problem. At first blush, it may appear that we do not have much hope of

obtaining f̂ in the iid setting efficiently. However, Lemma 2 provides a clue.

We will now focus on the function classW of hyperplanes. Even though R̂ℓ̃(w) is non-convex, it

is uniformly close to Rℓ̃,Dρ
(w). Since Rℓ̃,Dρ

(w) = Rℓ,D(w), this shows that R̂ℓ̃(w) is uniformly

close to a convex function over w ∈ W . The following result shows that we can therefore approx-

imately minimize F (w) = R̂ℓ̃(w) by minimizing the biconjugate F ⋆⋆. Recall that the (Fenchel)
biconjugate F ⋆⋆ is the largest convex function that minorizes F .

Lemma 5. Let F :W → R be a non-convex function defined on function classW such it is ε-close
to a convex function G :W → R:

∀w ∈ W , |F (w)−G(w)| ≤ ε
Then any minimizer of F ⋆⋆ is a 2ε-approximate (global) minimizer of F .

Now, the following theorem establishes bounds for the case when ℓ̃ is non-convex, via the solution
obtained by minimizing the convex function F ∗∗.

Theorem 6. Let ℓ be a loss, such as the hinge loss, for which ℓ̃ is non-convex. Let W = {w :
‖w2‖ ≤ W2}, let ‖Xi‖2 ≤ X2 almost surely, and let ŵapprox be any (exact) minimizer of the
convex problem

min
w∈W

F ⋆⋆(w) ,

where F ⋆⋆(w) is the (Fenchel) biconjugate of the function F (w) = R̂ℓ̃(w). Then, with probability

at least 1− δ, ŵapprox is a 2ε-minimizer of R̂ℓ̃(·) where

ε =
2LρX2W2√

n
+

√
log(1/δ)

2n
.

Therefore, with probability at least 1− δ,

Rℓ,D(ŵapprox) ≤ min
w∈W

Rℓ,D(w) + 4ε .

Numerical or symbolic computation of the biconjugate of a multidimensional function is difficult,
in general, but can be done in special cases. It will be interesting to see if techniques from Compu-
tational Convex Analysis [Lucet, 2010] can be used to efficiently compute the biconjugate above.

4 Method of label-dependent costs
We develop the method of label-dependent costs from two key observations. First, the Bayes clas-

sifier for noisy distribution, denoted f̃∗, for the case ρ+1 6= ρ−1, simply uses a threshold different

from 1/2. Second, f̃∗ is the minimizer of a “label-dependent 0-1 loss” on the noisy distribution. The
framework we develop here generalizes known results for the uniform noise rate setting ρ+1 = ρ−1

and offers a more fundamental insight into the problem. The first observation is formalized in the
lemma below.

Lemma 7. Denote P (Y = 1|X) by η(X) and P (Ỹ = 1|X) by η̃(X). The Bayes classifier under

the noisy distribution, f̃∗ = argminf E(X,Ỹ )∼Dρ

[
1{sign(f(X)) 6=Ỹ }

]
is given by,

f̃∗(x) = sign(η̃(x)− 1/2) = sign

(
η(x) − 1/2− ρ−1

1− ρ+1 − ρ−1

)
.

Interestingly, this “noisy” Bayes classifier can also be obtained as the minimizer of a weighted 0-1
loss; which as we will show, allows us to “correct” for the threshold under the noisy distribution.
Let us first introduce the notion of “label-dependent” costs for binary classification. We can write
the 0-1 loss as a label-dependent loss as follows:

1{sign(f(X)) 6=Y } = 1{Y=1}1{f(X)≤0} + 1{Y=−1}1{f(X)>0}

We realize that the classical 0-1 loss is unweighted. Now, we could consider an α-weighted version
of the 0-1 loss as:

Uα(t, y) = (1− α)1{y=1}1{t≤0} + α1{y=−1}1{t>0},

where α ∈ (0, 1). In fact we see that minimization w.r.t. the 0-1 loss is equivalent to that w.r.t.
U1/2(f(X), Y ). It is not a coincidence that Bayes optimal f∗ has a threshold 1/2. The following

lemma [Scott, 2012] shows that in fact for any α-weighted 0-1 loss, the minimizer thresholds η(x)
at α.
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Lemma 8 (α-weighted Bayes optimal [Scott, 2012]). Define Uα-risk under distribution D as

Rα,D(f) = E(X,Y )∼D[Uα(f(X), Y )].

