
Natural Language Engineering 1 (1): 1–21. Printed in the United Kingdom

c© 2003 Cambridge University Press

1

LearningPinocchio: Adaptive Information
Extraction for Real World Applications

F. C IRAVEGNA
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street,
S1 4DP Sheffield, UK

A. LAVELL I
ITC-irst Centro per la Ricerca Scientifica e Tecnologica

via Sommarive 18, 38050 Povo (TN), Italy

(Received 31 July 2002; revised 3 June 2003)

Abstract

The new frontier of research on Information Extraction from texts is portability without
any knowledge of Natural Language Processing. The market potential is very large in
principle, provided that a suitable easy-to-use and effective methodology is provided. In
this paper we describe LearningPinocchio, a system for adaptive Information Extraction
from texts that is having good commercial and scientific success. Real world applications
have been built and evaluation licenses have been released to external companies for
application development. In this paper we outline the basic algorithm behind the scenes
and present a number of applications developed with LearningPinocchio. Then we report
about an evaluation performed by an independent company. Finally we discuss the general
suitability of this IE technology for real world applications and draw some conclusion.

1 Introduction

Information Extraction from Text (IE) systems are generally used in real world
applications as support for other technologies. For example in Knowledge Manage-
ment (KM) applications, IE can provide support in a number of tasks (Maybury,
2001), including document annotation (Ciravegna et al., 2002; Handschuh et al.,
2002) and ontology population (Bontcheva et al., 2001). In this case the application
environment poses a number of requirements on the characteristics of the needed
IE tools, among them: portability with limited effort, portability across text types
and possibility of tuning system results.
The first important requirement is portability with minimum effort and lim-

ited specific IE skills. The ideal situation is portability with an analyst’s knowledge,
i.e. knowledge on the domain. The use of Machine Learning (ML) has become a
quite popular way to simplify porting. In MUC-oriented IE (MUC7, 1998), the use
of ML has been approached mainly in an NLP-oriented perspective, i.e. in order



2 Fabio Ciravegna and Alberto Lavelli

to reduce the amount of work done by IE experts in porting systems across free
text based scenarios (Cardie, 1997; Yangarber et al., 2000). In this case IE experts
are still necessary. Other authors have addressed the problem of producing IE algo-
rithms and systems adaptable by using only an analyst’s knowledge (Kushmerick
et al., 1997; Califf, 1998; Muslea et al., 1998; Freitag & McCallum, 1999; Soderland,
1999; Freitag & Kushmerick, 2000; Ciravegna, 2001a).
A second issue is portability across text types. In many application fields the

increase in the use of Web technologies requires a wide range of text types to be con-
sidered: from free texts (technical reports, newspaper-like texts) to (semi)structured
marked-up texts (e.g. partially marked-up or even highly structured HTML doc-
uments) and even a mixture of them (Ciravegna, 2001b). A system to be really
adaptive should be portable across different text types without major recoding of
system resources (i.e. again adaptable with minimum effort). Most IE literature
has focused on IE from free newspaper-like texts (Cardie, 1997) and the technol-
ogy developed is linguistically based. Such methodologies can be difficult to apply
or even ineffective on highly structured marked-up documents. They are not able
to cope with the extralinguistic elements (e.g. tags, document formatting) used
to convey information in such documents. On the other hand, wrapper-like algo-
rithms designed for highly structured documents (Kushmerick et al., 1997; Freitag
& McCallum, 1999; Muslea et al., 1998; Freitag & Kushmerick, 2000) are largely
ineffective on unstructured texts given their inability to overcome data sparseness
due to linguistic variation (Ciravegna, 2001c). We believe that there is the need to
develop methodologies able to fill the gap between the two approaches in order to
cope with different text types.
A third issue in porting IE systems is accuracy tuning. Most of the current

approaches are based on an adaptation phase in which users provide a set of texts
with the associated relevant information manually extracted. Corpus annotation is
just one part of the adaptation task, though, in building applications. Adaptation
as a one-way process (from tagged examples to rules) is unlikely to provide opti-
mised results for specific users, as different users will require results with different
characteristics (e.g., high recall in some cases, high precision in others). There is
the necessity of enabling users to modify the system behaviour so as to tailor the
accuracy to the specific application needs. This requires two main features. On the
one hand users should be enabled to evaluate results from both a quantitative and
qualitative point of view. A test corpus with associated expected results is gener-
ally used as the basis for evaluation. The system is then run and statistics on both
effectiveness and accuracy are presented to the user, together with details on cor-
rect matches and mistakes. Currently available technology is able to provide such
information (Douthat, 1998; Cunningham et al., 2002). On the other hand there is
the necessity of actually influencing the system’s behaviour effectively so to adapt
it to the application needs. In case of occasional or inexperienced users, the issue
arises of avoiding the use of technical or numerical concepts (such as precision and
recall). This requires the ability of bridging the user’s qualitative vision (“you are
not capturing enough information”) with the numerical concepts the system is able
to manipulate (e.g. modifying error thresholds in order to obtain higher recall).



LearningPinocchio: Adaptive IE for Real World Applications 3

In this paper we describe LearningPinocchio, a system for adaptive IE whose
design addresses the requirements mentioned above. In the paper we initially intro-
duce the system and the used IE methodology, and describe a number of real world
applications that we have developed. Then we present the experimental results
obtained by LearningPinocchio both on standard testbeds and on real-world ap-
plications. Finally we discuss the system suitability to the requirements mentioned
above and draw some conclusion and future work.

