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Abstract

Multiplicative regression model or accelerated failure time model, which becomes linear

regression model after logarithmic transformation, is useful in analyzing data with positive

responses, such as stock prices or life times, that are particularly common in economic/financial or

biomedical studies. Least squares or least absolute deviation are among the most widely used

criterions in statistical estimation for linear regression model. However, in many practical

applications, especially in treating, for example, stock price data, the size of relative error, rather

than that of error itself, is the central concern of the practitioners. This paper offers an alternative

to the traditional estimation methods by considering minimizing the least absolute relative errors

for multiplicative regression models. We prove consistency and asymptotic normality and provide

an inference approach via random weighting. We also specify the error distribution, with which

the proposed least absolute relative errors estimation is efficient. Supportive evidence is shown in

simulation studies. Application is illustrated in an analysis of stock returns in Hong Kong Stock

Exchange.
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1. INTRODUCTION

Linear regression model is one of the most fundamental statistical models. And the most

popular method of estimation, which dates back to Gauss, is the method of least squares

(LS); see Gauss (1809) and Stigler (1981). Specifically, consider

(1)

where  and Xi are, respectively, the response variable and observable p-vector of

covariates, β is the p-vector of regression coefficients including an intercept and  is the

unobservable error term independent of Xi. The least squares criterion is to minimize the

sum of squares of the errors: . The resulting LS estimator enjoys some

important optimality, such as best linear unbiased estimator. It is efficient when the errors

follow normal distribution. An important alternative to the least squares method is the least
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absolute deviation (LAD) method, which is to minimize the sum of absolute values of the

errors: . The LAD estimator is more robust than the LS estimator, and its

computation and inference procedure is now rather straightforward with the help of linear

program and random weighting. A comprehensive discussion may be found in Portnoy and

Koenker (1997). We note that the LS method requires finite second moment of the errors

while the LAD requires positivity of the density of the errors at 0.

The above LS and LAD criterions are based on absolute errors. In many practical

applications, however, the relative errors, rather than the absolute errors, are more of

concern. Narula and Wellington (1977) presented an estimation method based on

minimizing the sum of absolute relative errors for linear model. Makridakis et al (1984) used

relative error as a model selection criterion in time series modeling. Khoshgoftaar et al

(1992) gave sufficient conditions to ensure the strong consistency of the estimators

minimizing the sum of squared relative errors:  (RLS for relative

least squares) and minimizing the sum of the absolute relative errors:

 (MRE for minimum relative errors) for nonlinear regression

model Yi = f(Xi,β)+εi, where f(x,β) is the regression function and Yi, Xi, β, εi are given in

model (1). Park and Stefanski (1998) derived a closed form expression for the best mean

squared relative error predictor of Y given X, where Y is the response variable and X is the

predictor variable. These approaches are conceptually appealing and quite easy to

implement. Under certain restrictive, such as parametric, modeling assumptions, Park and

Stefanski (1998) and Khoshgoftaar et al (1992) reported some elegant results. However, the

theoretical justifications of the RLS and MRE methods are in general quite challenging. The

consistency and asymptotic normality of RLS and MRE estimators for linear or nonlinear

models are not established under general regularity conditions. Moreover, in all these

studies, the relative error is defined as the spread between the target value and the predictor

divided by the target value, i.e., the ratio of the error relative to the target. Such a relative

error can be quite inadequate when, in particular, the unknown target value is large and the

predictor is relatively small. On the other hand, the ratio of the error relative to the predictor

can very well be an alternative representation of the relative error. More discussions on the

choice of criterion of relative errors are given in Section 2. A similar consideration is seen in

an accounting model in Ye (2007).

In the next section, we propose the least absolute relative errors criterion (LARE) for

multiplicative models, by using both types of relative errors. Since the responses are usually

positive when relative error is of concern, the multiplicative model or accelerated failure

time (AFT) model naturally handles positive responses. In section 3, a large sample theory

including consistency and asymptotic normality is presented along with an inference

procedure with random weighting. Conditions, especially on the error terms, are also

specified. In addition, the error distribution with which the LARE is efficient is given.

Section 4 contains results of simulation studies. An illustration with a real example is given

in Section 5. All proofs are deferred to the Appendix.

2. THE MODEL AND THE LARE CRITERION

Consider the following multiplicative model or accelerated failure time model:

(2)

which, by taking logarithmic transformation, is model (1) with  and .