Then, f∗
α(x) = sign(η(x) − α) minimizes Uα-risk.

Now consider the risk of f w.r.t. the α-weighted 0-1 loss under noisy distribution Dρ:

Rα,Dρ
(f) = E(X,Ỹ )∼Dρ

[
Uα(f(X), Ỹ )

]
.

At this juncture, we are interested in the following question: Does there exist an α ∈ (0, 1) such
that the minimizer of Uα-risk under noisy distribution Dρ has the same sign as that of the Bayes
optimal f∗? We now present our second main result in the following theorem that makes a stronger
statement — the Uα-risk under noisy distribution Dρ is linearly related to the 0-1 risk under the
clean distribution D. The corollary of the theorem answers the question in the affirmative.

Theorem 9 (Main Result 2). For the choices,

α∗ =
1− ρ+1 + ρ−1

2
and Aρ =

1− ρ+1 − ρ−1

2
,

there exists a constant BX that is independent of f such that, for all functions f ,

Rα∗,Dρ
(f) = AρRD(f) +BX .

Corollary 10. The α⋆-weighted Bayes optimal classifier under noisy distribution coincides with
that of 0-1 loss under clean distribution:

argmin
f

Rα∗,Dρ
(f) = argmin

f
RD(f) = sign(η(x) − 1/2).

4.1 Proposed Proxy Surrogate Losses
Consider any surrogate loss function ℓ; and the following decomposition:

ℓ(t, y) = 1{y=1}ℓ1(t) + 1{y=−1}ℓ−1(t)

where ℓ1 and ℓ−1 are partial losses of ℓ. Analogous to the 0-1 loss case, we can define α-weighted
loss function (Eqn. (1)) and the corresponding α-weighted ℓ-risk. Can we hope to minimize an α-
weighted ℓ-risk with respect to noisy distribution Dρ and yet bound the excess 0-1 risk with respect
to the clean distributionD? Indeed, the α⋆ specified in Theorem 9 is precisely what we need. We are
ready to state our third main result, which relies on a generalized notion of classification calibration
for α-weighted losses [Scott, 2012]:

Theorem 11 (Main Result 3). Consider the empirical risk minimization problem with noisy labels:

f̂α = argmin
f∈F

1

n

n∑

i=1

ℓα(f(Xi), Ỹi).

Define ℓα as an α-weighted margin loss function of the form:

ℓα(t, y) = (1− α)1{y=1}ℓ(t) + α1{y=−1}ℓ(−t) (1)

where ℓ : R→ [0,∞) is a convex loss function with Lipschitz constantL such that it is classification-

calibrated (i.e. ℓ
′

(0) < 0). Then, for the choices α∗ and Aρ in Theorem 9, there exists a nonde-
creasing function ζℓα⋆ with ζℓα⋆ (0) = 0, such that the following bound holds with probability at
least 1− δ:

RD(f̂α∗)−R∗ ≤ A−1
ρ ζℓα⋆

(
min
f∈F

Rα∗,Dρ
(f)−min

f
Rα∗,Dρ

(f) + 4LR(F) + 2

√
log(1/δ)

2n

)
.

Aside from bounding excess 0-1 risk under the clean distribution, the importance of the above the-
orem lies in the fact that it prescribes an efficient algorithm for empirical minimization with noisy

labels: ℓα is convex if ℓ is convex. Thus for any surrogate loss function including ℓhin, f̂α∗ can be
efficiently computed using the method of label-dependent costs. Note that the choice of α∗ above
is quite intuitive. For instance, when ρ−1 ≪ ρ+1 (this occurs in settings such as Liu et al. [2003]
where there are only positive and unlabeled examples), α∗ < 1 − α∗ and therefore mistakes on
positives are penalized more than those on negatives. This makes intuitive sense since an observed
negative may well have been a positive but the other way around is unlikely. In practice we do not
need to know α∗, i.e. the noise rates ρ+1 and ρ−1. The optimization problem involves just one
parameter that can be tuned by cross-validation (See Section 5).
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5 Experiments
We show the robustness of the proposed algorithms to increasing rates of label noise on synthetic and
real-world datasets. We compare the performance of the two proposed methods with state-of-the-art
methods for dealing with random classification noise. We divide each dataset (randomly) into 3
training and test sets. We use a cross-validation set to tune the parameters specific to the algorithms.
Accuracy of a classification algorithm is defined as the fraction of examples in the test set classified
correctly with respect to the clean distribution. For given noise rates ρ+1 and ρ−1, labels of the
training data are flipped accordingly and average accuracy over 3 train-test splits is computed2. For

