
Under review as a conference paper at ICLR 2019

LEARNING WITH RANDOM LEARNING RATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter tuning is a bothersome step in the training of deep learning mod-
els. One of the most sensitive hyperparameters is the learning rate of the gradient
descent. We present the All Learning Rates At Once (Alrao) optimization method
for neural networks: each unit or feature in the network gets its own learning rate
sampled from a random distribution spanning several orders of magnitude. This
comes at practically no computational cost. Perhaps surprisingly, stochastic gra-
dient descent (SGD) with Alrao performs close to SGD with an optimally tuned
learning rate, for various architectures and problems. Notably, Alrao is robust:
all runs were able to learn without any tuning. This makes Alrao a candidate
for situations in which a neural network has to work from the first try. This text
comes with a PyTorch implementation of the method, which can be plugged on
an existing PyTorch model.

1 INTRODUCTION

Hyperparameter tuning is a notable source of computational cost with deep learning models (Zoph
and Le, 2016). One of the most critical hyperparameters is the learning rate of the gradient descent
(Theodoridis, 2015, p. 892). With too large learning rates, the model does not learn; with too small
learning rates, optimization is slow and can lead to local minima and poor generalization (Jastrzebski
et al., 2017; Kurita, 2018; Mack, 2016; Surmenok, 2017). Although popular optimizers like Adam
(Kingma and Ba, 2015) come with default hyperparameters, fine-tuning and scheduling of the Adam
learning rate is still frequent (Denkowski and Neubig, 2017), and we suspect the default setting
might be somewhat specific to current problems and architecture sizes. Such hyperparameter tuning
takes up a lot of engineering time. These and other issues largely prevent deep learning models
from working out-of-the-box on new problems, or on a wide range of problems, without human
intervention (AutoML setup, (Guyon et al., 2016)).

We propose All Learning Rates At Once (Alrao), an alteration of standard stochastic gradient descent
for deep learning models. Alrao uses multiple learning rates at the same time in the same network.
By sampling one learning rate per feature, Alrao reaches performance close to the performance of
the optimal learning rate, without having to try multiple learning rates.

In our experiments, Alrao was found to be quite resilient: not a single run failed to learn, provided
a large enough range of admissible learning rates are included. On the other hand, the admissible
range of learning rates for SGD is quite narrow. Alrao could be useful in situations where a neural
network has to be trained and work out of the box, or for quickly testing network architectures.

Alrao increases the size of a model on the output layer, but not on the internal layers: this usually
adds little computational cost unless most parameters occur on the output layer. This text comes
along with a Pytorch implementation usable on a wide set of architectures.

Related Work. Automatically using the “right” learning rate for each parameter was one motiva-
tion behind “adaptive” methods such as RMSProp (Tieleman and Hinton, 2012), AdaGrad (Duchi
et al., 2011) or Adam (Kingma and Ba, 2015). Adam with its default setting is currently considered
the default method in many works (Wilson et al., 2017), and we use it as a baseline. However, further
global adjustement of the Adam learning rate is common (Liu et al., 2017). Many other heuristics
for setting the learning rate have been proposed, e.g., (Schaul et al., 2013); most start with the idea of
approximating a second-order Newton step to define an optimal learning rate (LeCun et al., 1998).

1



Under review as a conference paper at ICLR 2019

Methods that directly set per-parameter learning rates are equivalent to preconditioning the gradient
descent with a diagonal matrix. Asymptotically, an arguably optimal preconditioner is either the
Hessian of the loss (Newton method) or the Fisher information matrix (Amari, 1998). These can
be viewed as setting a per-direction learning rate after redefining directions in parameter space.
From this viewpoint, Alrao just replaces these preconditioners with a random diagonal matrix whose
entries span several orders of magnitude.

Another approach to optimize the learning rate is to perform a gradient descent on the learning
rate itself through the whole training procedure (for instance (Maclaurin et al., 2015)). This can
be applied online to avoid backpropagating through multiple training rounds (Massé and Ollivier,
2015). This idea has a long history, see, e.g., (Schraudolph, 1999; Mahmood et al., 2012). Some
training algorithms depart from gradient descent altogether, and become learning rate-free, such as
(Orabona and Tommasi, 2017) using betting strategies to simulate gradient descent.

The learning rate can also be optimized within the framework of architecture search, exploring both
the architecture and learning rate at the same time (e.g., (Real et al., 2017)). The methods range from
reinforcement learning (Zoph and Le, 2016; Baker et al., 2016; Li et al., 2017), evolutionary algo-
rithms (e.g., (Stanley and Miikkulainen, 2002; Jozefowicz et al., 2015; Real et al., 2017)), Bayesian
optimization (Bergstra et al., 2013) or differentiable architecture search (Liu et al., 2018). These
methods are resource-intensive and do not allow for finding a good learning rate in a single run.

Motivation. Alrao was inspired by the intuition that not all units in a neural network end up being
useful. Hopefully, in a large enough network, a sub-network made of units with a good learning rate
could learn well, and hopefully the units with a wrong learning rate will just be ignored. (Units with
a too large learning rate may produce large activation values, so this assumes the model has some
form of protection against those, such as BatchNorm or sigmoid/tanh activations.)

Several lines of work support the idea that not all units of a network are useful or need to be trained.
First, it is possible to prune a trained network without reducing the performance too much (e.g., (Le-
Cun et al., 1990; Han et al., 2015a;b; See et al., 2016)). Li et al. (2018) even show that performance
is reasonable if learning only within a very small-dimensional affine subspace of the parameters,
chosen in advance at random rather than post-selected.

Second, training only some of the weights in a neural network while leaving the others at their initial
values performs reasonably well (see experiments in Appendix H). So in Alrao, units with a very
small learning rate should not hinder training.

Alrao is consistent with the lottery ticket hypothesis, which posits that “large networks that train suc-
cessfully contain subnetworks that—when trained in isolation—converge in a comparable number
of iterations to comparable accuracy” (Frankle and Carbin, 2018). This subnetwork is the lottery
ticket winner: the one which had the best initial values. Arguably, given the combinatorial number
of subnetworks in a large network, with high probability one of them is able to learn alone, and
will make the whole network converge. Viewing the per-feature learning rates of Alrao as part of
the initialization, this hypothesis suggests there might be enough sub-networks whose initialization
leads to good convergence.

2 ALL LEARNING RATES AT ONCE: DESCRIPTION

Principle. Alrao starts with a standard optimization method such as SGD, and a range of possible
learning rates (ηmin, ηmax). Instead of using a single learning rate, we sample once and for all one
learning rate for each feature, randomly sampled log-uniformly in (ηmin, ηmax). Then these learning
rates are used in the usual optimization update:

θl,i ← θl,i − ηl,i · ∇θl,iℓ(Φθ(x), y) (1)

where θl,i is the set of parameters used to compute the feature i of layer l from the activations of
layer l − 1 (the incoming weights of feature i). Thus we build “slow-learning” and “fast-learning”
features, in the hope to get enough features in the “Goldilocks zone”.

What constitutes a feature depends on the type of layers in the model. For example, in a fully
connected layer, each component of a layer is considered as a feature: all incoming weights of the
same unit share the same learning rate. On the other hand, in a convolutional layer we consider

2



Under review as a conference paper at ICLR 2019

each convolution filter as constituting a feature: there is one learning rate per filter (or channel), thus
keeping translation-invariance over the input image. In LSTMs, we apply the same learning rate to
all components in each LSTM unit (thus in the implementation, the vector of learning rates is the
same for input gates, for forget gates, etc.).

