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Abstract 

We describe the least-cost flaw repair (LCFR) strat- 

egy for performing flaw selection during partial-order 

causal link (POCL) planning. LCFR can be seen 

as a generalization of Peot and Smith’s “ Delay Un- 

forced Threats”  (DUnf) strategy (Peot & Smith 1993); 

where DUnf treats threats differently from open condi- 

tions, LCFR has a uniform mechanism for handling all 

flaws. We provide experimental results that demon- 

strate that the power of DUnf does not come from de- 

laying threat repairs per ue, but rather from the fact 

that this delay has the effect of imposing a partial pref- 

erence for least-cost flaw selection. Our experiments 

also show that extending this to a complete preference 

for least-cost selection reduces search-space size even 

further. We consider the computational overhead of 

employing LCFR, and discuss techniques for reducing 

this overhead. In particular, we describe QLCFR, a 

strategy that reduces computational overhead by ap- 

proximating repair c0sts.l 

Introduction 

Current research in plan generation in AI centers on 

partial-order causal link (POCL) algorithms, which 

descend from McAllester and Rosenblitt’s SNLP al- 

gorithm (McAllester & Rosenblitt 1991; Penberthy & 

Weld 1992; Barrett & Weld 1993; Collins & Pryor 1992; 

Peot & Smith 1993; Kambhampati 1993). POCL 

planning involves searching through a space of partial 

plans, where the successors of a node representing par- 

tial plan P are refinements of P. As with any search 

problem, POCL planning requires effective search con- 

trol strategies. 

In POCK planning, search control has two main com- 

ponents. The first, node selection, involves choosing 

which partial plan to refine next. Most POCL algo- 

rithms use best-first search to perform node selection. 

Once a partial plan has been selected, the planner must 
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then perform j&zur selection, which involves choosing ei- 

ther a threat to resolve or an open condition to estab- 

lish. Threats can be resolved by promotion, demotion, 

or separation; open conditions can be established by 

adding a new step to the plan or adding a new causal 

link to an existing step. Unless it is impossible to repair 

the selected flaw, new nodes representing the possible 

repairs are added to the search space. 

Both the SNLP algorithm and its implementation in 

the UCPOP system (Penberthy & Weld 1992) adopt 

a flaw-selection strategy in which threats are resolved 

before open conditions. However, neither SNLP nor 

UCPOP specify any principles for selecting which 

threat or which open condition to repair. Peot and 

Smith (Peot & Smith 1993) relax the requirement that 

threats always be resolved before open conditions, and 

examine several strategies for delaying the resolution 

of some threats. One of the most effective strategies 

that they studied is what they call “ Delay Unforced 

Threats”  (DUnf.) In DUnf, a threat is selected only if 

there is only a single way to repair it (or if there is no 

way to repair it, i.e., it represents a dead end.) Such 

threats are called “ forced.”  If all the current threats 

are unforced, i.e., have multiple possible repairs, then 

an open condition is selected for establishment instead. 

Peot and Smith do not indicate what happens in the 

case in which the only remaining flaws are unforced 

threats, but one must assume that in these cases, some 

threat is selected. 

In this paper, we describe and examine the Least- 

Cost Flaw Repair (LCFR) strategy, a generalization of 

DUnf. We define the repair cost of any flaw-either 

threat or open condition-to be the number of nodes 

generated as possible repairs. LCFR is the strategy 

of always selecting a flaw with the lowest possible re- 

pair cost at a given node. Like DUnf, LCFR will delay 

any threat that is unforced (repair cost > 1) in favor 

of a threat that is forced (repair cost <= 1.) But by 

treating all flaws uniformly, LCFR also applies a sim- 

ilar strategy to open conditions, preferring to handle 

open conditions that are forced over open conditions, 

or threats, that are not. Similarly, LCFR handles the 

case in which all that remain are unforced threats: the 
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LCFR strategy will select a threat with minimal repair 

cost. 

The LCFR strategy is similar to one of the search 

heuristics used in the O-Plan system (Currie & Tate 

1991). The contribution of this paper is to isolate this 

strategy and examine it in some detail, in order to ex- 

plain its success and that of the related DUnf strate- 

gies. 

