
Least Expected Time Paths in
Stochastic, Time-Varying Transportation Networks

Elise D. Miller-Hooks
Assistant Professor

Department of Civil and Environmental Engineering
The Pennsylvania State University

212 Sackett Building
University Park, PA 16802 USA

voice: (8 14) 863-2634
fax: (814) 863-7304

edm3@psu.edu

and

Hani S. Mahmassani
L. B. Meaders Professor of Civil Engineering and

Professor of Management Science and Inforrnation Systems
ECJ 6.2

The University of Texas at Austin
Austin, Texas 78712 USA

voice: (512) 475-6361
fax: (512) 475-8744

masmah@mail.utexas.edu

First submitted: December 8,1998
First revision submitted: Sept. 23, 1998

M E

mailto:edm3@psu.edu
mailto:masmah@mail.utexas.edu

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, expm or implied, or assumes any legal iiabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.

. I

Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks
Miller-Hooks and Mahmassani

Abstract

We consider stochastic, time-varying transportation networks, where the arc weights (arc

travel times) are random variables with probability distribution functions that vary with time.

Efficient procedures are widely available for determining least time paths in deterministic networks.

In stochastic but time-invariant networks, least expected time paths can be determined by setting

each random arc weight to its expected value and solving an equivalent deterministic problem.

This paper addresses the problem of determining least expected time paths in stochastic, time-

varying networks. Two procedures are presented. The first procedure determines the apriori least

expected time paths from all origins to a single destination for each departure time in the peak

period. The second procedure determines lower bounds on the expected times of these a priori

least expected time paths. This procedure determines an exact solution for the problem where the

driver is permitted to react to revealed travel times on traveled links en route, i.e. in a time-adaptive

route choice framework. Modifications to each of these procedures for determining least expected

cost (where cost is not necessarily travel time) paths and lower bounds on the expected costs of

these paths are given. Extensive numerical tests are conducted to illustrate the algorithms'

computational performance as well as the properties of the solution.

Introduction

The routing of critical service vehicles (EMS, police, fire) and hazardous shipments must

often consider stcchasticity of traffic conditions and other risks in transportation networks. Two-

way communication coupled with ITS technologies often allow vehicles to select paths

dynamically, as congestion unfolds. In situations where future travel times are at best known a

priori with uncertainty and the level of congestion induces systematic time dependence of the travel

time distributions, the travel times on the network should be represented as random variables with

probability distribution functions that vary with time. The resulting stochastic, time-varying (time-

dependent), or STV, network, will provide a more appropriate representation of actual conditions

on which to base critical routing decisions than commonly used deterministic, static models.

Unlike deterministic networks, in which one can determine a single minimum time path

between an origin and a destination, several paths may each have some positive probability of

having the least time for some realization of the network when the arc times are stochastic. Thus, a

set of Pareto-optimal (otherwise referred to as nondominated, or efficient) paths can be identified.

For some applications, especially those of a repetitive nature, it may be sufficient to determine the

paths with the least expected time (LET). The determination of LET paths in STV networks is

more difficult than in networks where the arc travel time distributions are time-invariant. In the

latter, the LET path can be determined by setting each random arc weight to its expected value and

solving an equivalent deterministic problem. One cannot simply set each arc weight random

variable to its expected value at each time interval and solve an equivalent time-dependent shortest

path problem (Hall, 1986). This paper addresses the problem of determining the LET paths in

such STV networks.

Several papers have addressed the problem of determining shortest paths in stochastic,

stationary networks. Frank (1969) derived a closed form solution for the probability distribution

function of the minimum path travel time through a stochastic, time-invariant network. A number

of other works address similar problems (Sigal et al., 1980; Kulkarni, 1986; Corea and Kulkarni,

1993; and others). Loui (1983), Eiger et al. (1985), Mirchandani and Soroush (1985), and

Murthy and Sarkar (1996) present procedures for determining optimal paths in stochastic, time-

invariant networks where the decision-maker's preferences are represented by utility functions of

various forms. In addition, a large number of works have addressed PERT networks in

conjunction with project planning activities (Van Slyke, 1963; Malcolm et al., 1959; Charnes et al.,

1964).

