Learning with Square Loss: Localization through Offset Rademacher Complexity

Tengyuan Liang

 $\begin{array}{c} {\bf Department~of~Statistics,~The~Wharton~School}\\ {\it University~of~Pennsylvania} \end{array}$

Joint work with Sasha Rakhlin and Karthik Sridharan

 \mathcal{F} class of functions on measurable space $(\mathcal{X}, \mathcal{A})$

X and Y jointly distributed $\sim P = P_X \times P_{Y|X}$

 $(X_1, Y_1), \dots, (X_n, Y_n)$ i.i.d. copies

$$\|f - Y\|^2 = \mathbb{E}(f(X) - Y)^2, \quad \|f - Y\|_n^2 = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Excess loss with respect to model \mathcal{F} :

$$\mathcal{E}(g) = \|g - Y\|^2 - \inf_{f \in \mathcal{F}} \|f - Y\|^2$$

Opt in \mathcal{F} :

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \left\| f - Y \right\|^2$$

Goals:

- construct \widehat{f} with small $\mathcal{E}(\widehat{f})$
- avoid convexity assumption on \mathcal{F}
- \blacktriangleright avoid boundedness of functions and noise (have only weak assumptions on $\mathcal{F},\mathsf{P})$

Local Rademacher averages for ERM analysis:

critical radius

$$r^* = \inf \left\{ r > 0: \quad \mathbb{E} \sup_{f \in \mathcal{F}, \|f - f^*\| \le r} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \big(f - f^* \big) \big(x_i \big) \right| \le r^2 \right\}$$

relies on boundedness of functions and Y

tools: Talagrand's inequality for supremum, contraction

First, consider convex \mathcal{F} . Then

$$\|f^* - Y\|_n^2 - \|\widehat{f} - Y\|_n^2 \ge \|\widehat{f} - f^*\|_n^2$$
 (Py)

Basic inequality:

$$\begin{split} \mathcal{E}(\widehat{f}) &= \|\widehat{f} - Y\|^2 - \|f^* - Y\|^2 \\ &\leq \|\widehat{f} - Y\|^2 - \|f^* - Y\|^2 + \|f^* - Y\|_n^2 - \|\widehat{f} - Y\|_n^2 - \|\widehat{f} - f^*\|_n^2 \\ &= 2(P_n - P)[(f^* - Y)(f^* - \widehat{f})] + \|f^* - \widehat{f}\|^2 - 2\|f^* - \widehat{f}\|_n^2 \\ &\leq \sup_{f \in \mathcal{F}} \left\{ 2(P_n - P)[(f^* - Y)(f^* - f)] + \|f^* - f\|^2 - 2\|f^* - f\|_n^2 \right\} \end{split}$$

Observe: can upper bound by supremum of negative-mean process.

Offset Rademacher

Offset Rademacher averages of \mathcal{G} and constant $\mathbf{c} \geq 0$ are defined as

$$\widehat{\mathcal{R}}_n^{\text{off}}(\mathcal{G}) = \mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{g \in \mathcal{G}} \left\{ \frac{1}{n} \sum_{i=1}^n \boldsymbol{\varepsilon}_i g(z_i) - cg^2(z_i) \right\}$$

Empirical Rademacher averages correspond to c = 0.

Example

Class of linear functions

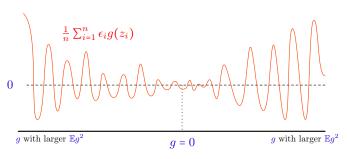
$$\mathcal{F} = \left\{ f(x) = \left\langle w, x \right\rangle : w \in \mathbb{R}^d \right\}, \quad \Sigma = \sum_{i=1}^n x_i x_i^{\mathsf{T}}$$

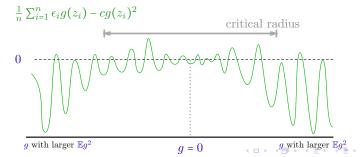
Then offset Rademacher complexity is

$$\begin{split} \mathbb{E}_{\mathbf{\varepsilon}} \sup_{\mathbf{f} \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbf{\varepsilon}_{i} \mathbf{f}(x_{i}) - \mathbf{f}^{2}(x_{i}) \right\} &= \frac{1}{n} \mathbb{E}_{\mathbf{\varepsilon}} \sup_{w \in \mathbb{R}^{d}} \left\{ w^{\mathsf{T}} \left(\sum_{i=1}^{n} \mathbf{\varepsilon}_{i} x_{i} \right) - \|w\|_{\Sigma}^{2} \right\} \\ &= \frac{c}{n} \left\| \sum_{i=1}^{n} \mathbf{\varepsilon}_{i} x_{i} \right\|_{\Sigma^{-1}}^{2} &\sim \frac{\sigma^{2} d}{n} \end{split}$$

In contrast, the usual (non-offset) complexity will only give $n^{-1/2}$ rates.