evaluation, we choose a representative algorithm based on each of the two proposed methods — ℓ̃log

for the method of unbiased estimators and the widely-used C-SVM [Liu et al., 2003] method (which
applies different costs on positives and negatives) for the method of label-dependent costs.

5.1 Synthetic data
First, we use the synthetic 2D linearly separable dataset shown in Figure 1(a). We observe from
experiments that our methods achieve over 90% accuracy even when ρ+1 = ρ−1 = 0.4. Figure 1

shows the performance of ℓ̃log on the dataset for different noise rates. Next, we use a 2D UCI
benchmark non-separable dataset (‘banana’). The dataset and classification results using C-SVM
(in fact, for uniform noise rates, α∗ = 1/2, so it is just the regular SVM) are shown in Figure 2. The
results for higher noise rates are impressive as observed from Figures 2(d) and 2(e). The ‘banana’
dataset has been used in previous research on classification with noisy labels. In particular, the
Random Projection classifier [Stempfel and Ralaivola, 2007] that learns a kernel perceptron in the
presence of noisy labels achieves about 84% accuracy at ρ+1 = ρ−1 = 0.3 as observed from
our experiments (as well as shown by Stempfel and Ralaivola [2007]), and the random hyperplane
sampling method [Stempfel et al., 2007] gets about the same accuracy at (ρ+1, ρ−1) = (0.2, 0.4) (as
reported by Stempfel et al. [2007]). Contrast these with C-SVM that achieves about 90% accuracy
at ρ+1 = ρ−1 = 0.2 and over 88% accuracy at ρ+1 = ρ−1 = 0.4.
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Figure 1: Classification of linearly separable synthetic data set using ℓ̃log. The noise-free data is
shown in the leftmost panel. Plots (b) and (c) show training data corrupted with noise rates (ρ+1 =
ρ−1 = ρ) 0.2 and 0.4 respectively. Plots (d) and (e) show the corresponding classification results.
The algorithm achieves 98.5% accuracy even at 0.4 noise rate per class. (Best viewed in color).
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Figure 2: Classification of ‘banana’ data set using C-SVM. The noise-free data is shown in (a). Plots
(b) and (c) show training data corrupted with noise rates (ρ+1 = ρ−1 = ρ) 0.2 and 0.4 respectively.
Note that for ρ+1 = ρ−1, α∗ = 1/2 (i.e. C-SVM reduces to regular SVM). Plots (d) and (e) show
the corresponding classification results (Accuracies are 90.6% and 88.5% respectively). Even when
40% of the labels are corrupted (ρ+1 = ρ−1 = 0.4), the algorithm recovers the class structures as
observed from plot (e). Note that the accuracy of the method at ρ = 0 is 90.8%.

5.2 Comparison with state-of-the-art methods on UCI benchmark

We compare our methods with three state-of-the-art methods for dealing with random classi-
fication noise: Random Projection (RP) classifier [Stempfel and Ralaivola, 2007]), NHERD

2Note that training and cross-validation are done on the noisy training data in our setting. To account for
randomness in the flips to simulate a given noise rate, we repeat each experiment 3 times — independent
corruptions of the data set for same setting of ρ+1 and ρ

−1, and present the mean accuracy over the trials.

