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SUMMARY

The fitting by quasi-likelihoods is based on Euclidean distance and thereby related to
the least-squares norm. This paper examines the consequences of replacing the Z^-norm
by the Lrnorm in the derivation of quasi-likelihoods. Since the least-absolute-deviations
centre of a distribution is its median rather than its mean, the natural models for the
L,-fitting involve medians. However, even if we model the mean response rather than
the median response, an Lj-type criterion is applicable and leads to alternatives for
maximum likelihood fits.
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1. I N T R O D U C T I O N

Quasi-likelihoods are used in fitting mean responses as a function of explanatory
variables. They go beyond the weighted least-squares method in allowing for a dependence
of the variances of the responses on the unknown means. Denote by y = (yt,..., yn)

T

the observed responses and let x , , . . . , xn be the p-vectors of the values of the correspond-
ing explanatory variables. Let y* = (}il,..., fin)

T be the mean of y. A quasi-likelihood
function is defined by way of its gradient

^K(n;y)V(ri(y-p), (1-1)
OfJL

where V(/i) denotes the variance matrix of the vector of responses. If V is constant, this
leads to the usual weighted least-squares solution. If we postulate a structural model of
the form

for some monotone and continuously differentiable link function g(.), the quasi-likeli-
hood approach consists in estimating the unknown /3 by the solution of the system of
equations

U(f3) = DTV(fi)-
l(y-tjL) = 0. (1-2)

The matrix D contains the partial derivatives dnt/dfij = Dv.lt is clear that this estimator
is consistent if the mean /A is correctly specified, since

for all random vectors Y = ( V , , . . . , Yn)
T with E(Y) = fi. Linearizing (1-2) shows that

assuming certain regularity conditions

where H = Ep(-dU/dP). It follows that

) r . (1-3)
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In the case of a correctly specified quasi-likelihood model, i.e. if indeed the variance of
the responses is equal to V, this formula leads to

var^(/3) = {DTV(M)-1D}-1. (1-4)

See Wedderburn (1974) and McCullagh & Nelder (1989, p. 327) for more details.
Historically, the least-absolute-deviations approach to combining observations emerged

at about the same time as the least-squares approach. It is therefore quite natural to ask
in what sense the quasi-likelihood approach, as we have briefly described it, can be put
to use in conjunction with least-absolute-deviations instead of least-squares. This paper
shows that replacing the Z^-norm in the definition of the quasi-likelihood by an arbitrarily
chosen L,-norm for q 2* 1 leads to biased estimating equations. This bias can be eliminated
only in the case where the underlying distributions are assumed known. The corrected
equations lead then to alternative estimates for parameters of generalized linear models.
When q = \ these are in some sense analogues of the Lrestimate for normal models.

A quasi quasi-likelihood, i.e. an approach based on absolute-deviations without assum-
ing complete knowledge of the underlying distributions, exists if we do not eliminate the
bias. Such an approach can make sense for continuous error distributions. It essentially
consists in modelling the median response rather than the mean response.

The paper is organized as follows. We begin by introducing alternative estimates for
models with completely specified response distributions and then discuss quasi-likelihood
fitting based on an absolute-deviation likelihood.

2. ROBUST FITS FOR GENERALIZED LINEAR MODELS

2-1. General theory

Pregibon (1982), Stefanski, Carroll & Ruppert (1986) and Kiinsch, Stefanski & Carroll
(1989) consider the robust estimation of generalized linear models parameters with
particular emphasis on logistic regression. Since the original justification of the least-
absolute-deviations principle is its resistance to gross errors, it is of interest to see first
how this principle can be applied with traditional generalized linear models and to
compare it to these existing robust procedures.

With a constant diagonal scatter matrix, V = diag (V, , . . . , Vn), fitting by least-L,-
norm (q se l) corresponds to minimizing

v)
The corresponding gradient is

{diag(V 1 , . . . ,V n)}- ' /%- /x| ' - 1sgn(> ' -M)K (2-1)

where sgn(.) denotes the sign-function that takes values ±1. The product
\y - fjb\q~l sgn (y — fi,) in (2-1) is to be taken componentwise. With q = 2, this formula
leads back to the quasi-likelihood (1-1) discussed in the introduction. But as a straightfor-
ward generalization of (1 -1), (2-1) is a failure, since it does not lead to consistent estimates
unless q = 2 or unless the responses are symmetrically distributed around their means.
In general, one must correct for the asymmetry and that demands detailed knowledge
of the underlying distribution. Simply specifying means and variances, as was possible
with quasi-likelihoods, is not sufficient.

