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1. Introduction and motivation

Machine learning cannot occur without some means to represent the learned knowledge.
Researchers have long recognized the influence of representational choices, and the major
paradigms in machine learning are organized not around induction algorithms or perfor-
mance elements as much as around representational classes. Major examples include logical
representations, which encode knowledge as rule sets or as univariate decision trees, neu-
ral networks, which instead use nodes connected by weighted links, and instance-based
approaches, which store specific training cases in memory.

In the late 1980s, work onprobabilistic representations also started to appear in the
machine learning literature. This representational framework had a number of attractions,
including a clean probabilistic semantics and the ability to explicitly describe degrees of
certainty. This general approach attracted only a moderate amount of attention until recent
years, when progress on Bayesian belief networks led to enough activity in the area to
justify this special issue on the topic of probabilistic learning.

Representing uncertainty has a long and sometimes chequered history in artificial intel-
ligence. Early work on knowledge-based systems, such asMycin andProspector,
modeled uncertainty explicitly and incorporated approximations to Bayesian inference.
However, subsequent years saw probabilistic approaches largely ignored in AI and ma-
chine learning, until Pearl (1988) clearly demonstrated that probabilistic representations
are less aboutnumbersthan aboutstructure. He showed that a graphical notation, which
lets one specify the independence assumption of a probabilistic model, has clear advantages
for probabilistic inference. Only recently have researchers realized that Pearl’s ideas (and
related work in statistics) have profound implications forlearning, but, as the papers in this
issue show, belief networks and their associated graphical notation now play a prominent
role in work on probabilistic induction.

A fundamental contribution of such probabilistic independence networks to learning is the
notion that the complexity of a probabilistic representation is roughly inversely proportional
to the number of independence assumptions it makes. The process of model building
corresponds to searching among models by trading off complexity and fit to achieve good
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generalization accuracy. One approach is for the modeler to set the network structure a
priori by making specific independence assumptions, thereby limiting model complexity,
as assumed by most authors in this issue. A more general, but more difficult, approach is
to place constraints on the type of independence structure allowed and let the algorithm
consider structures within this constrained space, as in the paper by Friedman, Geiger, and
Goldszmidt.

In this editorial, we briefly review two intertwined themes: that independence structure is
a key factor in learning with probabilistic representations and that probabilistic formalisms
inherit substantial characteristics from their non-probabilistic counterparts. The organiza-
tion reflects the view that one can describe any approach to learning in terms of its:

• representation of learned knowledge;

• the manner in which it uses that knowledge;

• the fitness function used to direct search for knowledge structures; and

• the search method that uses this function to characterize a given training set.

For example, a specific learning algorithm might represent knowledge as a belief network,
use a probabilistic inference algorithm to make predictions with that network, invoke like-
lihood of the joint probability density as its fitness function, and employ a greedy search
method. In the following pages, we address each of these issues. In addition, we summarize
the seven papers in the special issue and suggest some directions for future work on learning
with probabilistic representations.

2. Classes of probabilistic representation

Despite the common motivations among learning researchers interested in probabilistic
formalisms, the community has explored not a single probabilistic representation but many,
typically relying on different forms of independence assumptions and following different
variations on deterministic learning frameworks.

For example, one of the simplest probabilistic schemes is thenaive Bayesian classifier,
which is closely related to the one-layer perceptron in its number of parameters and its
representational power. From an independence viewpoint, it makes the strong assumption
that the attributesAi, i = 1, ..., n are conditionally independent of each other if the class
variable is known. Briefly, for each discrete (symbolic) attribute valuevj assigned to
attributeAi and for classCk, naive Bayes stores estimates for the conditional probability
p(vj |Ck) of that value given the class, along with the probabilityP (Ck) for each class.
For continuous (numeric) attributes, one can either discretize their values into ranges or
store some continuous distribution, like the normal, in terms of its mean and variance. The
conditional independence assumption on the attributes is questionable for many domains
but still useful, since it means few parameters and efficient processing. The naive Bayesian
classifier was the earliest probabilistic framework to appear in the machine learning literature
(e.g., Clark & Niblett, 1989; Kononenko, 1991); in this issue, Domingos and Pazzani discuss
this approach, and the reasons for its success, in some detail.
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Another class of representations, theprobabilistic concept hierarchy, stores knowledge in
a structure similar to a multivariate decision tree. Each node in such a hierarchy has two or
more children, which correspond to specialized subclasses of their parent. The description
at each node is similar to that in a naive Bayesian classifier, storing a conditional probability
distribution for each attribute given the child. As with decision trees, a probabilistic concept
hierarchy recursively partitions the instance space into subregions, with higher-level nodes
describing more general classes and lower levels more specific ones. Most work in this
framework also assumes conditional independence of attributes to some degree, but the
multi-level nature gives much more representational power than naive Bayes. Although this
issue includes no examples of work on probabilistic concept hierarchies, they have been
represented in the machine learning literature for some time. Fisher (1987), Hanson, Stutz,
and Cheeseman (1991), and Jordan and Jacobs (1993) report examples of this approach to
probabilistic representation and learning.

