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uantitative structure–activity
relationship (QSAR) studies with respect to food
protein-derived bioactive peptides: a review

Alice B. Nongonierma and Richard J. FitzGerald*

The generation of bioactive peptides (BAPs) from dietary proteins has been widely studied. One of the main

limitations of a broader application of BAPs in functional foods may arise from their low potency. Therefore,

the search for more potent structures is crucial. Quantitative structure–activity relationship (QSAR) has been

widely applied in drug discovery and some examples may also be found in the study of BAPs. The aim of this

review was to assess the efficiency of QSAR for the discovery of novel and potent BAPs, derived from food

protein sources. A wide range of bioactive properties including antioxidant, antimicrobial, angiotensin

converting enzyme (ACE), renin and dipeptidyl peptidase IV (DPP-IV) inhibition as well as bitter peptides has

been investigated with QSAR. Some studies have identified structural requirements for specific bioactivities,

which generally confirmed findings from earlier studies carried out on those BAPs. However, discrepancies

are found across analyses, possibly due to the quality of the peptide datasets as well as the descriptors used

to build QSAR models. It appears to date that only a limited number of QSAR studies conducted with BAPs

have subsequently carried out confirmatory studies and evaluated promising peptide sequences in vivo. This

suggests that more research is needed in order to advance knowledge in the area of BAP discovery using QSAR.
1 Introduction

Food proteins contain peptide sequences which have been
shown, using different in vitro bioassays, to positively affect
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specic health markers. Such peptides, which are called
bioactive peptides (BAPs), may be released from a wide range of
dietary proteins.1 The efficacy and activity of BAPs has been
studied in vivo, suggesting in certain instances that food
protein-derived BAPs may be relevant to human health.
However, contradictory results are still reported in the scientic
literature in relation to their health benets.2–4
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An increasing number of peptide sequences identied in
various food protein hydrolysates have been reported in the
literature over the past few years. The technology used to
identify these sequences within food protein hydrolysates or
their fractions has greatly evolved. Earlier studies have mainly
relied on immunoreactive techniques (e.g., enzyme-linked
immunoassay – ELISA) or Edman degradation of the N-
terminal amino acids linked to peptide sequencers to identify
positive peptide candidates.5–7 However, advances in mass
spectrometric (MS) analysis have allowed greater capability in
the identication of peptides within complex mixtures and also
identication of a large number of peptide sequences in an
automated manner, for reviews, see: ref. 8–11. Nevertheless,
challenges such as the reliable identication of short peptide
sequences (<5 amino acid residues) are still an issue for a more
comprehensive understanding of dietary BAP structures.12–14

Overall, an understanding of the structural requirements for
peptides having specic bioactivities has increased. This has
been made possible by (1) novel strategies to release and/or
isolate BAPs from food protein hydrolysates, (2) the increasing
number of BAP sequences which have been identied, (3) access
to a higher number of bioinformatic, peptidomic and proteo-
mic tools as well as (4) structure–activity relationship
studies.15,16 Conventionally, structure–activity relationships for
BAPs have been developed using empirical knowledge based on
previously known BAP sequences. Recently, the structure-
function of peptides has been reported for a wide range of
bioactive properties including mineral binding, angiotensin
converting enzyme (ACE) and renin inhibition, antithrombic,
antidiabetic, antimicrobial, immunomodulatory, antioxidant
and opioid activities.17

Quantitative structure–activity relationship (QSAR) model-
ling is a well-accepted approach for the study of active mole-
cules, which is extensively used in drug discovery.18 QSAR has
been developed to elucidate novel drug molecules displaying
higher activity, produced at lower cost or which mediate less
side-effects. Furthermore, several examples of QSAR are found
for the study of food protein-derived BAPs, for reviews, see: ref.
15 and 19. QSAR studies have been applied to bioactive prop-
erties such as ACE inhibition, antimicrobial, anticancer and
antioxidant activities, for reviews, see: ref. 20–22. Additional
studies are also found where QSAR approaches have been
employed to try to understand the link between peptide struc-
ture and bitterness.23–25

A summary of the structural features of ACE inhibitory
peptides, based on the QSAR outcomes, has been compiled in
a recent review by Iwaniak, et al.15 However, to our knowledge,
studies summarizing the structural requirements for other
BAPs, as determined by QSAR analysis, are rare. A better
understanding of peptide structural requirements for bioac-
tivity may lead to the discovery of novel peptide sequences with
enhanced bioactivities.26 Therefore, the aim of this review was
to assess existing QSAR approaches in order to identify common
peptide motifs in BAPs which may be used to design novel
dietary protein-derived BAP sequences. The search period
covered by the review was from 1990 to date. QSAR studies were
classied by bioactive properties, i.e., antioxidant,
This journal is © The Royal Society of Chemistry 2016
antimicrobial, ACE, renin and dipeptidyl peptidase IV (DPP-IV)
inhibitory as well as bitter peptides.
2 QSARmethodology applied to BAPs

QSAR is dened as a relationship linking structural character-
istics of molecules to their biological or chemical properties, for
reviews, see: ref. 20, 27 and 28. The general work ow to design
a QSAR strategy, which is summarised in Fig. 1, will be
described in the following subsections.
2.1 Building the BAP library

The rst step in all QSAR analyses is to collate the sequences of
target peptides to be used to build the QSAR model(s). These
sequences generally arise from in-house or publicly available BAP
databases. Various publicly available BAP databases have been
listed in recent reviews.15,19 BIOPEP, for example, is a database
which is commonly employed for the study of dietary peptides.29

The peptide library used to construct the QSAR model
contains quantitative biological outputs, e.g., half maximal
inhibitory concentration (IC50) values for enzyme inhibition,
minimal inhibitory concentration (MIC) for microbial strains,
half maximal effective concentrations (EC50) or scavenging
activities for antioxidant peptides, etc.24,26,30,31 For comparative
purposes, it is recommended that the bioactivity output should
be obtained under similar experimental conditions.18,27,32 The
peptide database may be restricted to sequences which origi-
nate from a single protein26 or a group of proteins found within
certain species (e.g.,Homo sapiens, Bos taurus, etc.).33 In addition
to the peptide origin, the dataset can also be made of peptides
having a dened amino acid length or incorporate peptides
having various amino acid lengths.24 In other instances, QSAR
strategies have focused on peptide analogs of a so-called “lead
peptide”. The lead peptide may be used to design specic
analogs which are then employed to construct minimum
analogue peptide sets (MAPS).31,34 The sequence of the peptide
candidates to be included in the peptide library and subse-
quently tested to generate biological activity data may be
dened using a full or fractional factorial design. The MAPS are
designed in such a way as to incorporate the minimum number
of peptides in the dataset while covering a wide range of amino
acid physicochemical properties and while simultaneously
varying their positions within the peptide sequences. The
number of peptide analogs generated depends on the number
of amino acid positions varied within the peptide sequence.34

The inclusion of peptide analogs in datasets has been
described, for example, for derivatives of lactoferricin (LFcin),
a peptide with antimicrobial properties.35,36

It has been stated that selection/design of the peptide set is
the most crucial step to conduct successful QSAR studies.31

Once the peptide library has been compiled, the peptides are
generally classied into a “training set” and a “test set”. This
classication generally consists in randomly excluding a certain
number of peptides from the peptide library. These excluded
peptides will then be part of the test set, which is subsequently
used for cross validation of the QSAR model. The peptides
RSC Adv., 2016, 6, 75400–75413 | 75401
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Fig. 1 Schematic of the general approach used in quantitative structure–activity relationship (QSAR) methodologies for the study of bioactive
peptide (BAP) sequences (adapted from Hellberg et al.31 and Iwaniak et al.15).
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within the test set may also be chosen in order to cover a wide
range of structural characteristics. For example, this may be
achieved using a statistical molecular design approach which is
based on a fractional design methodology.27
2.2 Description of the peptides using scalar descriptors of
the constituent amino acids