2 LearningPinocchio

LearningPinocchio is an adaptive system for IE, based on a kind of transformation-
based like rule learning. Rules are learnt by generalising over a set of examples
marked via XML tags in a training corpus. The system performs IE as tagging, i.e.
the information is extracted by annotating texts using XML tags (e.g. the speaker in
a seminar will be identified by surrounding it in the text with two tags: <speaker>
and </speaker>).
IE is performed by applying a user-defined architecture. An architecture is

always based on a preprocessor performing tokenization and - optionally - mor-
phological analysis, part of speech tagging and gazetteer lookup (see Figure 1).
Then the user can define a number of adaptive modules for IE. A module defines
a scenario that summarizes the information to be extracted as a set of annotations
(XML tags). A session of learning is associated with each module and a set of rules
will be learnt for each module. Different modules in an architecture perform differ-
ent steps in the IE process, for example we have developed modules for text zoning,
named entity recognition and for more complex IE tasks.
The user interface of LearningPinocchio is web-based. All the interaction takes

place via HTML forms.
Each module (and therefore each architecture) can work in three modes: training

mode, test mode and production mode.
The training mode is used to induce rules, to learn how to perform IE in a

specific application scenario. Input in training mode is:

• A module definition including a set of system parameters (e.g. accuracy
thresholds; see below).

• A preprocessed training corpus tagged with XML tags identifying the infor-
mation to be extracted by the system.

Output of the training phase is:

• A set of rules to be used when operating in production or testing mode.

A set of system parameters influences the learning algorithm in order to balance
precision and recall. Among them, an accuracy threshold defines the maximum
error rate a single induced rule must obtain in order to be considered valid. Roughly
speaking a bigger error rate brings higher recall, a smaller one increases precision.
The testing mode is used to test a module on an unseen tagged corpus, so to

understand how well it performs on a specific application. The provided corpus is



4 Fabio Ciravegna and Alberto Lavelli

Fig. 1. An architecture in LearningPinocchio.

a collection of texts tagged by the user. During the test phase the module uses the
set of rules induced during the training session to tag the provided corpus. Finally
the system results are automatically compared with the user-provided results (i.e.
the tags present in the corpus). Input is:

• A module with its induced rules.
• A test corpus tagged with XML tags identifying the information to be ex-
tracted by the system.

Output of the test phase is:

• The corpus tagged with XML tags by the module.
• A set of accuracy statistics on the test corpus: recall, precision and details on
the mistakes the system makes.

During this phase it is possible to decide to retrain the module with different
system parameters in order to tune its accuracy (e.g. to obtain more recall and/or
more precision).
The production mode is used when an application is released. The module

receives the text as tagged by the previous modules in the architecture and adds
XML tags to the corpus.



LearningPinocchio: Adaptive IE for Real World Applications 5

Fig. 2. Rule induction steps.

3 The Rule Induction Algorithm

The system is based on (LP )2, a covering algorithm specifically designed for user-
driven IE. (LP )2 learns from a training corpus marked with XML tags. It induces
symbolic rules that insert XML tags into texts in two steps (see Figure 2):

1. Sets of tagging rules are induced that insert a preliminary tagging.
2. Correction rules are induced that refine the tagging by correcting mistakes

and imprecision.

All rules undergo a process of condition generalization based on shallow linguistic
processing, as discussed below.
Sections 3.1 and 3.2 present and discuss the two steps mentioned above.

3.1 Inducing Tagging Rules

A tagging rule is composed of a left hand side, containing a pattern of conditions
on a sequence of adjacent words, and a right hand side that is an action inserting
an XML tag in the texts. Each rule inserts a single XML tag, e.g. <speaker>. This
makes (LP )2 different from many adaptive IE algorithms, whose rules recognize
whole slot fillers (i.e. insert both <speaker> and </speaker> (Califf, 1998; Freitag,
1998)) or even multi slots (Soderland, 1999). The tagging rule induction algorithm
uses positive examples from the training corpus for learning rules. Positive examples
are the XML tags inserted by the user. All the rest of the corpus is considered a pool
of negative examples. For each positive example the algorithm: (1) builds an initial
rule, (2) generalizes the rule and (3) keeps the k best generalizations of the initial
rule. In particular (LP )2’s main loop starts by selecting a tag in the training corpus
and extracting from the text a window of w words to the left and w words to the
right. Each piece of information stored in the 2*w word window is transformed into
a condition in the initial rule pattern, e.g. if the third word in the window is “sem-
inar”, the condition on the third word in the pattern will be Word=‘‘seminar’’.



6 Fabio Ciravegna and Alberto Lavelli

Index Condition Action

Word Lemma LexCat Case SemCat Tag

1 the the Art low

2 seminar seminar Noun low

3 at at Prep low <stime>

4 4 4 Digit

5 pm pm Other low timeid

6 will will Verb low

Fig. 3. Starting rule inserting <stime> in the sentence “the seminar at <stime> 4 pm
will. . . ”.

Index Condition Action

Word Lemma LexCat Case SemCat Tag

3 at <stime>

4 Digit

5 timeid

Fig. 4. A generalization for the rule in Figure 3. The pattern is relaxed in length (conditions
on words 1, 2 and 6 have been removed) and only some of the constraints on the words 3,
4 and 5 are present.

Conditions are not limited to word matching. Conditions on linguistic information
associated with each word are also inserted in the initial rule. Such information is
provided by generic modules such as a morphological analyzer, a POS tagger and
a user-defined dictionary (or a gazetteer). A lexical item (LexItem in the following)
summarizes conditions on word (e.g., “companies”), lemma (“company”), lexical
category (Noun), case information (lowercase), and a list of semantic classes from
a user-defined dictionary or a gazetteer (if available). An initial rule with condi-
tions on each LexItem is shown in Figure 3. The redundancy of the conditions in
the initial rule is quite clear. Word=‘‘4’’ always implies LexCat=Digit. An initial
rule is never used as is. It is used as a seed to produce generalizations. General-
ization consists in the generation of a set of rules derived by relaxing constraints
in the initial rule pattern. Patterns are relaxed both by reducing their length and
by removing constraints in the LexItems. Figure 4 shows one of the many possible
generalizations for the rule in Figure 3. The last step of the algorithm is the selec-
tion of the best generalizations. Each generalization is tested on the training corpus
and an error rate E=wrong/matched is calculated. Generalizations are accepted
when they fall into one of the two groups described in the rest of the section: best
rules and contextual rules.