Much recent work has focused onbelief networks, which represent knowledge in a directed
acyclic graph in which nodes correspond to attributes and links may indicate dependencies
between attributes. Thus, they are similar in spirit to multilayer neural networks, an analogy
that Binder, Koller, Russell, and Kanazawa explore in this issue. Stored with each node in
a belief network is a table of conditional probabilities that, for each value of this attribute
and for each combination of values for its parent attributes, specifies an estimate for the
probability that this attribute’s value will occur given the parent combination. Again, for
numeric attributes one can discretize the values or use some distribution like the normal.
To a first approximation, the absence of a link between two attributes in a belief network
indicates the conditional independence of those attributes given their parents. An extreme
case occurs with the naive Bayesian classifier, where the independence assumption leads
to links only from the class attribute to the predictive attributes. Cooper and Herskovits
(1992) report the earliest use of belief networks in the machine learning literature; in this
issue, the papers by Binder et al., Chickering and Heckerman, Dasgupta, and Friedman et
al. all address induction in Bayesian belief networks.

Much of the work on learning with probabilistic representations has focused on classifica-
tion and inference tasks in which simple attribute-value formalisms are sufficient. However,
domains like natural language and molecular biology involve sequential or temporal data,
and researchers have used more powerful representational schemes in response.

The simplest probabilistic formalism for dealing with sequential data,N grams, simply
stores the estimated joint probability for each possible sequence ofN symbols. One can
predict the overall probability of an extended sequence by combining the probabilities
associated with its subsequences and one can learn these probabilistic chunks by simply
counting the number of times that each occurs in training sequences. One can view the
independence structure of anN -gram model as anN−1th order Markov assumption, which
states that the current state is independent of previous symbols given theN − 1 symbols
that immediately preceded it. Although this approach has intuitive appeal, the number of
parameters scales exponentially inN , thus leading to reliance on relatively simple 2-gram
and 3-gram models in practice. Another response, which both Rissanen and Langdon (1981)
and Ron, Singer, and Tishby (1994) have investigated, involves more flexible methods that
store N grams of varying lengths.
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Markov modelsconstitute a more sophisticated approach to sequential and temporal
domains, in that they are effectively a probabilistic variant on finite-state machines. They
represent knowledge as a set of states, each with an associated symbol, and links between
those states, each with an associated probability of transition. In an extension to this
framework,hidden Markov models, the states themselves are unobservable variables that
generate observable symbols from a set of such symbols, each with a distinct probability.
This framework embodies some strong independence assumptions, in particular that each
state depends directly only on the previous state, and each observable depends directly only
on the current state. These assumptions let one use a model’s structure and parameters to
compute the probability that a given sequence of symbols will occur and to estimate the
symbol and transition probabilities from a set of training sequences. One can also view a
hidden Markov model as a type of belief network (Smyth, Heckerman, & Jordan, 1997),
in which the hidden Markov structure is expressed as a long “chain” of successive states,
with one link from each state to each observed variable.1 Hidden Markov models have been
used successfully in speech understanding, molecular biology, and other domains. In this
issue, Ghahramani and Jordan describe an extension of this approach that factors hidden
states into multiple variables.