The next step of the QSAR study consists in describing the
peptides incorporated in the training set. This may be achieved
either using selected physicochemical descriptors or amino
acid scalar descriptors. Different scalar descriptors for amino
acids have been developed.26,34 These may be classied as 1-
(molecular formula), 2- (topological), 3- (conformational) or 4D
(orientation and time-dependent) descriptors.18 Examples of 2-
and 3D amino acid descriptor scales are outlined in Tables 1
and 2, respectively. One of the popular amino acid descriptor
scale used in the early QSAR studies is the 3-z score scale which
was developed by Hellberg, et al.34 The 3-z values, which were
determined using a principal component analysis (PCA)
combining 29 physicochemical characteristics of the 20
conventional amino acids, correspond to the hydrophilicity (z1),
size (z2) and charge (z3) of the amino acids.34 Later on, a 5-z
scale was developed by Sandberg et al.,37 incorporating the 12
previously used physicochemical properties for the develop-
ment of an extended 3-z scale38 and 14 other physicochemical
properties to describe 87 amino acids. The 5-z scale descriptors
incorporated lipophilic, steric and electronic properties of
amino acid side chains. The v-scale of Lin et al.39 incorporates
three structural characteristics (van der Waals volume, net
charge index and hydrophobicity) of the 20 conventional amino
acids. The v-scale was developed with the view of providing
75402 | RSC Adv., 2016, 6, 75400–75413
more meaningful physicochemical properties to describe
structural parameters of amino acid side chains.

Other amino acid descriptors have been described to develop
3D scales. The T-scale has been developed by Tian et al.40 from
a PCA of 67 structural and topological variables of 135 amino
acids. A PCA was carried out on the hydrogen bonding (5), elec-
tronic (23), steric (37) and hydrophobic (54) properties of the 20
conventional amino acids, yielding 10 descriptors termed as
divided physicochemical property scores (DPPS).41 The 3D scale
developed by Collantes and Dunn42 combines amino acid side-
chains descriptors, i.e., the isotropic surface area (ISA, hydro-
phobic character of the side chain substituent) and the electronic
charge index (ECI, charge concentration of the amino acid).

The main limitation of those scalar descriptors may be the
difficulty in relating biological activity to specic physico-
chemical characteristics of the peptides.27 To overcome this
issue, QSAR modelling analyses combining a z-score approach
and individual physicochemical characteristics of the peptides
have been carried out.32
2.3 QSAR mathematical modelling

The third step of the QSAR analysis consists in building the
QSAR model(s). Each peptide in the training set is described by
the descriptors of its constitutive amino acids or its overall
physicochemical characteristics. QSAR modelling consists in
mathematical equations, which are based on computational
methods (e.g., multiple linear regression (MLR), partial least
square regression (PLSR), PCA, articial neural network (ANN),
etc.).21 The QSAR model is a multivariate data approach linking
the structural characteristics (peptide descriptors – indepen-
dent variables) to the biological activity (dependent variable) of
the peptides.
This journal is © The Royal Society of Chemistry 2016
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Table 1 Examples of amino acid descriptors which have been employed for 2D quantitative structure–activity relationship (QSAR) modelling of
bioactive peptides (BAPs)a

Amino
acid

3 z-score34 v-scale39 5 z-score37

z1 z2 z3 v1 v2 v3 z1 z2 z3 z4 z5

A 0.07 �1.73 0.09 0.05702 0.007187 0.42 0.24 �2.32 0.60 �0.14 1.30
R 2.88 2.52 �3.44 0.58946 0.043587 �1.37 3.52 2.50 �3.50 1.99 �0.17
N 0.71 �0.97 4.13 0.22972 0.005392 �0.82 3.05 1.62 1.04 �1.15 1.61
D �1.39 2.32 0.01 0.21051 �0.02382 �1.05 3.98 0.93 1.93 �2.46 0.75
C 0.92 �2.09 �1.4 0.14907 �0.03661 1.34 0.84 �1.67 3.71 0.18 �2.65
Q 3.64 1.13 2.36 0.34861 0.049211 �0.30 1.75 0.50 �1.44 �1.34 0.66
E 3.08 0.39 �0.07 0.32837 0.006802 �0.87 3.11 0.26 �0.11 �3.04 �0.25
G 2.23 �5.36 0.30 0.00279 0.179052 0.00 2.05 �4.06 0.36 �0.82 �0.38
H 2.41 1.74 1.11 0.37694 �0.01069 0.18 2.47 1.95 0.26 3.90 0.09
I �4.44 �1.68 �1.03 0.37671 0.021631 2.46 �3.89 �1.73 �1.71 �0.84 0.26
L �4.19 �1.03 �0.98 0.37876 0.051672 2.32 �4.28 �1.30 �1.49 �0.72 0.84
K 2.84 1.41 �3.14 0.45363 0.017708 �1.35 2.29 0.89 �2.49 1.49 0.31
M �2.49 �0.27 �0.41 0.38872 0.002683 1.68 �2.85 �0.22 0.47 1.94 �0.98
F �4.92 1.30 0.45 0.55298 0.037552 2.44 �4.22 1.94 1.06 0.54 �0.62
P �1.22 0.88 2.23 0.2279 0.239531 0.98 �1.66 0.27 1.84 0.70 2.00
S 1.96 �1.63 0.57 0.09204 0.004627 �0.05 2.39 �1.07 1.15 �1.39 0.67
T 3.22 1.45 0.84 0.19341 0.003352 0.35 0.75 �2.18 �1.12 �1.46 �0.40
W �4.75 3.65 0.85 0.79351 0.037977 3.07 �4.36 3.94 0.59 3.44 �1.59
Y 2.18 0.53 �1.14 0.6115 0.023599 1.31 �2.54 2.44 0.43 0.04 �1.47
V �2.69 �2.53 �1.29 0.25674 0.057004 1.66 �2.59 �2.64 �1.54 �0.85 �0.02

a The amino acids are coded with their one letter code.

Table 2 Examples of amino acid descriptors which have been employed for 3D quantitative structure–activity relationship (QSAR) modelling of
bioactive peptides (BAPs)

Amino
acida

Collantes
scale42 DPPS scale41b T scale40

ISA ECI V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 T1 T2 T3 T4 T5

A 62.90 0.05 �1.02 �2.88 �0.56 0.36 �6.15 �1.68 0.04 �2.51 �1.94 �0.01 �9.11 �1.63 0.63 1.04 2.26
R 52.98 1.69 1.99 4.13 �4.41 �1.02 4.78 3.04 �9.06 6.71 4.41 0.07 0.23 3.89 �1.16 �0.39 �0.06
N 17.87 1.31 �2.19 1.86 0.38 �0.13 �2.30 1.41 �5.71 �1.11 1.73 �0.19 �4.62 0.66 1.16 �0.22 0.93
D 18.46 1.25 �6.60 3.32 1.61 0.36 �3.25 1.95 �7.36 0.14 1.24 �0.15 �4.65 0.75 1.39 �0.40 1.05
C 78.51 0.15 0.21 1.12 3.42 �0.68 �2.27 �1.22 3.11 �2.98 �1.70 1.57 �7.35 �0.86 �0.33 0.80 0.98
Q 19.53 1.36 �0.47 1.16 �0.57 0.69 0.39 1.93 �5.46 �0.84 1.93 0.85 �3.00 1.72 0.28 �0.39 0.33
E 30.19 1.31 �5.39 0.65 �0.98 1.39 �0.23 2.51 �6.84 �0.68 1.41 1.28 �3.03 1.82 0.51 �0.58 0.43
G 19.93 0.02 �2.86 �5.00 �2.97 0.53 �11.45 1.89 �2.11 �3.99 �2.16 �0.76 �10.61 �1.21 �0.12 0.75 3.25
H 87.38 0.56 0.73 2.68 �0.66 �1.89 1.60 1.13 �1.94 �0.11 0.44 0.15 �1.01 �1.31 0.01 �1.81 �0.21
I 149.77 0.09 1.91 �3.13 0.01 1.14 2.70 �4.55 8.93 0.18 �1.10 �0.76 �4.25 �0.28 �0.15 1.40 �0.21
L 154.35 0.10 1.64 �2.57 0.00 1.35 2.62 �2.65 7.72 0.05 �1.03 �1.81 �4.38 0.28 �0.49 1.45 0.02
K 102.78 0.53 2.47 1.54 �4.28 �0.86 2.77 2.06 �6.18 2.05 2.19 �1.65 �2.59 2.34 �1.69 0.41 �0.21
M 132.22 0.34 1.93 �0.01 1.21 0.99 2.79 �0.56 5.33 �0.87 �0.99 �1.09 �4.08 0.98 �2.34 1.64 �0.79
F 189.42 0.14 2.68 0.84 2.22 0.71 5.02 �0.30 8.60 1.13 �1.40 �0.28 0.49 �0.94 �0.63 �1.27 �0.44
P 122.35 0.16 0.45 �2.89 1.77 �5.81 �3.79 �0.61 0.70 1.21 �1.67 1.79 �5.11 �3.54 �0.53 �0.36 �0.29
S 19.75 0.56 �1.76 �0.19 1.06 �0.69 �5.72 0.14 �4.14 �2.42 �0.13 0.69 �7.44 �0.65 0.68 �0.17 1.58
T 59.44 0.65 �0.55 �0.66 0.13 �0.31 �2.76 �1.56 �2.46 �2.12 0.17 0.08 �5.97 �0.62 1.11 0.31 0.95
W 179.16 1.08 3.88 1.78 1.68 2.00 9.31 0.89 7.53 4.27 �0.23 �1.42 5.73 �2.67 �0.07 �1.96 �0.54
Y 132.16 0.72 2.10 1.26 1.15 0.91 5.90 0.74 3.71 3.32 0.25 1.33 2.08 �0.47 0.07 �1.67 �0.35
V 120.91 0.07 0.83 �3.02 �0.22 0.97 0.05 �4.55 5.61 �1.41 �1.44 0.30 �5.87 �0.94 0.28 1.10 0.48