Intuition





Next: prove (Py) for non-convex classes.

Cannot hope that ERM will work: any selector is suboptimal.

Which $\hat{\mathbf{f}}$ satisfies

$$\|f^* - Y\|_n^2 - \|\widehat{f} - Y\|_n^2 \ge c \|\widehat{f} - f^*\|_n^2$$
 (Py)

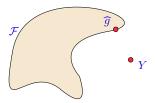
with some constant c > 0? \Longrightarrow design new algorithm

$$\operatorname{star}(\mathcal{F},g) = \{\lambda g + (1-\lambda)f : f \in \mathcal{F}, \lambda \in [0,1]\}$$

$$\widehat{g} = \mathop{\mathrm{argmin}}_{f \in \mathcal{F}} \left\| f - Y \right\|_n^2, \quad \ \ \widehat{f} = \mathop{\mathrm{argmin}}_{f \in \mathop{\mathrm{star}}(\mathcal{F}, \widehat{g})} \left\| f - Y \right\|_n^2$$

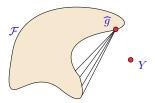
$$star(\mathcal{F}, g) = \{\lambda g + (1 - \lambda)f : f \in \mathcal{F}, \lambda \in [0, 1]\}$$

$$\widehat{g} = \mathop{\mathrm{argmin}}_{f \in \mathcal{F}} \left\| f - Y \right\|_n^2, \quad \ \ \widehat{f} = \mathop{\mathrm{argmin}}_{f \in \mathop{\mathrm{star}}(\mathcal{F}, \widehat{g})} \left\| f - Y \right\|_n^2$$



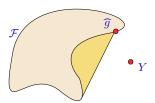
$$\operatorname{star}(\mathcal{F},g) = \{\lambda g + (1-\lambda)f : f \in \mathcal{F}, \lambda \in [0,1]\}$$

$$\widehat{g} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \left\| f - Y \right\|_{n}^{2}, \quad \ \ \widehat{f} = \underset{f \in \operatorname{star}(\mathcal{F}, \widehat{g})}{\operatorname{argmin}} \left\| f - Y \right\|_{n}^{2}$$



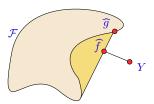
$$\operatorname{star}(\mathcal{F},g) = \{\lambda g + (1-\lambda)f : f \in \mathcal{F}, \lambda \in [0,1]\}$$

$$\widehat{g} = \mathop{\mathrm{argmin}}_{f \in \mathcal{F}} \left\| f - Y \right\|_n^2, \quad \ \ \widehat{f} = \mathop{\mathrm{argmin}}_{f \in \mathop{\mathrm{star}}(\mathcal{F}, \widehat{g})} \left\| f - Y \right\|_n^2$$



$$\operatorname{star}(\mathcal{F}, g) = \{\lambda g + (1 - \lambda)f : f \in \mathcal{F}, \lambda \in [0, 1]\}$$

$$\widehat{g} = \mathop{\mathrm{argmin}}_{f \in \mathcal{F}} \left\| f - Y \right\|_n^2, \quad \ \ \widehat{f} = \mathop{\mathrm{argmin}}_{f \in \mathop{\mathrm{star}}(\mathcal{F}, \widehat{g})} \left\| f - Y \right\|_n^2$$



Star algorithm was introduced by (Audibert '07) for \mathcal{F} of finite cardinality. He showed it is deviation-optimal for *finite aggregation*.

(Lecué, Mendelson '13): ERM, convex and subgaussian class.

(Rakhlin, Sridharan, Tsybakov '14): 3-step estimator, bounded classes.

Key geometric inequality

Lemma.