However, the update (1) cannot be used directly in the last layer. For instance, for regression there
may be only one output feature. For classification, each feature in the final classification layer
represents a single category, and so using different learning rates for these features would favor some
categories during learning. Instead, on the output layer we chose to duplicate the layer using several
learning rate values, and use a (Bayesian) model averaging method to obtain the overall network
output (Fig. 1). Appendix B contains a proof (under convexity assumptions) that this mechanism
works, given the initial layers.

We set a learning rate per feature, rather than per parameter. Otherwise, every feature would have
some parameters with large learning rates, and we would expect even a few large incoming weights
to be able to derail a feature. So having diverging parameters within a feature is hurtful, while having
diverging features in a layer is not necessarily hurtful since the next layer can choose to disregard
them. Still, we tested this option; the results are compatible with this intuition (Appendix G).

Definitions and notation. We now describe Alrao more precisely for deep learning models with
softmax output, on classification tasks (the case of regression is similar).

Let D = {(x1, y1), ..., (xN , yN )}, with yi ∈ {1, ...,K}, be a classification dataset. The goal is to
predict the yi given the xi, using a deep learning model Φθ. For each input x, Φθ(x) is a probability
distribution over {1, ...,K}, and we want to minimize the categorical cross-entropy loss ℓ over the
dataset: 1

N

∑

i ℓ(Φθ(xi), yi).

A deep learning model for classification Φθ is made of two parts: a pre-classifier φθpc which com-
putes some quantities fed to a final classifier layer Cθcl , namely, Φθ(x) = Cθcl(φθpc(x)). The clas-

sifier layer Cθcl with K categories is defined by Cθcl = softmax ◦
(

WTx+ b
)

with θcl = (W, b),
and softmax(x1, ..., xK)k = exk/(

∑

i e
xi) .The pre-classifier is a computational graph composed

of any number of layers, and each layer is made of multiple features.

We denote log-U(·; ηmin, ηmax) the log-uniform probability distribution on an interval (ηmin, ηmax):
namely, if η ∼ log-U(·; ηmin, ηmax), then log η is uniformly distributed between log ηmin and

log ηmax. Its density function is log-U(η; ηmin, ηmax) =
✶ηmin≤η≤ηmax

log(ηmax)−log(ηmin)
× 1

η
.

Alrao for the pre-classifier: A random learning rate for each feature. In the pre-classifier,
for each feature i in each layer l, a learning rate ηl,i is sampled from the probability distribution

log-U(.; ηmin, ηmax), once and for all at the beginning of training.1 Then the incoming parameters
of each feature in the preclassifier are updated in the usual way with this learning rate (Eq. 3).

Alrao for the classifier layer: Model averaging from classifiers with different learning rates.
In the classifier layer, we build multiple clones of the original classifier layer, set a different learning
rate for each, and then use a model averaging method from among them. The averaged classifier
and the overall Alrao model are:

CAlrao
θcl (z) :=

Ncl
∑

j=1

aj Cθcl
j
(z), ΦAlrao

θ (x) := CAlrao
θcl (φθpc(x)) (2)

where the Cθcl
j

are copies of the original classifier layer, with non-tied parameters, and θcl :=

(θcl1 , ..., θ
cl
Ncl

). The aj are the parameters of the model averaging, and are such that for all j,

0 ≤ aj ≤ 1, and
∑

j aj = 1. These are not updated by gradient descent, but via a model aver-

aging method from the literature (see below).

For each classifier Cθcl
j

, we set a learning rate ηj defined by log ηj = log ηmin +
j−1

Ncl−1 log
(

ηmax

ηmin

)

,

so that the classifiers’ learning rates are log-uniformly spread on the interval [ηmin, ηmax].

1With learning rates resampled at each time, each step would be, in expectation, an ordinary SGD step with
learning rate Eηl,i, thus just yielding an ordinary SGD trajectory with more noise.

3



Under review as a conference paper at ICLR 2019

P
re

-c
la

ss
if
ie

r 
m

o
d
el

C
la

ss
if
ie

r

Input

Output

...

...

Softmax

P
re

-c
la

ss
if
ie

r 
m

o
d
el

C
la

ss
if
ie

r

Input

Output

Softmax Softmax Softmax

Model Averaging

...

...

...

Figure 1: Left: a standard fully connected neural network for a classification task with three classes,
made of a pre-classifier and a classifier layer. Right: Alrao version of the same network. The single
classifier layer is replaced with a set of parallel copies of the original classifier, averaged with a
model averaging method. Each unit uses its own learning rate for its incoming weights (represented
by different styles of arrows).

Thus, the original model Φθ(x) leads to the Alrao model ΦAlrao
θ (x). Only the classifier layer is

modified, the pre-classifier architecture being unchanged.

Update rule. Alg. 1 presents the full Alrao algorithm. The updates for the pre-classifier, classifier,
and model averaging weights are as follows.

• The update rule for the pre-classifier is the usual SGD one, with per-feature learning rates.
For each feature i in each layer l, its incoming parameters are updated as:

θl,i ← θl,i − ηl,i · ∇θl,iℓ(Φ
Alrao
θ (x), y) (3)

• The parameters θclj of each classifier clone j on the classifier layer are updated as if this
classifier alone was the only output of the model:

θclj ← θclj − ηj · ∇θcl
j
ℓ(Cθcl

j
(φθpc(x)), y) (4)

(still sharing the same pre-classifier φθpc ). This ensures classifiers with low weights aj still
learn, and is consistent with model averaging philosophy. Algorithmically this requires
differentiating the loss Ncl times with respect to the last layer (but no additional backprop-
agations through the preclassifier).

• To set the weights aj , several model averaging techniques are available, such as Bayesian
Model Averaging (Wasserman, 2000). We decided to use the Switch model averaging (Van
Erven et al., 2012), a Bayesian method which is both simple, principled and very respon-
sive to changes in performance of the various models. After each sample or mini-batch,
the switch computes a modified posterior distribution (aj) over the classifiers. This com-
putation is directly taken from (Van Erven et al., 2012) and explained in Appendix A. The
observed evolution of this posterior during training is commented in Appendix C.

Implementation. We release along with this paper a Pytorch (Paszke et al., 2017) implementation
of this method. It can be used on an existing model with little modification. A short tutorial is given
in Appendix J. The features (sets of weights which will share the same learning rate) need to be
defined for each layer type: for now we have done this for linear, convolutional, and LSTMs layers.