a The amino acids are coded with their one letter code. b DPPS: divided physicochemical property scores.
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When the peptide descriptors are dened by the character-
istics of its constitutive amino acids, a QSAR model may be
described by eqn (1):
This journal is © The Royal Society of Chemistry 2016
Ai ¼ a0 þ
Xj

1

Xk

1

aj;kAAj;k þ 3 (1)
RSC Adv., 2016, 6, 75400–75413 | 75403
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with Ai: the biological activity of the peptide i; j: the position of
the amino acid within the peptide i; k: the number of the amino
acid descriptor; aj,k: the coefficients of the model; a0: the
constant of the model and 3 the residual.

Some peptide QSAR approaches have studied peptide sets
made of one dened amino acid length (e.g., di- or tripeptides).
It is however possible to develop QSAR models using peptide
libraries composed of sequences having variable amino acid
lengths. This has been addressed by Pripp, et al.32 and Li and
Li43 in the development of a QSAR approach for ACE-inhibitory
peptides (2–6 amino acid in length) and antioxidant peptides
(3–20 amino acid in length). In such QSAR studies, the length (l)
of the shortest peptide of the dataset is generally taken into
consideration in order to build the model. The QSAR model
includes peptide descriptors of the l amino acids located at the
N- and C-terminus of each peptide (eqn (2)):

Ai ¼ a0 þ
Xj

1

Xk

1

aj;kNj;k þ
Xj

1

Xk

1

bj;kCj;k þ 3 (2)

with Ai: the biological activity of the peptide i; j: the N- or C-
terminal position of the amino acid of the peptide i (varying
between 1 and l); k: the number of the amino acid descriptor;
aj,k, bj,k and a0: the coefficients constant of the model and 3 the
residual.

The QSAR model is subsequently statistically cross-validated
using the peptides within the test set (originally excluded from
the training set) to verify the ability of the QSAR model to be
applied to unknown compounds.
2.4 Conrmatory studies with synthetic peptides

In certain instances, the QSAR analysis may allow determina-
tion of structural features of peptides which are linked with
enhanced bioactive properties. These features may subse-
quently be used to design peptides which are (1) predicted to be
highly bioactive and (2) novel in their sequence. The novelty of
the peptide can be assessed aer searching the sequence in BAP
databases as well as in the relevant patent literature. Conr-
matory studies allow external validation of the QSAR model and
testing its robustness in terms of its ability to predict the
bioactivity of peptides.

To date, the highest number of QSAR studies which are
relevant to food protein-derived peptides appear to have been
conducted with ACE inhibitory or antimicrobial peptides
(AMPs). The following sections review QSAR studies which have
been classied according to the target in vitro bioactivity (i.e.,
antioxidant, antimicrobial, ACE, renin and DPP-IV inhibition)
as well as bitterness of the peptides.
3 QSAR studies with specific BAPs
3.1 ACE inhibitory peptides

Several studies employing QSAR approaches have focused on
ACE inhibitory peptides, for reviews, see: ref. 21 and 44. In most
of these studies, QSAR has been used to better understand the
structural features of peptides which correlate with in vitro ACE
inhibitory activity and in certain cases to predict novel and
75404 | RSC Adv., 2016, 6, 75400–75413
potent ACE inhibitory peptides. The main outcomes of these
QSAR studies are summarised in Table 3. The peptide descrip-
tors used to construct the QSAR models were either based on
physicochemical characteristics32,45 or scalar amino acid
descriptors.30–32,46 Most of the QSAR studies have successfully
proposed the structural requirements linked with the ACE
inhibitory properties of peptides. These consisted of specic
amino acids located at different positions in the peptide
sequence (Table 3). However, depending on the QSAR study,
different structural features for ACE inhibitory peptides have
been proposed. This may arise from the training set used, the
experimental conditions employed to obtain the biological
activity of the peptides, the size and diversity of the peptides
and the amino acid descriptors used to construct the QSAR
model.

While different structural features for potent ACE inhibitory
peptides have been reported, the C-terminal sequence of the
peptide appears to have a major contribution to ACE inhibition
while aminor contribution of the N-terminal sequence has been
proposed in several of the QSAR studies conducted to
date.30,32,33,45,46 In particular, the C1 (C-terminal) amino acid of
peptides is thought to have a major effect on the in vitro ACE
inhibitory properties of peptides. Overall, most QSAR studies
have indicated that the presence of aliphatic hydrophobic and
small amino acids (Ala, Trp, Pro, Phe, Gly, Cys, Leu and Ile) at
the C1 position of peptides was a good predictor for potent in
vitro ACE inhibitory activity. Amino acids located at other
positions also appear to play a role in modulating the overall
ACE inhibitory properties of peptides. It was reported, for
instance, that the nature of C2 to C4 amino acids in peptides had
an effect on the ACE inhibitory potential.45,46 The importance of
the C-terminal sequence in ACE inhibition may come from the
specic mode of action of the enzyme. ACE is a dipeptidyl
carboxypeptidase, meaning that peptide binding to its active
site occurs through the C-terminal dipeptide sequence.47 More
particularly, hydrophobic amino acids have been described to
bind to the hydrophobic S02 subsite of the ACE active site.45

Zhou, et al.48 have shown that there was a relationship between
the binding energy of peptides to ACE and their inhibitory
potency, with a positive contribution of hydrophobicity to
peptide binding. In addition, they demonstrated using trun-
cated versions of Gln–Pro–Leu–Ile–Tyr–Pro that the C-terminal
dipeptide (Tyr–Pro) played a preponderant role in peptide
binding to ACE and that the C5 and C6 amino acids hardly
affected binding.48

To date, most QSAR studies on ACE inhibition appear to
have been applied to relatively short peptides (#8 amino acid
residues, Table 3). A recent QSAR study on ACE inhibitory
activity of peptides has been applied to the largest peptide
(>1400 peptides) dataset employed to date.49 The originality of
this study also lies in the fact that it took into account peptides
with a broad size range (from 2 to >12 amino acid residues). The
peptides were classied according to their amino acid length as
“tiny” (#3 amino acids), “small” (4–6 amino acids), “medium”