Another formalism for sequential knowledge,stochastic context-free grammars, is a direct
extension of the nonprobabilistic framework of context-free grammars. These represent
knowledge as a set of rewrite rules, with a single nonterminal (unobservable) symbol on the
left-hand side and one or more symbols on the right-hand side. One generates sequences of
terminal (observable) symbols by starting with the root symbol, selecting a rule with it in
the left-hand side, replacing this symbol with those in the right-hand side, and continuing
to expand symbols until the sequence contains only terminals. The stochastic version
associates a probability with each rewrite rule and assumes that this probability does not
depend on the rules used to generate the symbol in its left-hand side. This assumption lets a
stochastic context-free grammar compute the overall probability of any generated sequence
of terminal symbols, and also to estimate the probabilities on each rewrite rule from a set
of training sequences. The formalism has been widely used in statistical approaches to
natural-language processing (e.g., Charniak, 1993); in this issue, Abe and Mamitsuka use
an extension of the framework to learn about protein structure.

3. Performance elements and measures

Now that we have discussed representational issues, we can consider some approaches to
using learned probabilistic knowledge. Having learned some probabilistic description, a
system must still use that knowledge in some fashion, and one feature that distinguishes
probabilistic representations and performance elements from logical ones is their reliance
on the idea ofevidence combination. Logical formalisms combine features in terms of
conjunctions, disjunctions, or other relations, but they do so in an all-or-none manner.

In contrast, probabilistic methods treat the presence or absence of each feature as evidence,
which they combine to determine the overall probability of some class or inference. They
share this characteristic with connectionist methods and nearest-neighbor methods, but not
with decision lists, univariate decision trees, or other logical approaches. The Bayesian phi-
losophy also recommends combining evidence from different learned hypotheses through
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weighted voting, but many systems use single learned probabilistic descriptions for reasons
of inferential efficiency or comprehensibility.

Although some early work on belief networks emphasized their ability to acquire known
network structures, recent efforts (including the papers in this issue) focus on their ability
to improve along someperformance measurethat is closely tied to the performance task. If
the goal is to classify new cases, then classification error or accuracy is the natural criterion,
and a number of papers in this issue use that metric. If the aim is more flexible inference,
because one does not know in advance the attributes present in each instance, then a more
appropriate criterion is cross entropy, which measures the similarity of the observed and
predicted probability distributions. Classification error is closely associated with the task
of supervisedlearning, whereas cross entropy and related measures are associated with the
task ofunsupervisedlearning.2

We can reformulate these learning tasks and performance measures in probabilistic terms.
Given a set of variablesX1, . . . , Xd, supervised learning aims to learn conditional densities,
e.g.,p(X1|X2, . . . , Xd), whereX1 is the variable to be predicted. IfX1 takes on symbolic
values, then the performance task is classification; ifX1 takes on real values, then the
problem is regression. Accurate estimation of the full conditional density is sufficient but
not always necessary for accurate prediction, as Domingos and Pazzani clarify in their
article in this issue. Unsupervised learning, sometimes calleddensity estimation, deals
with the problem of inducing the full joint density functionp(X1, . . . , Xd), since none of
the variables have preferred status over the others.

The above measures cut across different methodological goals. Most work on probabilistic
learning, and most papers in this issue, take an experimental approach, finding the average
accuracy or cross entropy when training and testing specific induction algorithms on real-
world or synthetic data. However, one can also carry out formal analyses, as the papers by
Dasgupta and by Domingos and Pazzani in this issue show. And probabilistic frameworks
have also received attention in psychological circles, where they are evaluated in terms of
their ability to match human learning behavior (e.g., Anderson & Matessa, 1992; Fisher &
Langley, 1990).

The important point is that, although probabilistic learning methods are unique on some
important dimensions, they are subject to the same performance measures and method-
ological criteria as other approaches to induction. This allows direct comparisons between
probabilistic algorithms and more traditional ones, as the papers by Domingos and Pazzani,
Friedman et al., and Binder et al. reveal.

4. Fitness functions

Algorithms that learn probabilistic descriptions require some way to select from among a
large set of candidate descriptions. Such descriptions can vary in both their structure and
in the probabilistic parameters that instantiate that structure. This leads naturally to two
formulations of the learning problem: some approaches assume a given structure and focus
on determining the best parameters, whereas others also select among alternative structures.

