
Least-Cost Flaw Repair: A Plan Refinement Strategy for

Partial-Order Planning

David Jo&n* and Martha E. PolIacktl* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*Intelligent Systems Program

t Department of Computer Science

University of Pittsburgh, Pittsburgh, PA 15260

joslinQcs.pitt.edu, pollackQcs.pitt.edu

Abstract

We describe the least-cost flaw repair (LCFR) strat-

egy for performing flaw selection during partial-order

causal link (POCL) planning. LCFR can be seen

as a generalization of Peot and Smith’s “ Delay Un-

forced Threats” (DUnf) strategy (Peot & Smith 1993);

where DUnf treats threats differently from open condi-

tions, LCFR has a uniform mechanism for handling all

flaws. We provide experimental results that demon-

strate that the power of DUnf does not come from de-

laying threat repairs per ue, but rather from the fact

that this delay has the effect of imposing a partial pref-

erence for least-cost flaw selection. Our experiments

also show that extending this to a complete preference

for least-cost selection reduces search-space size even

further. We consider the computational overhead of

employing LCFR, and discuss techniques for reducing

this overhead. In particular, we describe QLCFR, a

strategy that reduces computational overhead by ap-

proximating repair c0sts.l

Introduction

Current research in plan generation in AI centers on

partial-order causal link (POCL) algorithms, which

descend from McAllester and Rosenblitt’s SNLP al-

gorithm (McAllester & Rosenblitt 1991; Penberthy &

Weld 1992; Barrett & Weld 1993; Collins & Pryor 1992;

Peot & Smith 1993; Kambhampati 1993). POCL

planning involves searching through a space of partial

plans, where the successors of a node representing par-

tial plan P are refinements of P. As with any search

problem, POCL planning requires effective search con-

trol strategies.

In POCK planning, search control has two main com-

ponents. The first, node selection, involves choosing

which partial plan to refine next. Most POCL algo-

rithms use best-first search to perform node selection.

Once a partial plan has been selected, the planner must

‘This work has bee n supported by the Air Force Of-

fice of Scientific Research (Contract F49620-92-J-0422), by

the Rome Laboratory (RL) of the Air Force Material Com-

mand and the Advanced Research Projects Agency (Con-

tract F30602-93-C-0038), and by an NSF Young Investiga-

tor’s Award (IRI-9258392). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1004 Planning and Scheduling

then perform j&zur selection, which involves choosing ei-

ther a threat to resolve or an open condition to estab-

lish. Threats can be resolved by promotion, demotion,

or separation; open conditions can be established by

adding a new step to the plan or adding a new causal

link to an existing step. Unless it is impossible to repair

the selected flaw, new nodes representing the possible

repairs are added to the search space.

Both the SNLP algorithm and its implementation in

the UCPOP system (Penberthy & Weld 1992) adopt

a flaw-selection strategy in which threats are resolved

before open conditions. However, neither SNLP nor

UCPOP specify any principles for selecting which

threat or which open condition to repair. Peot and

Smith (Peot & Smith 1993) relax the requirement that

threats always be resolved before open conditions, and

examine several strategies for delaying the resolution

of some threats. One of the most effective strategies

that they studied is what they call “ Delay Unforced

Threats” (DUnf.) In DUnf, a threat is selected only if

there is only a single way to repair it (or if there is no

way to repair it, i.e., it represents a dead end.) Such

threats are called “ forced.” If all the current threats

are unforced, i.e., have multiple possible repairs, then

an open condition is selected for establishment instead.

Peot and Smith do not indicate what happens in the

case in which the only remaining flaws are unforced

threats, but one must assume that in these cases, some

threat is selected.

In this paper, we describe and examine the Least-

Cost Flaw Repair (LCFR) strategy, a generalization of

DUnf. We define the repair cost of any flaw-either

threat or open condition-to be the number of nodes

generated as possible repairs. LCFR is the strategy

of always selecting a flaw with the lowest possible re-

pair cost at a given node. Like DUnf, LCFR will delay

any threat that is unforced (repair cost > 1) in favor

of a threat that is forced (repair cost <= 1.) But by

treating all flaws uniformly, LCFR also applies a sim-

ilar strategy to open conditions, preferring to handle

open conditions that are forced over open conditions,

or threats, that are not. Similarly, LCFR handles the

case in which all that remain are unforced threats: the

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

LCFR strategy will select a threat with minimal repair

cost.