For STV networks, Hall (1986) proposed an approach combining branch and bound and

K-shortest path techniques for determining the a priori LET path between an origin and a

destination. The algorithm requires that the expected times and least possible times be calculated

for each path; however, no procedure is given for calculating these values. The procedure requires

1

calculation of the minimum possible time of every path, and does not guarantee that it will

terminate before the expected value of all paths have been evaluated. The procedure does not

consider the possibility that the LET path could have one or more cycles; therefore, it applies only

to acyclic networks or cyclic networks with FIFO1 arc weights. In the same work, Hall proposed

a dynamic programming approach for determining optimal strategies for en-route decisions in

response to experienced travel times on traveled arcs. He recognized that such time-adaptive route

choice could follow paths with lower expected travel times than a priori optimization. This is

identical to a recourse problem where recourse decisions can be taken once the value of one or

more random variables are realized (see Birge and Louveaux (1997) on stochastic programming).

For a similar notion of optimality, Psaraftis and Tsitsiklis (1993) considered optimal policies for

specifying the least expected cost path between an origin and a destination in acyclic, dynamic and

stochastic networks. The cost of traveling on arcs leaving each node is a function of the state of

that node which, known only upon arrival at that node, varies randomly but independently of the

states of the other network nodes.

Miller-Hooks and Mahmassani (1998) presented two efficient procedures for determining

the least possible time paths in STV networks. Such paths may not necessarily be the most

desirable in all applications because they do not consider all relevant risk dimensions. A procedure

for determining paths with wider applicability, such as LET paths, is desirable.

In this paper, two specialized modified label correcting algorithms2 are presented for the

problem of generating LET paths in STV networks. First, the EV (expected value) algorithm, is

presented for generating all a priori LET paths with their associated expected times from all origins

to a single destination for each departure time in a given period. Although the worst-case

computational complexity of this algorithm is nonpol ynomial, the average performance for

networks with an average in- and out-degree each of four (as in common street networks) is shown

experimentally to be considerably better than predicted under worst-case complexity analysis. In

addition, cycles and non-FIFO arcs are permitted. Second, the ELB (expected lower bound)

algorithm, is an efficient procedure for determining lower bounds on the expected times of the LET

paths from all origins to a single destination for each departure time in the period, but without any

associated path information. Minor additional information can be retained to enable the ELB

algorithm to generate an exact solution for the problem of determining LET paths in a time-adaptive

route choice framework. In this context, for a given origin-destination pair, at a specific departure

A definition of FIFO arc weights in stochastic, time-dependent network is given in Miller-Hooks and Mahmassani
(1998) by the following extension to the consistency assumption of Kaufman and Smith (1993) in time-varying,

deterministic networks: For any arc (ij) E a, Pr(s + z..(s) I t + Tij(t)]=l V s I t, where zij(t) is the travel time

on arc (ij) at time t.
The modified label correcting algorithm for the classical shortest path problem is defined in Ahuja et al. (1993) as a

general label correcting algorithm with a scan eligible list of nodes.

1J

2

time, a single path may not provide an adequate solution. This is because the optimal path depends

on intermediate information concerning realized travel times on traveled arcs. Thus, a set of

strategies, represented by acyclic subnetworks, referred to as hyperpaths (Nguyen and Pallottino,

1986), are generated to provide directions to the destination node conditioned upon arrival times at

intermediate locations. Additionally, modifications to the EV and ELB algorithms are given for

determining least expected cost (other than travel time) paths with their expected costs and lower

bounds on the expected costs of these paths, respectively. These modifications are required

because the least expected cost cannot be determined by simply replacing the time-varying travel

time random variables by attributes others than travel time. This point was noted by Orda and Rom

(1991) and Ziliaskopoulos and Mahmassani (1992) in the context of least cost paths in

deterministic, time-varying networks.