Within each framework, most probabilistic methods aim to find a description that opti-
mizes some ‘fitness’ function. One common function is the likelihood of the data given the
model, which is the probability of the training cases conditioned on the hypothesized struc-
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ture and its parameters. In this issue, the papers by Abe and Mamitsuka, by Binder et al.,
and by Ghahramani and Jordan all incorporate such amaximum likelihoodapproach. This
framework makes sense when the structure is given, but it can introduce problems when
learning the structure, since more complex models will always have higher likelihood. In
such cases, the metric does not indicate which model will generalize the best to new data.

Another common fitness function, designed to address this issue, measures the probability
of each model given the observed data using

p(M |data) ∝ p(data|M)p(M) ,

wherep(data|M) is themarginal likelihoodandp(M) is the prior probability of the model.
Approaches differ in how they calculate these two components. For example, one method
calculates the first term by integrating over all possible parameter values,

p(M |data) =
∫
p(data|θ,M)p(θ|M)dθ ,

wherep(θ|M) is the prior probability of the parameter values. However, this integral is
often intractable when there are hidden variables, which has led some researchers to explore
approximations. As Chickering and Heckerman note in this issue, one common approach
is to use the maximum likelihood estimate forθ and some simple penalty term forp(M).
As Friedman et al. point out in their paper, one can view fitness functions like minimum
description length as deriving from such approximations.

Although Bayesian methods like the above are often used in work on learning proba-
bilistic structures, other approaches have also seen use. One technique,cross validation,
directly estimates the expected performance of alternative hypotheses on data held out
from the training set. For instance, Singh and Provan (1995) have used this measure to
evaluate candidate structures for belief networks. Some techniques instead attempt to op-
timize information-theoretic measures over hypothesized structures. For example, Fisher
(1987) has usedcategory utility, which balances the predictiveness of variables against their
predictability, to select among alternative hierarchies of probabilistic concepts.

5. The search process

The final component of a probabilistic learning algorithm specifies how to maximize the
given fitness function over the set of hypotheses for a particular training set. Typically, this
involves carrying outsearchthrough a space of hypotheses. A few approaches, such as
naive Bayes and N grams, are constrained enough that this is not necessary; the collection
of simple statistics produces the best parameter settings for their given structures. Similar
methods are sufficient for arbitrary belief networks, provided their structures are specified,
there are no hidden variables, and the data have no attributes with missing values. However,
in other situations, some form of search is needed to find acceptable structures or parameters.

Probabilistic learning methods that assume a given structure need only search through the
space of parameter values for that structure. Such methods typically carry out some form
of gradient descent, in which the current parameter settings and the training data are used
iteratively to generate new parameter settings, with the process continuing until it reaches
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some halting condition. One popular technique of this sort, known as theexpectation
maximizationor EM algorithm, operates (roughly speaking) by averaging over missing or
unknown values to determine parameters of the current hypothesis (the ‘expectation’ step)
and then computing revised parameter settings that give better results on the fitness function
(the ‘maximization’ step).

In this issue, Chickering and Heckerman use EM to find parameter settings for belief
networks with one hidden variable, whereas Jordan and Jacobs (1993) have used it for
probabilistic concept hierarchies with fixed structure. Two other papers in the issue, by
Ghahramani and Jordan and by Abe and Mamitsuka, discuss the forward-backward and
inside-outside algorithms, which are variations on EM designed for sequential domains.
There are also approaches other than EM for finding probabilistic parameters; in this issue,
Binder et al. describe another gradient-descent method, based on an analogy with back-
propagation in neural networks, that finds good parameter values in a belief network with
hidden variables.

However, methods of this sort are not sufficient when the learning task includes selecting
among different candidate structures. When there exist only a few alternatives, the system
can examine all structures exhaustively, as do Chickering and Heckerman in their paper.
More frequently, the size of the hypothesis space makes this intractable,3 and most induction
systems carry out more constrained forms of search through the space of structures.

For offline learning tasks, in which all training data are available at once, the most common
approach is greedy search, in which one places some partial ordering on the space, selects
the best-scoring hypothesis on each step, and continues until no improvement occurs. In
this issue, Friedman et al. describe a greedy method that searches from simpler structures
to more complex ones, while Cooper and Herskovits (1992) use a similar scheme to learn
less constrained belief networks. The search process is directed by the fitness function (or
some approximation of it) that the system aims to optimize.