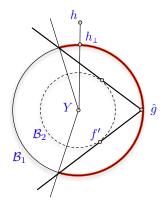
The Star algorithm \hat{f} satisfies

$$\|h - Y\|_n^2 - \|\widehat{f} - Y\|_n^2 \ge c \cdot \|\widehat{f} - h\|_n^2$$
 (Py)

for any $h \in \mathcal{F}$ and c = 1/18.

If $\mathcal F$ is convex, (Py) holds with c=1. If $\mathcal F$ is a linear subspace, (Py) holds with equality and c=1.

Proof of key geometric inequality



Corollary.

For c = 1/18, the Star estimator satisfies

$$\begin{split} \mathcal{E}(\widehat{f}) &\leq (P_n - P)[2(f^* - Y)(f^* - \widehat{f})] + \left\|f^* - \widehat{f}\right\|^2 - (1 + c) \cdot \left\|f^* - \widehat{f}\right\|_n^2 \\ &\text{conditionally on data}. \end{split}$$

Bounded case: warm up

Lemma.

Define
$$\mathcal{H}:=\mathcal{F}-f^*+\operatorname{star}(\mathcal{F}-\mathcal{F}).$$
 Suppose $K=\sup_f|f|_\infty,\ M=\sup_f|Y-f|_\infty.$ Then
$$\mathbb{E}[\mathcal{E}(\hat{f})]\leq c\mathbb{E}\widehat{\mathscr{R}}_n^{\mathrm{off}}(\mathcal{H})$$

Complexity of \mathcal{H} is of same order as that of \mathcal{F} .

High probability statement for unbounded functions

Assumption:

Function class ${\cal H}$ satisfies the lower isometry bound for $0<\delta<1$ and c=1/72 if

$$\mathbb{P} \left(\inf_{h \in \mathcal{H}} \frac{\left\| h \right\|_n^2}{\left\| h \right\|^2} \geq 1 - c \right) \geq 1 - \delta$$

for all $n \ge n_{LIC}(\mathcal{H}, \delta)$.

(Mendelson 14', 15'): this holds under small ball assumption + norm comparison (e.g. $\|h\|_q \leq L\|h\|_2, 2 < q \leq 4$ for all $h \in \mathcal{H}$). It also holds for subgaussian classes. Holds for heavy-tail.

High probability statement for unbounded functions

Theorem.

$$\begin{split} \mathcal{H} \coloneqq \mathcal{F} - f^* + \mathrm{star}(\mathcal{F} - \mathcal{F}), \; \xi_i &= Y_i - f^*(X_i). \; \mathrm{Suppose} \\ \sup_{h \in \mathcal{H}} \frac{\mathbb{E} h^4}{(\mathbb{E} h^2)^2} \leq A, \; \; \mathbb{E} \xi^4 \leq B. \end{split} \tag{*}$$

Then

$$\mathbb{P}\left(\mathcal{E}\left(\widehat{f}\right) > 4u\right) \leq 4\delta + 4\mathbb{P}\left(\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \underline{\varepsilon_{i}} \, \xi_{i} \, h(X_{i}) - c \cdot h(X_{i})^{2} > u\right)$$

for any $u > \frac{c\sqrt{AB}}{n}$, as long as $n > cA \vee n_{LIC}(\mathcal{H}, \delta)$.

We can remove the moment condition (*) via a probabilistic symmetrization trick by (Panchenko '03).

Critical radius

$$\boldsymbol{r^*} = \inf \left\{ r > 0 : \mathbb{P} \left(\sup_{h \in \mathcal{H} \cap \boldsymbol{r}B_2} \left\{ \frac{1}{n} \sum_{i=1}^n \varepsilon_i \, \xi_i \, h(\boldsymbol{X}_i) - c \cdot h^2(\boldsymbol{X}_i) \right\} \leq \boldsymbol{r}^2 \right) \geq 1 - \delta \right\}.$$

Lemma.

Assume ${\cal H}$ is star-shaped around 0 and lower isometry bound holds. Then with prob. at least $1-2\delta,$

$$\begin{split} \sup_{h \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^n \varepsilon_i \xi_i h(X_i) - c \cdot h^2(X_i) \right\} &= \sup_{h \in \mathcal{H} \cap r^* B_2} \left\{ \frac{1}{n} \sum_{i=1}^n \varepsilon_i \xi_i h(X_i) - c \cdot h^2(X_i) \right\} \\ &\leq r^{*2} \end{split}$$

Example: linear regression

Lemma.