7



DATASET (d, n+, n−) Noise rates ℓ̃log C-SVM PAM NHERD RP
ρ+1 = ρ−1 = 0.2 70.12 67.85 69.34 64.90 69.38

Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 70.07 67.81 67.79 65.68 66.28
(9, 77, 186) ρ+1 = ρ−1 = 0.4 67.79 67.79 67.05 56.50 54.19

ρ+1 = ρ−1 = 0.2 76.04 66.41 69.53 73.18 75.00
Diabetes ρ+1 = 0.3, ρ−1 = 0.1 75.52 66.41 65.89 74.74 67.71
(8, 268, 500) ρ+1 = ρ−1 = 0.4 65.89 65.89 65.36 71.09 62.76

ρ+1 = ρ−1 = 0.2 87.80 94.31 96.22 78.49 84.02
Thyroid ρ+1 = 0.3, ρ−1 = 0.1 80.34 92.46 86.85 87.78 83.12
(5, 65, 150) ρ+1 = ρ−1 = 0.4 83.10 66.32 70.98 85.95 57.96

ρ+1 = ρ−1 = 0.2 71.80 68.40 63.80 67.80 62.80
German ρ+1 = 0.3, ρ−1 = 0.1 71.40 68.40 67.80 67.80 67.40
(20, 300, 700) ρ+1 = ρ−1 = 0.4 67.19 68.40 67.80 54.80 59.79

ρ+1 = ρ−1 = 0.2 82.96 61.48 69.63 82.96 72.84
Heart ρ+1 = 0.3, ρ−1 = 0.1 84.44 57.04 62.22 81.48 79.26
(13, 120, 150) ρ+1 = ρ−1 = 0.4 57.04 54.81 53.33 52.59 68.15

ρ+1 = ρ−1 = 0.2 82.45 91.95 92.90 77.76 65.29
Image ρ+1 = 0.3, ρ−1 = 0.1 82.55 89.26 89.55 79.39 70.66
(18, 1188, 898) ρ+1 = ρ−1 = 0.4 63.47 63.47 73.15 69.61 64.72

Table 1: Comparative study of classification algorithms on UCI benchmark datasets. Entries within
1% from the best in each row are in bold. All the methods except NHERD variants (which
are not kernelizable) use Gaussian kernel with width 1. All method-specific parameters are esti-

mated through cross-validation. Proposed methods (ℓ̃log and C-SVM) are competitive across all the
datasets. We show the best performing NHERD variant (‘project’ and ‘exact’) in each case.

[Crammer and Lee, 2010]) (project and exact variants3), and perceptron algorithm with mar-
gin (PAM) which was shown to be robust to label noise by Khardon and Wachman [2007].
We use the standard UCI classification datasets, preprocessed and made available by Gunnar
Rätsch(http://theoval.cmp.uea.ac.uk/matlab). For kernelized algorithms, we use
Gaussian kernel with width set to the best width obtained by tuning it for a traditional SVM on

the noise-free data. For ℓ̃log, we use ρ+1 and ρ−1 that give the best accuracy in cross-validation. For
C-SVM, we fix one of the weights to 1, and tune the other. Table 1 shows the performance of the
methods for different settings of noise rates. C-SVM is competitive in 4 out of 6 datasets (Breast
cancer, Thyroid, German and Image), while relatively poorer in the other two. On the other hand,

ℓ̃log is competitive in all the data sets, and performs the best more often. When about 20% labels are
corrupted, uniform (ρ+1 = ρ−1 = 0.2) and non-uniform cases (ρ+1 = 0.3, ρ−1 = 0.1) have similar

accuracies in all the data sets, for both C-SVM and ℓ̃log. Overall, we observe that the proposed
methods are competitive and are able to tolerate moderate to high amounts of label noise in the data.
Finally, in domains where noise rates are approximately known, our methods can benefit from the
knowledge of noise rates. Our analysis shows that the methods are fairly robust to misspecification
of noise rates (See Appendix C for results).

6 Conclusions and Future Work
We addressed the problem of risk minimization in the presence of random classification noise, and
obtained general results in the setting using the methods of unbiased estimators and weighted loss
functions. We have given efficient algorithms for both the methods with provable guarantees for
learning under label noise. The proposed algorithms are easy to implement and the classification
performance is impressive even at high noise rates and competitive with state-of-the-art methods on
benchmark data. The algorithms already give a new family of methods that can be applied to the
positive-unlabeled learning problem [Elkan and Noto, 2008], but the implications of the methods for
this setting should be carefully analysed. We could consider harder noise models such as label noise
depending on the example, and “nasty label noise” where labels to flip are chosen adversarially.