LearningPinocchio: Adaptive IE for Real World Applications 7

3.1.1 Best Rules

Best rules are meant to be highly reliable annotation rules. A generalization becomes
part of the set of best rules if:

1. it covers at least a minimum number of cases on the training corpus;
2. its error rate is less than a user-defined threshold.

The best rule list is kept constantly sorted so that better rules come first. Rules
are sorted by decreasing number of matches (those with more matches come first).
Rules with identical number of matches are sorted by increasing error rate (more
precise rules come first). Rules with equal number of matches and equal error rate
are sorted using the following criterion: if they report a number of matches below
a user-defined threshold, then the one with less generic conditions is preferred (e.g.
with conditions on words), otherwise the other one is preferred.
This heuristic has been chosen in order to favour rules supported by more evi-

dence. Data sparseness, a well known phenomenon in Machine Learning for NLP,
can produce rules with limited number of matches on the training corpus. When
they are applied on the test corpus, they can produce unreliable results. Rules with
more matches have more evidence supporting them and tend to be more reliable at
testing time. This is also why we prefer rules with less generic conditions when they
report a limited number of matches on the training corpus: matches on words tend
to be more predictable than matches on other parts of the LexItem. For example a
rule matching the sequence Word1=‘‘in’’, Word2=‘‘the’’, Word3=‘‘afternoon’’

tends to overrecognize less than Case1=low, LexCat2=Art, Word3=‘‘afternoon’’.
Rules fully subsumed by other better rules (i.e. their matches are also matched

by another better rule) are removed from the list1.
A maximum of k best rules are constantly kept. This means that when the list

reaches size k , every new generalization is ignored unless it is able to enter the list
in a position p≤k. If it does, the rule previously in position k is removed from the
list. The algorithm is summarized in Figure 5.
Rules retained at the end of the generalization process of one specific seed rule

become part of the global best rules pool. When a rule enters such pool, all the
instances covered by this rule are removed from the positive examples pool, i.e.
covered instances will no longer be used for rule induction ((LP )2 is a covering
algorithm). Rule induction continues by selecting new instances and learning rules
until the pool of positive examples is empty.

3.1.2 Contextual Rules

When applied on the test corpus, the best rules pool provides good results in terms
of precision, but limited effectiveness in terms of recall. This means that such rules
insert few tags (low recall), and that such tags are generally correct (high precision).

1 Generalizations derived from the same seed rule cover the same portions of input when
ineffective constraints are present.



8 Fabio Ciravegna and Alberto Lavelli

method SelectRule(rule, currentBestPool)
if (rule.matches≤MinimumMatchesThreshold)

then return currentBestPool // i.e. reject(rule)

if (rule.errorRate≥ErrorRateThreshold)
then return currentBestPool // i.e. reject(rule)

insert (rule, currentBestPool)
sort(currentBestPool)
removeSubsumedRules(currentBestPool)
cutRuleListToSize(currentBestPool, k)
return currentBestPool

method sort(ruleList)
sort by decreasing number of matches
if two rules have equal number of matches

then sort by increasing error rate
if two rules have same error rate and number of matches:

then if one rule has more matches than a threshold
then prefer the one with more generic conditions

else prefer the other one
return ruleList

method removeSubsumedRules(ruleList)
loop for index1 from 0 to ruleList.size-1

rule1=ruleList(index1)
loop for index2 from index1+1 to ruleList.size

rule2=ruleList(index2)
if (subsumes(rule1, rule2))

then remove (rule2, ruleList)
return ruleList

method subsumes(rule1, rule2)
return (rule2.matches is a subset of rule1.matches)

method cutRuleListToSize(list, size)
return subseq(list, 0, size)

Fig. 5. The algorithm for deciding if a generalization can be considered as a best rule.

Intuitively this is because the absolute reliability required for rule selection is strict,
thus only a few of the induced rules will match it. In order to reach acceptable
effectiveness, it is necessary to identify additional rules able to raise recall without
affecting precision. (LP )2 recovers some of the rules not selected as best rules and
tries to constrain their application to make them more reliable. Constraints on rule
application are derived by exploiting interdependencies among tags. As mentioned,
(LP )2 learns rules for inserting tags (e.g., <speaker>) independently from other
tags (e.g., </speaker>). But tags are not independent. There are two ways in
which they can influence each other: (1) tags represent slots, therefore <tagx>

always requires </tagx>; (2) slots can be concatenated into linguistic patterns and
therefore the presence of a slot can be a good indicator of the presence of another,



LearningPinocchio: Adaptive IE for Real World Applications 9

e.g. </speaker> can be used as “anchor tag” for inserting <stime>2. In general
it is possible to use <tagx> to introduce <tagy>. (LP )2 as described so far is not
able to use such contextual information, as it induces single tag rules. The context
is reintroduced in (LP )2 as an external constraint used to improve the reliability
of inaccurate rules. In particular, low precision non-best rules are reconsidered for
application in the context of tags inserted by the best rules. For example some rules
will be used only to close slots when the best rules were able to open it, but not
to close it (i.e., when the best rules are able to insert <tagx> but not </tagx>).
Such rules are called contextual rules. As an example consider a rule inserting a
</speaker> tag between a capitalized word and a lowercase word. This is not a best
rule as it reports high recall/low precision on the corpus, but it is reliable if used
only to close an open tag <speaker>. Thus it will only be applied when the best
rules have already recognized an open tag <speaker>, but not the corresponding
</speaker>. The area of application is the part of the text following a <speaker>

and within a distance less than or equal to the maximum length allowed for the
present slot3. “Anchor tags” used as contexts can be found either to the right of
the rule space application (as in the case above when the anchor tag is <speaker>),
or to the left as in the opposite case (anchor tag is </speaker>). Acceptability for
contextual rules is computed by using the same algorithm used for selecting best
rules, but only matches in constrained contexts are counted.
In conclusion the sets of tagging rules (LP )2 induces are both the best rules

pool and the contextual rules. Figure 6 shows the whole algorithm for tagging rule
induction4.