Such logarithmic transformation is a reasonable choice in some cases due to its theoretical
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simplicity. However, a linear relationship in the transformed model is not linear in the

original one. And one need to transform the analysis results back to the original

measurement scale.

Observe that the predictor of Yi with covariate Xi is . It is intuitively appealing

and interpretable to consider the relative error

We note that  is approximately equal to  or

 only when the relative error is very small.

Remark 1

A measurement of relative error in terms of the ratio of the error relative to the target value

can be inappropriate. Consider, for example, Yi being large, say, 100, and the predictor

 being small, say 10. The relative error so defined, , returns a

value 0.9, whilst the alternative  returns 9. The latter, in this

case, more properly reflects the inaccuracy of the predictor. The criteria RLS and MRE

which use the former as the relative error are thus inadequate in this case. Conversely, only

using the latter as relative error can be equally inappropriate when the predictor is large but

the response is small. The criterion LARE that we propose below takes into consideration

both types of relative errors. We note that the criteria RLS and MRE, if using both types of

relative errors, are increasingly difficult to analyze. In particular, the closed form expression

of the best mean squared relative error predictor of Y given X shall not be available

anymore.

The criterion we propose, called least absolute relative errors (LARE), is to minimize the

sum of the absolute relative errors for model (2):

(3)

One advantage is that they are scale free or unit free. This is particularly important for

applying LARE criterion to certain types of data. For example, in regression analysis of a

number of stocks, comparison of share prices of different stocks is generally meaningless,

especially because of possible share split or reverse split. In other words, different stocks

have different units which are not well defined. The criterions based on absolute errors is not

directly applicable here without accounting for the heterogeneity.

The proposed LARE criterion is based on the sum of the two types of the relative errors.

There are also several different ways of combining the two types of errors. For example, one

might consider the maximum of the two, as appeared in Ye (2007), in which case, a theory

can be developed in an analogous fashion; see more discussion in Section 6. The

computation of minimizing LARE(β) can be carried out by the conventional numerical

tools, such as the Newton-Raphson method, or by the programming similar to that of LAD

regression which is now a standard practice.
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3. ASYMPTOTIC PROPERTIES

Some notations are needed. Throughout the paper, ∥·∥ is the Euclidean norm and I(·) is the

indicator function. For simplicity of presentation, we make a notion (X, Y, ε) and assume

(Xi, Yi, εi), i ≥ 1, are independent and identically distributed (i.i.d) copies of (X, Y, ε),
where Xi and εi are independent. Let β0 be the true value of β. The following assumptions

are needed for the consistency and asymptotic normality of the LARE estimator.

Assumption 1

ε has a continuous density f(·) in a neighborhood of 1.

Assumption 2

P (ε > 0) = 1.

Assumption 3

X is bounded, i.e, P (∥X∥ ≤ K) = 1 for some 0 < K < ∞, and does not concentrate on any

hyperplane of p – 1 dimension.

Assumption 4

E(ε + ε−1) < ∞ and E[(ε + ε−1)sgn(ε – 1)] = 0.

Assumption 5

E{(ε + ε−1)2} < ∞.

Assumptions 1-3 are regularity conditions. In Assumption 4, the condition on the first

moment E(ε + ε−1) < ∞ is to ensure the weak consistency of the LARE estimator. The

condition E[(ε + ε−1)sgn(ε – 1)] = 0 is only an identifiability condition, which plays the

same role as the assumptions of zero mean and zero median for the LS and LAD methods,

respectively, for linear regression. In fact, as shown in Lemma 2 in Appendix, if ε is
nondegenerate and satisfies E(ε + ε−1) < ∞, then there exists a unique scale transformation

εa = a · ε such that . It implies that this condition ensures the

identifiability of the intercept component of the parameter β in model (2). Assumption 5 is

to ensure the asymptotic normality of the LARE estimator, similar to the finite second

moment assumption for the LS estimator for linear regression.

Remark 2

The first moment condition E(ε + ε−1) < ∞ ensures consistency and the second moment

condition E{(ε+ ε−1)2} < ∞ ensures the asymptotic normality of the LARE estimator, while

the RLS estimator in Park and Stefanski (1998) requires second moment condition E(ε−2) <

∞ for consistency.

Remark 3

These technical conditions may not be the weakest possible ones. They are imposed to

facilitate the proofs. Some conditions could be relaxed for general limit theory. Knight

(1998) gave a general limit theory for LAD estimation. Correspondingly, we could follow

those steps to construct more general limit theory. This leaves space for future research.