(7–12 amino acids) and “large” (>12 amino acids). When
analyzing the amino acid composition of ACE inhibitory
peptides, Gly ($13%) was found to be themost abundant amino
This journal is © The Royal Society of Chemistry 2016

http://dx.doi.org/10.1039/c6ra12738j


T
ab

le
3

Fe
at
u
re
s
o
f
b
io
ac

ti
ve

p
e
p
ti
d
e
s
(B
A
P
s)

as
d
e
te
rm

in
e
d
b
y
q
u
an

ti
ta
ti
ve

st
ru
ct
u
re
–
ac

ti
vi
ty

re
la
ti
o
n
sh

ip
(Q

SA
R
)
st
u
d
ie
s

B
io
ac
ti
vi
ty

a
Pe

pt
id
e

le
n
gt
h
b

Sc
al
e
us

ed
c

Fa
vo
ra
bl
e
am

in
o
ac
id

d
at

th
e
pe

pt
id
e
po

si
ti
on

(C
1
is

th
e
C
-t
er
m
in
al

am
in
o
ac
id
)

C
on


rm

at
or
y

st
ud

ie
sd

R
ef
er
en

ce
C
6

C
5

C
4

C
3

C
2

C
1

A
C
E

in
h
ib
it
io
n

2
(n

¼
58

)
3-
z
sc
al
e

H
yd

ro
ph

ob
ic

&
po

si
ti
ve
ly

ch
ar
ge
d
X
aa

H
yd

ro
ph

ob
ic

&
bu

lk
y
X
aa

N
on

e
31

2–
8
(n

¼
36

)
8
ph

ys
ic
oc
h
em

ic
al

ch
ar
ac
te
ri
st
ic
s

Sm
al
l
X
aa

H
yd

ro
ph

ob
ic

&
n
on

-p
os
it
iv
el
y

ch
ar
ge
d
X
aa

N
on

e
32

2–
6
(n

¼
29

)
3-
z
sc
al
e

Sm
al
l
&
n
on

-
po

si
ti
ve
ly

ch
ar
ge
d
X
aa

N
on

-p
os
it
iv
el
y

ch
ar
ge
d
X
aa

N
on

e

2
(n

¼
16

8)
3-
z
sc
al
e

F/
Y
/W

F/
Y
/W

/P
FW

,W
W
,Y

W
30

3
(n

¼
14

0)
3-
z
sc
al
e

V
/L
/I

K
/R

P/
F/
W

V
R
F,

IK
P,

LR
W
,L

R
F

2
(n

¼
16

8)
3-

an
d
5-
z
sc
al
es

F/
Y
/W

F/
Y
/W

N
on

e
46

3
(n

¼
14

0)
V
/L
/I

R
/K

P/
F/
W

N
on

e
4
(n

¼
79

)
V
/I
/V
/M

R
/H

/W
/F

F
Y
/P
/F

N
on

e
$
5
(n

¼
22

6)
W

I/
L/
V
/M

H
/W

/M
Y
/C

N
on

e
2
(n

¼
58

)
3-
z,

5-
z,

8-
v,

38
ph

ys
ic
oc
h
em

ic
al

ch
ar
ac
te
ri
st
ic
s,

IS
A

an
d
E
C
I
sc
al
es

H
yd

ro
ph

ob
ic

X
aa

H
yd

ro
ph

ob
ic
,

sm
al
l
X
aa

N
on

e
23

3
(n

¼
55

)
17

di
ff
er
en

t
sc
al
es

B
ul
ky
,

ch
ar
ge
d
X
aa

G
N
on

e
39

2
(n

¼
58

)
10

di
ff
er
en

t
sc
al
es

G
G

N
on

e
50

3
(n

¼
55

)
3-
z,

5-
z
an

d
8-
G
sc
al
es

G
G

G
N
on

e
9
(n

¼
19

)
3-
z,

5-
z
an

d
8-
G
sc
al
es

P
N
on

e
$
5
(n

¼
24

5/
18

)
38

ph
ys
ic
oc
h
em

ic
al

ch
ar
ac
te
ri
st
ic
s

V
/I

W
/Y
/C

D
/N

/K
R
/V
/T

G
/L
/A
/V
/I

N
on

e
45

3
(n

¼
17

)
3-
z
sc
al
e

V
/L
/I

P/
C

P/
F/
W

IV
P,

IN
P,

IQ
P,

V
IP

33

3
(n

¼
38

)
3-
z
sc
al
e

II
P,

IV
P

51
R
en

in
in
h
ib
it
io
n

2
(n

¼
11

)
3-
z
an

d
5-
z
sc
al
es

V
/L
/I
/A

W
/Y
/F

LW
,I
W
,

A
W
,V

W
52

A
n
ti
ox
id
an

t
3
(n

¼
14

3/
71

)
D
PP

S,
H
E
SH

,I
SA

-E
C
I,

M
S-
W
H
IM

,V
H
SE

an
d
3-
z
sc
al
es

A
/G
/V
/L
/E

R
/K
/H

64

3
(n

¼
14

3/
71

),
4
(n

¼
12

)
8-
v
sc
al
e

A
/V
/L

R
/K
/H

/D
/E
/T
/S
/N

/Q
W
/E
/L
/I
/M

/V
/Y

N
on

e
65

2
(n

¼
32

)
D
PP

S,
IS
A
-E
C
I,
3-
z

an
d
5-
z
sc
al
es

Y
H
yd

ro
ph

ob
ic
,

sm
al
l,
lo
w

h
yd

ro
ge
n
bo

n
d

an
d
el
ec
tr
on

ic
X
aa

66

W
B
ul
ky
,

h
yd

ro
ph

ob
ic

X
aa

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 75400–75413 | 75405

Review RSC Advances

Pu
bl

is
he

d 
on

 0
1 

A
ug

us
t 2

01
6.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

L
im

er
ic

k 
on

 1
3/

04
/2

01
7 

15
:0

8:
59

. 
View Article Online

http://dx.doi.org/10.1039/c6ra12738j


T
ab

le
3

(C
o
n
td
.)

B
io
ac
ti
vi
ty

a
Pe

pt
id
e

le
n
gt
h
b

Sc
al
e
us

ed
c

Fa
vo
ra
bl
e
am

in
o
ac
id

d
at

th
e
pe

pt
id
e
po

si
ti
on

(C
1
is

th
e
C
-t
er
m
in
al

am
in
o
ac
id
)

C
on


rm

at
or
y

st
ud

ie
sd

R
ef
er
en

ce
C
6

C
5

C
4

C
3

C
2

C
1

B
it
te
rn
es
s

2
(n

¼
48

)
H
yd

ro
ph

ob
ic

&
bu

lk
y
X
aa

H
yd

ro
ph

ob
ic

&
bu

lk
y
X
aa

N
on

e
31

2
(n

¼
77

)
3-
z
sc
al
e

H
yd

ro
ph

ob
ic
,

po
la
r/
ch

ar
ge
d
X
aa

H
yd

ro
ph

ob
ic

or
bu

lk
y
X
aa

25

3
(n

¼
52

)
B
ul
ky

X
aa

H
yd

ro
ph

ob
ic
,

bu
lk
y
X
aa

4
(n

¼
23

)
B
as
ic
,

bu
lk
y
X
aa

B
as
ic
,b

ul
ky
,

h
yd

ro
ph

ob
ic

X
aa

5
(n

¼
12

)
B
as
ic
,

bu
lk
y
X
aa

B
ul
ky
,

h
yd

ro
ph

ob
ic

X
aa

6
(n

¼
20

)
B
as
ic
,b

ul
ky
,

h
yd

ro
ph

il
ic

X
aa

B
ul
ky
,

h
yd

ro
ph

ob
ic

X
aa

7
(n

¼
16

)
B
ul
ky
,

h
yd

ro
ph

ob
ic

X
aa

B
ul
ky
,b

as
ic

X
aa

2
(n

¼
48

)
3-
z,

5-
z,

8-
v,

38
ph

ys
ic
oc
h
em

ic
al

ch
ar
ac
te
ri
st
ic
s,

IS
A

an
d
E
C
I
sc
al
es

H
yd

ro
ph

ob
ic
,

sm
al
l
X
aa

H
yd

ro
ph

ob
ic
,

sm
al
l
X
aa

N
on

e
23

2
(n

¼
53

)
3-
z
sc
al
e

B
ul
ky

X
aa

H
yd

ro
ph

ob
ic

X
aa

N
on

e
24

3
(n

¼
55

)
3-
z
sc
al
e

B
ul
ky

X
aa

(W
/R
/Y
)