The LCFR strategy is similar to one of the search

heuristics used in the O-Plan system (Currie & Tate

1991). The contribution of this paper is to isolate this

strategy and examine it in some detail, in order to ex-

plain its success and that of the related DUnf strate-

gies.

In the following sections we provide more details

about LCFR and its relationship to other flaw-selection

strategies, and then describe experiments we con-

ducted to compare the performance of POCL-planners

employing these alternative strategies. We then exam-

ine the question of secondary selection strategies: what

flaw should LCFR select in cases in which there are

two or more flaws with minimal repair cost for a given

node? We also consider techniques for reducing the

computational overhead involved in calculating repair

costs. In particular, we describe QLCFR, a strategy

that reduces computational overhead by approximat-

ing repair costs. The final section discusses directions

for future research on LCFR and related flaw-selection

strategies.

Comparison of Flaw-Selection

Strategies

The original POCL planning algorithms-SNLP and

UCPOP-always prefer to repair threats before open

conditions. Neither specifies how to select among alter-

native threats, or among alternative open conditions,

although the UCPOP code employs a LIFO mecha-

nism, i.e., it always selects the threat (or open con-

dition if there are no threats) that was most recently

introduced into the partial plan. Peot and Smith ex-

amine the effects of modifying this strategy to delay the

repair of some threats. In particular, one of their most

effective strategies, DUnf, will select a threat only if it

is forced or if there are no open conditions remaining in

the plan. The DUnf strategy does not include a com-

mitment to a particular way to select among open con-

ditions, although Peot and Smith suggest three alter-

natives: FIFO, LIFO, and “ least-commitment.” The

“ least-commitment” strategy selects an open condition

with the fewest children, i.e., using the terminology

introduced in the previous section, one with minimal

repair cost.

Our hypothesis was that the principle of “ least-cost”

selection ought to be extended to all flaws. In other

words, the power of the DUnf strategy comes not from

the relative ordering of threats and open conditions,

but instead from the fact that DUnf has the effect of

imposing a partial preference for least-cost flaw selec-

tion. DUnf will always prefer a forced threat, which,

by definition has a repair cost of at most one; thus, in

cases in which there is a forced threat, DUnf will make

a low-cost selection. What about cases in which there

are no forced threats? Then DUnf will have to select

among open conditions, assuming there are any. If our

hypothesis is correct, a version of DUnf that makes this

selection using a least-cost strategy ought to perform

better than a version that uses one of the other strate-

gies. In fact, if it is the selection of low-cost repairs that

is causing the search-space reduction, then the idea of

treating threat resolution differently from open condi-

tion establishment ought to be abandoned. Instead,

a strategy that always selects the flaw with minimal

repair cost, regardless of whether it is a threat or an

open condition, ought to show the best performance.

This is the Least-Cost Flaw Repair (LCFR) strategy.

To test our hypothesis, we began with the UCPOP

system, and implemented various modifications of it.

Two of these-DUnf and Dunf-LCOS-encode Peot

and Smith’s strategy. Both delay selection of unforced

threats until all open conditions have been established,

but the former selects among open conditions using a

LIFO strategy, like UCPOP, while the latter performs

least-cost selection of open conditions. A third mod-

ification, LCFR, implements the generalization of the

least-cost strategy: it always selects a flaw with min-

imal cost, without regard to whether that flaw is a

threat or an open condition. Finally, we also imple-

mented a variant called LCOS, which, like UCPOP, al-

ways selects threats before open conditions, but which

uses a least-cost strategy to choose among open con-

ditions. LCOS was included to verify that the state-

space reduction results from the preference for flaws

with minimal repair costs: if this is true, then LCOS

should show a decrease in state-space size even though

it does not delay cany threats. These five flaw-selection

strategies are described in algorithmic form in Figure 1.

Experimental Results

The five planners were each tested on 49 problems

from a variety of domains. In all the experiments, the

node-selection strategy is best-first search, where the

heuristic evaluation function is the sum of the number

of steps and the number of flaws in the partial plan.

These are the defaults provided with UCPOP. We also

imposed a search limit of 8000 generated nodes. In re-

porting our results, we give the number of nodes exam-

ined, which is typically less than the number of nodes

generated.

The 49 test problems are divided among 15 domains.

Table 1 lists the total number of problems attempted

for each domain, as well as the number of problems

from that domain solved by each planner within the

8000-node limit. All of the problems except those

from the TileWorld domain are taken directly from the

sample problems distributed with UCPOP version 2.0.