For online learning, in which training cases become available one at a time, the typical
response is incremental hill climbing. In this approach, each new instance can lead the
system to modify the hypothesized knowledge structure, provided this change improves
the fitness function. Because decisions must be based on fewer cases, different orders
of training cases can produce different results. Fisher (1987) has used incremental hill
climbing to learn hierarchies of probabilistic concepts, whereas Stolcke and Omohundro
(1994) have used this approach to induce the structure of stochastic context-free grammars.

These search methods should sound familiar to researchers from other induction paradigms.
Greedy and hill-climbing search occupy central roles in methods for rule learning, decision-
tree induction, and neural networks, so it should come as no surprise that they have also
proven useful for learning with probabilistic descriptions. Thus, the main difference be-
tween the probabilistic framework and others lies not in their search methods, but rather in
their representation of learned knowledge and the manner in which they use that knowledge
in new situations.

6. Papers in the issue

The papers in this special issue reveal the variety of representations that are possible within
the probabilistic framework. We have organized the issue by representational complexity,
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with papers on simple representations coming first and those on more complex notations
later. This ordering highlights an important issue: there exists a tradeoff, which a number
of papers discuss explicitly, between representational power and the complexity of learning
and classification.

Thus, the initial paper, by Domingos and Pazzani, examines the naive or simple Bayesian
classifier. As we have mentioned, this method makes strong independence assumptions,
yet typically fares very well compared to more sophisticated approaches to supervised
induction. The authors give further evidence for its competitive behavior and also show
that this is not because the commonly used data sets lack attribute dependencies. Instead,
they prove that, under certain conditions, naive Bayes learns an optimal classifier even when
significant dependencies are present. Their basic analysis, which they back with additional
experiments, revolves around the tradeoff between bias and variance. They emphasize the
difference between regression tasks (for which squared loss functions make sense) and
classification tasks (for which zero-one loss functions are appropriate). The naive Bayesian
classifier excels at the latter because it very often assigns cases to the right class, even
though its precise probability estimates are off.

The second article, by Friedman et al., describes another approach, tree augmented naive
Bayes (TAN), that adopts a representational position midway between naive Bayes and a
full Bayesian belief network. In particular, their hypothesis space includes networks in
which each predictive attribute has no more than two parents – the class attribute and one
other feature. Their learning algorithm carries out a greedy search through the space of such
structures, using a technique that runs in time that is a polynomial function of the number of
attributes; their classification method is similarly efficient compared to those for arbitrary
belief networks. In contrast, learning belief networks with unconstrained structures has
complexity exponential in the number of variables. The authors demonstrate that their
learning method performs significantly better than naive Bayes over a wide range of data
sets, and that it also fares better than more sophisticated techniques for creating unrestricted
belief networks.

In the third paper, Dasgupta reports on a theoretical investigation into the complexity
of learning the probability parameters for fixed-structure belief networks. In particular,
he presents a PAC (probably approximately correct) analysis that establishes bounds on
the sample complexity of inducing belief networks with and without hidden nodes. One
very interesting finding is that, given the complexity of learning a given network, the
sample complexity does not increase drastically when one uses hidden units, which is
important because such hidden nodes can make the representation more compact and easier
to understand. These results are timely, in that only recently has the experimental community
started to focus its energies on learning belief networks with hidden nodes.

After this, Chickering and Heckerman address a related task: approximations to the
Bayesian estimation of a belief network with one hidden variable. This problem is equivalent
to finding clusters in unsupervised training data, where the hidden attribute corresponds to
the cluster variable. The authors review a variety of methods that estimate the parameters
of such models from the data, but that vary in their simplifying assumptions and their
computational cost. Chickering and Heckerman report experimental results with these
techniques on both natural and synthetic data, comparing them to an expensive but accurate
Monte Carlo method. They find that most algorithms give accurate parameters when used



LEARNING WITH PROBABILISTIC REPRESENTATIONS 99

for model selection but not for model averaging, that most approximations are sensitive to
the prior probabilities, and that some methods are considerably more efficient than others.