4



Under review as a conference paper at ICLR 2019

Algorithm 1 Alrao for model Φθ = Cθcl ◦φθpc with Ncl classifiers and learning rates in [ηmin, ηmax]

1: aj ← 1/Ncl for each 1 ≤ j ≤ Ncl ⊲ Initialize the Ncl model averaging weights aj
2: ΦAlrao

θ (x) :=
∑Ncl

j=1 aj Cθcl
j
(φθpc(x)) ⊲ Define the Alrao architecture

3: for all layers l, for all feature i in layer l do
4: Sample ηl,i ∼ log-U(.; ηmin, ηmax). ⊲ Sample a learning rate for each feature

5: for all classifiers j, 1 ≤ j ≤ Ncl do

6: Define log ηj = log ηmin + j−1
Ncl−1 log

ηmax

ηmin
. ⊲ Set a learning rate for each classifier j

7: while stopping criterion is false do ⊲ The criterion we use is given in section 3
8: zt ← φθpc(xt) ⊲ Store the pre-classifier output
9: for all layers l, for all feature i in layer l do

10: θl,i ← θl,i − ηl,i · ∇θl,iℓ(Φ
Alrao
θ (xt), yt) ⊲ Update the pre-classifier weights

11: for all Classifier j do
12: θclj ← θclj − ηj · ∇θcl

j
ℓ(Cθcl

j
(zt), yt) ⊲ Update the classifiers’ weights

13: a← ModelAveraging(a, (Cθcl
i
(zt))i, yt) ⊲ Update the model averaging weights.

14: t← t+ 1 mod N

3 EXPERIMENTS

We tested Alrao on various convolutional networks for image classification (Imagenet and CI-
FAR10), and on LSTMs for text prediction. The baselines are SGD with an optimal learning rate,
and Adam with its default setting, arguably the current default method (Wilson et al., 2017).

Image classification on ImageNet and CIFAR10. For image classification, we used the Ima-
geNet (Deng et al., 2009) and CIFAR10 (Krizhevsky, 2009) datasets. The ImageNet dataset is made
of 1,283,166 training and 60,000 testing data; we split the training set into a smaller training set and
a validation set with 60,000 samples. We do the same on CIFAR10: the 50,000 training samples are
split into 40,000 training samples and 10,000 validation samples.

For each architecture, training on the smaller training set was stopped when the validation loss had
not improved for 20 epochs. The epoch with best validation loss was selected and the corresponding
model tested on the test set. The inputs are normalized, and training used data augmentation: random
cropping and random horizontal flipping (see Appendix D for details). Each setting was run 5 or 10
times: the confidence intervals presented are the standard deviation over these runs.

We tested Alrao on several standard architectures for these tasks. On ImageNet, we tested
Resnet50 (He et al., 2016), Densenet121 (Huang et al., 2017) and Alexnet (Krizhevsky, 2014),
all using the standard Pytorch implementation (Paszke et al., 2017). On CIFAR10, we tested
GoogLeNet (Szegedy et al., 2015), VGG19 (Simonyan and Zisserman, 2014) and MobileNet
(Howard et al., 2017) with implentation from (Kianglu, 2018).

The Alrao learning rates were sampled log-uniformly from ηmin = 10−5 to ηmax = 10. For the
output layer we used 10 classifiers with switch model averaging (Appendix A); the learning rates of
the output classifiers are deterministic and log-uniformly spread in [ηmin, ηmax].

In addition, each model was trained with SGD for every learning rate in the set
{10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}. The best SGD learning rate is selected on the valida-
tion set, then reported in Table 1. We also compare to Adam with its default hyperparameters
(η = 10−3, β1 = 0.9, β2 = 0.999).

Finally, since Alrao may waste units with unadapted learning rates, we also tested architectures with
increased width (3 times as many units) with Alrao and Adam on ImageNet.

The results are presented in Table 1. Learning curves with various SGD learning rates, with Adam,
and with Alrao are presented in Fig. 2. Fig. 3 tests the influence of ηmin and ηmax.

Recurrent learning on Penn Treebank. To test Alrao on a different kind of architecture, we used
a recurrent neural network for text prediction on the Penn Treebank (Marcus et al., 1993) dataset.

5



Under review as a conference paper at ICLR 2019

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss train
alrao: (10−5, 101)
alrao, width * 3
lr=1e-01
lr=1e-02
lr=1e-03
lr=1e-04
lr=1e-05
Adam
Adam, width * 3

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss test

(a) Resnet50 on ImageNet

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
Adam default
alrao
lr=1e-06
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(b) MobileNetV2 on Cifar10 (average over 3 runs)

Figure 2: Learning curves for SGD with various learning rates, Alrao, and Adam with its default set-
ting, with the Resnet50 architecture on ImageNet and the MobileNetV2 architecture on CIFAR10.
Left: training loss; right: test loss. While Alrao uses learning rates from the entire range, its perfor-
mance is comparable to the optimal learning rate.

The experimental procedure is the same, with (ηmin, ηmax) = (0.001, 100) and 6 output classifiers
for Alrao. The results appear in Table 1, where the loss is given in bits per character and the accuracy
is the proportion of correct character predictions.

The model was trained for character prediction rather than word prediction. This is technically
easier for Alrao implementation: since Alrao uses copies of the output layer, memory issues arise
for models with most parameters on the output layer. Word prediction (10,000 classes on PTB)
requires more output parameters than character prediction; see Section 4 and Appendix F.

The model is a two-layer LSTM (Hochreiter and Schmidhuber, 1997) with an embedding size of
100 and with 100 hidden features. A dropout layer with rate 0.2 is included before the decoder. The
training set is divided into 20 minibatchs. Gradients are computed via truncated backprop through
time (Werbos, 1990) with truncation every 70 characters.

Comments. As expected, Alrao often performs slightly worse than the best learning rate (though
it performs better in one setup). Even with wide intervals (ηmin, ηmax), Alrao comes reasonably
close to the best learning rate, across all setups. Although Adam with its default parameters almost
matches optimal SGD, this is not always the case. On ImageNet, Adam either learns quickly then
strongly overfits (Figs. 2a, 2b), or fails to learn altogether (Table 1, Fig. 5c). This confirms a known
risk of overfit with Adam (Wilson et al., 2017). Overall, in our setup, Alrao seems to be a more
reliable default method.

6



Under review as a conference paper at ICLR 2019

Table 1: Performance of Alrao, of SGD with optimal learning rate from
{10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}, and of Adam with its default setting. Three convo-
lutional models are reported for image classification on CIFAR10, three others for ImageNet, and
one recurrent model for character prediction (Penn Treebank). The Alrao learning rates have been
taken in wide a priori reasonable intervals, [ηmin; ηmax] = [10−5; 10] for CNNs (CIFAR10 and
ImageNet) and [10−3; 102] for RNNs (PTB). Each experiment is run 10 times (CIFAR10), 5 times
(PTB) or 1 time (ImageNet); the confidence intervals report the standard deviation over these runs.
(TODO: ongoing for ImageNet)

MODEL SGD WITH OPTIMAL LR ADAM - DEFAULT ALRAO

LR LOSS TOP1 (%) LOSS TOP1 (%) LOSS TOP1 (%)

CIFAR10
MOBILENET 1e-1 0.37 ± 0.01 90.2 ± 0.3 1.01 ± 0.95 78 ± 11 0.42 ± 0.02 88.1 ± 0.6
GOOGLENET 1e-2 0.45 ± 0.05 89.6 ± 1.0 0.47 ± 0.04 89.8 ± 0.4 0.47 ± 0.03 88.9 ± 0.8
VGG19 1e-1 0.42 ± 0.02 89.5 ± 0.2 0.43 ± 0.02 88.9 ± 0.4 0.45 ± 0.03 87.5 ± 0.4

ImageNet
ALEXNET 1e-2 2.15 53.2 6.91 0.10 ? (<2.87) ? (>38.0)
DENSENET121 1 1.35 69.7 1.39 67.9 1.41 67.3
RESNET50 1 1.49 67.4 1.39 67.1 1.42 67.5
RESNET50, WIDTH*3 1.99 60.8 1.33 70.9

Penn Treebank
LSTM 1 1.566 ± 0.003 66.1 ± 0.1 1.587 ± 0.005 65.6 ± 0.1 1.67 ± 0.01 64.1 ± 0.2

Overall, our results with either SGD, Adam, or SGD-Alrao, are somewhat below the art: in part this
is because we train on only 40,000 CIFAR samples, and do not use stepsize schedules.