The primary contributions of this paper include derivation of the rationale and design of the

specific computational steps to find (1) the a priori least expected time paths with the associated

expected times, (2) lower bounds on the least expected times, (3) least expected time hyperpaths

for the time-adaptive route choice problem, (4) modifications to these procedures to determine a

priori least expected cost paths and hyperpaths (with associated expected costs) and lower bounds

on the expected costs of these paths from all origins to a single destination for each departure time

in a given period in STV networks. The efficient procedure for determining lower bounds on the a

priori Ieast expected times (costs) provides valuable insight into the trade-offs between solution

content (Le. what one is seeking to determine) and the corresponding efficiency of the solution

procedure. Furthermore, extensive numerical experiments are conducted to assess the

computational performance of both procedures, as well as compare the quality of the resulting

lower bound in the second procedure.

The next section presents the EV algorithm, followed in Section 2 by the ELB algorithm.

Both algorithms and the manner in which they inter-relate are discussed in Section 3. The

numerical experiments are discussed in Section 4, followed by concluding comments in Section 5.

1 Least Expected Time Paths

In this section, the problem definition and mathematical formulation of the problem of

determining LET paths in STV networks are given, followed by the rationale and algorithmic steps

of the EV algorithm.

1.1 Problem Definition and Mathematical Formulation

Let G = (%A, S, ?; P) be a directed graph where Vis the set of nodes, IVI = v, and 2 is

the set of arcs, IA = rn. Travel times along the arcs are represented by discrete random variables

with distribution functions that are time varying over the period of interest, t o I t 5 to+ (I) 6 ,

3

referred to as the "peak period", and are stationary any time thereafter, t > t o+(I) 6 ; the network is

considered at a set Sof discrete times { to+ n 6 1, where n is an integer, n=0,1,2,...,1, and 6 is the

smallest increment of time over which a perceptible change in the travel time distributions will

occur for t E S3. This formulation can be generalized to travel times with continuous distributions.

For each departure time t E S and each arc (i j) E a, qj(t) is the set of non-negative real

valued possible travel times zi, j(t) for traversing the arc at the time t, k=l,..., Kij(t), where Kij(t)

is the number of possible travel time values on arc (ij) at time t. Travel time zi,j(t) occurs with

probability pk .(t) and p. . (t) = 1, V t E S. It is assumed that Ti,j(t) = z i , j (to+ IS) and

pk. (t) = pk. (t o + IS) V k = l,...,Ki,j(t) and (i,j)EA, for all t occurring after the peak period,

i.e. V t > to+ 16. Both the arc travel times and associated probability of Occurrence are assumed

k

k

Ki, j (t)
k k k

1 7 J 1,J
k = l

1, J 1, J

to be given V t E Sand each arc (ij) E a

Let 8c (t) be the travel time random variable for the c* path from node i to the destination

node N at departure time interval t. For each t E 5, the path with the minimum expected time,

E[8c(t)], is sought. In other words, the problem is to determine the LET path from each node

ie 'Irw to the given destination N, for each departure time t E S, in a network where the arc travel

times are given by time-dependent, random variables with probability distribution functions that are

known a priori. Furthermore, it is assumed that the arc travel time random variables are

independent across arcs and over time, and no waiting is permitted at any intermediate node. That

is, one must leave an intermediate node immediately upon arrival.

The EV algorithm is a specialized modified label correcting algorithm for generating the a

priori least expected time (LET) paths. In the generic label correcting algorithm for time-invariant,

deterministic shortest path problems, a single label associated with each node maintains the current

shortest distance from the node to the destination. The labels are updated iteratively until the

optimality conditions, based on Bellman's principle of optimality (which states that a path between

any pair of nodes on a shortest path in a given network must itself be a shortest path, (Bellman,

1958)), are satisfied. Bellman's principle of optimality also holds on the space-time representation

of networks with deterministic, time-dependent arc weights (Ziliaskopoulos and Mahmassani,