Eight miscellaneous domains are grouped together in

the last row of the table. All five planners solved the

same ten problems in this group.

As Table 1 shows, LCFR solved more problems (44)

than any of the other four planners. None of the prob-

lems on which LCFR failed were solved by any of the

other four planners. Figure 2 plots the percentage of

Causal-Link Planning 1005

If any threats exist in the set of flaws

select a threat

Else select an open condition

(LIFO for UCPOP; Least-cost for LCOS.)

UCPOP, UCPOP-LCOS

If there are any threats with repair cost = 0

select a threat from that set

Else if there are any threats with repair cost = 1

select a threat from that set

Else if there are any open conditions

select an open condition

(LIFO for DUnf; Least-cost for Dunf-LCOS)

Else select a threat (unforced.)

DUnf, DUnf-LCOS

Select a flaw, minimizing repair cost.

LCFR

Figure 1: Flaw Selection Strategies

problems solved by each planner within a fixed num-

ber of nodes examined. (Each point (a, y) denotes that

ZC% of the 49 test problems were solved by examining

no more than y nodes.) Table 2 provides summary

statistics for the experiment.

Discussion

The experiment described above confirms our origi-

nal hypotheses. DUnf performs only marginally bet-

ter than UCPOP: the percentage of problems solved

by DUnf within any fixed number of nodes examined

is only slightly higher than the percentage solved by

UCPOP. On the other hand, DUnf-LCOS, which not

only delays unforced threats but also performs least-

cost open condition selection, performs significantly

better than UCPOP, solving more problems within

any fixed number of nodes, and, on average, search-

ing far fewer nodes. Simply delaying unforced threats

does not, in and of itself, lead to much improvement,

but doing this in combination with a preference for

minimal-cost open conditions does.

Our hypothesis that the search-space reduction is

primarily due to selection of least-cost flaws is further

bolstered by the performance of LCOS. Recall that

LCOS does not delay any threats; nonetheless, its per-

formance is significantly better than either UCPOP or

DUnf.

Finally, note that LCFR, the only algorithm that

uniformly selects flaws with minimal repair cost, shows

the greatest reduction in search-space size. It solves

the most problems overall (44), and it solves more

problems than any other planner within any fixed num-

ber of nodes. The average number of nodes it examines

is significantly less than any of the other planners ex-

1006 Planning and Scheduling

80

p 70
2

E
60

g 50
ii
E 40

UCPOP -&-

I

1000

I I

2000 3wo
Nodes examined

Figure 2: Comparison of planner search spaces

cept DUnf-LCOS.2 Although LCFR is only marginally

better than DUnf-LCOS, it has the advantage of be-

ing conceptually simpler in that it provides a uniform

treatment of all flaws.

The relative performance of the five planners was

not uniform across all the domains. Most notable was

the TileWorld domain, consisting of a grid on which

holes and tiles are scattered. The agent’s goal is to fill

one or more holes by picking up and carrying tiles (but

carrying no more than four at a time), taking them to

holes, and dropping one tile in each hole. LCFR and

DUnf-LCOS solved all six of the problems taken from

the TileWorld domain, while the other strategies solved

at most two. The task of filling two holes is solved by

LCFR after generating only 73 partial plans; the same

problem was not solved by UCPOP even when allowed

to run for over eight hours.

One can readily see the reason for such dramatic

differences by looking at just the first few nodes exam-

ined in the plan-generation process. There the Tile-

World domain is dominated by the establishment of

open conditions that vary widely in their repair costs.

In almost every case, at least one open condition in a
partial plan has repair cost 1; at the same time, there

are often open conditions with repair costs as high as 8.

This occurs, for example, when an open condition that

the agent be holding a tile can be established using any

of eight tiles on the grid in the initial state. The plan-

ning strategies that do not perform least-cost selection

of open conditions (UCPOP and DUnf) often select an

open condition with an unnecessarily high repair cost,

2Using a pair ed-sample t test over all 49 problems, the

reduction in the number of nodes examined by LCFR over

any of the other planners is significant (p < O.Ol), though

for LCFR over DUnf-LCOS the significance is marginal

(P = 0.08). DUnf-LCOS also shows a significant improve-

ment over LCOS, DUnf and UCPOP (p < 0.04). The im-

provement of DUnf over UCPOP is marginally significant

(p = 0.096).