4 LIMITATIONS, FURTHER REMARKS, AND FUTURE DIRECTIONS

Increased number of parameters for the classification layer. Alrao modifies the output layer
of the optimized model. The number of parameters for the classification layer is multiplied by the
number of classifier copies used (the number of parameters in the pre-classifier is unchanged). On
CIFAR10 (10 classes), the number of parameters increased by less than 5% for the models used. On
Penn Treebank, the number of parameters increased by 15% in our setup (working at the character
level); working at word level it would have increased threefold (Appendix F).

This is clearly a limitation for models with most parameters in the classifier layer. For output-layer-
heavy models, this can be mitigated by handling the copies of the classifiers on distinct computing
units: in Alrao these copies work in parallel given the pre-classifier.

Still, models dealing with a very large number of output classes usually rely on other parameteri-
zations than a direct softmax, such as a hierarchical softmax (see references in (Jozefowicz et al.,
2016)); Alrao could be used in conjunction with such methods.

Adding two hyperparameters. We claim to remove a hyperparameter, the learning rate, but re-
place it with two hyperparameters ηmin and ηmax. Formally, this is true. But a systematic study of
the impact of these two hyperparameters (Fig. 3) shows that the sensitivity to ηmin and ηmax is much
lower than the original sensitivity to the learning rate. In our experiments, convergence happens as
soon as (ηmin; ηmax) contains a reasonable learning rate (Fig. 3).

A wide range of values of (ηmin; ηmax) will contain one good learning rate and achieve close-to-
optimal performance (Fig. 3). Typically, we recommend to just use an interval containing all the
learning rates that would have been tested in a grid search, e.g., 10−5 to 10.

So, even if the choice of ηmin and ηmax is important, the results are much more stable to varying these
two hyperparameters than to the learning rate. For instance, standard SGD fails due to numerical
issues for η = 100 while Alrao with ηmax = 100 works with any ηmin ≤ 1 (Fig. 3), and is thus
stable to relatively large learning rates. We would still expect numerical issues with very large ηmax,
but this has not been observed in our experiments.

Alrao with Adam. The Alrao idea can be used with other optimizers, such as Adam. But Alrao
with Adam is much less reliable than standard Alrao. Surprisingly, this occurs mostly for test per-

7



Under review as a conference paper at ICLR 2019

1e
-7

1e
-6

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1

1e
0

1e
1

1e
2

Maximum learning rate ηmax

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

M
in

im
um

 le
ar

ni
ng

 ra
te

 η
m

in

1e
-7

1e
-6

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1

1e
0

1e
1

1e
2

Maximum learning rate ηmax

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

M
in

im
um

 le
ar

ni
ng

 ra
te

 η
m

in

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3: Performance of Alrao with a GoogLeNet model on CIFAR10, depending on the inter-
val (ηmin, ηmax). Left: loss on the train set; right: on the test set. Each point with coordinates
(ηmin, ηmax) above the diagonal represents the loss after 30 epochs for Alrao with this interval.
Points (η, η) on the diagonal represent standard SGD with learning rate η after 50 epochs. Stan-
dard SGD with η = 102 is left blank to due numerical divergence (NaN). Alrao works as soon as
(ηmin, ηmax) contains at least one suitable learning rate.

formance, which can even diverge, while training curves mostly look good (Appendix E). We have
no definitive explanation for this at present. It might be that changing Adam’s learning rate requires
changing its momentum parameters in a correlated way. It might be that Alrao does not work on
Adam because Adam is more sensitive to its hyperparameters. The stark train/test discrepancy also
suggests that Alrao with Adam may perform well as a pure optimization method but exacerbates the
underlying risk of overfit of Adam (Wilson et al., 2017; Keskar and Socher, 2017).

Increasing network size. With Alrao, neurons with unsuitable learning rates will not learn: those
with a too large learning rate might learn nothing, while those with too small learning rates will learn
too slowly to be used. Thus, Alrao may reduce the effective size of the network to only a fraction of
the actual architecture size, depending on (ηmin, ηmax).

Our first intuition was that increasing the width of the network was going to be necessary with Alrao,
to avoid wasting too many units. Tests of Alrao with increased width are reported in Table 1 and
Appendix I. Incidentally, these tests show that width was a limiting factor of the models used for
both Alrao and SGD (Appendix I). Still, to our surprise, Alrao worked well even without width
augmentation.

Other optimization algorithms, other hyperparameters, learning rate schedulers... Using a
learning rate schedule instead of a fixed learning rate is often effective (Bengio, 2012). We did not
use learning rate schedulers here; this may partially explain why the results in Table 1 are worse
than the state-of-the-art. Nothing prevents using such a scheduler within Alrao, e.g., by dividing all
Alrao learning rates by a time-dependent constant; we did not experiment with this yet.

The idea behind Alrao could be used on other hyperparameters as well, such as momentum. How-
ever, if more hyperparameters are initialized randomly for each feature, the fraction of features
having all their hyperparameters in the “Goldilocks zone” will quickly decrease.

5 CONCLUSION

Applying stochastic gradient descent with random learning rates for different features is surprisingly
resilient in our experiments, and provides performance close enough to SGD with an optimal learn-
ing rate, as soon as the range of random learning rates contains a suitable one. This could save time
when testing deep learning models, opening the door to more out-of-the-box uses of deep learning.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Comput., 10:251–276,
February 1998. ISSN 0899-7667. doi: 10.1162/089976698300017746.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pages 437–478. Springer, 2012.

James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures. 2013.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Michael Denkowski and Graham Neubig. Stronger baselines for trustable results in neural machine
translation. arXiv preprint arXiv:1706.09733, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Small, Trainable
Neural Networks. arXiv preprint arXiv:1704.04861, mar 2018.

Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir Jajetic, James Robert
Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko, Michèle Sebag, et al. A brief review of
the ChaLearn AutoML challenge: any-time any-dataset learning without human intervention. In
Workshop on Automatic Machine Learning, pages 21–30, 2016.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neu-
ral Networks with Pruning, Trained Quantization and Huffman Coding. arXiv preprint
arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights and Connections for
Efficient Neural Networks. In Advances in Neural Information Processing Systems, 2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

Mark Herbster and Manfred K Warmuth. Tracking the best expert. Machine learning, 32(2):151–
178, 1998.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, page 3, 2017.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. In International Conference on Machine Learning, pages 2342–2350,
2015.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

9



Under review as a conference paper at ICLR 2019

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
Adam to SGD. arXiv preprint arXiv:1712.07628, 2017.