Assumption 3 implies that  is positive definite almost surely. By Lemma 1 in

the Appendix, LAREn(β) is strictly convex in β under Assumption 3. Therefore, the
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minimizer of LAREn(β), denoted as , exists and is unique almost surely. The following

theorem establishes the consistency and asymptotic normality for .

Theorem 1

Suppose Assumptions 1-4 hold. Then,  converges to β0 in probability as n → ∞. If, in

addition to Assumptions 1-4, Assumption 5 holds, then as n→ ∞ ,

where  presents ‘convergence in distribution’, A = E{(ε + ε−1)2}, J = E{εsgn(ε – 1)}

and V = E(XXT).

Remark 4

Note that

under Assumptions 1 and 4, which ensures J > 0. So the positivity of the density of the error

in a neighborhood of 1 is not required here. It is different from the LAD estimation for linear

regression models, where the positivity of the density of the error in a neighborhood of zero

is essential to ensure the asymptotic normality.

Unlike the least squares estimator, the asymptotic covariance matrix involves the density

function of the error terms and cannot be properly estimated using the plug-in rules. To

avoid density estimation, we propose a distributional approximation based on random

weighting method by externally generating i.i.d. random variables. Let w1,…, wn be a

sequence of i.i.d. nonnegative random variables, with mean and variance both equal to 1.

For instance, the standard exponential distribution has mean and variance equal to 1. Define

and . The distribution of  can be approximated by the

resampling distribution of . Let  denote the conditional distribution given

{(Yi, Xi), i = 1,…, n}.

Proposition 1

Suppose Assumptions 1-5 hold. Then as n→ ∞,
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which is the asymptotic distribution of , where J, A and V are given in Theorem

1.

The proof of Proposition 1 is similar to the proof of Theorem 1 in Chen et al (2008) and is

omitted here. The inference procedure via resampling is as follows. First, nonnegative i.i.d.

random weights {w1,…, wn} of mean one and variance one are generated M times, where M

is a large number. Each time,  is computed. Denote them as b1, …, bM. Then, the

distribution of  is approximated by the empirical distribution of

.

It is known that the variance of an efficient estimator attains the Cramer-Rao lower bound.

The least squares estimator and least absolute deviation estimator are efficient when the

error terms follow normal distribution and double exponential distribution, respectively. In

the following, we give the error distribution with which the LARE estimator is efficient.

Proposition 2

Suppose Assumption 3 holds. If the error ε has a density function as follows:

where c is a normalizing constant, then the estimator  is efficient.

Remark 5

If a random variable X is distributed with density f(x) in Proposition 2, then 1/X is equal in

distribution to X.

4. SIMULATION STUDIES

Simulation studies are conducted to compare the finite sample efficiency of the least squares

(LS), the least absolute deviation (LAD), the relative least squares (RLS) in which the

predictor is the best mean squared relative error predictor of Y given X and our proposed

least absolute relative errors (LARE) estimator. The studies are based on the model

(4)

where X1i and X2i are two independent random variables following the standard normal

distribution N(0, 1), and β0, β1 and β2 are the regression parameters. We consider three error

distributions: ε follows the distribution with which the LARE estimator is efficient; log(ε)
follows Uniform(−2, 2); and log(ε) follows N(0, 1). The sample size n is 200. The variance

inference is based on the random weighting and the resampling size N is 500. The

simulation results are based on 1000 replications.

We get the LS and LAD estimators by minimizing  and

 respectively. And we get the RLS estimators by

minimizing , where  for

model (4) is the best mean squared relative error predictor proposed in Park and Stefanski

(1998).
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In the following Table 4-1, we present the average of the estimates  the empirical standard

error (SE), the average of the estimated standard errors (SEE) and coverage probabilities

(CP) of 95% confidence intervals based on the resampling. Table 4-2 shows the asymptotic

standard error for .

The main findings can be summarized as follows:

• For ε follows the efficient distribution, LARE is slightly better than the LS and

LAD and much better than the RLS in terms of accuracy and stability of the

estimation of the regression parameters.

• For log(ε) follows uniform distribution, LARE performs considerably better than

the LS, LAD and RLS.

• For log(ε) follows normal distribution, LS is efficient theoretically for linear

regression models. It is seen from Tables 4-1 and 4-2 that, LARE does well with

comparable results to the LS.