To obtain consistent estimates we calculate the correcting quantities
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where the random variables Y, follow the true underlying distribution with mean (i, and
variance V,. Let c = ( c i , . . . , Cn)T. The corrected gradient is

{diag (V , , . . . , VB)}~"/2{\y - nl"-1 sgn (y - n) - c}, (2-2)

and the estimating equation for /3 is

Uq(0) = DT{diag (V, , . . . , Vn)}-"/2{\y -tf-* sgn {y~n)- c). (2-3)

In models where the complete underlying distribution is specified, one can use this
approach to derive alternatives to the usual maximum likelihood estimates. As q -» 1, the
solution of (2-3) tends to a corrected L,-nt of the model.

Of course, the estimation of standard errors via (1-3) leads to a formula that can be
considerably more complicated than (1-4), namely

varp {$) = (DTV-"2QD)-\DrV-'>/2RV-'"2D){DTV-q/2QD)-\ (2-4)

Here R denotes the diagonal matrix with diagonal elements

J?,, = £( |Y,-M ( |
2«-2)-c?,

and Q is also diagonal with elements

Qu = (q -1)£(| Y, -n,]"-2) - E{\ Y, - ^ l * " 1 d sgn (Y, -/*,)/*/*,} + cj(^).

Since

d sgn (y - n,)/d(jL, = -d sgn {y - fi,)/dy = -d{2h(y - n,) - l}/dy,

where h(u) is the distribution function for a point mass at zero, the second term in this
last formula can be interpreted as an integral with respect to a Dirac measure. One
obtains zero except for q = 1 where the result of the expectation is (-2) times the value
of the underlying density evaluated at /*,.

To illustrate these formulae, we next consider two examples and discuss computational
aspects.

2-2. Logistic regression

If the ith response follows a Bernoulli distribution with probability of success pi,, the
correction for consistency discussed above is

The generalized quasi-likelihood gradient (2-2) is equal to

where we assume that the responses are uncorrelated. The variance is V, = fi,(\ -pi,). If
we model the means as

exp(xjp)

this leads to estimating the unknown fi by the root of Uq(p) = 0, where

Since D = VX, the least-absolute-deviations estimate for this particular model therefore
satisfies
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This estimating equation differs from the maximum likelihood equation only through
the inclusion of the weight

which tends to downweight observations at the fringe of the data set. Equation (2-4)
leads to

varp 03) = (XTVy2X)-l(XTV2X)(XTVy2X)-\

This particular form of the least-absolute-deviations estimate may come as a surprise
since we are used to such estimates being determined by equations involving the balance
of residual signs. The Bernoulli case is obviously rather special. The likelihood equation
itself can in fact be interpreted as providing balanced signs, since it is equivalent to

On the left-hand side of this equation are all observations with positive residuals, counted
with weight 1 - /2, = 1 — pr (Y, = 1), whereas on the right-hand side are all the cases with
negative residuals counted with weight /2, = 1 — pr (V, = 0). The least-absolute-deviations
criteria leads in this case simply to a different scheme for weighting. It is a bit surprising
that the additional weights depend only on fi, and do not take into account the observa-
tions, as is the case in the estimates considered in the papers cited at the beginning of
§ 2-1. Stefanski et al. (1986, p. 418, in particular equation (3-1)) consider simple robust
estimates that are vaguely similar to ours in the sense that they make use of an additional
weight depending only on x, and ft.