7 Acknowledgments
This research was supported by DOD Army grant W911NF-10-1-0529 to ID; PR acknowledges the
support of ARO via W911NF-12-1-0390 and NSF via IIS-1149803, IIS-1320894.

3A family of methods proposed by Crammer and coworkers [Crammer et al., 2006, 2009, Dredze et al.,
2008] could be compared to, but [Crammer and Lee, 2010] show that the 2 NHERD variants perform the best.
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A Proofs

Proof of Lemma 1. One could directly compute and see that ℓ̃ is unbiased. But to give a little more

insight into what motivates the definition of ℓ̃, consider the conditions that unbiasedness imposes on
it. We should have, for every t,

E
ỹ

ρ∼y

[
ℓ̃(t, ỹ)

]
= ℓ(t, y) .

Considering the cases y = +1 and y = −1 separately, gives the equations

(1− ρ+1)ℓ̃(t,+1) + ρ+1ℓ̃(t,−1) = ℓ(t,+1) ,

(1− ρ−1)ℓ̃(t,−1) + ρ−1ℓ̃(t,+1) = ℓ(t,−1) .

Solving these two equations for ℓ̃(t,+1) and ℓ̃(t,−1) gives

ℓ̃(t,+1) =
(1 − ρ−1)ℓ(t,+1)− ρ+1ℓ(t,−1)

1− ρ+1 − ρ−1
,

ℓ̃(t,−1) = (1 − ρ+1)ℓ(t,−1)− ρ−1ℓ(t,+1)

1− ρ+1 − ρ−1
.

Proof of Lemma 2. By the basic Rademacher bound on the maximal deviation between risks and
empirical risks over f ∈ F , we get

max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| ≤ 2 ·R(ℓ̃ ◦ F) +

√
log(1/δ)

2n

where

R(ℓ̃ ◦ F) := EXi,Ỹi,ǫi

[
sup
f∈F

1

n

n∑

i=1

ǫiℓ̃(f(Xi), Ỹi)

]

If ℓ is L-Lipschitz then ℓ̃ is Lρ Lipschitz for Lρ = (1 + |ρ+1 − ρ−1|)L/(1 − ρ+1 − ρ−1) ≤
2L/(1− ρ+1− ρ−1) and hence by the Lipschitz composition property of Rademacher averages, we
have

R(ℓ̃ ◦ F) ≤ Lρ ·R(F) .

Proof of Theorem 3. Let f⋆ be the minimizer of Rℓ,D(·) over F . We have

Rℓ,D(f̂)−Rℓ,D(f⋆)

= Rℓ̃,Dρ
(f̂)−Rℓ̃,Dρ

(f⋆)

= R̂ℓ̃(f̂)− R̂ℓ̃(f
⋆) + (Rℓ̃,Dρ

(f̂)− R̂ℓ̃(f̂))

+ (R̂ℓ̃(f
⋆)−Rℓ̃,Dρ

(f⋆))

≤ 0 + 2max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| .

We can now apply Lemma 2 to control the last quantity above, and thus obtain the first statement of
the theorem. Now, if ℓ is classification-calibrated, then from Theorem 1 of [Bartlett et al., 2006], we
know there exists a convex, invertible, nondecreasing transformation ψℓ with ψℓ(0) = 0 such that,

ψℓ(RD(f)−R∗) ≤ Rℓ,D(f)− inf
f
Rℓ,D(f)

Subtracting minf Rℓ,D(f) off either sides of the first inequality in the theorem statement, and real-

izing that ψ−1
ℓ is nondecreasing as well, with ψ−1

ℓ (0) = 0, we conclude:

RD(f̂)−R∗ ≤ ψ−1
ℓ

(
min
f∈F

Rℓ,D(f)−min
f
Rℓ,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n

)
.
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Proof of Lemma 4. Let us compute ℓ̃′′(t, y) (recall that differentiation is w.r.t. t) and show that it is
non-negative under the symmetry condition ℓ′′(t, y) = ℓ′′(t,−y). We have

ℓ̃′′(t, y) =
(1− ρ−y)ℓ

′′(t, y)− ρyℓ′′(t,−y)
1− ρ+1 − ρ−1

=
(1− ρ−y)ℓ

′′(t, y)− ρyℓ′′(t, y)
1− ρ+1 − ρ−1

=
(1− ρ−y − ρy)ℓ′′(t, y)

1− ρ+1 − ρ−1

= ℓ′′(t, y) ≥ 0 ,

since ℓ is convex in t.