Binder, Koller, Russell, and Kanazawa also deal with learning the probabilities for belief
networks; however, they focus on networks with known but arbitrary structure and with
many missing attributes. They describe a gradient-descent algorithm for estimating the
entries in conditional probability tables, similar in spirit to backpropagation for neural
networks but with a probabilistic semantics. Experimental studies with two handcrafted
network structures revealed that their method’s learning rate (the number of instances needed
to reach low error) was much faster than for a network with no hidden terms, and that its
asymptotic error was less than for a comparable neural network with weights learned through
backpropagation. The authors also extend their approach to parameterized representations,
networks with noisy-OR nodes, networks that describe temporal processes, and ones that
include continuous variables.

The sixth paper, by Ghahramani and Jordan, reviews approaches to learning hidden
Markov models and describes an approach that factors the hidden state variable into multi-
ple terms. Their method uses the expectation-maximization algorithm to infer the model’s
parameters from training data; however, because exact calculation of the expectation step
is intractable, they develop both Monte Carlo and variational approximations for this sub-
task. Ghahramani and Jordan report experiments on both synthetic data (generated from a
handcrafted factorial Markov model) and natural sequences that describe Bach’s chorales.
Their results suggest that the variational approximation provides a good tradeoff between
accuracy and computational efficiency, recommending its use over the other methods that
they considered.

The final article, by Abe and Mamitsuka, deals with an even more sophisticated class
of representations. They review the notion of stochastic context-free grammars, which
bear the same relation to hidden Markov models as do context-free grammars to finite-state
machines. They note that this formalism cannot handle languages with certain long-distance
relations, so they describe a more general class, stochastic tree-augmented grammars, with
even more expressive power. They also report methods for probabilistic parsing with such
grammars and an extension of the inside-outside algorithm for estimating rule probabilities
from training strings. Experiments on the difficult task of predicting protein structure
suggest that this approach can learn regularities that have eluded previous methods.

7. Directions for future research

Although the papers in this issue reflect the substantial progress that has occurred in de-
veloping and understanding algorithms for probabilistic learning, there remain many open
issues that call for more work in the area. For example, the literature on probabilistic meth-
ods still makes insufficient contact with research on other approaches to induction, and
future studies should try to understand the conditions under which probabilistic techniques
fare better than the alternatives and vice versa. Some papers in the issue, such as those by
Domingos and Pazzani and by Friedman et al., have made a good start in this direction,
but we need more research along these lines, especially theoretical analyses, to understand
better the factors that affect learning behavior.
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Perhaps because research on probabilistic induction is a relatively recent phenomenon,
some necessary steps remain before such methods are ready for real-world application.
These include developing techniques for dealing with missing data, automatically intro-
ducing latent (hidden) variables into the learned structure, and selecting relevant features
from among many alternatives. The papers by Binder et al. and by Chickering and Hecker-
man address the first of these issues, whereas Singh and Provan (1995) have addressed the
third, but there remains a need for more work in these areas. Moreover, most methods for
probabilistic induction have high computational costs, which means that their application
to domains with large data sets must await more efficient variations.

Another important need, which the probabilistic induction community shares with the
rest of machine learning, is to move beyond simple classification and prediction tasks to
more complex domains. Probabilistic representations are appropriate for encoding knowl-
edge about natural language (e.g., Charniak, 1993), problem solving (Jones & VanLehn,
1994), motor skills (Iba & Gennari, 1991), and vision (Geman & Geman, 1984), yet most
researchers avoid these topics and focus instead on simple inference tasks. An increased
concern with such problems would encourage effort on more expressive probabilistic rep-
resentations that move beyond “flat” formalisms to ones that explicitly encode spatial and
temporal relations in a hierarchical manner.

A central theme in traditional machine learning has been the role of knowledge in con-
straining the induction process, and research on probabilistic learning should also give more
attention to this issue. The probabilistic framework provides a natural means of encoding
such knowledge (e.g., about the structure of a belief network) in terms of prior probability
distributions but, in practice, this scheme has been used mainly to indicate only generic
biases, such as a preference for simpler models. However, belief networks and other prob-
abilistic representations lend themselves naturally to techniques fortheory revision(e.g.,
Ourston & Mooney, 1990; Towell, Shavlik, & Noordeweier, 1990), in which the learner
starts its search from some existing model rather than from scratch, and this approach seems
likely to give much better results in domains where knowledge is available.