H
yd

ro
ph

ob
ic

X
aa

2
(n

¼
48

)
17

di
ff
er
en

t
sc
al
es

W
/Y
/F

W
/Y
/F

39

B
io
ac
ti
vi
ty

a
Pe

pt
id
e
le
n
gt
h
b

Sc
al
e
u
se
dc

Fa
vo
ra
bl
e
am

in
o
ac
id

d
at

th
e
pe

pt
id
e
po

si
ti
on

(N
1
is

th
e
N
-

te
rm

in
al

am
in
o
ac
id
)

C
on


rm

at
or
y
st
ud

ie
sd

R
ef
er
en

ce
N
1

N
2

N
8

N
9

N
1
3

D
PP

-I
V
in
h
ib
it
io
n

2–
5
(n

¼
21

/5
)

3-
z
sc
al
e

W
/I
/F
/L

W
/I
/F
/L

V
PG

E
IV
E
,L

PQ
N
IP
PL

T
,

LP
LP

LL
,Q

PL
PP

T
,L

PV
PQ

63
3-
v
sc
al
e

W
/I
/F
/L

A
n
ti
-m

ic
ro
bi
al

15
(n

¼
19

)
m
ur
in
e

LF
ci
n
an

al
og

s
12

ph
ys
ic
oc
h
em

ic
al

pa
ra
m
et
er
s,

3-
z
sc
al
e

W
C

C
V
/L
/I
/M

N
on

e
67

a
A
C
E
:a
n
gi
ot
en

si
n
co
n
ve
rt
in
g
en

zy
m
e;
D
PP

-I
V
:d

ip
ep

ti
dy

lp
ep

ti
da

se
IV
.b

T
h
e
n
um

be
r
of

pe
pt
id
es

us
ed

to
bu

il
d
th
e
Q
SA

R
m
od

el
is
gi
ve
n
in
to

br
ac
ke

t(
w
h
en

tw
o
n
um

be
rs

ar
e
pr
ov
id
ed

,t
h
e

rs
ta

n
d

se
co
n
d
on

es
co
rr
es
po

n
d
to

th
e
n
um

be
r
of

pe
pt
id
es

in
th
e
tr
ai
n
in
g
an

d
th
e
te
st
se
t,
re
sp

ec
ti
ve
ly
).

c
D
PP

S:
di
vi
de

d
ph

ys
ic
oc
h
em

ic
al
pr
op

er
ty
sc
or
es
;E

C
I:
el
ec
tr
on

ic
ch

ar
ge

in
de

x;
H
E
SH

:h
yd

ro
ph

ob
ic
,

el
ec
tr
on

ic
,s
te
ri
c
an

d
h
yd

ro
ge
n
;I
SA

:i
so
tr
op

ic
su

rf
ac
e
ar
ea
;M

S-
W
H
IM

:m
ol
ec
ul
ar

su
rf
ac
es
-w
ei
gh

te
d
h
ol
is
ti
c
in
va
ri
an

t
m
ol
ec
ul
ar
;V

H
SE

:v
ec
to
rs

of
h
yd

ro
ph

ob
ic
,s
te
ri
c
an

d
el
ec
tr
on

ic
pr
op

er
ti
es
.

d
T
h
e
am

in
o
ac
id
s
ar
e
co
d
ed

w
it
h
th
ei
r
on

e
le
tt
er

co
d
e.

X
aa

:a
m
in
o
ac
id
.

75406 | RSC Adv., 2016, 6, 75400–75413 This journal is © The Royal Society of Chemistry 2016

RSC Advances Review

Pu
bl

is
he

d 
on

 0
1 

A
ug

us
t 2

01
6.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

L
im

er
ic

k 
on

 1
3/

04
/2

01
7 

15
:0

8:
59

. 
View Article Online

http://dx.doi.org/10.1039/c6ra12738j


Review RSC Advances

Pu
bl

is
he

d 
on

 0
1 

A
ug

us
t 2

01
6.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

L
im

er
ic

k 
on

 1
3/

04
/2

01
7 

15
:0

8:
59

. 
View Article Online
acid in dipeptides while Pro ($14%) was the most abundant in
peptides having $3 amino acids. This result is in agreement
with QSAR outcomes from the study of Wang, et al.50 also pre-
dicting that Gly was the preferred amino acid residue both at
the N- and C-terminal position of ACE inhibitory dipeptides.

Despite the very large number of QSAR studies focusing on
ACE inhibitory peptides, only a few have subsequently been
utilised as predictive tools to design peptides with potent ACE
inhibitory properties (Table 3). In a few instances, QSAR studies
have led to the identication of novel ACE inhibitory peptides
following conrmatory in vitro studies with synthetic
peptides.30,33,51 Novel ACE inhibitory peptides, Tyr–Phe and Leu–
Arg–Phe, being 2–10 times more potent than the well-known
ACE inhibitory lactotripeptide Ile–Pro–Pro, were reported.30

Similarly, Ile–Val–Pro (IC50 ¼ 49.7 � 4.2 mM) and Val–Ile–Pro
(IC50 ¼ 26.1 � 0.8 mM) were found to be relatively potent ACE
inhibitors.33 Huang, et al.51 specically applied QSAR to C-
terminal Pro containing tripeptides and successfully identied
two novel ACE inhibitory peptides, Ile–Ile–Pro and Ile–Val–Pro
having IC50 values of 1.39 and 1.58 mM, respectively.

To our understanding, new ACE inhibitory peptides identi-
ed using QSAR approaches have been evaluated in one study
for their in vivo hypertensive properties.33 Ile–Val–Pro and Val–
Ile–Pro were administered to spontaneously hypertensive rats
(SHRs) at a dose of 0.75 mg kg�1. Interestingly, these treatments
resulted in a signicantly higher reduction (�3 times, p < 0.05)
in systolic blood pressure (SBP) than Ile–Pro–Pro, when evalu-
ated at the same dose.33
3.2 Renin inhibitory peptides

Besides ACE, the inhibition of renin may also be targeted for
a better regulation of blood pressure. To our knowledge, only
one QSAR study has been conducted to date on renin inhibitory
peptides.52 This may be because this area of research is relatively
new and only a limited number of renin inhibitory peptide
sequences have been identied to date. The QSAR study was
developed using the percentage of renin inhibition of 11
dipeptides (evaluated at 3.2 mM) originally identied in a pea
protein hydrolysate having renin inhibitory properties. The
outcomes of the QSAR analysis showed that peptides with potent
renin inhibitory properties were predicted to possess a bulky
amino acid (Trp, Tyr or Phe) at the C-terminus while hydro-
phobic and small amino acids (Val, Leu, Ile and Ala) may be
found at the N-terminus of the dipeptide (Table 3). Peptides with
a Trp at the C-terminus were predicted to be the most potent
renin inhibitors. Conrmatory studies were conducted with four
dipeptides (Leu–Trp, Ile–Trp, Ala–Trp and Val–Trp). Two of the
peptides (Ala–Trp and Val–Trp) were inactive towards renin,
while the renin inhibitory activity determined experimentally
was lower or of the same order as the predicted inhibition for
Leu–Trp and Ile–Trp, respectively.53 In addition, Ile–Trp (IC50 ¼
2.3 � 0.07 mM) was a newly identied renin inhibitory peptide
also displaying high ACE inhibitory activity (IC50 ¼ 4.74 � 0.04
mM). Interestingly, Ile–Trp had previously been shown to induce
a signicant reduction in SBP in SHR studies.54,55
This journal is © The Royal Society of Chemistry 2016
3.3 DPP-IV inhibition

Several studies have demonstrated that certain peptide
sequences can inhibit DPP-IV in vitro and also in small animals,
for reviews, see: ref. 53 and 56–60. To date, it is still not clear
which structural features of peptides are required to induce
high DPP-IV inhibition. A number of structural studies based on
peptide alignment approaches have shown that the presence of
Pro or Ala at position 2 of the peptide as well as certain amino
acids located at the N-terminal position of the peptide such as
Trp, along with branched chain amino acids (Leu, Ile) corre-
lated with relatively potent in vitro DPP-IV inhibition.61,62 To
date, only one study appears to have applied a QSAR approach
to better understand the structural characteristics of milk
protein-derived peptides in relation to their DPP-IV inhibitory
properties.63 During this study, the issue of incorporating IC50

data obtained under different experimental conditions as well
as peptides which were not competitive DPP-IV inhibitors into
the QSAR model was highlighted. The QSAR model failed to
allow an accurate prediction of the IC50 data for competitive
DPP-IV inhibitory peptides. However, the ranking for their DPP-
IV inhibitory potency was conserved. Additional QSAR studies
incorporating a larger number and more diverse (length and
amino acid composition) peptides may help to improve the
predictive ability of QSAR models as applied to DPP-IV inhibi-
tory peptides.

