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F class of functions on measurable space (X,.A)
X and Y jointly distributed ~ P = Px x Py|x
(X1,Y1),...,(Xn,Yn) ii.d. copies

IF=YIP = B0 -V, 11 YJA = 1 33(106) - %)?

i=1

Excess loss with respect to model F:

€(9)=lg-Y[* ~inf [f-Y|*
feF

Opt in F:
% = argmin |[f - Y|?
feF



Goals:
» construct T with small £(F)
» avoid convexity assumption on F

» avoid boundedness of functions and noise (have only weak assumptions
on F,P)



Local Rademacher averages for ERM analysis:

critical radius

r*=inf{r>0: E  sup lZa(f—f*)(xi)

feF,|f—f*|<r [TV {21

grQ}

relies on boundedness of functions and Y

tools: Talagrand’s inequality for supremum, contraction



First, consider convex F. Then

R [ (MY (B D

Basic inequality:
ER) = [F-YI* - - Y|’
<F-YIP = £ =Y+ | = Y2 - [F- Y] - -]
= 2(Pu - PY(F - V)(* = D))+ [ =T 2| -T2

<sup{2(Pa = P)[(F = V)(F = F)]+ [ = 1" =2 1] }

Observe: can upper bound by supremum of negative-mean process.



Offset Rademacher

Offset Rademacher averages of G and constant ¢ > 0 are defined as

F(G) = Ee sup{l S evg(ea) - cg2(zi>}
geg |V imy

Empirical Rademacher averages correspond to ¢ = 0.



Example

Class of linear functions

= {f(x) = {w,x):w E]Rd}, L= xixi
i=1
Then offset Rademacher complexity is

E. sup{ Ze f(xi) - f (xl)} _711 c sup { (ieiXi) - |\W||§}

feF weRd
2
o o°d
- e s
i=1 -1 n

In contrast, the usual (non-offset) complexity will only give n™*/? rates.



Intuition

Ly eg(z)

g with larger Eg? 2

g= 0 g with larger Eg

71,, Yici€ig(zi) - 09(27:)2

critical radius
i

g with larger Eg? g= 0 g.with larger Eg?



Next: prove for non-convex classes.
Cannot hope that ERM will work: any selector is suboptimal.
Which T satisfies

" -~ 2 —~ a2
[ = Y[ = [F- Y], > e [F- ],

with some constant ¢ > 07 — design new algorithm



The Star algorithm

star(F,g) = {Ag+ (1 -AN)f:fe F,Ae[0,1]}

g=argmin |[f-Y|2, = argmin |f-Y|?
feF festar(F,q)
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If F is convex, the Star algorithm coincides with ERM.
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Star algorithm was introduced by (Audibert '07) for F of finite cardinality.
He showed it is deviation-optimal for finite aggregation.

(Lecué, Mendelson '13): ERM, convex and subgaussian class.

(Rakhlin, Sridharan, Tsybakov "14): 3-step estimator, bounded classes.



Key geometric inequality

The Star algorithm T satisfies
Ih=YI = [F- Yl 2 e [F=nl,  (Py)

for any h e F and ¢ = 1/18.

If F is convex, (Py) holds with ¢ = 1. If F is a linear subspace, (Py) holds
with equality and ¢ = 1.



Proof of key geometric inequality




~| Corollary.

For ¢ = 1/18, the Star estimator satisfies

E@ < (Pa-P)2(F -V)(F =D+ | =T - +0)- |7 -T2
conditionally on data.




Bounded case: warm up

~— Lemma.

Define H := F — f* + star(F - F). Suppose K = sup; [f|eo, M = sup; |Y -
floo. Then X R
E[E()] < cBZ(H)

Complexity of H is of same order as that of F.



High probability statement for unbounded functions

Assumption:

Function class #H satisfies the lower isometry bound for 0 < & < 1 and

c=1/72if
h2
P(inf [l >17c)2175

for all n > nyic(#,9).

(Mendelson 147, 157): this holds under small ball assumption 4+ norm
comparison (e.g. |h|q < L|h|2,2 < q <4 for all he#). It also holds for
subgaussian classes. Holds for heavy-tail.



High probability statement for unbounded functions

~— Theorem. N

H:=F - +star(F - F), & =Yy — f°(X;). Suppose

Eh?
<A, E&'<B. *
nen. (En2)? £ ®)

Then

P (E(F) > 4u) < 45 + 4P (suprl1 i ei&ih(Xi) - c-h(X:)? > u)
i=1

heH

C\/

for any u > ,as long asn>cAvnc(H.0).

We can remove the moment condition (*) via a probabilistic
symmetrization trick by (Panchenko "03).




Critical radius

= inf{r > O:IP’( sup {l ieiéih(xi) —c'hQ(Xi)} grz) > 1—5}.

heHNTBo i=1

~— Lemma.

Assume H is star-shaped around 0 and lower isometry bound holds.
Then with prob. at least 1 — 29,

n n
sup{l €1Eih(xi) —C'hZ(Xi)} = sup {l Z eiéih(Xi) —C'h2(Xi)}
heH | TV ig heHnr*By (T iZ1

<72




Example: linear regression

~— Lemma. N

The offset Rademacher is bounded as
1 & tr (G™'H
Ee sup {— > 2eiEX{B - CBTXiXiT[S} = —( )
BeRd i=1 Cn
where G := Y11, XiXiT and H= Y1, E%XiXiT.

Assuming that conditional moment E(&?|X) is 02, then conditionally on the

. — . 2
design, EG™'H = 0214 and excess loss is order <<,
’ n



Example: finite aggregation

~— Lemma.

Let V c R"™ be a finite set. Then for any C > 0,
L I log1
P, (max[l S ek Cvg] S M. M) <5,
vevV | M i3 n

where 5 s
mn

M := max —Zi:l vibi

veV 2C ZI":I V%




,—(Lemma (Chaining) )

Let G be a class of functions from Z to R. Then for any zi,...,zn € Z

Ec sup [% i €ig(zi) - Cg(zi)z]

geg t=1
< inf {(2/C) log V2(6,7) rdn+ 2 fy V1og N2 (G, 5)d6}
v20,xe[0,v] n Vv Ju«
where N2(G,v) is an {z-cover of G on (z1,...,zn) at scale y (assumed

to contain 0).




Example: nonparametric function classes

Suppose
og Na(Flay oo, &) <P

Leads to n 2 for pe(0,2), n? for p>2, and n/?

log(n) at p=2.
In bounded case, these were shown in (Rakhlin, Sridharan, Tsybakov "14).

For well-specified models, transition at p =2 does not happen, and the rate

2
remains n 2+p.



Lower bound

Define worst-case offset Rademacher complexity

H°(F,n)= sup Ee sup{ 226 f(xi) — f(xi) }
{xi}] ex®n feF
then the following minimax lower bound on regret holds:

infsup{HQ - Y|? - inf HffYHQ} >Z°((L+c)n,F) - —ﬂ’o(cn g),
GG P feF

for any c > 0.



Thanks!