Kianglu. pytorch-cifar, 2018. URL https://github.com/kuangliu/pytorch-cifar.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

Wouter Koolen and Steven De Rooij. Combining expert advice efficiently. arXiv preprint
arXiv:0802.2015, 2008.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Keita Kurita. Learning Rate Tuning in Deep Learning: A Practical Guide — Machine Learning
Explained, 2018. URL http://mlexplained.com/2018/01/29/learning-rate-

tuning-in-deep-learning-a-practical-guide/.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touretzky, editor,
Advances in Neural Information Processing Systems 2, pages 598–605. Morgan-Kaufmann, 1990.

Yann LeCun, Leon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic Dimen-
sion of Objective Landscapes. arXiv preprint arXiv:1804.08838, apr 2018.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. arXiv preprint
arXiv:1712.00559, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

David Mack. How to pick the best learning rate for your machine learning project,
2016. URL https://medium.freecodecamp.org/how-to-pick-the-best-

learning-rate-for-your-machine-learning-project-9c28865039a8.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning, pages 2113–
2122, 2015.

Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M Pilarski. Tuning-
free step-size adaptation. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, pages 2121–2124. IEEE, 2012.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330, June 1993. ISSN
0891-2017.

Pierre-Yves Massé and Yann Ollivier. Speed learning on the fly. arXiv preprint arXiv:1511.02540,
2015.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. In Advances in Neural Information Processing Systems, pages 2160–2170, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

10

https://github.com/kuangliu/pytorch-cifar
http://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
http://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
https://medium.freecodecamp.org/how-to-pick-the-best-learning-rate-for-your-machine-learning-project-9c28865039a8
https://medium.freecodecamp.org/how-to-pick-the-best-learning-rate-for-your-machine-learning-project-9c28865039a8


Under review as a conference paper at ICLR 2019

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International Con-
ference on Machine Learning, pages 343–351, 2013.

Nicol N Schraudolph. Local gain adaptation in stochastic gradient descent. 1999.

Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of Neural Machine
Translation Models via Pruning. arXiv preprint arXiv:1606.09274, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

Pavel Surmenok. Estimating an Optimal Learning Rate For a Deep Neural Net-
work, 2017. URL https://towardsdatascience.com/estimating-optimal-

learning-rate-for-a-deep-neural-network-ce32f2556ce0.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective. Academic Press,
2015.

Ryan Tibshirani and Micol Marchetti-Bowick. Gradient descent: Convergence analysis, 2013. URL
http://www.stat.cmu.edu/˜ryantibs/convexopt-F13/scribes/lec6.pdf.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Tim Van Erven, Steven D. Rooij, and Peter Grünwald. Catching up faster in Bayesian model selec-
tion and model averaging. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances
in Neural Information Processing Systems 20, pages 417–424. Curran Associates, Inc., 2008.

Tim Van Erven, Peter Grünwald, and Steven De Rooij. Catching up faster by switching sooner: A
predictive approach to adaptive estimation with an application to the AIC-BIC dilemma. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 74(3):361–417, 2012.

Paul AJ Volf and Frans MJ Willems. Switching between two universal source coding algorithms. In
Data Compression Conference, 1998. DCC’98. Proceedings, pages 491–500. IEEE, 1998.

Larry Wasserman. Bayesian Model Selection and Model Averaging. Journal of Mathematical
Psychology, 44, 2000.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pages 4148–4158, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

11

https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0
https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0
http://www.stat.cmu.edu/~ryantibs/convexopt-F13/scribes/lec6.pdf


Under review as a conference paper at ICLR 2019

A MODEL AVERAGING WITH THE SWITCH

As explained is Section 2, we use a model averaging method on the classifiers of the output layer.
We could have used the Bayesian Model Averaging method (Wasserman, 2000). But one of its main
weaknesses is the catch-up phenomenon (Van Erven et al., 2012): plain Bayesian posteriors are slow
to react when the relative performance of models changes over time. Typically, for instance, some
larger-dimensional models need more training data to reach good performance: at the time they
become better than lower-dimensional models for predicting current data, their Bayesian posterior
is so bad that they are not used right away (their posterior needs to “catch up” on their bad initial
performance). This leads to very conservative model averaging methods.

The solution from (Van Erven et al., 2012) against the catch-up phenomenon is to switch between
models. It is based on previous methods for prediction with expert advice (see for instance (Herbster
and Warmuth, 1998; Volf and Willems, 1998) and the references in (Koolen and De Rooij, 2008;
Van Erven et al., 2012)), and is well rooted in information theory. The switch method maintains a
Bayesian posterior distribution, not over the set of models, but over the set of switching strategies
between models. Intuitively, the model selected can be adapted online to the number of samples
seen.

We now give a quick overview of the switch method from Van Erven et al. (2012): this is how the
model averaging weights aj are chosen in Alrao.

Assume that we have a set of prediction strategies M = {pj , j ∈ I}. We define the set of
switch sequences, S = {((t1, j1), ..., (tL, jL)), 1 = t1 < t2 < ... < tL , j ∈ I}. Let
s = ((t1, j1), ..., (tL, jL)) be a switch sequence. The associated prediction strategy ps(y1:n|x1:n)
uses model pji on the time interval [ti; ti+1), namely

ps(y1:i+1|x1:i+1, y1:i) = pKi(yi+1|x1:i+1, y1:i) (5)

where Ki is such that Ki = jl for tl ≤ i < tl+1. We fix a prior distribution π over switching se-
quences. In this work, I = {1, ..., NC} the prior is, for a switch sequence s = ((t1, j1), ..., (tL, jL)):

π(s) = πL(L)πK(j1)
L
∏

i=2

πT (ti|ti > ti−1)πK(ji) (6)

with πL(L) = θL

1−θ
a geometric distribution over the switch sequences lengths, πK(j) = 1

NC
the

uniform distribution over the models (here the classifiers) and πT (t) =
1

t(t+1) .

This defines a Bayesian mixture distribution:

psw(y1:T |x1:T ) =
∑

s∈S

π(s)ps(y1:T |x1:T ) (7)

Then, the model averaging weight aj for the classifier j after seeing T samples is the posterior of
the switch distribution: π(KT+1 = j|y1:T , x1:T ).

aj = psw(KT+1 = j|y1:T , x1:T ) =
psw(y1:T ,KT+1 = j|x1:T )

psw(y1:T |x1:T )
(8)

These weights can be computed online exactly in a quick and simple way (Van Erven et al., 2012),
thanks to dynamic programming methods from hidden Markov models.

The implementation of the switch used in Alrao exactly follows the pseudo-code from (Van Erven
et al., 2008), with hyperparameter θ = 0.999 (allowing for many switches a priori). It can be found
in the accompanying online code.

B CONVERGENCE RESULT IN A SIMPLE CASE

We prove a convergence result on Alrao in a simplified case: we assume that the loss is convex,
that the pre-classifier is fixed, that we work with full batch gradients rather than stochastic gradient
descent, and that the Alrao model averaging method is standard Bayesian model averaging. The

12



Under review as a conference paper at ICLR 2019

convexity and fixed classifier assumptions cover, for instance, standard logistic regression: in that
case the Alrao output layer contains copies of a logistic classifier with various learning rates, and
the Alrao pre-classifier is the identity (or any fixed linear pre-classifier).

For each Alrao classifier j, for simplicity we denote its parameters by θj instead of θcl
j (there is no

more ambiguity since the pre-classifier is fixed).