[Domain 1 Total 1 UCPOP 1 DUnf 1 LCOS 1 DUnf- 1 LCFR

Briefcase world (Pednault 19 88)

Office World (based on (Pednault 1988))

TileWorld (Pollack & Ringuette 1990)

Russell’s Tire World (Russell 1992)

Blocks world

Monkeys and Bananas

STRIPS robot world

(Eight misc. domains)

TOTALS

Probs LCOS
- -

8 7
-]

6 8 8

5

6

5

5

2

1

12 10 10 10 10 10

49 32 35 38 42 44

Table 1: Problems solved by each planner, by domain

UCPOP 32 9 3380 444 795 31 9 3380 404 775

DUnf 35 9 4733 628 1142 31 9 3230 378 724

LCOS 38 9 1475 165 303 31 ’ 9 1475 157 325

DUnf-LCOS 42 9 1104 130 202 31 9 1104 112 219

LCFR 44 8 1320 114 215 31 8 1320 107 248

Table 2: Statistical comparison of search spaces (successful problems only)

which leads to excessive branching.

LCOS of course avoids the pitfall of poorly choosing

an open condition. However, its undoing is its rigid

preference for threats over open conditions. In many

cases, LCOS prefers a higher-cost threat to a lower-cost

open condition: for example, we observed it bypassing

open conditions with repair cost 1 for threats with re-

pair costs of 3 or more.

Finally, DUnf-LCOS does just about as well as

LCFR: both solve all the TileWorld problems. How-

ever, examination of DUnf-LCOS’s planning process

shows that there are times in which it makes the op-

posite mistake from LCOS: it prefers higher-cost open

conditions to lower-cost unforced threats. Although

this appears not to have significantly hurt DUnf-LCOS

on the TileWorld problems, it may account for the two

problems from other domains on which DUnf-LCOS

failed but LCFR was successful, and may suggest a

potential problem for other applications.

What this analysis shows is that a uniform prefer-

ence for least-cost flaws is especially important in do-

mains in which flaw repair costs vary widely.

Secondary Flaw-Selection Strategies

As we have already pointed out, LCFR does not specify

a strategy for selecting among the flaws with minimal

repair cost. An obvious question is whether the per-

formance of LCFR could be improved by the choice

of a secondary flaw-selection strategy that made such

decisions.

Before exploring particular secondary strategies,

however, we wanted to determine just how sensitive

LCFR might be to secondary selection. We therefore

conducted a second experiment in which LCFR was

run ten times on each of the 49 test problems, selecting

flaws randomly from the set of flaws with minimal re-

pair cost. Recall that 44 problems out of 49 were solved

successfully in the initial set of experiments. The ran-

domized LCFR solved 42 problems successfully in all

ten trials, failed to solve four problems in any of the ten

trials, and solved the remaining three problems seven,

eight, and nine times, respectively.

Figure 3 shows the mean number of nodes exam-

ined for each of the 45 problems that LCFR solved

successfully at least once. The error bars show the

minimum and maximum number of nodes examined

for each problem over the ten trials. The three error

bars that are clipped at the top of the graph are those

that exceeded the search limit on one or more trials.

We can note that the majority of problems are rela-

tively insensitive to secondary selection. For example,

the range of the number of nodes examined (i.e., the

difference between the maximum and the minimum)

was 100 or less for 30 out of the 45 problems solved at

least once. Given the low number of nodes searched by

LCFR, on average, in the first experiment, it would be

surprising if we had not found this kind of insensitivity

to secondary selection.

More interesting is the fact that call of these 45 prob-

lems were solved at least once by examining a very

small number of nodes (415, in the worst case). This

is true even for problems for which the mean num-

ber of nodes examined over the ten trials is several

thousand, including problems for which LCFR some-
times failed. Note further that, although most of the

problems showed little variation over the ten trials,

Causal-Link Planning 1007

4000

3500

3000

2500

2000

1500

1000

500

0

Problems, sorted by mean number of nodes examined

Figure 3: Results of sensitivity experiment

J

most of those that showed extreme variation had a dis-

tinctly bi-modal distribution of the number of nodes

examined. Three problems failed on one or more tri-

als, exceeding the search limit of 8000 nodes generated

(though examining fewer than that), but succeeded on

other trials by searching as few as 50 nodes. One of

these problems had seven successful trials, examining

a minimum of 211 and a maximum of 648 nodes, while

exceeding the search limit on three trials. Other prob-

lems had bi-modal distributions even though they suc-

ceeded on all ten trials. One problem, for example,

succeeded one time after examining over 3000 nodes,

and nine times after examining 250 or fewer nodes.