Proof of Lemma 5. Since F ≥ G − ε and F ⋆⋆ is the largest convex function that minorizes F , we
must have F ⋆⋆ ≥ G− ε. This means that F ⋆⋆ + 2ε ≥ G+ ε ≥ F . Thus, F is sandwiched between
F ⋆⋆ + 2ε and F ⋆⋆. The lemma follows directly from this.

Proof of Theorem 6. The first part of the theorem follows by combining Lemma 2 and Lemma 5,
using the fact that if ‖w‖2 ≤ W2 for any w and ‖Xi‖2 ≤ X2 then, R(W) ≤ W2X2/

√
n. The

second part follows by noting that Theorem 3 is true also for 2ε-minimizers of the empirical risk R̂ℓ̃
provided we add 2ε to the right hand side.

Proof of Lemma 7. The first equality is true because the optimal bayes classifier underDρ thresholds

η̃(X) = P (Ỹ = 1|X) at 1/2. Now,

η̃(X) = P (Ỹ = 1, Y = 1|X) + P (Ỹ = 1, Y = −1|X)

= P (Ỹ = 1|Y = 1)P (Y = 1|X) + P (Ỹ = 1|Y = −1)P (Y = −1|X)

= (1 − ρ+1)η(X) + ρ−1(1− η(X))

= (1 − ρ+1 − ρ−1)η(X) + ρ−1.

Therefore,

sign(η̃(x) − 1/2) = sign((1− ρ+1 − ρ−1)η(x) + ρ−1 − 1/2)

= sign

(
η(x) − 1/2− ρ−1

1− ρ+1 − ρ−1

)
.

Proof of Theorem 9. Let us think of f as {±1}-valued since both CD and Cα,Dρ
depend only on

sign(f). We have,

CD(f) = EY

[
1{f(X) 6=Y }

]

and

Cα,Dρ
(f) = EỸ

[
(1 − α)1{Ỹ=1}1{f(X) 6=1} + α1{Ỹ =−1}1{f(X) 6=−1}

]
.

Note that RD(f) = EX [CD(f)], and Rα,Dρ
(f) = EX

[
Cα,Dρ

(f)
]
. Also note that CD(f) = η(X)

if f(X) = −1, and CD(f) = 1− η(X) otherwise.
Similarly, Cα,Dρ

(f) = (1 − α)η̃(X) if f(X) = −1 and Cα,Dρ
(f) = α(1 − η̃(X)) otherwise. We

want to find A and B such that the following equations hold simultaneously:

(1− α)η̃(X) = Aη(X) +B

α(1 − η̃(X)) = A(1− η(X)) +B

Using the relation between η(X) and η̃(X) in Lemma 7 and solving for A we get,

A =
(1− ρ+1 − ρ−1)η(X) + ρ−1 − α

2η(X)− 1
.

2



Choosing α = α∗ = 1−ρ+1+ρ−1

2 , and simplifying, we get a constant A that depends only on the
noise rates:

A = Aρ =
1− ρ+1 − ρ−1

2
.

Consequently,

B = ρ−1(1− α∗)− α∗

2
(1 − ρ+1 − ρ−1)η(X).

Taking expectation with respect to X , we conclude:

Rα∗,Dη
(f) = AρRD(f) + BX ,

where BX = EX [B].

Proof of Corollary 10. The proof is immediate from Theorem 9 observing that BX is independent
of f .

Proof of Theorem 11. From Corollary 4.1 in [Scott, 2012], we can infer that ℓα is α-CC for given

α ∈ (0, 1), as ℓ is convex, classification-calibrated and ℓ
′

(0) < 0. Then, from Theorem 3.1 in [Scott,
2012], there exists an invertible, non-decreasing convex transformation ψℓα with ψℓα(0) = 0 such
that, for any f and any distribution D,

ψℓα(Rα,D(f)−min
f
Rα,D(f)) ≤ Rℓα,D(f)−min

f
Rℓα,D(f).