3.2 Inducing Correction Rules

Tagging rules when applied on the training corpus report some imprecision in slot
filler boundary detection. A typical mistake is for example “at <time> 4 </time>
pm”, where “pm” should be part of the time expression. For this reason (LP )2

induces rules for shifting wrongly positioned tags to the correct position. It learns
from the mistakes made in applying tagging rules on the training corpus. Shift rules
consider tags misplaced within a distance d from the correct position. Correction
rules are similar to tagging rules, but (1) their patterns match also the tags inserted
by tagging rules and (2) their actions shift misplaced tags rather than adding new
ones. An example of an initial correction rule for shifting </stime> in “at <stime>
4 </stime> pm” is shown in Figure 7. The induction and selection algorithm used
for the best tagging rules is also used for shift rules: initial instance identification,
generalization, test and selection of best k generalizations.

2 In the following we just make examples related to the first case as it is more intuitive.
3 The training corpus is used for computing the maximum filler length for each slot.
4 Please note that in the presentation above the induction of contextual rules is described

as separated from the best rule induction step for the sake of clarity. In the actual
implementation it is interleaved with it, as detailed in Figure 6.



10 Fabio Ciravegna and Alberto Lavelli

method InduceRules()
loop for instance in initial-instances

unless already-covered(instance)
loop for rule in generalise(instance)

test(rule)
// The following is a a simplification of the SelectRule method

// presented in Figure 5 where k=∞. The code for finite values

// of k is trivial, but more complex to present.

if best-rule?(rule)
then insert(rule, bestrules)

cover(rule, initial-instances)
else loop for tag in tag-list

if test-in-context(rule, tag, :right)
then select-contxtl(rule, tag, :right)

if test-in-context(rule, tag, :left)
then select-contxtl(rule, tag, :left)

method generalise(instance)
currentRules={instance}
loop for lexitem in instance.pattern

generalizations=generalize(lexitem)
newRules={}
loop for currentCondition in generalizations

loop for rule in currentRules
newRule=copyRule(rule)
ReplaceCondition(newRule, currentCondition, lexitem)
newRules.add(newRule)

currentRules.AddAll(newRules)
return currentRules

method generalise(lexitem) // it produces the allowed generalizations

collect newCondition(lexitem.word)
if (lexitem.lemma!=null)

then collect newCondition(lexitem.lemma)
if (lexitem.case!=null))
then collect newCondition(lexitem.lemma, lexitem.case)

if (lexitem.case!=null)
then collect newCondition(lexitem.word, lexitem.case)

collect newCondition(lexitem.case)
if (lexitem.lexCat!=null)

then collect newCondition(lexitem.lexCat)
if (lexitem.semCat!=null)

then collect newCondition(lexitem.semCat)
return collected conditions

Fig. 6. The final version of the algorithm for rule tagging induction.

3.3 Extracting Information

In the testing phase information is extracted from the test corpus in four steps
(Figure 8): initial tagging, contextual tagging, correction and validation. The best
rules pool is initially used to tag the texts. Then contextual rules are applied in the



LearningPinocchio: Adaptive IE for Real World Applications 11

Word Lemma LexCat Case SemCat Wrong Tag Correct Tag

at at Prep low

4 4 Digit </stime>

pm pm Other low timeid </stime>

Fig. 7. The condition of an initial correction rule. The action (not shown) shifts the tag
from the wrong to the correct position.

Fig. 8. The algorithm for extracting information.

context of the introduced tags. They are iteratively applied until no new tags are
inserted, i.e. some contextual rules can match also tags inserted by other contextual
rules. Then correction rules adjust some misplaced tags. Finally each tag inserted
by the algorithm is validated. It is not meaningful to produce an open tag (e.g.
<speaker>) without its corresponding closing tag (</speaker>) and vice versa,
therefore uncoupled tags are removed in the validation phase.

4 Experimental Results

(LP )2 was tested in a number of tasks in two languages: English and Italian. In
each experiment (LP )2 was trained on a subset of the corpus (some hundreds of
texts, depending on the corpus) and the induced rules were tested on unseen texts.
Here we report about results on two standard tasks for adaptive IE: the CMU
seminar announcements and the Austin job announcements5. The first task consists
of uniquely identifying speaker name, starting time, ending time and location in
485 seminar announcements (Freitag, 1998). We tested the system on a 10 run
experiment using for each run a randomly selected half of the corpus for training
and the rest of the corpus for testing. The system needed 56 minutes per run for
training on a Sun Ultra5 workstation with 256M RAM using a window size of 4*2
words. 5 cycles of learning (performed on a partition not used for testing) were
necessary for manually selecting the best error thresholds for rule selection. For the
experiments we used a preprocessor that performed tokenization, part of speech
tagging (we did not use gazetteer lookup here as no other researcher that tested

5 Corpora available at http://www.isi.edu/muslea/RISE/index.html.



12 Fabio Ciravegna and Alberto Lavelli

Table 1. Results obtained on CMU seminar announcements.