These results suggest that while a more sophisticated

secondary selection strategy would not significantly im-

prove LCFR’s performance on most of our test prob-

lems, it could have a substantial positive effect on those

problems that LCFR sometimes found difficult. An

obvious candidate for a secondary strategy would be

to prefer threat resolution to open-condition establish-

ment, assuming that the repair costs are equal. Our

preliminary investigations of this strategy, however,

did not show significant improvement. The nature of

a good secondary selection strategy remains an open

question.

Improving the Performance of LCF

Although LCFR searches far fewer nodes than

UCPOP, it incurs a significant overhead in computing

repair costs. Our implementation of LCFR, for exam-

ple, used less CPU time than UCPOP on only four of

the 32 problems on which both were successful. Al-

though LCFR examines far fewer nodes than UCPOP,

it spends an average of over forty times as long expand-

ing each node (104 ms vs. 2.4 ms). Clearly, if LCFR is

going to live up to its promise of making POCL plan-

ning more efficient, then the cost of flaw selection must

be significantly decreased.

Fortunately, there are some clear-cut ways to do this.

Our implementation of LCFR took advantage of the

fact that the repair cost for a flaw could be calculated

by allowing UCPOP to make all repairs to that flaw,

generating a new node for each repair, and then dis-

carding all the newly generated nodes except those as-

sociated with the selected flaw. This approach required

a minimum of modification to the UCPOP code, but

is obviously inefficient: the repair cost could be calcu-

lated without actually allocating the node structures.

In addition, there are methods that could be used to

reduce the amount of work done in recalculating repair

costs for flaws that have already been considered. For

example, if a threat was not separable the last time it

was considered, there is no way that other changes to

the partial plan could have made that threat separa-

ble. In recalculating its repair cost, we need only look

at promotion and demotion.

Another alternative-and the one we explore in this

Paper -involves reducing the overhead of flaw selection

by accepting some inaccuracy in the repair-cost calcu-

lation. One way to do that is to calculate the repair

cost of each flaw only once, when that flaw is first en-

countered. In any successor node, if that flaw has still

not been repaired, we assume that its repair cost has

not changed. We refer to this variation of the strategy

as “ Quick LCFR” (QLCFR.) Note that QLCFR will

sometimes produce inaccurate repair costs, because it

is possible that repairing one flaw will change the re-

pair costs of other flaws, either by eliminating possi-

ble repairs, or by adding new options. For example,

adding a new step to the plan may add the option of

reusing an effect of that new step to satisfy another

open condition.

By assuming that repair costs are fixed, QLCFR

was able to expand a node in an average of 4.6 ms, a

huge reduction from LCFR’s 104 ms. Although this is

still higher than the average amount of time spent per

node by UCPOP, the reduction in search space is now

sufficient to allow QLCFR to solve problems on aver-

age about twice as fast as UCPOP, for problems that

both solve. And QLCFR solves more problems than

UCPOP: for our 49 test problems, QLCFR solved 38

problems, compared to 32 for UCPOP. QLCFR solves

fewer problems within the node limit than either LCFR

(44) or DUnf-LCOS (42), but QLCFR is much faster

than either of these.

These results are very encouraging. Even given

our currently inefficient method of calculating repair

costs, QLCFR executes in time comparable to that of

UCPOP, solving more problems and searching fewer

nodes on those problems that both solve. A more ef-

ficient implementation of the repair cost calculation

should reduce the time spent examining each node even

further, and more intelligent decisions about when to

recalculate repair costs (rather than simply never re-

calculating), should improve on the accuracy of the

repair cost estimate.

Future esearch

Given the importance of making plan generation more

efficient, techniques such as LCFR and its variants are

obviously worth pursuing further. In particular, we see

1008 Planning and Scheduling

at least four key areas for further investigation.