Fix distribution to be Dρ, and let f = f̂α. The RHS of the above inequality can then be controlled
similarly as in the proof of Theorem 3. It is easy to see that the Lipschitz constant of ℓα is same as
that of ℓ, denoted L. With probability at least 1− δ:

Rℓα,Dρ
(f̂α)−min

f∈F
Rℓα,Dρ

(f) ≤ 4LR(F) + 2

√
log(1/δ)

2n
.

Now considerRα,Dρ
(f)−minf Rα,Dρ

(f). Using the linear relationship betweenRα,Dρ
andRD at

α∗ (Theorem 9), we get Rα∗,Dρ
(f)−minf Rα∗,Dρ

(f) = Aρ(RD(f)−R∗). BX vanishes because

it is constant for the distribution Dρ. Note that ψ−1
ℓα∗

is nondecreasing as well and ψ−1
ℓα∗

(0) = 0.

Subtracting minf Rα∗,Dρ
(f) from both sides of the second inequality above, the statement of the

theorem follows: With probability at least 1− δ,

RD(f̂α∗)−R∗ ≤ A−1
ρ ψ−1

ℓα⋆

(
min
f∈F

Rα∗,Dρ
(f)−min

f
Rα∗,Dρ

(f) + 4LR(F) + 2

√
log(1/δ)

2n

)
.

B Online learning

Consider the setting where an adversary chooses a sequence (x1, y1), . . . , (xn, yn) of examples. At
time i, the learner has to make a prediction based on (x1, ỹ1), . . . , (xi−1, ỹi−1) and xi where ỹi
are the noisy labels. But the learner’s cumulative loss as well as that of the best fixed predictor in
hindsight are both computed using the true labels yi. Note that if ℓ(t, y) is convex in t (for every y),
and we choose λ1 ∈ ∂ℓ(t, y) and λ2 ∈ ∂ℓ(t,−y), (where ∂ℓ is the subdifferential w.r.t. t) we have

Eỹ [g(t, ỹ)] ∈ ∂ℓ(t, y) (2)

where

g(t, y) =
(1 − ρ−y)λ1 − ρy λ2

1− ρ+1 − ρ−1
(3)

We show that Algorithm 1 indeed satisfies low regret (in expectation) on the original sequence
chosen by the adversary even though it only receives noisy versions of the labels. We fix the function
class to be the setW of bounded-norm hyperplanes.
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Algorithm 1 Online learning using unbiased gradients

Choose learning rate γ > 0
W = {w : ‖w‖2 ≤W2}
ΠW (·) = Euclidean projection ontoW
Initialize w0 ← 0

for i = 1 to n do
Receive xi ∈ R

d

Predict 〈wi−1,xi〉
Receive noisy label ỹi
Update wi ← ΠW (wi−1 − γg(〈wi−1,xi〉 , ỹi)xi) where g(·, ·) is defined in (3)

end for

Theorem 12. Let ℓ(t, y) be convex and L-Lipschitz in t (for every y). Fix an arbitrary sequence
(x1, y1), . . . , (xn, yn). If Algorithm 1 is run on noisy data set (x1, ỹ1), . . . , (xn, ỹn) with learning
rate γ =W2/(X2Lρ

√
n) where ỹi is noisy version of yi with noise rates ρ+1, ρ−1, then we have

Eỹ1:n

[
max

‖w‖2≤W2

n∑

i=1

(ℓ(〈wi−1,xi〉 , yi)− ℓ(〈w,xi〉 , yi))
]
≤ LρX2W2

√
n ,

where Lρ := (1+ |ρ+1−ρ−1|)L/(1−ρ+1−ρ−1) and it is assumed that ‖xi‖ ≤ X2 for all i ∈ [n].

Proof. Let us use the abbreviation gi for g(〈wi−1,xi〉 , ỹi)xi so that the update in Algorithm 1
becomes wi ← ΠW (wi−1 − γgi). It is well known [Zinkevich, 2003] that, for any w,

n∑

i=1

〈gi,wi−1 −w〉 ≤ γ

2

n∑

i=1

‖gi‖2 +
‖w‖2
2γ

. (4)

Since ℓ is L-Lipschitz, the λ1, λ2 appearing in the definition (3) of g(·, ·) satisfy |λ1|, |λ2| ≤ L.
This implies |g(t, y)| ≤ (1 + |ρ+1 − ρ−1|)L/(1 − ρ+1 − ρ−1) = Lρ and hence ‖gi‖ ≤ LρX2.