(LP )2 Rapier BWI

Slot Prec Rec F(1) Prec Rec F(1) Prec Rec F(1)

speaker 87.0 70.0 77.6 80.9 39.4 53.0 79.1 59.2 67.7
location 87.0 66.0 75.1 91.0 60.5 72.7 85.4 69.6 76.7
stime 99.0 99.0 99.0 96.5 95.3 95.9 99.6 99.6 99.6
etime 94.0 97.0 95.5 95.8 96.6 96.2 94.4 94.9 93.9

All slots 86.0 77.3 83.9

SRV Whisk HMM

Slot Prec Rec F(1) Prec Rec F(1) Prec Rec F(1)

speaker 54.4 58.4 56.3 52.6 11.1 18.3 77.9 75.2 76.6
location 74.5 70.1 72.3 83.6 55.1 66.4 83.0 74.6 78.6
stime 98.6 98.4 98.5 86.2 100.0 92.6 98.5 98.5 98.5
etime 67.3 92.6 77.9 85.0 87.2 86.1 45.7 97.0 62.1

All slots 77.1 64.9 82.0

their system on this corpus did use it: this makes the comparison fairer). Table 1
shows the results obtained by (LP )2, and compares it with those obtained by other
state-of-the-art algorithms. (LP )2 scores the best results in the task. It outperforms
both symbolic approaches (+8.7% wrt Rapier (Califf, 1998), +21% wrt to Whisk
(Soderland, 1999), +2.1% wrt BWI (Freitag & Kushmerick, 2000)) and statistical
approaches (+4% wrt HMM (Freitag & McCallum, 1999)). Moreover (LP )2 is the
only algorithm whose results never go below 75% on any slot (second best is BWI:
67.7%). The results shown in Table 1 for algorithms other than (LP )2 are taken
from (Freitag & Kushmerick, 2000). We added the comprehensive ALL SLOTS
figure, as it allows better comparison among algorithms. It was computed by:

∑
slot(F-measure ∗ NumberOfPossibleSlotF illers)

∑
slot NumberOfPossibleSlotF illers

∗ 100

A second task concerned IE from 300 Job Announcements taken from the news-
group misc.jobs.offered (Califf, 1998). The task consists of identifying for each
announcement: message id, job title, salary offered, company offering the job, re-
cruiter, state, city and country where the job is offered, programming language,
platform, application area, required and desired years of experience, required and
desired degree, and posting date. We performed the same type of 10 run based
experiments using the same preprocessor. The results obtained on such task are
reported in Table 2. (LP )2 outperforms both Rapier and Whisk (Whisk obtained
lower accuracy than Rapier (Califf, 1998)). We cannot compare (LP )2 with BWI as



LearningPinocchio: Adaptive IE for Real World Applications 13

Table 2. Results obtained on the Jobs domain using half of the corpus for training.

(LP )2 Rapier BWI

Slot Prec Rec F(1) Prec Rec F(1) Prec Rec F(1)

id 100.0 100.0 100.0 98.0 97.0 97.5 100.0 100.0 100.0
title 54.0 37.0 43.9 67.0 29.0 40.5 59.6 43.2 50.1
company 79.0 66.0 71.9 76.0 64.8 70.0 88.4 70.1 78.2
salary 77.0 53.0 62.8 89.2 54.2 67.4
recruiter 87.0 75.0 80.6 87.7 56.0 68.4
state 80.0 90.0 84.7 93.5 87.1 90.2
city 92.0 94.0 93.0 97.4 84.3 90.4
country 70.0 96.0 81.0 92.2 94.2 93.2
language 92.0 90.0 91.0 95.3 71.6 80.6
platform 81.0 80.0 80.5 92.2 59.7 72.5
application 86.0 72.0 78.4 87.5 57.4 69.3
area 70.0 64.0 66.9 66.6 31.1 42.4
req-years-e 79.0 61.0 68.8 80.7 57.5 67.1
des-years-e 67.0 55.0 60.4 94.6 81.4 87.5
req-degree 90.0 80.0 84.7 88.0 75.9 81.5
des-degree 90.0 51.0 65.1 86.7 61.9 72.2
post date 99.0 100.0 99.5 99.3 99.7 99.5

All slots 84.1 75.1

the latter was tested on a very limited subset of slots. In summary, (LP )2 reaches
the best results on both the tasks.

5 Developing applications

LearningPinocchio was initially developed as a research prototype, but it quickly
turned out to be suitable for real world applications. Recently it has been used in a
number of industrial applications. Moreover evaluation licenses have been released
to external companies for further testing and application building. In this section we
report about some applications developed by us and on the evaluation accomplished
by an independent IT company. In all the applications the architecture used was
composed of a preprocessor performing tokenization, POS tagging and gazetteer
lookup, and a module modeling the scenario.

5.1 IE from Résumés

The first application consisted in extracting information from professional résumés
written in English. The application was developed for a Canadian company. Learn-
ingPinocchio is used on the results of a spider surfing the Web to retrieve pro-
fessional résumés. The spider classifies résumés by topics (e.g. computer science).
LearningPinocchio extracts the relevant information and outputs it to a database.
Table 3 shows the results obtained in a blind test on 50 texts after training on
250. Note that such scenario does not imply a simple named entity recognition



14 Fabio Ciravegna and Alberto Lavelli

Table 3. Results of a blind test on 50 résumés.