Example. As a practical example, consider the data on vaso-constriction of the skin
given by Finney (1947, p. 322). This data set consists of n =39 observations of a Bernoulli
variable in the presence of two explanatory variables, V, the volume of air inspired and
R, the inspiration rate. The logistic model using variables log V and log R leads to the
linear predictor

-2-873 + 5-177 log V+4-5591ogK

with standard errors of 1-32, 1-86 and 1-83 for the fitted coefficients. The corrected L,
criterion on the other hand gives a very different linear predictor, namely

-21-6 + 34-9 log V + 28-1 log R

with standard errors of 13-5, 22-5 and 17-1. This drastic change is due to the fact that
the negative responses are very nearly separated from the positive responses by a straight
line in the log V, log R plane. The 4th and the 18th observations contain practically all
the information about the rise of the logistic surface. In the scoring algorithm for the
L,-fit, they receive a huge final weight. For an alternative robust analysis of this data,
see Pregibon (1982, p. 496), whose solution is close to the one obtained with q = 1-5.

2-3. Gamma regression

>»i,..., yn be positive observations following densities of the form

fi(yt) = nvl)-
1(Vlyt/^)t"cxp(-Vly,/fil)(l/yt). (2-5)
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The correcting quantity for q = 1 is

c,= f f,(y)dy-\"'f,(y)dy
J u., Jo

= 1-2 \"'
Jo

y*'-lnVi)-
lexp{-y)dy,

which depends only on vt. If i/, = i> is constant for all cases, we have ct = c2 = . . . = cn

and the least-absolute-deviations estimating equation is

C/i(/3) = DTdiag (/^/^"'{sgn 0>- / t ) - c} = 0, (2-6)

where Dlj = dfjL,/dpJ and c = (clt..., Ci)T. This estimation equation must be interpreted
as a limit for q-> 1. At q = 1 it may not have a solution due to the discontinuity of the
sign-function. The scoring algorithm based on (2-6) will work, however, if special care
is taken. To use this estimator, we need a simultaneous estimate of v, since the correcting
quantity c, is a function thereof. Any n '-consistent estimate of v will do this job without
affecting the asymptotic characteristics of the estimate of /3. The matrices Q and R from
(2-4) are diagonal with elements Ru = l — c] and Q(i = 2ft(^,), for i = 1 , . . . , n.

For example, when /A, = exp (xjp), we have D = diag (fil,..., fxn)X and the estimating
equation is

XT{sgnG>-/2)-c} = 0, (2-7)

which is a regression quantile equation (Koenker & Bassett, 1978). The positive residuals
obtain a weight of (1 - cx), whereas the negative residuals get weight (-1 - c,). The term
-c in (2-7) corrects for the fact that /u., is not the median of the density /, but rather the
((l-c,)/2)-quantile.

It is clear that, in this model, the least-absolute-deviations estimator will curb the
influence of outlying observations as long as they do not occur at positions of high leverage.

2-4. Computation

Suppose the estimating equation is of the form

U(fi)=iw(fii)xl(y,-fi,) = O, (2-8)

where w(.) is some weight function and x, is the vector of explanatory variables for the
ith case. The Newton-Raphson algorithm is based on the derivative

dpi (_i

where we assume that /i, = h(xjp) = g~l(xjfi). This leads to the linear expansion

ew - /3old) = 0,

where M is diagonal with elements

Mu = h'(xjp){w(^) - *'{*,)&, -/*,)} (i = 1, • • •, n). (2-9)

The Newton-Raphson update is

/3new = 0o.d + (XTMX)-' l/(/3old)
TW(y -
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where W is the diagonal matrix with the weights w(fi,) on the diagonal. In the last
equation, the updating step is written as the solution of a weighted least-squares problem
with weight matrix M and response vector X/3old+ M~l W(y-fi). A simpler algorithm
is obtained if we ignore the term involving the derivatives of the weights W'(M<) in the
matrix M

3. ABSOLUTE-DEVIATIONS QUASI-LIKELIHOODS

It was evident from the start that (21), which is the natural equation for a quasi-
likelihood based on the L,-norm, does not lead to consistent estimates of the usual
generalized linear model parameters. Besides correcting the estimating equation as we
did in the last section, a second sense of the term 'absolute-deviations estimate' is obtained
if we accept (2-1) for q = 1 as is. This evidently means that we model the median rather
than the mean of the response as a function of the explanatory variables x The question
is whether specifying the median as a smooth function of xjfi and indicating the scatter
5 as a function of the median is sufficient to compute estimates and their standard errors.