• For the error distributions considered in our simulation, Tables 4-1 and 4-2 show

that, the SE, SEE and the asymptotic standard error of LARE estimator are

generally close.

Further simulation shows that LARE is not reliable when log(ε) follows double exponential

distribution. This result is not strange because Assumption 4 is not satisfied in this case.

Indeed, our proposed method performs well in practical settings.

5. APPLICATIONS

The dataset to be analyzed is obtained by the Reuters 3000 Xtra which is a major tool used

by financial and investment analysts worldwide. The dataset contains the monthly close

stock prices for 408 firms from 2007 to 2008 and their corresponding Book Value Per Share

(BVPS) and Earning Per Share (EPS) in Hong Kong Stock Exchange. The P/B ratio is the

price-to-book ratio which is a financial ratio to compare book value of a company to its

current market price. And the P/E ratio is the price-to-earning ratio which is also a financial

ratio to measure the price paid for a share relative to the annual income or profit per share

earned by the firm.

Let PCi and PNi be the current price and the price for a fixed period of time later for i = 1,…,

n, respectively. The sample size n here is 408. We consider the following model:

(5)

where PEi and PBi are the P/E ratio and P/B ratio corresponding to the current price PCi.

The purpose of this study is to analyze the stock returns by using LARE and LS to estimate

β = (β0, β1, β2) in model (5). Table 5-1 presents the estimator  for β where PCi are the

monthly close prices of 2007 and PNi are the corresponding monthly close prices one year

later in model (5). Table 5-2 shows summary statistics of  and .

The results show that, LARE and LS give similar estimates which are statistically stable.

The predictor based on LARE are financially meaningful and could give better estimates for

the intrinsic value of a firm. Moreover, it can be seen that the proposed estimates for β1

which is the coefficient of P/E ratio in model (5) are substantially more stable than that of P/

B ratio.
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6. CONCLUDING REMARKS

This paper proposes the least absolute relative errors estimation for multiplicative model.

The main point of the paper is to advocating such a criterion, which may have broader

applications in financial/economic data analysis, as shown in the real example of this paper

and Ye (2007), survival analysis or categorical analysis. Heuristically, in survival analysis,

less accuracy in terms of absolute error may be required for predicting longer life times; and,

in categorical data analysis, a category with larger percentage of observations may require

more accuracy of prediction in terms of absolute error. Such consideration bears the same

rationale of using relative error rather than absolute error. Our future work shall consider

further extension of the method to censored data and categorical data.

The least absolute relative error criterion that we adopt in (3) is not necessarily the unique

choice. There are variations such as

(6)

as also considered in Ye (2007). For such variations, the asymptotic theories analogous to

Theorem 1 and Propositions 1 and 2 can be established without further difficulty. In this

paper, we choose to present a typical one of the criterions.

For completion, we give the main results for the estimator of such variations here without

proof as a note. The assumptions parallel Assumptions 1-5 in Section 3. Similar to Lemma 1

in the Appendix, one can prove that  is strictly convex in β under Assumption 3.

Therefore, there exists a unique  which minimizes  almost surely. Other than

Assumptions 1-3, the following assumptions are needed for consistency and asymptotic

normality for  the minimizer of .

Assumption 6

E(ε + ε−1) < ∞ and E{ε−1I(ε ≤ 1) – εI(ε > 1)} = 0.

Assumption 7

E{ε2I(ε > 1) + ε−2I(ε ≤ 1)} < ∞.

Assumptions 6-7 play the same role as Assumptions 4-5 in Section 3. E{ε−1I(ε ≤ 1) – εI(ε >
1)} = 0 shares similar property as E[(ε + ε−1)sgn(ε – 1)] = 0 in Section 3, which is only an

identifiability condition.

Proposition 3

Suppose Assumptions 1-3 and Assumption 6 hold. Then,  converges to β0 in probability

as n → ∞. If, in addition to Assumptions 1-3 and Assumption 6, Assumption 7 holds, then

as n→ ∞,

where B = E{ε2I(ε > 1) + ε−2I(ε ≤ 1)}, K = E{εI(ε > 1)} and V = E(XXT).
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APPENDIX: PROOFS

We state two lemmas that will be used later.

Lemma 1

Let ψ(x, a) = ∣1 – a−1ex∣ + ∣1 − ae−x∣ for a > 0 and x ∈ R. Then, for fixed a > 0, ψ(x, a) is a

strictly convex function in x ∈ R.

The proof is omitted.