Tag Prec Rec F(1)

Name 97 82 88.9
Street 96 71 81.6
City 90 90 90
Province 97 92 94.4
Email 92 71 80.1
Telephone 93 75 83.0
Fax 100 50 66.6
Zip code 100 90 94.7

task. A résumé may contain multiple names and addresses (e.g. previous work ad-
dresses, name of referees or thesis supervisors and their addresses). The system had
to recognize the correct ones. The most recurrent errors were due to the presence
of multiple addresses for a person. Sometimes the different addresses were wrongly
merged (e.g. the street was assigned to the wrong city). This is a known limitation,
as explained in Section 6.
Application development time for the IE task required about 24 person hours

for scenario definition and revision (the scenario was refined by tagging some texts
in different ways and discussing among annotators). Further 10 person hours were
needed for tagging about 250 texts. The rule induction process took 72 hours on a
Sun Ultra5 workstation. Finally the validation of system results required 4 person
hours.

5.2 Financial News

This application was developed for Kataweb, one of the main Italian Internet portals
(http://www.kataweb.it). It concerned the extraction of information from short
financial news written in Italian and published on the portal pages.
The corpus consisted of 618 texts tagged with relevant labels. The texts were

taken from the financial news published on the Kataweb portal in the period be-
tween 20 June 2000 and 29 June 2000. One half of the corpus was used for training
the system and the other half was used as a test set. The relevant texts were tagged
by Kataweb and we ran the system on the corpus and tuned the parameters in order
to improve system performances. The average text length was about 200 words. The
task was to extract all the occurrences of entities belonging to a set of 10 relevant
categories: geographic areas related to stock markets (e.g. Far East), currencies,
the citation of stock exchanges names and indices, name of organizations and com-
panies, share names and their type and the market category of the company (e.g.
telecommunication, blue chip, etc.). The overall number of relevant entities present
in the corpus is about 17,100. The different categories are unevenly populated, rang-
ing from a couple of hundreds for geographical areas to four thousands for company
names. This task is somehow equivalent to a named entity recognition task in MUC
(MUC7, 1998). In Figure 9 the application architecture is shown. The IE architec-



LearningPinocchio: Adaptive IE for Real World Applications 15

Fig. 9. The application on financial news.

Table 4. Results of test on financial news.

Tag Prec Rec F(1)

Geographical area 74 67 71
Currency 84 85 85
Stock exchange name 90 86 88
Stock exchange index 98 94 96
Organization 91 81 86
Company name 89 80 84
Company type 91 91 91
Market category 84 85 84

All tags 90 84 87

ture used was composed of a preprocessor performing tokenization and gazetteer
lookup, and a module modeling the scenario. The training of the system took about
one day. The results on the test set are shown in Table 4. Kataweb is evaluating the
performance of the system on the continuous flow of news published on the portal
pages and the possibility of providing a service based on LearningPinocchio.

5.3 Classified Ads

A second application for Kataweb concerned IE from classified ads written in Ital-
ian and published on the portal pages. The corpus consisted of 2,214 texts tagged
with relevant labels. The texts were taken from the classified ads published on the
Kataweb portal on 29 August 2000. One half of the corpus was used for the train-
ing of the system and the other half was used has a test set. People from Kataweb
tagged the relevant texts and we ran the system on the corpus and tuned the pa-
rameter settings in order to improve system performances. The average text length
was about 35 words. The task was to extract the following information: name, email



16 Fabio Ciravegna and Alberto Lavelli

Table 5. Results of test on classified ads.

Tag Prec Rec F(1)

Advertiser 100 70 82
City 90 92 91
Telephone 88 97 92
Email 100 43 60
Ad category 99 100 99
Car model 91 95 93
Optional features 96 73 83
Company type 78 21 33
Job offered 87 56 68
House type 96 73 83

All tags 90 85 87

address and telephone number of advertisers; ad’s category (e.g. house selling, car
selling), city of reference (e.g. where the house is located). Then according to the
type of ad, the system had to look for: brand model and optional features for cars,
type of houses, kind of job offered by what type of company, etc. The overall number
of relevant entities present in the corpus is about 13,400. The different categories
are unevenly populated, ranging from a dozen email addresses to a couple of thou-
sands of telephone numbers. The architecture used was composed of a preprocessor
performing tokenization and gazetteer lookup, and a module modeling the scenario.
The results of a blind test are shown in Table 5. This application is currently under
final test at the customer’s site.

5.4 Comparing with other systems

Bolesian (currently CGEY), a Dutch IT company, performed a survey of three IE
state-of-the-art tools in a number of practical tasks: two adaptive and one that
required manual development of rules. The purpose of the survey was not the se-
lection of the best tool. They wanted to gain more insight in the use and working
of such tools and to get a feeling of the kind and amount of effort involved in their
use. In such evaluation they used a list of criteria ranging from ease of use of a tool
and suitability to product costs and supplier characteristics (Joosen et al., 2001).
For the evaluation they used two IE tasks on documents about deeds of conveyance
from the Dutch land-registration office. The data set was split into three parts:

• a training set of 225 texts, used as training input (split in four to determine
the effect of the amount of training data on the accuracy of a tool);

• a tuning set of 50 texts, used to tune the learning algorithm and/or the rules
developed;

• a test set of 62 texts, used to determine the actual precision and recall in the
given domain.



LearningPinocchio: Adaptive IE for Real World Applications 17

Table 6. Results of test accomplished by Bolesian.