The outcomes of the two QSAR models (developed with a 3-z
and 3-v scales, Table 3) applied to DPP-IV inhibitory peptides
revealed the importance of hydrophobic amino acids (Trp, Ile,
Leu and Phe) at the N-terminal position of the peptide.63 In
addition, the 3-v scale model also showed the importance of
hydrophobic amino acids located at position 2 of the peptide.
These ndings were in agreement with earlier structural studies
showing the importance of hydrophobic amino acids at the N-
terminal side of peptides with DPP-IV inhibitory proper-
ties.61,62 The aim of this QSAR study was not to design peptides
with more potent DPP-IV inhibitory properties. However, the
QSAR models were used as a tool to predict the DPP-IV inhibi-
tory properties of a large number of peptides which have
previously been identied in the gastrointestinal tract of
humans following ingestion of milk. Conrmatory studies
allowed the identication of milk protein derived peptides
relevant to humans with relatively high in vitro DPP-IV inhibi-
tory potency such as Leu–Pro–Val–Pro–Gln displaying an IC50

value of 43.8 � 8.8 mM.
3.4 Antimicrobial peptides

AMP sequences are found within several food proteins. They
have been proposed as a means, for example, to (1) reduce
infection in living organisms, (2) address the issue of antibiotic
resistant strains, (3) combat the formation of biolms or (4)
extend the shelf-life of food products.68,69 The application of
QSAR to AMPs has been reviewed by Jenssen.20 A large number
of QSAR studies carried out on AMPs have been published.

Several studies have utilised QSAR approaches to better
understand the structural requirements of the antimicrobial
lactoferrin (LF)-derived pentadecapeptide, LFcin, for reviews,
RSC Adv., 2016, 6, 75400–75413 | 75407
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see: ref. 18 and 70. In these studies, LFcin from different species
was used as a lead peptide to construct peptide analogs which
were then employed to build a QSAR model in order to dene
structural characteristics of potent AMPs. A QSAR study on
bovine LFcin (LF f(14–41)) analogs (8 peptides with 12–19 amino
acid residues) was conducted to study antimicrobial activity
against Escherichia coli and Staphylococcus aureus.71 Large and
negatively charged peptides or peptides with a high hydro-
phobic moment (m) displayed high antimicrobial activity
against E. coli and S. aureus, respectively. In another study, 19
murine LFcin (LF f(16–30)) analog peptides were used to build
a QSAR model in relation to their antimicrobial activity against
E. coli and S. aureus.35 The importance of the N-terminal amino
acid was highlighted. It is thought that the N-terminal amino
acid may establish electrostatic interactions with the negatively
charged phospholipids of bacterial membranes. Thereaer, it
was hypothesised that hydrophobic amino acids (Trp, Tyr) may
bind to the interface through hydrogen bonding, causing the
phospholipid membranes to leak. While this study concluded
that good antibacterial activity was obtained by replacement of
several amino acids within the peptide sequence of murine
LFcin, it was shown that the parameters of importance were the
net charge andmicelle affinity of the peptide. Themost effective
murine LFcin analog was found to be LFcin Arg1, 9 Trp8 Tyr13
(with an Arg at position 1 and 9, a Trp at position 8 and a Tyr at
position 13).

Most QSAR studies conducted with antimicrobial LFcin
peptides appear to have been designed with descriptors con-
sisting of physicochemical parameters. Therefore, they took
into account the whole characteristics of the peptide as opposed
to the properties of its individual amino acids, making them
more complicated to interpret and to employ for subsequent
design of novel peptide sequences. Very few QSAR studies have
attempted to elucidate the amino acid descriptors which
correlated with the antimicrobial activity of LFcin peptide
analogs.67 The 3-z scale was used for the amino acids located at
the 4 varied positions (1, 9, 8 and 13) of 19 murine LFcin
analogs. The preferred amino acids at each position were
determined following QSAR analysis (Table 3). A larger peptide
dataset of human, bovine, caprine and murine LFcin analogs
(52 peptides) was employed in another QSAR study using the 3-z
scale for peptide descriptors.72 The most important properties
that governed the antimicrobial activity (E. coli and S. aureus)
was z1 (hydrophilicity) for amino acids located at positions 1, 3,
4 and 14, z2 (size) for position 10 and 14 and z3 (charge) for
position 4.

The ability of human LFcin analog peptides to act as cell
membrane permealising agents of Pseudomonas aeruginosa, as
a means to subsequently enhance the action of a synthetic
antibiotic (novobiocin) and to avoid antibiotic resistance
mechanisms, was studied using a QSAR approach.73,74 There
was no direct relationship between peptide antimicrobial
activity and cell permeabilising activity. The QSAR analysis
revealed a positive correlation between antimicrobial activity
and peptide hydrophobicity, the number of Trp and aromatic
residues as well as the percentage of hydrophobic plus basic
residues. On the other hand, peptides with cell permealising
75408 | RSC Adv., 2016, 6, 75400–75413
activity generally possessed aromatic and positively charged
residues and had an amphiphilic structure.

Antimicrobial peptides other than LFcin have also been
studied by QSAR.75–77 For example, the search for non-hemolytic
(to reduce the risk of endotoxic shock) cyclic cationic peptides
having high antibacterial properties has been aided by QSAR
studies.77 It was shown that charge and amphipathicity was
responsible for increased antibacterial activity. On the other
hand, the anti-hemolytic effect was linked to lower peptide
lipophilicity, in particular that of the residues involved in the
nonpolar face of the peptides, which are likely to form a b-
hairpin-like structure.

While some QSAR studies have concluded in structural
characteristics relevant to AMPs, clear structural requirements
for AMPs still do not appear to be available, as stated earlier.18

This has been explained by the fact that the structural
requirements of AMPs appear to involve a quite complex
combination of specic physicochemical properties (hydro-
phobicity, cationic residues, amphipathicity). In addition, the
mechanism of action and specic target of AMPs are still not
fully understood.74
3.5 Antioxidant peptides

Antioxidant peptides have also been studied using QSAR
approaches. The structural characteristics of peptides with
antioxidant activity, as determined by QSAR studies, are sum-
marised in Table 3. QSAR study of the radical scavenging (2,20-
azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and
2,20-azobis(2-aminopropane)dihydrochloride (AAPH)) ability of
dipeptides containing Trp and Tyr at the N-terminus was
carried out.66 Differences in the preferred C-terminal amino
acid residue of dipeptides with ABTS scavenging properties
were seen when a Tyr or Trp was found at the N-terminus of the
dipeptide (Table 3). For larger peptides (tri- and tetrapeptides),
it was shown that the N-terminal (high hydrophobicity and low
electronic properties) and next to the C-terminal (hydrophilic)
amino acids were the most important in the antioxidant (ferric
thiocyanate method, autoxidation system of linoleic acid)
activity.64,65 It was suggested that radical scavenging peptides
could interact with the lipid phase owing to their hydrophobic
N-terminal amino acid while the amino acid at position 2 (next
to the C-terminus) of the peptide could act through its ability to
form hydrogen bonds with free radicals.65 2- and 3D descriptors
were used to conduct a QSAR study with antioxidant (superoxide
(SO), ABTS and AAPH radical scavenging) peptides possessing
2–20 amino acid residues.43 In this study, different amino acids
were shown to be important depending on the radical scav-
enging activity considered. For the ABTS, AAPH and SO scav-
enging, the C2 and N2 terminal amino acids were the most
important in relation to the antioxidant activity, while for both
AAPH and SO scavenging the C3, C4 and C1 were also linked with
antioxidant activity. Overall, the study of Li and Li43 highlighted
that the C-terminal amino acids had a higher impact on the
antioxidant (radical scavenging) properties than the N-terminal
amino acids. The electronic properties were shown to play the
most important role in radical scavenging ability of the
This journal is © The Royal Society of Chemistry 2016
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peptides. In addition, the presence of a bulky hydrophobic
amino acid at the C-terminus was also shown to correlate with
the radical scavenging ability of peptides.43