Despite the challenges that remain, work on learning with probabilistic representations
appears in a vigorous state. As the papers in this issue reveal, researchers are exploring a va-
riety of representations within the general probabilistic framework, addressing a number of
challenging problems, and carrying out careful evaluations of their approaches. These fea-
tures bode well for this emerging paradigm, and we expect that future work on probabilistic
learning will continue to reflect this encouraging trend.

Notes

1. Note that the structure of this belief network is not the same as the finite-state graph often shown for hidden
Markov models.

2. For sequential tasks, one defines analogous measures that take order into account.

3. The number of possible network structures is exponential in the number of network nodes.



LEARNING WITH PROBABILISTIC REPRESENTATIONS 101

References

Anderson, J. R., & Matessa, M. (1992). Explorations of an incremental, Bayesian algorithm for categorization.
Machine Learning, 9, 275–308.

Charniak, E. (1993).Statistical language learning. Cambridge, MA: MIT Press.
Hanson, R., Stutz, J., & Cheeseman, P. (1991). Bayesian classification with correlation and inheritance.Proceed-

ings of the Twelfth International Joint Conference on Artificial Intelligence(pp. 692–698). Sydney: Morgan
Kaufmann.

Clark, P., & Niblett, T. (1989). TheCN2induction algorithm.Machine Learning, 3, 261–284.
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.

Machine Learning, 9, 309–347.
Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering.Machine Learning, 2, 139–

172. Reprinted in J. W. Shavlik & T. G. Dietterich (Eds.) (1990),Readings in machine learning. San Francisco:
Morgan Kaufmann.

Fisher, D. H., & Langley, P. (1990). The structure and formation of natural categories. In G. H. Bower (Ed.),The
psychology of learning and motivation: Advances in research and theory(Vol. 26). Cambridge, MA: Academic
Press.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–742.

Iba, W. & Gennari, J. H. (1991). Learning to recognize movements. In D. H. Fisher, M. J. Pazzani, & P. Langley
(Eds.), Concept formation: Knowledge and experience in unsupervised learning. San Francisco: Morgan
Kaufmann.

Jones, R. M., & VanLehn, K. (1994). Acquisition of children’s addition strategies: A model of impasse-free,
knowledge-level learning.Machine Learning, 16, 11–36.

Jordan, M. I., & Jacobs, R. A. (1993). Supervised learning and divide-and-conquer: A statistical approach.
Proceedings of the Tenth International Conference on Machine Learning(pp. 159–166). Amherst, MA: Morgan
Kaufmann.

Kononenko, I. (1991). Semi-naive Bayesian classifier.Proceedings of the Sixth European Working Session on
Learning(pp. 206–219). Porto, Portugal: Pittman.

Ourston, D., & Mooney, R. (1990). Changing the rules: A comprehensive approach to theory refinement.
Proceedings of the Eighth National Conference on Artificial Intelligence(pp. 815–820). Boston: AAAI Press.

Pearl, J. (1988).Probabilistic reasoning in intelligent systems. San Francisco: Morgan Kaufmann.
Ron, D., Singer, Y., & Tishby, N. (1994). The power of amnesia. In J. D. Cowan, G. Tesauro, & J. Alspector

(Eds.)Advances in Neural Information Processing Systems 6. San Francsico: Morgan Kaufmann.
Rissanen, J., & Langdon, G. G. (1981). Universal coding and modeling.IEEE Transactions on Information

Theory, 27, 12–23.
Singh, M., & Provan, G. M. (1995). A comparison of induction algorithms for selective and non-selective Bayesian

classifiers.Proceedings of the Twelfth International Conference on Machine Learning(pp. 497–505). Lake
Tahoe, CA: Morgan Kaufmann.

Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov
probability models.Neural Computation, 9, 227–269.

Stolcke, A., & Omohundro, S. (1994). Inducing probabilistic grammars by Bayesian model merging.Proceedings
of the Second International Conference on Grammatical Inference and Applications(pp. 106–118). Alicante,
Spain: Springer-Verlag.

Towell, G., Shavlik, J., & Noordeweier, M. O. (1990). Refinement of approximate domain theories by knowledge-
based neural networks.Proceedings of the Eighth National Conference on Artificial Intelligence(pp. 861–866).
Boston: AAAI Press.