1993). However, it does not apply directly to networks where the arc weights are timedependent

random variables. An extension of this principle, given in Proposition 1, is required for this case

because the expected path times are not simply the sum of the expected arc times. In deterministic

The size of the time interval 6 must be smaller than any travel time on an arc; otherwise, pathological
inconsistencies may occur as it would be possible to arrive at the next node en route at the same time as the
departure time from the origin

1

1

4

networks, a path is shorter than (dominates) another if its label value is lower than the other's label

value. However, in STV networks, conditions for dominance over a time period, hereafter

referred to as EV-dominance, must be established, as follows:

A path c is nondominated iff 3 no path dsuch that

E[6f(t)] I E[6: (t)] V t €Sand 3 t ES IE[6d(t)] < E[6: (t)];

otherwise, the path is dominated.

1 1 1

Given these EV-dominance conditions, we extend Bellman's principle of optimality as follows.

Proposition I . All subpaths of a nondominated path with the same destination node as this path

must themselves be nondominated. (This can be generalized to all subpaths of a nondominated

path in FIFO networks.)

A formal proof of this proposition can be constructed along the lines of Hansen (1980) and is

given in Miller-Hooks (1997).

1.2. Solution Approach

For each node ic Vand each potentially optimal path c to the destination node N, a vector

label [hc (t)]tEs is maintained, denoted Ac , where ?Lc (t) is the expected travel time along path c

from node i to the destination, leaving node i at time t; i.e., hc (t) = E[8c(t)]. These labels are

called p-optimal as each is potentially optimal for one or more time intervals. Until termination of

the algorithm, more than one label vector is maintained at each node unless a single label is best for

all time intervals. Let x(i) be the set of p-optimal labels at node i. A scan eligible (SE) list of

labels Ad identified by the node-label pair (j-d) (which uniquely identifies a distinct path), is

maintained. At each iteration of the algorithm, a label Ad is selected from the SE list4. A

temporary label vector is constructed, Ki=[Ki(t)ltE5, from each predecessor node i of node j

(if r-'(j)). To determine if it is p-optimal, it is compared with the p-optimal labels at node i, A;

(according to the optimality conditions given in step 2 of the algorithm below) and if it is

determined to be dominated, the temporary path is discardeds.

1 1 1

1 1

j '

J

It is assumed that V i E 'tL, c E X (i), t E S, and O < E < ~ , kc (t+E)= hc (t) and that for all t occurring outside the peak
1 1

period, t >b+I&

If a temporary label is dominated by any currently poptimal path, it cannot dominate any remaining p-optimal
path. Similarly, if the temporary label dominates any p-optimal path, then it cannot be dominated by any other
currently p-optimal path. These facts can be used to reduce the number of comparisons.

(t)= kc (b+I6).
1 1

5

When the algorithm terminates, with the exception of ties (broken arbitrarily), a single best

path will be associated with each time interval for each node i E V. Since the same path may be

optimal for more than one time interval, at most I (the number of time intervals in the peak period)

optimal paths can be in the final solution set for each node.

Two pointers are required for each label c at each node i in order to store the p-optimal

paths efficiently: a pointer, 7CF, from the cth label at node i to the next node on the path and a

pointer, Lc , to indicate the appropriate label at the next node. Note that XYmp and Lt.emp hold
1 1 1

the path information of a temporary label until that label is determined to be p-optimal or is

discarded.

1.3 The EV Algorithm

The steps of the algorithm are described hereafter.

Step 0: Initialization and Creation of the Scan Eligible List

Initialize the node labels:

Initialize labels and path pointers:

hc(t)=- V i i E , c ~ [1 , 2 ,..., M), t E S ,
1

where M is a large enough number to permit as many p-optimal paths at any node as might be

required.

h'N (t) = 0 v t E s.

XC=-andLC=- V c ~ { l , 2 , ..., M} a n d i e ? / .
1 1

X (N) = { 1 } (put the f is t label at node N in the set of p-optimal labels from N).

Initialize the scan eligible list:

Insert node-label pair N-1 in the scan eligible list, SE.