The loss of some classifier C on a dataset with features (xi) and labels (yi) is L(C) :=
1
N

∑

i ℓ(C(xi), yi), where for each input xi, (C(xi)y)y∈Y is a probability distribution over the
possible labels y ∈ Y , and we use the log-loss ℓ(C(xi), yi) := − logC(xi)yi

.

For a classifier Cθ with parameter θ, let us abbreviate L(θ) := L(Cθ). We assume that L(θ) is
a non-negative convex function, with ∇2L(θ) � λI for all θ. Let L∗ be its global infimum; we
assume L∗ is a minimum, reached at some point θ∗, namely L(θ∗) = L∗. Moreover we assume that
L is locally strongly convex at its minimum θ∗: ∇2L(θ∗) ≻ 0.

The Alrao architecture for such a classifier Cθ uses Ncl copies of the same classifier, with different
parameter values:

ΦAlrao
θAlrao

(x) =

Ncl
∑

j=1

ajCθj (9)

where θAlrao := (θ1, ..., θNcl
), and where the (aj)j are the weights given by the model averaging

method. We abbreviate L(θAlrao) := L(ΦAlrao
θAlrao

).

The Alrao classification layer uses a set of learning rates (ηj)j∈J , and starting points (θ
(0)
j )j∈J .

Using full-batch (non stochastic) Alrao updates we have

θ
(t+1)
j = θ

(t)
j − ηj∇L(θ

(t)
j ) (10)

a(t+1) = ModelAveraging(a(t), (Cθi(x1:N ))i, y1:N ) (11)

We assume that the model averaging method is Bayesian Model Averaging.

We have assumed that the Hessian of the loss of the model satisfies ∇2L(θ) � λI . Under this
condition, the standard theory of gradient descent for convex functions requires that the learning
rate be less than 1/λ, otherwise the gradient descent might diverge. Therefore, for Alrao we assume
that at least one of the learning rates considered by Alrao is below this threshold.

Theorem 1. Assume that at least one of the Alrao learning rates ηj satisfies ηj < 1/λ, with λ as
above. Then, under the assumptions above, the Alrao loss is at most the optimal loss when t→∞:

lim sup
t

L(θ
(t)
Alrao) ≤ L∗ (12)

Proof. Let us analyze the dynamics of the different models in the model averaging method. Let us
split the set of Alrao classifiers in two categories according to whether their sum of errors is finite or
infinite, namely,

A :=







j ∈ J such that
∑

t≥0

(

L(θ
(t)
j )− L∗

)

<∞







, (13)

B :=







j ∈ J such that
∑

t≥0

(

L(θ
(t)
j )− L∗

)

=∞







(14)

and in particular, for any j ∈ A, limt L(θ
(t)
j ) = L∗.

The proof is organized as follows: We first show that A is not empty. Then, we show that

limt→∞ a
(t)
j = 0 for all j ∈ B: these models are eliminated by the model averaging method.

Then we will be able to conclude.

First, we show that A is not empty: namely, that there is least one j such that
∑

t≥0(L(θ
(t)
j )−L∗) <

∞. We know that there is j such that ηj < 2
λ

. Hence, the standard theory of gradient descent for

13



Under review as a conference paper at ICLR 2019

convex functions shows that this particular classifier converges (e.g., (Tibshirani and Marchetti-

Bowick, 2013)), namely, the loss (L(θ
(t)
j ))t converges to L∗. Moreover, since L is localy stricly

convex around θ∗, this implies that limt θ
(t)
j = θ∗.

We now show that the sum of errors for this specific j converges. We assumed that L(θ) is locally
strongly convex in θ∗. Let µ > 0 such that ∇2L(θ∗) � µI . Since L is C2, there is ε′ such that for

any θ such that ‖θ − θ∗‖≤ ε′, then ∇2L(θ) � µ
2 I . Let τ ∈ N such that ‖θ

(τ)
j − θ∗‖< ε′. Then,

from the theory of gradient descent for strongly convex functions (Tibshirani and Marchetti-Bowick,

2013), we know there is some γ < 1 such that for t > τ , L(θ
(t)
j )−L∗ ≤ C‖θ

(τ)
j − θ∗‖γt. We have:

t
∑

s=1

(

L(θ
(s)
j )− L∗

)

=

τ
∑

s=1

(

L(θ
(s)
j )− L∗

)

+
t
∑

s=τ

(

L(θ
(s)
j )− L∗

)

(15)

≤
τ
∑

s=1

(

L(θ
(s)
j )− L∗

)

+ C‖θ
(τ)
j − θ∗‖γτ 1

1− γ
(16)

Thus
∑

t≥0

(

L(θ
(t)
j )− L∗

)

<∞. Therefore, A is not empty.

We now show that the weights a
(t)
j tend to 0 for any j ∈ B, namely, limt→∞ a

(t)
j = 0. Let j ∈ B

and take some i ∈ A. In Bayesian model averaging, the weights are

a
(t)
j =

∏t
s=1 pθ(s)

j

(y1:N |x1:N )
∑

k

∏t
s=1 pθ(s)

k

(y1:N |x1:N )
(17)

≤
t
∏

s=1

p
θ
(s)
j

(y1:N |x1:N )

p
θ
(s)
i

(y1:N |x1:N )
(18)

=

t
∏

s=1

exp(−NL(θ
(s)
j ))

exp(−NL(θ
(s)
i ))

(19)

= exp

(

−N

t
∑

s=1

(

L(θ
(s)
j )− L∗

)

+N

t
∑

s=1

(

L(θ
(s)
i )− L∗

)

)

(20)

Since i ∈ A and j ∈ B, by definition of A and B this tends to 0. Therefore, limt a
(t)
j = 0 for all

j ∈ B.

We now prove the statement of the theorem. We have:

L(θ
(t)
Alrao) =

1

N

∑

i

− log





∑

j∈A

aje
−ℓ(C

θ
(t)
j

(xi),yi)

+
∑

j∈B

aje
−ℓ(C

θ
(t)
j

(xi),yi)



 (21)

≤
1

N

∑

i

− log





∑

j∈A

aje
−ℓ(C

θ
(t)
j

(xi),yi)



 (22)

For all i ∈ A, set ã
(t)
i :=

a
(t)
i∑

j∈A a
(t)
j

=
a
(t)
i

1−
∑

j∈B a
(t)
j

. Then

L(θ
(t)
Alrao) ≤ − log



1−
∑

j∈B

a
(t)
j



+
1

N

∑

i

− log





∑

j∈A

ãje
−ℓ(C

θ
(t)
j

(xi),yi)



 (23)

≤
1

N

∑

i

∑

j∈A

ãjℓ(Cθ
(t)
j

(xi), yi) + o(1) (24)

=
∑

j∈A

ãjL(θ
(t)
j ) + o(1) (25)

= L∗ + o(1) (26)

14



Under review as a conference paper at ICLR 2019

thanks to Jensen’s inequality for − log, then because limt a
(t)
j = 0 for j ∈ B, and finally because

limt L(θ
(t)
j ) = L∗ for j ∈ A. Taking the lim sup, we have:

lim sup
t

L(θ
(t)
Alrao) ≤ L∗ (27)

which ends the proof.