In the following sections we provide more details 

about LCFR and its relationship to other flaw-selection 

strategies, and then describe experiments we con- 

ducted to compare the performance of POCL-planners 

employing these alternative strategies. We then exam- 

ine the question of secondary selection strategies: what 

flaw should LCFR select in cases in which there are 

two or more flaws with minimal repair cost for a given 

node? We also consider techniques for reducing the 

computational overhead involved in calculating repair 

costs. In particular, we describe QLCFR, a strategy 

that reduces computational overhead by approximat- 

ing repair costs. The final section discusses directions 

for future research on LCFR and related flaw-selection 

strategies. 

Comparison of Flaw-Selection 

Strategies 

The original POCL planning algorithms-SNLP and 

UCPOP-always prefer to repair threats before open 

conditions. Neither specifies how to select among alter- 

native threats, or among alternative open conditions, 

although the UCPOP code employs a LIFO mecha- 

nism, i.e., it always selects the threat (or open con- 

dition if there are no threats) that was most recently 

introduced into the partial plan. Peot and Smith ex- 

amine the effects of modifying this strategy to delay the 

repair of some threats. In particular, one of their most 

effective strategies, DUnf, will select a threat only if it 

is forced or if there are no open conditions remaining in 

the plan. The DUnf strategy does not include a com- 

mitment to a particular way to select among open con- 

ditions, although Peot and Smith suggest three alter- 

natives: FIFO, LIFO, and “ least-commitment.”  The 

“ least-commitment”  strategy selects an open condition 

with the fewest children, i.e., using the terminology 

introduced in the previous section, one with minimal 

repair cost. 

Our hypothesis was that the principle of “ least-cost”  

selection ought to be extended to all flaws. In other 

words, the power of the DUnf strategy comes not from 

the relative ordering of threats and open conditions, 

but instead from the fact that DUnf has the effect of 

imposing a partial preference for least-cost flaw selec- 

tion. DUnf will always prefer a forced threat, which, 

by definition has a repair cost of at most one; thus, in 

cases in which there is a forced threat, DUnf will make 

a low-cost selection. What about cases in which there 

are no forced threats? Then DUnf will have to select 

among open conditions, assuming there are any. If our 

hypothesis is correct, a version of DUnf that makes this 

selection using a least-cost strategy ought to perform 

better than a version that uses one of the other strate- 

gies. In fact, if it is the selection of low-cost repairs that 

is causing the search-space reduction, then the idea of 

treating threat resolution differently from open condi- 

tion establishment ought to be abandoned. Instead, 

a strategy that always selects the flaw with minimal 

repair cost, regardless of whether it is a threat or an 

open condition, ought to show the best performance. 

This is the Least-Cost Flaw Repair (LCFR) strategy. 

To test our hypothesis, we began with the UCPOP 

system, and implemented various modifications of it. 

Two of these-DUnf and Dunf-LCOS-encode Peot 

and Smith’s strategy. Both delay selection of unforced 

threats until all open conditions have been established, 

but the former selects among open conditions using a 

LIFO strategy, like UCPOP, while the latter performs 

least-cost selection of open conditions. A third mod- 

ification, LCFR, implements the generalization of the 

least-cost strategy: it always selects a flaw with min- 

imal cost, without regard to whether that flaw is a 

threat or an open condition. Finally, we also imple- 

mented a variant called LCOS, which, like UCPOP, al- 

ways selects threats before open conditions, but which 

uses a least-cost strategy to choose among open con- 

ditions. LCOS was included to verify that the state- 

space reduction results from the preference for flaws 

with minimal repair costs: if this is true, then LCOS 

should show a decrease in state-space size even though 

it does not delay cany threats. These five flaw-selection 

strategies are described in algorithmic form in Figure 1. 

Experimental Results 

The five planners were each tested on 49 problems 

from a variety of domains. In all the experiments, the 

node-selection strategy is best-first search, where the 

heuristic evaluation function is the sum of the number 

of steps and the number of flaws in the partial plan. 

These are the defaults provided with UCPOP. We also 

imposed a search limit of 8000 generated nodes. In re- 

porting our results, we give the number of nodes exam- 

ined, which is typically less than the number of nodes 

generated. 