Thus, we have, for any w with ‖w‖ ≤ W2,
∑n

i=1 〈gi,wi−1 −w〉 ≤ γL2
ρX

2
2n

2 +
W 2

2

2γ . Choosing

γ = (W2/LρX2)
1√
n

, we get
∑n

i=1 〈gi,wi−1 −w〉 ≤ LρX2W2
√
n. Note that wi−1 only depends

on ỹ1:i−1. Hence

Eỹi
[〈gi,wi−1 −w〉 | ỹ1:i−1] = 〈Eỹi

[gi | ỹ1:i−1] ,wi−1 −w〉 ≥ ℓ(〈wi−1,xi〉 , yi)−ℓ(〈w,xi〉 , yi)
because Eỹi

[gi | ỹ1:i−1] ∈ ∂w=wi−1
ℓ(〈w,xi〉 , yi) by (2) and the chain rule for differentiation, and

ℓ(〈w,xi〉 , yi) is convex in w. Thus, for any w with ‖w‖2 ≤W2,

Eỹ1:n

[
n∑

i=1

ℓ(〈wi−1,xi〉 , yi)
]
−

n∑

i=1

ℓ(〈w,xi〉 , yi) ≤ LρX2W2

√
n.

Since the above inequality is true for any w with ‖w‖2 ≤ 1, we have

Eỹ1:n

[
n∑

i=1

ℓ(〈wi−1,xi〉 , yi)
]
− min

‖w‖2≤W2

n∑

i=1

ℓ(〈w,xi〉 , yi) ≤ LρX2W2

√
n.

Observing that the minimum over w is not random allows us to move it inside the expectation giving
us the theorem.

C Experiments

C.1 Knowledge of noise rates

The proposed algorithms require the knowledge of noise rates ρ+1 and ρ−1. However, in practice,
we do not know the true value of noise rates, and therefore we resort to cross-validating the values
in our experiments. We emphasize here that in case the true noise rates are known, our methods
can benefit from that knowledge as observed from our experiments (results not shown), whereas the
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(b) Hinge online
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(c) Huber online
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(d) Logistic online

Figure 3: Study of sensitivity of batch (ℓ̃log) and online (Hinge, Huber and Logistic) methods (Al-
gorithm 1) to specification of noise rates ρ+1 and ρ−1. True noise rates ρ+1 = ρ−1 = ρ are
misspecified as (ρ+1 ± ǫ, ρ−1 ± ǫ) for ǫ ∈ {0.1, 0.2, 0.3, 0.4}. The ratio between the average accu-
racy for a given ǫ and the accuracy at ǫ = 0, i.e. when true noise rates are specified, is plotted for
different values of noise rates ρ. The ratio is computed for each of the 6 UCI data sets in Table 1
and the mean and the standard deviation of the ratios are shown. Ratio being equal to 1 for a given
ǫ means that the performance of the algorithm, on average, is unaltered by misspecification of noise
rates up to ǫ. As expected, the ratio decreases, i.e. the algorithms perform worse as ǫ increases.
Most of the ratios being close to 1 suggests that the proposed methods are fairly robust with respect
to ǫ-misspecification of noise rates.

competitive methods cannot as they do not involve noise rates. In some cases (and domains), we
may be able to approximately specify noise rates. This motivates our study presented in Figure 3.
True noise rates ρ+1 = ρ−1 = ρ are misspecified as (ρ+1 ± ǫ, ρ−1 ± ǫ) for ǫ ∈ {0.1, 0.2, 0.3, 0.4}.
The ratio between the average accuracy for a given ǫ and the accuracy at ǫ = 0, i.e. when true
noise rates are specified, is a measure of sensitivity of the algorithms to ǫ-misspecification of noise
rates. We would want the ratio to be close to 1 for a given ǫ, which would suggest that the method
is fairly robust with respect to the ǫ-misspecification. The results in Figure 3 show that the proposed
methods are robust to ǫ-misspecification of noise rates, which in turn suggests that our methods can
find better use in applications where labels can be noisy and noise rates are approximately known,
without resorting to ad-hoc cross-validation procedures on the noisy data.
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