C EVOLUTION OF THE POSTERIOR

The evolution of the model averaging weights can be observed during training. In Figure 4, we
can see their evolution during the training of the GoogLeNet model with Alrao on CIFAR10, 10
classifiers, with ηmin = 10−5 and ηmax = 101.

We can make several observations. First, after only a few gradient descent steps, the model averaging
weights corresponding to the three classifiers with the largest learning rates go to zero. This means
that their parameters are moving too fast, and their loss is getting very large.

Next, for a short time, a classifier with a moderately large learning rate gets the largest posterior
weight, presumably because it is the first to learn a useful model.

Finally, after the model has seen approximately 4,000 samples, a classifier with a slightly smaller
learning rate is assigned a posterior weight aj close to 1, while all the others go to 0. This means that
after a number of gradient steps, the model averaging method acts like a model selection method.

10−3 10−2 10−1 100 101

Epochs (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 a
ve

ra
gi
ng

 w
ei
gh

ts
 a

j

a1 : η1 = 1.0e-05
a2 : η2 = 4.6e-05
a3 : η3 = 2.2e-04
a4 : η4 = 1.0e-03
a5 : η5 = 4.6e-03
a6 : η6 = 2.2e-02
a7 : η7 = 1.0e-01
a8 : η8 = 4.6e-01
a9 : η9 = 2.2e+00
a10 : η10 = 1.0e+01

Figure 4: Model averaging weights during training. During the training of the GoogLeNet model
with Alrao on CIFAR10, 10 classifiers, with ηmin = 10−5 and ηmax = 101, we represent the
evolution of the model averaging weights aj , depending on the corresponding classifier’s learning
rate.

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

In the case of CIFAR-10, we normalize each input channel xi (1 ≤ i ≤ 3), using its mean and its
standard deviation over the training set. Let µi and σi be respectively the mean and the standard de-
viation of the i-th channel. Then each input (x1, x2, x3) is transformed into (x1−µ1

σ1
, x2−µ2

σ2
, x3−µ3

σ3
).

This operation is done over all the data (training, validation and test).

Moreover, we use data augmentation: every time an image of the training set is sent as input of the
NN, this image is randomly cropped and and randomly flipped horizontally. Cropping consists in
filling with black a band at the top, bottom, left and right of the image. The size of this band is
randomly chosen between 0 and 4 in our experiments.

On CIFAR10 and PTB, the batch size was 32 for every architecture. On ImageNet, the batch-size is
256 for Alexnet and ResNet50, and 128 for Densent121.

15



Under review as a conference paper at ICLR 2019

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
Adam default
alrao
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01
lr=1e+02

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(a) GoogLeNet on CIFAR10 (Average on three runs

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss train
alrao: (10−5, 101)
lr=1e+01
lr=1e+00
lr=1e-01
lr=1e-02
lr=1e-03
lr=1e-04
lr=1e-05
Adam

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8
lo

ss
Loss test

(b) Densenet121 trained on ImageNet

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss train
alrao: (10−5, 101)
lr=1e-01
lr=1e-02
lr=1e-03
Adam

0 20 40 60 80 100 120 140
epochs

0

1

2

3

4

5

6

7

8

lo
ss

Loss test

(c) Alexnet trained on ImageNet (still running)

Figure 5: Additional learning curves for SGD with various learning rates, Alrao, and Adam with its
default setting, with the Densenet121 and Alexnet architectures on ImageNet and the GoogLeNet
architecture on CIFAR10. Left: training loss; right: test loss.

16



Under review as a conference paper at ICLR 2019

E ALRAO WITH ADAM

In Figure 6, we report our experiments with Alrao-Adam on CIFAR10. As explained in Section 4,
Alrao is much less reliable with Adam than with SGD.

This is especially true for the test performance, which can even diverge while training performance
remains either good or acceptable (Fig. 6). Thus Alrao-Adam seems to send the model into atypical
regions of the search space.

F NUMBER OF PARAMETERS

As explained in Section 4, Alrao increases the number of parameters of a model, due to output
layer copies. The additional number of parameters is approximately equal to (Ncl − 1) × K × d
where Ncl is the number of classifier copies used in Alrao, d is the dimension of the output of the
pre-classifier, and K is the number of classes in the classification task (assuming a standard softmax
output; classification with many classes often uses other kinds of output parameterization instead).

Table 2: Comparison between the number of parameters in models used without and with Alrao.
LSTM (C) is a simple LSTM cell used for character prediction while LSTM (W) is the same cell
used for word prediction.

MODEL NUMBER OF PARAMETERS

WITHOUT ALRAO WITH ALRAO

GOOGLENET 6.166M 6.258M
VGG 20.041M 20.087M
MOBILENET 2.297M 2.412M

LSTM (C) 0.172M 0.197M
LSTM (W) 2.171M 7.221M

The number of parameters for the models used, with and without Alrao, are in Table 2. We used 10
classifiers in Alrao for convolutional neural networks, and 6 classifiers for LSTMs. Using Alrao for
classification tasks with many classes, such as word prediction (10,000 classes on PTB), increases
the number of parameters noticeably.

For those model with significant parameter increase, the various classifier copies may be done on
parallel GPUs.

G SAMPLING A LEARNING RATE PER WEIGHT

In Alrao we sample a learning rate for each feature. Intuitively, each feature (or neuron) is a compu-
tation unit of its own, using a number of inputs from the previous layer. If we assume that there is
a “right” learning rate for learning new features based on information from the previous layer, then
we should try a learning rate per feature; some features will be useless, while others will be used
further down in the network.

An obvious variant is to set a random learning rate per weight, instead of for all incoming weights
of a given feature. However, this runs the risk that every feature in a layer will have a few incoming
weights with a large rate, so intuitively every feature is at risk of diverging. This is why we favored
per-feature rates.

Still, we tested sampling a learning rate for each weight in the pre-classifier (while keeping the same
Alrao method for the classifier layer).

In our experiments on LSTMs, per-weight learning rates sometimes perform well but are less stable
and more sensitive to the interval (ηmin, ηmax): for some intervals (ηmin, ηmax) with very large
ηmax, results with per-weight learning rates are a lot worse than with per-feature learning rates. This
is consistent with the intuition above.

17



Under review as a conference paper at ICLR 2019

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

0.0

0.5

1.0

1.5

2.0
lo

ss

Loss train
alrao-adam
adam lr=1e-05
adam lr=1e-04
adam lr=1e-03
adam lr=1e-02

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(a) Alrao-Adam with GoogLeNet on CIFAR10: Alrao-Adam compared with standard Adam with various learn-
ing rates. Alrao uses 10 classifiers and learning rates in the interval [10−6

, 1]. Each plot is averaged on 10
experiments. We observe that optimization with Alrao-Adam is efficient, since train loss is comparable to the
usual Adam methods. But the model starkly overfits, as the test loss diverges.

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
alrao
alrao

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0
lo

ss

Loss test

(b) Alrao-Adam with MobileNet on CIFAR10: Alrao-Adam with two different learning rate intervals,
(10−6

, 10−2) for the first one, (10−6
, 10−1) for the second one, with 10 classifiers each. The first one is

with ηmin = 10−6Each plot is averaged on 10 experiments. Exactly as with GoogLeNet model, optimization
itself is efficient (for both intervals). For the interval with the smallest ηmax, the test loss does not converge and
is very unstable. For the interval with the largest ηmax, the test loss diverges.