The 49 test problems are divided among 15 domains. 

Table 1 lists the total number of problems attempted 

for each domain, as well as the number of problems 

from that domain solved by each planner within the 

8000-node limit. All of the problems except those 

from the TileWorld domain are taken directly from the 

sample problems distributed with UCPOP version 2.0. 

Eight miscellaneous domains are grouped together in 

the last row of the table. All five planners solved the 

same ten problems in this group. 

As Table 1 shows, LCFR solved more problems (44) 

than any of the other four planners. None of the prob- 

lems on which LCFR failed were solved by any of the 

other four planners. Figure 2 plots the percentage of 
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If any threats exist in the set of flaws 

select a threat 

Else select an open condition 

(LIFO for UCPOP; Least-cost for LCOS.) 

UCPOP, UCPOP-LCOS 

If there are any threats with repair cost = 0 

select a threat from that set 

Else if there are any threats with repair cost = 1 

select a threat from that set 

Else if there are any open conditions 

select an open condition 

(LIFO for DUnf; Least-cost for Dunf-LCOS) 

Else select a threat (unforced.) 

DUnf, DUnf-LCOS 

Select a flaw, minimizing repair cost. 

LCFR 

Figure 1: Flaw Selection Strategies 

problems solved by each planner within a fixed num- 

ber of nodes examined. (Each point (a, y) denotes that 

ZC%  of the 49 test problems were solved by examining 

no more than y nodes.) Table 2 provides summary 

statistics for the experiment. 

Discussion 

The experiment described above confirms our origi- 

nal hypotheses. DUnf performs only marginally bet- 

ter than UCPOP: the percentage of problems solved 

by DUnf within any fixed number of nodes examined 

is only slightly higher than the percentage solved by 

UCPOP. On the other hand, DUnf-LCOS, which not 

only delays unforced threats but also performs least- 

cost open condition selection, performs significantly 

better than UCPOP, solving more problems within 

any fixed number of nodes, and, on average, search- 

ing far fewer nodes. Simply delaying unforced threats 

does not, in and of itself, lead to much improvement, 

but doing this in combination with a preference for 

minimal-cost open conditions does. 

Our hypothesis that the search-space reduction is 

primarily due to selection of least-cost flaws is further 

bolstered by the performance of LCOS. Recall that 

LCOS does not delay any threats; nonetheless, its per- 

formance is significantly better than either UCPOP or 

DUnf. 

Finally, note that LCFR, the only algorithm that 

uniformly selects flaws with minimal repair cost, shows 

the greatest reduction in search-space size. It solves 

the most problems overall (44), and it solves more 

problems than any other planner within any fixed num- 

ber of nodes. The average number of nodes it examines 

is significantly less than any of the other planners ex- 
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Figure 2: Comparison of planner search spaces 

cept DUnf-LCOS.2 Although LCFR is only marginally 

better than DUnf-LCOS, it has the advantage of be- 

ing conceptually simpler in that it provides a uniform 

treatment of all flaws. 

The relative performance of the five planners was 

not uniform across all the domains. Most notable was 

the TileWorld domain, consisting of a grid on which 

holes and tiles are scattered. The agent’s goal is to fill 

one or more holes by picking up and carrying tiles (but 

carrying no more than four at a time), taking them to 

holes, and dropping one tile in each hole. LCFR and 

DUnf-LCOS solved all six of the problems taken from 

the TileWorld domain, while the other strategies solved 

at most two. The task of filling two holes is solved by 

LCFR after generating only 73 partial plans; the same 

problem was not solved by UCPOP even when allowed 

to run for over eight hours. 

One can readily see the reason for such dramatic 

differences by looking at just the first few nodes exam- 

ined in the plan-generation process. There the Tile- 

World domain is dominated by the establishment of 

open conditions that vary widely in their repair costs. 

In almost every case, at least one open condition in a 
partial plan has repair cost 1; at the same time, there 

are often open conditions with repair costs as high as 8. 