Lemma 2

Suppose that ξ* is nondegenerate and E{exp(ξ*) + exp(−ξ*)} < ∞. Let ϕ(a) = E{exp(ξ* –

a) + exp(a − ξ*)}sgn(ξ* − a)] and a* = max{a : ϕ(a) ≥ 0}. If ϕ(a) is continuous at a*, then

there exists a unique constant a ∈ R such that ϕ(a) = 0.

Proof

Observe the following inequality

(A.1)

for any x, a and b ∈ R with a < b. Then,

(A.2)

It is easy to show that {exp(−x + y) − exp(x − y)}sgn(x − y) < 0 for x ≠ y. It follows that

which implies that ϕ(b) − ϕ(a) < 0. Thus, ϕ(·) is strictly decreasing. On the other hand, it is

seen from the expression ϕ(·) that

Together with the continuity of ϕ(·) at a*, there exists a unique solution to ϕ(a) = 0. The

proof is complete.

A.1. Proof of Theorem 1

The proof will be done in several steps.
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Step 1

To prove consistency, denote

It follows from the Convexity Lemma in Pollard (1991, p. 187) and the convexity of ψn(β)
by Lemma 1 that, for any compact set ,

(A.3)

in probability as n → ∞. Then,

(A.

4)

By Assumption 4, the first term in the summand is 0. It follows from Assumptions 1 and 4

that,

(A.5)

which implies J = E{εsgn(ε − 1)} > 0. This result leads to the fact that the second term in

(A.4) is nonnegative. It is easy to check that the third term in (A.4) is also nonnegative.

Hence, E{ψn(β) − ψn(β0)} ≥ 0 for all β. Furthermore, E{ψn(β) − ψn(β0)} = 0 ensures

As β = β0 is the unique minimizer of , it follows from

Assumption 3 and E{εsgn(ε − 1)} > 0 that β = β0 is the unique minimizer of E{ψn(β) −
ψn(β0)}. Denote ψ(β) = n−1E{ψn(β)}. Then, for every δ > 0, there exists η > 0 such that

ψ(β) > ψ(β0) + η for ∥β − β0∥ ≥ δ. For any constant δ and C, let  be the minimizer of

ψn(β) over δ ≤ ∥β − β0∥ ≤ C. Then by (A.3),  in probability as n → ∞ and

 for some η > 0. On the other hand, for any constant δ,

in probability by (A.3). Therefore, with probability going to 1, the minimum of ψn(β) in ∥β
− β0∥ ≤ C is achieved inside ∥β − β0∥ ≤ δ. Since ψn(β) is strictly convex, the local
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minimizer inside ∥β − β0∥ ≤ δ is the unique global minimizer. By the definition of

. Thus, the weak consistency of  is proved by

letting δ → 0.

Step 2

To prove asymptotic normality, we approximate E{ψn(β) − ψn(β0)} for every fixed β in a

neighborhood of β0 first. Observe that exp(x) + exp(x) − 2 = x2 + O(∣x∣3) if x closes to zero.

By the Taylor expansion,

(A.6)

where J = E{εsgn(ε − 1)} and V = E(XXT).

Step 3

Write . We are now in position to show

(A.7)

in probability as n → ∞, for each positive constant C. To this end, let , it is

equivalent to show

(A.8)

in probability as n → ∞. In order to establish (A.8), we shall first show that, for each fixed

θ,

(A.9)

in probability as n → ∞. Analogous to (A.4), denote

and

Then,
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For each fixed θ,

(A.10)

as n → ∞, where P(∥ai∥ ≤ cn−3/2) = 1 for some constant c and i = 1,…, n. It then follows

that

(11)

in probability as n → ∞. On the other hand, by the Taylor expansion, for each fixed θ,

where P(∥b∥ ≤ cn−1) = 1 for some constant c. Hence, an argument similar to (A.10) leads to

as n → ∞, where P(∥bi∥ ≤ cn−1) = 1 for some constant c and i = 1,…, n. Thus, for each

fixed θ,

(A.12)
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in probability as n → ∞. Combining (A.11) and (A.12), together with Assumption 4, we

have shown (A.9).

Next,  is convex by Lemma 1. It follows from (A.9) and

the Convexity Lemma in Pollard (1991, p. 187) that, for each constant C > 0,

in probability. Then (A.7) is proved.

Step 4

Let . Combining step

2 and step 3, we have

(A.13)

in probability as n → ∞ for each constant C > 0. Let  be the minimizer of

. Clearly .