The offset Rademacher is bounded as

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{\boldsymbol{\beta} \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n 2\boldsymbol{\varepsilon}_i \boldsymbol{\xi}_i \boldsymbol{X}_i^\mathsf{T} \boldsymbol{\beta} - C \boldsymbol{\beta}^\mathsf{T} \boldsymbol{X}_i \boldsymbol{X}_i^\mathsf{T} \boldsymbol{\beta} \right\} = \frac{\mathsf{tr} \left(G^{-1} \mathsf{H} \right)}{C n}$$

where $G := \sum_{i=1}^{n} X_i X_i^T$ and $H = \sum_{i=1}^{n} \xi_i^2 X_i X_i^T$.

Assuming that conditional moment $\mathbb{E}(\xi^2|X)$ is σ^2 , then conditionally on the design, $\mathbb{E}G^{-1}H=\sigma^2I_d$ and excess loss is order $\frac{\sigma^2d}{n}$.

Example: finite aggregation

Lemma.

Let $V \subset \mathbb{R}^n$ be a finite set. Then for any C > 0,

$$\mathbb{P}_{\varepsilon}\left(\max_{\nu \in V} \left[\frac{1}{n} \sum_{i=1}^n \varepsilon_i \xi_i \nu_i - C \nu_i^2\right] \geq M \cdot \frac{\log |V| + \log 1/\delta}{n}\right) \leq \delta,$$

where

$$M := \max_{v \in V} \frac{\sum_{i=1}^{n} v_i^2 \xi_i^2}{2C \sum_{i=1}^{n} v_i^2}.$$

Lemma (Chaining).

Let \mathcal{G} be a class of functions from \mathcal{Z} to \mathbb{R} . Then for any $z_1, \ldots, z_n \in \mathcal{Z}$

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \sup_{g \in \mathcal{G}} \left[\frac{1}{n} \sum_{t=1}^{n} \boldsymbol{\varepsilon}_{t} g(z_{t}) - Cg(z_{t})^{2} \right]$$

$$\leq \inf_{\boldsymbol{\gamma} \geq 0, \alpha \in [0, \boldsymbol{\gamma}]} \left\{ \frac{(2/C) \log \mathcal{N}_{2}(\mathcal{G}, \boldsymbol{\gamma})}{n} + 4\alpha + \frac{12}{\sqrt{n}} \int_{\alpha}^{\boldsymbol{\gamma}} \sqrt{\log \mathcal{N}_{2}(\mathcal{G}, \boldsymbol{\delta})} d\delta \right\}$$

where $\mathcal{N}_2(\mathcal{G}, \gamma)$ is an ℓ_2 -cover of \mathcal{G} on (z_1, \ldots, z_n) at scale γ (assumed to contain 0).

Example: nonparametric function classes

Suppose

$$\log \mathcal{N}_2(\mathcal{F}|_{x_1,\ldots,x_n},\alpha) \leq \alpha^{-p}$$

Leads to $n^{-\frac{2}{2+p}}$ for $p \in (0,2)$, $n^{-1/p}$ for p > 2, and $n^{-1/2} \log(n)$ at p = 2.

In bounded case, these were shown in (Rakhlin, Sridharan, Tsybakov '14).

For well-specified models, transition at $\mathfrak{p}=2$ does not happen, and the rate remains $\mathfrak{n}^{-\frac{2}{2+\mathfrak{p}}}$.

Lower bound

Define worst-case offset Rademacher complexity

$$\mathscr{R}^{\circ}(\mathcal{F}, n) = \sup_{\{x_i\}_{i=1}^n \in \mathcal{X}^{\otimes n}} \mathbb{E}_{\varepsilon} \sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^n 2\varepsilon_i f(x_i) - f(x_i)^2 \right\}$$

then the following minimax lower bound on regret holds:

$$\inf_{\hat{g} \in \mathcal{G}} \sup_{P} \left\{ \left\| \hat{g} - Y \right\|^2 - \inf_{f \in \mathcal{F}} \left\| f - Y \right\|^2 \right\} \geq \mathscr{R}^{o} \big((1+c)n, \mathcal{F} \big) - \frac{c}{1+c} \mathscr{R}^{o} \big(cn, \mathcal{G} \big),$$

for any c > 0.

Thanks!