A recent QSAR study has utilised peptide descriptors linked
with electron transfer properties, i.e., energy of highest occu-
pied molecular orbital (EHOMO) and bond length of active sites
(L(X–H)), to study the antioxidant activity (OHc and O2

�c scav-
enging) of di- to heptapeptides.78 The O2

�c scavenging ability of
peptides correlated with high EHOMO and long L(X–H). However,
the predictive ability of the model designed for cOH scavenging
was not very accurate, possibly due to interferences of the assay
reagents (Cu2+). Overall, this study has highlighted the role of
electron effects on the radical scavenging ability of peptides.

A systematic evaluation of the antioxidant capacity (ferric
reducing antioxidant power – FRAP) of all possible tripeptides
(172 unique sequences) from b-Lg has been carried out.26 The
QSAR analysis showed that antioxidant activity was governed by
the electronic and hydrogen-bonding properties of all amino
acids within the peptide. For the N- and C-terminal amino
acids, it was also shown that the steric properties of the amino
acids were important. Cys- and Trp-containing tripeptides were
associated with high antioxidant activity. The effect of both of
these amino acid residues was explained by their ability to
interact with free radicals through hydrogen (–SH and indole
group), electron (S) or proton (aromatic ring of Trp) donation. It
was found that 3 b-Lg tripeptides (Leu–Thr–Cys, Cys–Gln–Cys
and Gly–Thr–Trp) had a higher antioxidant activity than the
well-known physiological antioxidant glutathione (Glu–Cys–
Gly).

The antioxidant properties of peptides may be determined
using a wide range of assays. These assays are targeted at quite
different oxidative species, therefore, leading to different
outcomes in terms of the peptides' potential ability to reduce
oxidation.66 These differences highlight the challenges in
attempting to nd a consensus in the structural properties for
antioxidant peptides. As highlighted in the recent review of Li
and Yu,22 no clear consensus between peptide structure and
antioxidant peptides has been established using QSAR studies,
possibly due to the lack of knowledge of the mechanism of
action of such peptides.

4 Bitter peptides

Besides bioactive properties, the sensory attributes of peptides
have also been studied using QSAR approaches. The need to
develop bioactive protein hydrolysates with low bitterness has
been highlighted in several studies due to the fact that certain
food protein hydrolysates display bitter attributes, for reviews,
see: ref. 79 and 80. The characteristics of bitter peptides as
determined by QSAR studies are summarised in Table 3.

In several studies, the R2 determined with QSAR models
developed for bitter peptides was shown to be quite low. This
was related to the difficulty of accurately measuring bitterness
as its threshold is subject to interindividual variation in
humans.48 Asao, et al.81 conducted a QSAR study on short (di-
and tri-) peptides and their derivatives and showed a positive
link between lower bitterness threshold and the peptides'
This journal is © The Royal Society of Chemistry 2016
physicochemical properties (i.e., length of the carbon backbone
and octanol/water partition coefficient). In line with structural
studies conducted on bitter short (di- and tri-) peptides, other
QSAR studies have shown that hydrophobicity and size of the
amino acids at the C1 and C2 position of peptides, respectively,
correlated positively with bitterness.23,24

For datasets incorporating larger peptides (2–14 amino acid
residues, n ¼ 224), it was shown using the 3-z scale that the
bitterness was correlated with hydrophobic amino acids in the
C1 position and bulky, basic and hydrophilic amino acids in N1

(N-terminal) position of the peptides.25 The molecular mass,
hydrophobicity, number of amino acid residues in the peptide
together with the amino acid descriptors of the 3-z scale were
incorporated in a PLSR. The previous physicochemical param-
eters had a higher inuence on the bitterness than the 3-z scale.
This suggests that the bitterness depends on the overall prop-
erties of the peptide rather than on the properties of specic
amino acids within the peptide sequence.25

A number of QSAR studies have attempted to identify
peptides displaying both good bioactivity proles and low
bitterness. It has been shown that several potent ACE inhibitory
or antioxidant short peptides (2 to 3 amino acid residues) were
also bitter.23,40,48,82 In contrast, in another study,24 no direct
correlation was seen between ACE inhibitory properties and
bitterness of di- or tripeptides. The number of possible dipep-
tide combinations (202 ¼ 400) is lower than that of larger
peptides, increasing the structural diversity of larger peptides.
Therefore, the likelihood of identifying highly BAP candidates
with low bitterness is increased with larger peptides. In addi-
tion, the C1 to C4 amino acid residues are important in peptide
binding to ACE. Hence the interest in identifying peptides with
3–4 amino acid residues having high ACE inhibitory activity and
a good sensory prole.23,48
5 Limitations of QSAR for the study of
BAPs

The main limitations of QSAR analysis, which relate to peptide
descriptors, dataset and the methodology used for model
development and validation, have been comprehensively
reviewed by Cherkasov, et al.18 It has been pointed out on
a number of occasions that some of the amino acid scales may
be challenging to interpret especially when the different
components of the scale do not represent a dened physico-
chemical and/or structural property.64 However, it is still
possible to identify preferred amino acids in specic locations
on peptides which would correlate with high bioactivity. The
choice of peptide descriptors to build the QSARmodel may have
an impact on model accuracy. Over the years, different amino
acid scales have been developed, incorporating a higher
number of physicochemical properties or structural character-
istics which are deemed important for the bioactive properties
of peptides (Tables 1 and 2). Generally, QSAR models are con-
structed with several amino acid scales or a wide range of
peptide physicochemical properties. Subsequently, peptide
descriptors giving the highest correlation with the bioactivity
RSC Adv., 2016, 6, 75400–75413 | 75409

http://dx.doi.org/10.1039/c6ra12738j


RSC Advances Review

Pu
bl

is
he

d 
on

 0
1 

A
ug

us
t 2

01
6.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

L
im

er
ic

k 
on

 1
3/

04
/2

01
7 

15
:0

8:
59

. 
View Article Online
are selected. Several QSAR approaches have suggested that
specic scales allowed obtention of QSAR models with higher
correlation and cross-validation coefficients (R2 and Q2,
respectively), which has generally been the case with the more
recently developed amino acid descriptor scales.37,39,49,83,84

Some QSAR studies incorporating relatively large numbers of
BAPs in the dataset have been conducted with bioactivity data
obtained using different experimental conditions (enzy-
me : substrate ratio, source of enzymes, substrate, temperature,
etc.), which makes the validity of the models developed ques-
tionable. Several studies have also not taken into account the
mode of action of the peptides with certain biological receptors.
This is particularly relevant for enzyme inhibition assays where
peptides may act at the active site (competitive enzyme inhibi-
tion) or outside the active site (modes of inhibition other than
competitive) of the target enzyme(s). Recently, Nongonierma
and FitzGerald63 have shown when using QSAR that it was only
possible to obtain a statistically signicant correlation between
DPP-IV inhibition of peptides and their descriptors when
applying a series of lters such as IC50 data obtained under the
same experimental conditions for inhibitors with the same
mode of DPP-IV inhibition (competitive). While many QSAR
studies have yielded models with statistically signicant corre-
lations, other studies have not achieved this result, possibly due
to the relatively low number of peptides in the training set,
structural diversity and/or structural relevance of the peptides
therein.31,51,66 This again highlights the importance of the
quality/heterogeneity of the data which may be included in the
QSAR model.18 In addition, when the mechanism of action is
not fully understood, e.g., mode of enzyme inhibition, it can be
challenging to select meaningful peptide descriptors to build
QSAR models.