First, it is worth examining additional techniques

for reducing the overhead of computing repair costs. In

the previous section we noted some improvements that

could be made to the way in which we implement the

repair-cost calculation, and described QLCFR, which

approximates repair costs by assuming that they do

not change. One plausible extension of QLCFR would

involve keeping track of the “ age” of a flaw, and recal-

culating its repair cost only if that age exceeds some

threshold. Another possibility would involve scanning

the list of flaws within a partial plan until a flaw is

found with repair cost at or below a fixed threshold,

or until we reach the end of the list, in which case a

flaw with minimal repair cost would be selected. With

a threshold of zero, this algorithm reduces to a slightly

optimized version of LCFR; with a threshold of one or

more, the principle of least-cost selection would some-

times be violated, but with a potential savings in com-

putational overhead. Varying the threshold allows one

to trade flaw-selection costs for quality of flaw selection

fairly directly.

Second, we can consider more sophisticated defini-

tions of “ repair cost” than the one we have been using.

As we have defined it, the repair cost of a flaw takes

into account only the immediate branching factor for

a given repair. It may be, however, that the best flaw

to repair has branching factor higher than the mini-

mum; consider the simple case in which a flaw with a

repair cost of N actually has N - 1 descendents that

are quickly recognizable as dead ends. It may be that

some degree of “ look ahead” in the calculation of a

repair cost may be advantageous, in spite of the ad-

ditional computational cost. One such strategy was

implemented in O-Plan (Currie & Tate 1991).

Third, it is worth returning to the issue of node selec-

tion, and reconsidering heuristic evaluation functions

for POCL planning in light of a least-cost flaw selection

strategy. An evaluation function that estimates the re-

pair costs for the flaws in each node might be more

effective than one that simply treats all flaws equiva-

lently.

Finally, and perhaps most significantly, it is worth

considering how to extend the lesson learned from the

LCFR experiments-namely, that during POCL plan-

ning, it pays to focus first on flaws with minimal re-

pair costs-to develop techniques for reducing the re-

pair costs of particular flaws. One possibility would

involve the use of a richer representation for temporal

ordering constraints. We can think of a causal link as a

constraint on a temporal interval whose endpoints are

defined by the establishing and consuming steps. We

could reduce the repair cost of a threat by replacing

promotion and demotion with a single constraint that

the threatening step occur at some time “ not during”

the causal link being threatened. In effect, this means

carrying a disjunction (promotion or demotion) that

otherwise would be handled by creating two separate

nodes. The computational complexity of working with

such constraints is greater than that of the simpler or-

dering constraints used by SNLP or UCPOP, but per-

haps not so much greater as to outweigh the benefits

of reduced branching in the search space. Similarly, we

might look for other techniques that make tradeoffs be-

tween reduced repair costs and richer representations

of constraints.

The exploration of these and related extensions to

search control for POCL planning are left for future

research. For now we note that our experimental anal-

yses of LCFR and QLCFR indicate the promise of flaw-

selection strategies that focus on the degree of branch-

ing caused by repairing a flaw.

eferences

Barrett, A., and Weld, D. 1993. Partial-order plan-

ning: Evaluating possible efficiency gains. To appear

in Artificial Intelligence.

Collins, G., and Pryor, L. 1992. Achieving the func-

tionality of filter conditions in a partial order planner.

In Proceedings of the Tenth National Conference on

Artificial Intelligence, 375-380.

Currie, K., and Tate, A. 1991. O-Plan: the open

planning architecture. Artificial Intelligence 52:49-86.

Kambhampati, S. 1993. Planning as refinement

search: A unified framework for comparative anal-

ysis of search space size and performance. To appear

in Artificial Intelligence.

McAllester, D., and Rosenblitt, D. 1991. Systematic

nonlinear planning. In Proceedings of the Ninth Na-

tional Conference on Artificial Intelligence, 634-639.

Pednault, E. P. D. 1988. Synthesizing plans that

contain actions with context-dependent effects. Com-

putational Intelligence 4(4):356-372.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound,

complete, partial order planner for ADL. In Prvceed-

ings of the Third International Conference on Knowl-

edge Representation and Reasoning, 103-l 14.

Peot, M., and Smith, D. E. 1993. Threat-removal

strategies for partial-order planning. In Proceedings

of the Eleventh National Conference on Artificial In-

telligence, 492-499.

Pollack, M. E., and Ringuette, M. 1990. Introduc-

ing the Tileworld: Experimentally evaluating agent

architectures. In Proceedings of the Eighth National

Conference on Artificial Intelligence, 183-189.

Russell, S. J. 1992. Efficient memory-bounded search

algorithms. In Proceedings of the Tenth European

Conference on Artificial Intelligence.

Causal-Link Planning 1009