Step 1: Check List and Scan Node

If the SE list is not empty, select the fiist node-label pair Q-p) from the front of the list. Call the

associated node j the current node. If the list is empty, go to step 3.

Step 2: Update Node Labels

For each i E P(j) (i.e., V i I (ij) E A):

Temporary Lube1 Creation

Determine the expected time Ki (t) V t ~ S f o r the newly constructed path from node i through

6

A! by the following equation:
J

Ttj(t)+k!(t+Tk.(t)) , where k=l,2,..-,Ki,j(t)
J L J

k

(More detail on how to construct the temporary label is given in Appendix A).

Set the path pointers: ZFmp = j and LTmP = p.
1 1

Label Comparisons

Compare Ki with each A:, c E x (i):

[K, (t)]tEs is p-optimal iff 3 no path c E x (i) such that

xc(t) I Ki(t) V t €Sand 3 t ESI k?(t) < Ki(t);

otherwise, [Ki(t)ltEsis dominated -- discard [Ki(t)]tE~.

can be marked as the LET path for the associated time interval in this step.

1 1

If a path has the least expected time of all p-optimal paths for a given departure time, that path

If [Ki (t)]tE s is p-optimal, add to x (i) and put this node-label pair in the SE list.

Check if all c E X (i) are still p-optimal and remove the non-p-optimal labels from x (Q6.

If all i E P (j) have been scanned, go to step 1.

Step 3: Stop.

The least expected time paths with their expected times are given, for each departure time interval,

by each label c E X(i) that is marked as having the least expected time, and its associated path

pointers. Only one path in x (i) 'd i E V, for each t E S, will be marked (ties broken arbitrarily).

Thus, the algorithm terminates with the set of least expected time paths and the associated expected

times V t E S from every node i E ?/to the destination node N.

The SE list can be implemented in several ways. The description of the algorithm suggests

that a FIFO SE list is used; however, a deque structure is equally viable (Ahuja, 1989; Glover et

al., 1985). In the above description, node-label pairs are inserted in the list. Since it is possible

that the algorithm's performance could improve if the labels from the same node are consecutively

scanned, one may consider maintaining the SE list as a list of nodes, where each node can enter at

most one time with a separate list of labels for each node. When a node is selected from the SE

The fact that a nondominated path cannot contain a dominated subpath to the destination node (by Proposition 1)
can be used in the implementation of the algorithm to aid in decreasing the run times. If a path is known to be
dominated, its node-label pair can be placed in the SE list and marked as dominated. When this node-label pair is
chosen from the SE list, all existing paths from predecessor nodes of the origin of this dominated path can also be
marked as dominated and their node-label pairs can be added to the SE list. The details of this implementation are
given in Miller-Hooks (1997).

7

list, each label in this list is scanned before the next node is selected. A similar implementation was

tested by Ziliaskopoulos (1992) for the K-shortest path problem (with deterministic, time-invariant

travel times) and by Miller-Hooks and Mahmassani (1998) for determining least possible time

paths in stochastic, time-dependent networks. For more information on structuring the scan

eligible list, see Pape (1974), Pallottino (1984) and Gallo and Pallottino (1986)-

This algorithm is easily extended for determining least expected cost paths in networks

where both the arc travel times and arc costs are random variables with time-varying probability

distribution functions. Thus, the network G is expanded to G = (% A, S, I, 2'1 C, Tc); (C,Pc> is

the set of non-negative real valued possible arc costs V (ij) € 2 -~x . (t) , x=l,..., Xij(t), where

Xi,j(t) is the number of possible cost values of travel times on arc (i j) at time t. Cost c t j (t)

occurs with probability qx .(t) and qx . (t) = 1 V t E S. Similar to arc travel times, it is

assumed that c t j (t) = Ccj(to+ IS) and qx .(t) = qx . (to+ IS) V t > to+ 16. The cost and

travel time are assumed to be independent of one another. The labels, Ai, V i E V, c= 1 ,. . .,M,

now maintain the expected cost of the paths with the least expected cost for at least one time

interval. Equation (1) of step 2 for computing the expected cost of a newly constructed path from

node i at departure time t can be replaced by equation (1') given as follows:

1,J

Xi, j (t)

1.1 1, J
x = l

1, J 1 , J

k x

where k=l,2 ,..., Ki,j(t), x=l J,.. .Xi,j(t).