By the definition of Wn, for every δ > 0, there exist some constants Kδ > 0 and Nδ, such that

 for any n ≥ Nδ. In view of (A.13), for every η > 0, there exists

some constant Nη such that, for any n ≥ Nη,

Hence, for every δ, η > 0, there exists N = max{Nδ, Nη} such that, for any n ≥ N,

which implies . Similar arguments also lead to

for each constant C > 0.

Observe that
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For any constants c and C with 0 < c < C < ∞,

(A.14)

where λ is the smallest eigenvalue of V. On the other hand, for any constant c,

(A.15)

Both (A.14) and (A.15) together imply that, with probability going to 1, the minimum of

ψn(β) − ψn(β0) in  is achieved inside . Since ψn(β)
−ψn(β0) is convex, the local minimizer inside  is the global minimizer.

Thus,

Hence, as n → ∞,

A.2. Proof of Proposition 2

For the given density of ε, the density of Yi given Xi is

Then, the likelihood function of Y is
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Maximizing this likelihood function is equivalent to minimizing our proposed LARE

criterion

Therefore the estimator , which minimizes LAREn(β), is efficient when ε ~ f(·) = c

exp(−∣1 − x∣ − ∣1 − x−1∣ − log x)I(x > 0). The proof is complete.
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Figure 1.

Plot of four densities.

density1: f(x) = c exp(−∣1 – x∣ – ∣1 – x−1∣ − log x)I(x > 0).

density2: the density of ε where log(ε) ~ N(0, 1).

density3: the density of ε where log(ε) ~ Double Exponential(0, 1).

density4: the density of ε where log(ε) ~ Uniform(−2, 2).
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Table 4-2

Asymptotic standard errors for estimators of β

ε ~ f(·)† log(ε) ~ Unif(−2,2) log(ε) ~ N(0, 1)

LARE 0.030 0.030 0.030 0.074 0.074 0.074 0.075 0.075 0.075

LS 0.035 0.035 0.035 0.082 0.082 0.082 0.071 0.071 0.071

LAD 0.031 0.031 0.031 0.141 0.141 0.141 0.089 0.089 0.089

†
Note: f(x) = c exp(−∣1 − x∣ − ∣1 − x−1∣ − log x)I(x > 0).
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Table 5-1

Comparison of regression coefficients: LARE vs LS

LARE LS

β̂
0

β̂
1

β̂
2

β̂
0

β̂
1

β̂
2

JAN 1.0549 −0.0002 −0.0171 1.0840 0.0001 −0.0210

FEB 1.1976 0.0004 −0.0222 1.2244 0.0002 −0.0241

MAR 1.3198 −0.0009 −0.0168 1.3243 −0.0005 −0.0227

APR 0.9157 −0.0012 −0.0085 0.8961 −0.0007 −0.0092

MAY 0.6336 −0.0009 −0.0067 0.6291 −0.0006 −0.0069

JUN 0.6461 −0.0007 −0.0078 0.6330 −0.0004 −0.0071

JUL 0.4676 −0.0007 −0.0061 0.4478 −0.0005 −0.0056

AUG 0.2313 −0.0003 −0.0053 0.2838 −0.0004 −0.0048

SEP 0.0623 −0.0002 −0.0039 0.0844 −0.0002 −0.0031

OCT 0.0106 −0.0000 −0.0040 0.0373 −0.0001 −0.0038

NOV −0.1079 −0.0000 −0.0034 −0.1060 −0.0002 −0.0035

DEC −0.1429 −0.0003 −0.0014 −0.1442 −0.0003 −0.0033
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Table 5-2

Summary statistics: LARE vs LS

10th 90th

Min Max Mean Stdev Median Percentile Percentile

LARE β̂
0 −0.1429 1.3198 0.5241 0.5186 0.5506 −0.1079 1.1976

β̂
1 −0.0012 0.0004 −0.0004 0.0005 −0.0003 −0.0009 0.0000

β̂
2 −0.0222 −0.0014 −0.0086 0.0065 −0.0064 −0.0171 −0.0034

LS β̂
0 −0.1442 1.3243 0.5328 0.5172 0.5384 −0.1060 1.2244

β̂
1 −0.0007 0.0002 −0.0003 0.0003 −0.0004 −0.0006 0.0001

β̂
2 −0.0241 −0.0031 −0.0096 0.0081 −0.0063 −0.0227 −0.0033
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