Tag Prec Rec F(1)

Notarial Section 100 100 100
Date 91 100 95
Notary 69 97 81
Substitute 33 100 50
Place 93 98 95

The results of the evaluation for LearningPinocchio are shown in Table 6. In
Figure 10 the results of the comparison of the three IE tools are shown. It appears
that a person was able to model the task using 50 examples only; this is probably
why the learning curve for the manual system is quite flat and accuracy does not
improve significantly considering more texts. The two systems based on Machine
Learning needed more examples.
After learning on 225 texts, LearningPinocchio definitely outperformed the other

adaptive tool and it was slightly outperformed by the one requiring handcrafted
rules. The system however showed a steady learning curve at the increase of the
dimension of the training set (see Figure 10). With a limited increase in the training
set size the systems would have probably reached equivalent accuracy. The other
adaptive system did not reach the half of precision and recall reached by Learning-
Pinocchio.
Positive aspects of LearningPinocchio were the fast and relatively easy way of

setting up a task and the limited amount of training data needed to get reason-
able results. The requirements in terms of time and skill needed for setting up new
applications were definitely reduced with respect to the manual system. On the
downside, they noted the lack of means for manipulating the learning process and
that LearningPinocchio provided little insight in the learning process. Manually
adjusting or extending the extraction process afterwards was impossible. The fact
that LearningPinocchio performs IE as tagging was considered a limitation with
respect to the manual tool that performed template filling. All the development
was done at the customer’s site, where the customer itself installed LearningPinoc-
chio and ported it to Dutch by connecting a Dutch preprocessor. This (among
other experiences) shows that the tool is usable also by people different from the
developers.

6 Suitability of Technology

The experience described above allows us to draw some conclusion on the suitability
for real world applications of the adaptive IE technology behind LearningPinocchio.
First and foremost we were surprised by the positive reaction by the market when
the system became available. Initially we had just in mind a research prototype,
we submitted a paper for a workshop, presented the system to people visiting our



18 Fabio Ciravegna and Alberto Lavelli

0

10

20

30

40

50

60

70

80

90

100

1 50 100 150 200 250

P
re

ci
si

on

Number of training texts

Influence of training on Precision

manual
LearningPinocchio

other adaptive

0

10

20

30

40

50

60

70

80

90

100

1 50 100 150 200 250

R
ec

al
l

Number of training texts

Influence of training on Recall

manual
LearningPinocchio

other adaptive

Fig. 10. Comparison between LearningPinocchio and two other IE systems.

institute and set up pages on our web server6 to present the system. In two months
(and far before the publication of the scientific paper) we were contacted by a dozen
companies and started two of the applications above. All the activities cited in this
paper were completed within eight months from the availability of the first release
of the system. In our opinion this shows that the market is looking for easy-to-use
IE tools . All the companies involved were Small Medium Enterprises (SMEs) and
in our opinion this is not a surprise: blue chips can afford to buy expensive systems
and to hire experts in IE, while SMEs cannot and are looking for systems that are
easy to adapt.
The system proved to be easy to port to new applications, as other companies

used the system and built applications without our support. No specific training was
necessary for them except reading the manual. This fact meets the first requirement
of easy adaptability mentioned in the introduction.
Applications were developed in three languages: Italian, English and Dutch. The

6 http://tcc.itc.it/research/textec/tools-resources/learningpinocchio.html



LearningPinocchio: Adaptive IE for Real World Applications 19

porting to Dutch was carried out by Bolesian almost without support by us. The
experimental results show that the system is effective on real world tasks. Bolesian’s
analysis also shows that the system outperforms other state-of-the-art commercial
tools and reaches accuracy comparable to systems with handcrafted rules.
As shown in the scientific experiments above, the approach is able to cope with

different types of texts without requiring modification of system resources. The
types of texts analysed include free texts (résumés and short news), semi-structured
texts (ads) and web pages. In this respect the system meets the second requirement
(copying with different text types) mentioned in the introduction.
The experience also showed some of the limitations of the technology. The main

limitation concerns the type of IE performed. The system performs IE as tagging,
this means that it is able to spot the information in the text, but it is not able
to relate it to the rest of the extracted information, i.e. it is not able to extract
templates. A default strategy allows to build templates in a very näıve way (at most
one event per text and one slot filler is supposed to exist). For this reason in case
of multiple addresses in the résumés application the system was unable to assign
the correct pairing. This is a limitation in certain types of applications. The results
reported in the paper show however that the tagging-based approach is suitable for
a number of commercial applications.
The second limitation was noted by Bolesian in their analysis: the learning algo-

rithm works as a black box and it is difficult to understand how it works and it is
impossible to manually modify the rules. This means that the system was basically
designed with näıve users in mind and the needs of IE experts were not taken into
considerations. IE experts would like to use their expertise to modify the rules so
to reach some additional accuracy, but it was not possible.
As for tuning to specific application needs (e.g. tuning the balance between pre-

cision and recall), the system proved to be quite effective in letting the user un-
derstand how well it performed on a manually tagged corpus. In order to modify
the system behaviour, users are required to change some numerical thresholds. It is
not difficult to understand how to modify the thresholds: a bit of trial and error is
enough for understanding how to modify such thresholds. Unfortunately threshold
modification increases the sense of opacity of the system, because there is no clear
relationship between the threshold values and the actual system behaviour if the
user does not know how the learning algorithm works. In this respect the system
is more dedicated to an expert. Näıve users were quite puzzled by thresholds. We
think that some major changes are needed in this area, so to be able to address
successfully the third requirement mentioned in the introduction.

7 Conclusion

In this paper we have presented LearningPinocchio, described some of the applica-
tions that have been developed with it and discussed its suitability to real world
applications. In our opinion the system was successful both from a scientific point of
view and from an applicative point of view. LearningPinocchio and the IE technol-
ogy behind the scenes were designed with three main requirements in mind, namely



20 Fabio Ciravegna and Alberto Lavelli

portability with limited effort, portability across text types and possibility of tuning
system results. These requirements were derived from our experience in studying,
implementing and delivering traditional IE systems (Ciravegna et al., 2000). We
believe that LearningPinocchio successfully addresses at least the first two of them,
providing limited solution for the third. The result was a system highly usable also
by non-IE experts. Experiences of application building at external companies and
without our direct support prove this. The main limitation is the approach of IE as
flat document tagging that makes difficult to relate information and therefore build-
ing templates. A second shortcoming was the opacity of the system with respect to
the user: it was difficult to understand the logic of learning and therefore the system
behaviour was difficult to modify. Future work includes new application building
and the development of a new methodology for system result presentation in line
with (Ciravegna et al., 2002). We intend also to introduce the possibility of editing
the induced rule sets. Finally we are addressing the extension to template-based IE
learning.