This occurs, for example, when an open condition that 

the agent be holding a tile can be established using any 

of eight tiles on the grid in the initial state. The plan- 

ning strategies that do not perform least-cost selection 

of open conditions (UCPOP and DUnf) often select an 

open condition with an unnecessarily high repair cost, 

2Using a pair ed-sample t test over all 49 problems, the 

reduction in the number of nodes examined by LCFR over 

any of the other planners is significant (p < O.Ol), though 

for LCFR over DUnf-LCOS the significance is marginal 

(P = 0.08). DUnf-LCOS also shows a significant improve- 

ment over LCOS, DUnf and UCPOP (p < 0.04). The im- 

provement of DUnf over UCPOP is marginally significant 

(p = 0.096). 



[ Domain 1 Total 1 UCPOP 1 DUnf 1 LCOS 1 DUnf- 1 LCFR 

Briefcase world (Pednault 19 88) 

Office World (based on (Pednault 1988)) 

TileWorld (Pollack & Ringuette 1990) 

Russell’s Tire World (Russell 1992) 

Blocks world 

Monkeys and Bananas 

STRIPS robot world 

(Eight misc. domains) 

TOTALS 

Probs LCOS 
- - 

8 7 
- ] 

6 8 8 

5 

6 

5 

5 

2 

1 

12 10 10 10 10 10 

49 32 35 38 42 44 

Table 1: Problems solved by each planner, by domain 

UCPOP 32 9 3380 444 795 31 9 3380 404 775 

DUnf 35 9 4733 628 1142 31 9 3230 378 724 

LCOS 38 9 1475 165 303 31 ’ 9 1475 157 325 

DUnf-LCOS 42 9 1104 130 202 31 9 1104 112 219 

LCFR 44 8 1320 114 215 31 8 1320 107 248 

Table 2: Statistical comparison of search spaces (successful problems only) 

which leads to excessive branching. 

LCOS of course avoids the pitfall of poorly choosing 

an open condition. However, its undoing is its rigid 

preference for threats over open conditions. In many 

cases, LCOS prefers a higher-cost threat to a lower-cost 

open condition: for example, we observed it bypassing 

open conditions with repair cost 1 for threats with re- 

pair costs of 3 or more. 

Finally, DUnf-LCOS does just about as well as 

LCFR: both solve all the TileWorld problems. How- 

ever, examination of DUnf-LCOS’s planning process 

shows that there are times in which it makes the op- 

posite mistake from LCOS: it prefers higher-cost open 

conditions to lower-cost unforced threats. Although 

this appears not to have significantly hurt DUnf-LCOS 

on the TileWorld problems, it may account for the two 

problems from other domains on which DUnf-LCOS 

failed but LCFR was successful, and may suggest a 

potential problem for other applications. 

What this analysis shows is that a uniform prefer- 

ence for least-cost flaws is especially important in do- 

mains in which flaw repair costs vary widely. 

Secondary Flaw-Selection Strategies 

As we have already pointed out, LCFR does not specify 

a strategy for selecting among the flaws with minimal 

repair cost. An obvious question is whether the per- 

formance of LCFR could be improved by the choice 

of a secondary flaw-selection strategy that made such 

decisions. 

Before exploring particular secondary strategies, 

however, we wanted to determine just how sensitive 

LCFR might be to secondary selection. We therefore 

conducted a second experiment in which LCFR was 

run ten times on each of the 49 test problems, selecting 

flaws randomly from the set of flaws with minimal re- 

pair cost. Recall that 44 problems out of 49 were solved 

successfully in the initial set of experiments. The ran- 

domized LCFR solved 42 problems successfully in all 

ten trials, failed to solve four problems in any of the ten 

trials, and solved the remaining three problems seven, 

eight, and nine times, respectively. 

Figure 3 shows the mean number of nodes exam- 

ined for each of the 45 problems that LCFR solved 

successfully at least once. The error bars show the 

minimum and maximum number of nodes examined 

for each problem over the ten trials. The three error 

bars that are clipped at the top of the graph are those 

that exceeded the search limit on one or more trials. 

We can note that the majority of problems are rela- 

tively insensitive to secondary selection. For example, 

the range of the number of nodes examined (i.e., the 

difference between the maximum and the minimum) 

was 100 or less for 30 out of the 45 problems solved at 

least once. Given the low number of nodes searched by 

LCFR, on average, in the first experiment, it would be 

surprising if we had not found this kind of insensitivity 

to secondary selection. 