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(c) Alrao-Adam with VGG19 on CIFAR10: Alrao-Adam on the interval [10−6
, 1], with 10 classifiers. The 10

plots are 10 runs of the same experiments. While 9 of them do converge and generalize, the last one exhibits
wide oscillations, both in train and test.

Figure 6: Alrao-Adam: Experiments with the VGG19, GoogLeNet and MobileNet networks on
CIFAR10.

18



Under review as a conference paper at ICLR 2019

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

lo
ss

 (b
its

 p
er

 c
ha

ra
ct

er
)

Loss train
alrao: (10−3, 104) ; one lr per weight
alrao: (10−3, 104) ; one lr per feature
alrao: (10−4, 102) ; one lr per feature
alrao: (10−4, 102) ; one lr per weight

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

lo
ss

 (b
its

 p
er

 c
ha

ra
ct

er
)

Loss test

Figure 7: Loss for various intervals (ηmin, ηmax), as a function of the sampling method for the
learning rates, per feature or per weight. The model is a two-layer LSTM trained for 20 epochs only,
for character prediction. Each curves represents 10 runs. (Losses are much higher than the results
reported in Table 1 because the full training for Table 1 takes approximately 300 epochs.)

H FROZEN FEATURES DO NOT HURT TRAINING

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

test_nll as a function of p

Figure 8: Loss of a model where only a random fraction p of the features are trained, and the others
left at their initial value, as a function of p. The architecture is GoogLeNet, trained on CIFAR10.

As explained in the introduction, several works support the idea that not all units are useful when
learning a deep learning model. Additional results supporting this hypothesis are presented in Fig-
ure 8. We trained a GoogLeNet architecture on CIFAR10 with standard SGD with learning rate η0,
but learned only a random fraction p of the features (chosen at startup), and kept the others at their
initial value. This is equivalent to sampling each learning rate η from the probability distribution
P (η = η0) = p and P (η = 0) = 1− p.

We observe that even with a fraction of the weights not being learned, the model’s performance is
close to its performance when fully trained.

When training a model with Alrao, many features might not learn at all, due to too small learning
rates. But Alrao is still able to reach good results. This could be explained by the resilience of neural
networks to partial training.

19



Under review as a conference paper at ICLR 2019

I INCREASING NETWORK SIZE

As explained in Section 4, learning with Alrao reduces the effective size of the network to only a
fraction of the actual architecture size, depending on (ηmin, ηmax). We first tought that increasing
the width of each layer was going to be necessary in order to use Alrao. However, our experiments
show that this is not necessary.

Alrao and SGD experiments with increased width are reported in Figure 9. As expected, Alrao with
increased width has better performance, since the effective size increases. However, increasing the
width also improves performance of standard SGD, by roughly the same amount.

Thus, width is still a limiting factor both for GoogLeNet and MobileNet. This shows that Alrao can
perform well even when network size is a limiting factor; this runs contrary to our initial intuition
that Alrao would require very large networks in order to have enough features with suitable learning
rates.

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
alrao
SGD best lr: 1e-02
alrao, width * 3
SGD best lr: 1e-02, width * 3

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(a) GoogLeNet

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
alrao
SGD best lr: 1e-02
alrao, width * 3
SGD best lr: 1e-02, width * 3

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(b) MobileNet

Figure 9: Increasing network width. We compare the performance of the GoogLeNet and MobileNet
models trained on CIFAR10, to the same models with 3 times as many units in each layer, both for
standard SGD and for Alrao.

J TUTORIAL

In this section, we briefly show how Alrao can be used in practice on an already implemented method
in Pytorch. The full code will be available once the anonymity constraint is lifted.

20



Under review as a conference paper at ICLR 2019

The first step is to build the preclassifier. Here, we use the VGG19 architecture. The model is built
without a classifier. Nothing else is required for Alrao at this step.

class VGG(nn.Module):

def __init__(self, cfg):

super(VGG, self).__init__()

self.features = self._make_layers(cfg)

# The dimension of the preclassier’s output need to be specified.

self.linearinputdim = 512

def forward(self, x):

out = self.features(x)

out = out.view(out.size(0), -1)

# The model do not contain a classifier layer.

return out

def _make_layers(self, cfg):

layers = []

in_channels = 3

for x in cfg:

if x == ’M’:

layers += [nn.MaxPool2d(kernel_size=2, stride=2)]

else:

layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding

=1),

nn.BatchNorm2d(x),

nn.ReLU(inplace=True)]

in_channels = x

layers += [nn.AvgPool2d(kernel_size=1, stride=1)]

return nn.Sequential(*layers)

preclassifier = VGG([64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’,

\

512, 512, 512, 512, ’M’, 512, 512, 512, 512, ’M’])

Then, we can build the Alrao-model with this preclassifier, sample the learning rates for the model,
and define the Alrao optimizer

# We define the interval in which the learning rates are sampled

minlr = 10 ** (-5)

maxlr = 10 ** 1

# nb_classifiers is the number of classifiers averaged by Alrao.

nb_classifiers = 10

nb_categories = 10

net = AlraoModel(preclassifier, nb_categories, preclassifier.

linearinputdim, nb_classifiers)

# We spread the classifiers learning rates log-uniformly on the interval.

classifiers_lr = [np.exp(np.log(minlr) + \

k /(nb_classifiers-1) * (np.log(maxlr) - np.log(minlr)) \

) for k in range(nb_classifiers)]

# We define the sampler for the preclassifier’s features.

lr_sampler = lr_sampler_generic(minlr, maxlr)

lr_preclassifier = generator_randomlr_neurons(net.preclassifier,

lr_sampler)

# We define the optimizer

optimizer = SGDAlrao(net.parameters_preclassifier(),

lr_preclassifier,

net.classifiers_parameters_list(),

classifiers_lr)

21



Under review as a conference paper at ICLR 2019

Finally, we can train the model. The only differences here with the usual training procedure is that
each classifier needs to be updated as if it was alone, and that we need to update the model averaging
weights, here the switch weights.

def train(epoch):

for batch_idx, (inputs, targets) in enumerate(trainloader):

# We update the model averaging weights in the optimizer

optimizer.update_posterior(net.posterior())

optimizer.zero_grad()

# Forward pass of the Alrao model

outputs = net(inputs)

loss = nn.NLLLoss(outputs, targets)

# We compute the gradient of all the model’s weights

loss.backward()

# We reset all the classifiers gradients, and re-compute them with

# as if their were the only output of the network.

optimizer.classifiers_zero_grad()

newx = net.last_x.detach()

for classifier in net.classifiers():

loss_classifier = criterion(classifier(newx), targets)

loss_classifier.backward()

# Then, we can run an update step of the gradient descent.

optimizer.step()

# Finally, we update the model averaging weights

net.update_switch(targets, catch_up=False)

22


	Introduction
	All Learning Rates At Once: Description
	Experiments
	Limitations, further remarks, and future directions
	Conclusion
	Model Averaging with the Switch
	Convergence result in a simple case
	Evolution of the Posterior
	Additional Experimental Details and Results
	Alrao with Adam
	Number of Parameters
	Sampling a Learning Rate Per Weight
	Frozen Features Do Not Hurt Training
	Increasing Network Size
	Tutorial