In addition to selecting the appropriate peptide sequences to
build QSAR models, a limited number of studies have attemp-
ted to train the models with so-called “negative datasets” which
incorporate peptides which do not display any bioactivity. In
their QSAR approach developed with ACE inhibitory peptides,
Kumar, et al.49 have also included negative datasets to develop
classication models in order to assign unknown peptides to
a category of active or inactive peptides. These models have
been incorporated in a freely available web resource (http://
crdd.osdd.net/raghava/ahtpin).
6 Utilisation of specific features in the
targeted release of BAPs from dietary
proteins during enzymatic hydrolysis

Studies which have embarked on translating QSAR ndings to
the targeted release of BAPs through dietary protein hydrolysis
are scarce. The development of enzymatic strategies to release
promising BAPs from food proteins is of signicant interest to
the food industry. Enzymatic hydrolysis is well accepted as
a food-grade approach for the large-scale production of BAPs in
a relatively cost-efficient manner.1,17 In order to release specic
BAP sequences from food proteins, knowledge of both the
75410 | RSC Adv., 2016, 6, 75400–75413
amino acid sequence of the protein as well as the enzyme
specicity and kinetics is required.

Using QSARmodels applied to ACE inhibitory peptides, an in
silico approach was developed in order to predict dietary protein
substrates which would act as good precursors of ACE inhibi-
tory peptides.85 The ACE IC50 value of peptides predicted in silico
to be released from the major proteins present in 15 food
commodities by thermolysin and combinations of thermolysin
and pepsin then thermolysin, pepsin and trypsin were deter-
mined by QSAR. This analysis allowed the identication of meat
(pork, beef and chicken) proteins as rich sources for potent ACE
inhibitory peptides (IC50 < 10 mM).

Validation of the in silico results with in vitro testing of the
hydrolysates is needed to conrm their potential bioactivity.
The prediction ability of QSAR combined with peptide cutters to
release ACE inhibitory peptides from the major egg white
proteins was studied by Majumder et al.86 They predicted that
thermolysin followed by pepsin digestion of ovotransferrin
would allow the release of potent ACE inhibitory peptides (Ile–
Arg–Try, Leu–Lys–Pro and Ile–Gln–Try). The three target
peptides could not be identied by liquid chromatography (LC)-
MS/MS. However, precursors of the target peptides were found
within the digest. The inability to release the three target
peptides was imputed to the limited access of the enzymes to
certain peptide bonds possibly due to the globular structure of
ovotransferrin. Based on the knowledge of ACE inhibitory
peptide structure, which generally possess Pro residues at their
C-terminal region, a post-Pro endoproteinase preparation from
Aspergillus niger (An-PEP) was employed to hydrolyse a Pro-rich
protein substrate, i.e. bovine b-casein.87 The hydrolysate
generated aer 24 h incubation of b-casein with An-PEP at pH
6.0 and an enzyme to substrate (E : S) ratio of 2.5% (w/w) was
a particularly potent inhibitor of ACE, having an IC50 value of
16.41 � 6.06 mg mL�1. Subsequently, LC-MS/MS character-
isation of the peptides within this hydrolysate followed by
conrmatory studies with synthetic peptides revealed that the
bioactivity was linked to the presence of several C-terminal Pro
containing peptides, some of which had ACE IC50 values in the
mM range.

Other examples illustrating the use of in silico predictions to
guide hydrolysis generation may be found in the development
of DPP-IV inhibitory peptides. Tulipano et al.62 predicted, using
a peptide cutter approach, that gastrointestinal digestion of b-
lactoglobulin (b-Lg) would yield a higher number of DPP-IV
inhibitory peptides than that of a-lactalbumin (a-La). Their
prediction was subsequently validated by the fact that a b-Lg
gastrointestinal digest had a higher DPP-IV inhibitory potency
than an a-La digest. Recently, the targeted release of known
DPP-IV inhibitory peptides from a-La has been studied.88

Approximately 64% of the peptide sequences predicted to be
released in silico by digestion of a-La with elastase were iden-
tied by LC-MS/MS in an a-La elastase digest. The differences
between in silico predictions and in vitro peptide release were
possibly due to the presence of disulphide bonds within the a-
La sequence. All ve DPP-IV inhibitory peptides predicted to be
released in silico were identied in the a-La elastase digest.
Currently, the number of studies translating in silico results to
This journal is © The Royal Society of Chemistry 2016
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BAP release in vitro are limited. However, the above studies have
demonstrated the benet of employing in silico approaches as
a means to select enzyme � substrate combinations which may
result in the release of potent BAPs.

In addition to enzyme specicity and protein sequence
knowledge, a wide range of physicochemical parameters (pH,
temperature, E : S ratio, protein concentration, etc.) can affect
both enzyme activity and protein conformation. Therefore,
peptide release is highly dependent on the conditions employed
during food protein hydrolysis. Understanding of the impact of
hydrolysis parameters on hydrolysate bioactivity has been
systematically studied using multifactorial experimental design
and response surface methodology (RSM) approaches.89 In
particular when a specic peptide sequence is being targeted for
enzymatic release, RSM may be employed to determine the
hydrolysis parameters giving an optimum yield of the peptide.
For example, RSM has been applied to optimally release an ACE
inhibitory peptide, His–Leu–Pro–Leu–Pro (b-casein f(134–138)),
from casein using Corolase PP, an intestinal enzyme prepara-
tion.90 The optimum conditions were found to be 24 h hydro-
lysis using an E : S ratio of 6% (w/w).
7 Conclusions

QSAR approaches have successfully been used to increase the
level of understanding of the structural characteristics of
peptides which are linked with specic bioactivities. In agree-
ment with earlier structural studies, different QSAR analyses
have generally identied the same structural features in
peptides with potent in vitro bioactivity. To date, it appears that
only a limited number of QSAR studies have allowed the design
and discovery of more potent BAPs. Interesting studies have
been recently conducted to also take into account the sensory
properties of the peptides. Therefore, allowing, for example, the
identication of peptides with high in vitro bioactivities and low
bitterness attributes.

The production of food protein hydrolysates enriched with
these potent BAPs may be achieved through the utilisation of
design of experiments combined with RSM approaches to
predict the optimum hydrolysis parameters which would yield
the enzymatic release of BAPs. Combination of QSAR with other
in silico tools and peptide library approaches will allow the
development of systematic methods for the discovery of novel
and potent BAPs. For instance, QSAR models have been used to
predict the bioactivity of very large sets of peptide sequences
with unknown bioactivities.26,63 These large sets of peptides may
correspond, for example, to all possible amino acid combina-
tions to generate a specic peptide size, peptides which may be
present within a specic proteome, novel peptide sequences as
well as protein-derived peptides identied within humans.

Overall, many of the QSAR studies appear to have high-
lighted the importance of hydrophobic amino acids (Pro, Trp,
Leu, Ile, Val and Ala) for a wide range of bioactive properties
(ACE, DPP-IV and renin inhibition). Interestingly, the presence
of some of these residues (i.e., Pro) within peptide sequences
have been linked with gastrointestinal or serum stability in vivo,
This journal is © The Royal Society of Chemistry 2016
which potentially makes them interesting candidates for the
development of functional foods targeted at human nutrition.

To date, it appears that certain bioactivities (e.g., renin and
DPP-IV inhibition) have not been extensively studied with QSAR
approaches. More research in this area will allow the develop-
ment of more potent BAPs and ultimately the identication of
enzymatic hydrolysis strategies to optimally release such
peptide sequences. The main challenge in applying QSAR
approaches to certain bioactive properties lies in the fact that
the target and mode of action of the peptides is not known,
making it virtually impossible to develop meaningful models.
Therefore, more research is also needed in this area.
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