More interesting is the fact that call of these 45 prob- 

lems were solved at least once by examining a very 

small number of nodes (415, in the worst case). This 

is true even for problems for which the mean num- 

ber of nodes examined over the ten trials is several 

thousand, including problems for which LCFR some- 
times failed. Note further that, although most of the 

problems showed little variation over the ten trials, 
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most of those that showed extreme variation had a dis- 

tinctly bi-modal distribution of the number of nodes 

examined. Three problems failed on one or more tri- 

als, exceeding the search limit of 8000 nodes generated 

(though examining fewer than that), but succeeded on 

other trials by searching as few as 50 nodes. One of 

these problems had seven successful trials, examining 

a minimum of 211 and a maximum of 648 nodes, while 

exceeding the search limit on three trials. Other prob- 

lems had bi-modal distributions even though they suc- 

ceeded on all ten trials. One problem, for example, 

succeeded one time after examining over 3000 nodes, 

and nine times after examining 250 or fewer nodes. 

These results suggest that while a more sophisticated 

secondary selection strategy would not significantly im- 

prove LCFR’s performance on most of our test prob- 

lems, it could have a substantial positive effect on those 

problems that LCFR sometimes found difficult. An 

obvious candidate for a secondary strategy would be 

to prefer threat resolution to open-condition establish- 

ment, assuming that the repair costs are equal. Our 

preliminary investigations of this strategy, however, 

did not show significant improvement. The nature of 

a good secondary selection strategy remains an open 

question. 

Improving the Performance of LCF 

Although LCFR searches far fewer nodes than 

UCPOP, it incurs a significant overhead in computing 

repair costs. Our implementation of LCFR, for exam- 

ple, used less CPU time than UCPOP on only four of 

the 32 problems on which both were successful. Al- 

though LCFR examines far fewer nodes than UCPOP, 

it spends an average of over forty times as long expand- 

ing each node (104 ms vs. 2.4 ms). Clearly, if LCFR is 

going to live up to its promise of making POCL plan- 

ning more efficient, then the cost of flaw selection must 

be significantly decreased. 

Fortunately, there are some clear-cut ways to do this. 

Our implementation of LCFR took advantage of the 

fact that the repair cost for a flaw could be calculated 

by allowing UCPOP to make all repairs to that flaw, 

generating a new node for each repair, and then dis- 

carding all the newly generated nodes except those as- 

sociated with the selected flaw. This approach required 

a minimum of modification to the UCPOP code, but 

is obviously inefficient: the repair cost could be calcu- 

lated without actually allocating the node structures. 

In addition, there are methods that could be used to 

reduce the amount of work done in recalculating repair 

costs for flaws that have already been considered. For 

example, if a threat was not separable the last time it 

was considered, there is no way that other changes to 

the partial plan could have made that threat separa- 

ble. In recalculating its repair cost, we need only look 

at promotion and demotion. 

Another alternative-and the one we explore in this 

Paper -involves reducing the overhead of flaw selection 

by accepting some inaccuracy in the repair-cost calcu- 

lation. One way to do that is to calculate the repair 

cost of each flaw only once, when that flaw is first en- 

countered. In any successor node, if that flaw has still 

not been repaired, we assume that its repair cost has 

not changed. We refer to this variation of the strategy 

as “ Quick LCFR”  (QLCFR.) Note that QLCFR will 

sometimes produce inaccurate repair costs, because it 

is possible that repairing one flaw will change the re- 

pair costs of other flaws, either by eliminating possi- 

ble repairs, or by adding new options. For example, 

adding a new step to the plan may add the option of 

reusing an effect of that new step to satisfy another 

open condition. 

By assuming that repair costs are fixed, QLCFR 

was able to expand a node in an average of 4.6 ms, a 

huge reduction from LCFR’s 104 ms. Although this is 

still higher than the average amount of time spent per 

node by UCPOP, the reduction in search space is now 

sufficient to allow QLCFR to solve problems on aver- 

age about twice as fast as UCPOP, for problems that 

both solve. And QLCFR solves more problems than 

UCPOP: for our 49 test problems, QLCFR solved 38 

problems, compared to 32 for UCPOP. QLCFR solves 

fewer problems within the node limit than either LCFR 

(44) or DUnf-LCOS (42), but QLCFR is much faster 

than either of these. 