Acknowledgments

The work presented in this paper was carried out while the first author was at ITC-
irst. Fabio Ciravegna is currently supported by EPSRCAKT, grant GR/N15764/01,
http://www.aktors.org.More details on LearningPinocchio can be found at http:
//tcc.itc.it/research/textec/tools-resources/learningpinocchio.html

The authors would like to thank the anonymous reviewers for the detailed work
in revising the paper and in clarifying all the details of the approach.

References

Bontcheva, K., Brewster, C., Ciravegna, F., Cunningham, H., Guthrie, L., Gaizauskas, R.,
& Wilks, Y. 2001. Using HLT for Acquiring, Retrieving and Publishing Knowledge in
AKT: Position Paper. In: Proceedings of the ACL2001 Workshop on Human Language
Technology and Knowledge Management. held in conjunction with the meeting of the
Association for Computational Linguistics.

Califf, Mary Elaine. 1998. Relational Learning Techniques for Natural Lan-
guage Information Extraction. Ph.D. thesis, Univ. of Texas at Austin,
http://www.cs.utexas.edu/users/mecaliff.

Cardie, C. 1997. Empirical Methods in Information Extraction. AI Journal, 18(4), 65–79.
Ciravegna, F., Dingli, Alexiei, Petrelli, Daniela, & Wilks, Yorick. 2002. User-System Co-

operation in Document Annotation based on Information Extraction. In: Proceedings
of the 13th International Conference on Knowledge Engineering and Knowledge Man-
agement, EKAW02. Springer Verlag.

Ciravegna, Fabio. 2001a. Adaptive Information Extraction from Text by Rule Induction
and Generalisation. In: Proceedings of 17th International Joint Conference on Artificial
Intelligence (IJCAI). Seattle.

Ciravegna, Fabio. 2001b. Challenges in Information Extraction from Text for Knowledge
Management. IEEE Intelligent Systems and Their Applications, 27, 97–111. November.

Ciravegna, Fabio. 2001c. (LP)2, an Adaptive Algorithm for Information Extraction from
Web-related Texts. In: Proceedings of the IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining held in conjunction with the 17th International Joint Conference
on Artificial Intelligence. Seattle, http://www.smi.ucd.ie/ATEM2001/.



LearningPinocchio: Adaptive IE for Real World Applications 21

Ciravegna, Fabio, Lavelli, Alberto, & Satta, Giorgio. 2000. Bringing information extraction
out of the labs: the Pinocchio Environment. In: Proceedings of the 14th European
Conference on Artificial Intelligence. IOS Press. Berlin.

Cunningham, H., Maynard, D., Tablan, V., Ursu, C., & Bontcheva, K. 2002. ”Developing
Language Processing Components with GATE”. http://www.gate.ac.uk.

Douthat, A. 1998. The Message Understanding Conference scoring software
user’s manual. In: Proceedings of the 7th Message Understanding Conference.
http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

Freitag, D. 1998. Information Extraction From HTML: Application of a General Learning
Approach. Proceedings of the Fifteenth Conference on Artificial Intelligence AAAI-98,
517–523.

Freitag, D., & Kushmerick, N. 2000. Boosted wrapper induction. In: Basili, R., Ciravegna,
F., & Gaizauskas, R. (eds), ECAI2000 Workshop on Machine Learning for Information
Extraction. http://www.dcs.shef.ac.uk/ fabio/ecai-workshop.html.

Freitag, D., & McCallum, A. 1999. Information Extraction with HMMs and Shrinkage.
In: AAAI-99 Workshop on Machine Learning for Information Extraction.

Handschuh, S., Staab, S., & Ciravegna, F. 2002. S-CREAM - Semi-automatic CREAtion
of Metadata. In: Proceedings of the 13th International Conference on Knowledge Engi-
neering and Knowledge Management, EKAW02. Springer Verlag.

Joosen, M., Jongejan, P., Kersten, G.J., & Zopfi, E. 2001. Towards complexity measures:
Guidelines for the feasibility of Information Extraction Projects. In: Proceedings of the
Dutch Conference on Artificial Intelligence.

Kushmerick, N., Weld, D., & Doorenbos, R. 1997. Wrapper induction for information ex-
traction. In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 1997.

Maybury, Mark. 2001. Human Language Technologies for Knowledge Management: Chal-
lenges and Opportunities. In: Proceedings of the ACL2001 Workshop on Human Lan-
guage Technology and Knowledge Management. held in conjunction with the meeting
of the Association for Computational Linguistics.

MUC7. 1998. Proceedings of the 7th Message Understanding Conference (MUC7). Nist.
http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

Muslea, I., Minton, S., & Knoblock, C. 1998. Wrapper induction for semistructured web-
based information sources. In: Proceedings of the Conference on Automated Learning
and Discovery (CONALD), 1998.

Soderland, S. 1999. Learning Information Extraction Rules for Semi-structured and Free
Text. Machine Learning, 34(1), 233–272.

Yangarber, Roman, Grishman, Ralph, Tapanainen, Pasi, & Huttunen, Silja. 2000. Auto-
matic Acquisition of Domain Knowledge for Information Extraction. In: Proceedings of
the 18th International Conference on Computational Linguistics.