In discrete models, the median is clearly not a good functional to use. In the Bernoulli
case, for example, the median is either 0, 1 or indeterminate. No smooth function of xjfi
can model this behaviour. Absolute-deviations quasi-likelihoods are, therefore, available
only for responses with continuous distributions. In those cases, however, modelling the
median rather than the mean can be attractive, because the resulting fitted surface is
more directly interpretable.

Denote by ft the density of the distribution of the ith observation and suppose that
the median m, of this distribution is such thatyj(/n,)>0. Suppose further, that

for some link function g(.). Let m = (m, , . . . , mB)T. Substitution of q = 1 in (2-1) gives
the gradient of our quasi-likelihood

— K(m; y) = S{m)^ sgn (y - m),
dm

where S(m) = diag (S(m,) , . . . , S(mn)) and 5, = S(m,) is a user-supplied function that
models the scatter of the responses as a function of the median. Formally, the least-
absolute-deviations estimate /§ is associated with the estimating equation

DT{diag(5,,..., SjrHsgn (y-m)} = 0, (3-1)

where Dtj = dfii/dfij. For any random variable Yt with density/ we have

E{sgn(y,-m,)} = 0,

so that (3 • 1) produces consistent estimates of the parameter fi. Under additional regularity
conditions we have

where F = diag {2/,(m,),... , 2/n(mn)}. The underlying distributions make their appear-
ance in this formula unless we assume that 5} = 2/|(m,), in which case we have the formula

var,(jB) = {DTS(m)-lD}-1. (3-2)
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To specify a quasi-likelihood model in the least-absolute-deviations framework, we must
therefore assume that the scatter function S(m) is properly matched to the choice of the
median as our location functional. With the right choice, the formula for computing
standard errors (3-2) is the same as in the case of models for the mean (1-4).

In a classical quasi-likelihood model, it is often assumed that the variance is only
determined up to a proportionality constant. That constant must then also be estimated.
One possible such estimator can be based on the sum of squares of normalized residuals.
In the case of L,-estimates, the same task is more involved, since we must estimate the
value of a density. But for many models, this is entirely feasible and can be based on
one of the methods of density estimation.

Example. McCullagh & Nelder (1989, p. 300) discuss an example involving clotting
times of blood where the clotting was induced by two different lots of an agent, and was
measured for nine different dilutions X. They fit a Gamma regression model with the
inverse link and find the linear predictors:

-0-01655(0-00086) +0-01534(0-00038) log X for the first lot,
-002391(0-00143) +0-02360(0-00062) log X for the second lot.

The numbers in parentheses are standard errors. Taking the estimating equation (2-6)
for the Gamma regression without correction

Dr diag (m^rHsgn (y - m)} = 0,

and rewriting it as

to match (2-8), we can compute the estimates with the algorithm discussed in § 2-4.
Ignoring the term involving the derivative of the weight, one obtains

Mil = m]/\yl-m\

for the estimation weights (2-9). The adjusted responses to be used in the updating
algorithm are

All of this is valid for the inverse link. The fitted linear predictors are:
-0-O168(0-0O16) + 0-0157(0-0OO7) log X for the first lot,
-0-0226(0-0026) + 0-0231(0-0011) log X for the second lot.

This fit is easy to describe since it is characterized by the exact fitting of the observations
{1,9} in the first lot and {10,15} in the second lot. Care has to be taken in running the
algorithm, since the weights for these four observations tend to infinity as the iterations
converge.

To yield a correct inference for the Gamma, we could proceed as follows. From (2-5)
it is clear that the median m, and the mean fi, of the ith observation are linked by a
proportionality relation m, = m^,. Evaluating the density at its median we find

f,(m,) = r ( i / )~ ' /mj exp (-vmo)(l/m,)ocl/m,.

We were, therefore, quite justified in choosing 5, <x. m]. The proportionality constant
between 2f,(m,) and 1/m,,
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is nothing else but twice the value of the density of zi = yi/ml evaluated at 1. This can
be estimated by the value of a density estimate based on yjrhi,... ,yn/mn evaluated at
1. A kernel density estimate gives for our example a value of about 6-0. The variance
matrix for the estimates is therefore equal to

MX1diag (m?)AT\

where 144 = (2x6)2. This leads to the standard errors indicated above.
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