These results are very encouraging. Even given 

our currently inefficient method of calculating repair 

costs, QLCFR executes in time comparable to that of 

UCPOP, solving more problems and searching fewer 

nodes on those problems that both solve. A more ef- 

ficient implementation of the repair cost calculation 

should reduce the time spent examining each node even 

further, and more intelligent decisions about when to 

recalculate repair costs (rather than simply never re- 

calculating), should improve on the accuracy of the 

repair cost estimate. 

Future esearch 

Given the importance of making plan generation more 

efficient, techniques such as LCFR and its variants are 

obviously worth pursuing further. In particular, we see 
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at least four key areas for further investigation. 

First, it is worth examining additional techniques 

for reducing the overhead of computing repair costs. In 

the previous section we noted some improvements that 

could be made to the way in which we implement the 

repair-cost calculation, and described QLCFR, which 

approximates repair costs by assuming that they do 

not change. One plausible extension of QLCFR would 

involve keeping track of the “ age”  of a flaw, and recal- 

culating its repair cost only if that age exceeds some 

threshold. Another possibility would involve scanning 

the list of flaws within a partial plan until a flaw is 

found with repair cost at or below a fixed threshold, 

or until we reach the end of the list, in which case a 

flaw with minimal repair cost would be selected. With 

a threshold of zero, this algorithm reduces to a slightly 

optimized version of LCFR; with a threshold of one or 

more, the principle of least-cost selection would some- 

times be violated, but with a potential savings in com- 

putational overhead. Varying the threshold allows one 

to trade flaw-selection costs for quality of flaw selection 

fairly directly. 

Second, we can consider more sophisticated defini- 

tions of “ repair cost”  than the one we have been using. 

As we have defined it, the repair cost of a flaw takes 

into account only the immediate branching factor for 

a given repair. It may be, however, that the best flaw 

to repair has branching factor higher than the mini- 

mum; consider the simple case in which a flaw with a 

repair cost of N actually has N - 1 descendents that 

are quickly recognizable as dead ends. It may be that 

some degree of “ look ahead”  in the calculation of a 

repair cost may be advantageous, in spite of the ad- 

ditional computational cost. One such strategy was 

implemented in O-Plan (Currie & Tate 1991). 

Third, it is worth returning to the issue of node selec- 

tion, and reconsidering heuristic evaluation functions 

for POCL planning in light of a least-cost flaw selection 

strategy. An evaluation function that estimates the re- 

pair costs for the flaws in each node might be more 

effective than one that simply treats all flaws equiva- 

lently. 

Finally, and perhaps most significantly, it is worth 

considering how to extend the lesson learned from the 

LCFR experiments-namely, that during POCL plan- 

ning, it pays to focus first on flaws with minimal re- 

pair costs-to develop techniques for reducing the re- 

pair costs of particular flaws. One possibility would 

involve the use of a richer representation for temporal 

ordering constraints. We can think of a causal link as a 

constraint on a temporal interval whose endpoints are 

defined by the establishing and consuming steps. We 

could reduce the repair cost of a threat by replacing 

promotion and demotion with a single constraint that 

the threatening step occur at some time “ not during”  

the causal link being threatened. In effect, this means 

carrying a disjunction (promotion or demotion) that 

otherwise would be handled by creating two separate 

nodes. The computational complexity of working with 

such constraints is greater than that of the simpler or- 

dering constraints used by SNLP or UCPOP, but per- 

haps not so much greater as to outweigh the benefits 

of reduced branching in the search space. Similarly, we 

might look for other techniques that make tradeoffs be- 

tween reduced repair costs and richer representations 

of constraints. 

The exploration of these and related extensions to 

search control for POCL planning are left for future 

research. For now we note that our experimental anal- 

yses of LCFR and QLCFR indicate the promise of flaw- 

selection strategies that focus on the degree of branch- 

ing caused by repairing a flaw. 
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