Proposition 2. The EV algorithm terminates with the set of nondominated solutions. No path can

exist that dominates any of these paths.

Proof. Upon termination no label A; corresponding to a nondominated path exists for which the

following relation holds (for some label A(!):

hd (t)l kc (t) VtE S and 3 t€ s I h*(t) < hc (t)
1 1 1 1

otherwise, label Ai would be dominated.

Suppose there exists a label A(! such that (2) holds. Then, 3 jc rf'(i) and A:, a subpath of A!,

such that
Ki,j(t)

hc 1 (t) 2 {[.e (t) + X: (t + '$j(t))] p t } VtE S and
k=l

8

Ki,j(t)

3 t€SI XC(t)> 1 c {[T:j(t)+qt+Zllj(t))].p:j}.
k=l

Then either A: is dominated by another path or node-label pair j-e has not been scanned. If A! is

dominated by another path, this other path would also dominate Ai. Thus, node-label pair j-e

must be in the SE list. This contradicts the statement that the algorithm has terminated. No path

can exist that dominates one of the final nondominated solutions determined by the EV algorithm. +

Proposition 3. The EV algorithm terminates after a finite number of steps.

Proof. To prove that the EV algorithm terminates after a finite number of steps is equivalent to

proving that the SE list is empty after a finite number of steps. Suppose the SE list is not empty in

a finite number of steps. Then, either (1) at least one node-label pair (representing a distinct path)

must be inserted in the SE list an infinite number of times, or (2) an infinite number of node-label

pairs must enter the SE list. Case (1) is not possible because each node-label pair (indicating a

particular path), can only enter the SE list at most twice (once when it first becomes p-optimal and

once later when (if) it is determined to be dominated, if this option is implemented). Thus, a node-

label pair cannot enter the SE list an infinite number of times. Case (2) is not possible because the

graph is assumed to be finite (contains v nodes and m arcs). Thus, a finite number of simple

(acyclic) paths exist. Furthermore, an infinite number of paths with cycles cannot enter the SE list

because the arcs have positive, real-valued weights. If a path indicated by a node-label pair enters

the SE list (and was not entered as a result of becoming dominated), its expected travel time must

be lower than that of another p-optimal path for at least one departure time interval and must not be

dominated by any other p-optimal path. Given that there are a finite number of departure time

intervals in S and that the arc travel times are positive real-values, this can occur only a fmite

number of times. This contradicts the assumption that the SE list is not empty in a finite number of

steps. +

The actual number of paths that may have the least expected time (cost) for one or more

departure time intervals must be no greater than I, where I is the number of time intervals in S,

because at most one path has the least expected time (cost) for each departure time (ties broken

arbitrarily). However, an arbitrarily large (but finite) number of labels may need to be maintained

at each node if I > 1 because the algorithm must determine all EV-nondominated paths in order to

guarantee that it will generate all a priori LET paths (Miller-Hooks (1 997)). In Proposition 4, it is

shown that the number of such nondominated paths may grow exponentially with the network size;

as such, the algorithm has similar worst-case performance to that of solution methodologies for

bicriterion path problems. A proof is given by Hansen (1980) of the intractability of labeling

9

algorithms for determining all nondominated paths for the bicriterion “shortest” path problem.

This is further discussed in Brumbaugh-Smith and Shier (1989).

Proposition 4. The EV algorithm may result in an exponentially growing number of nondominated

solutions with the network size if I > 1.

Proof. Assume I = 2. A label for every possible path from a node to the destination node may

need to be maintained because it is possible that no path has a lower expected time than another

path for every time interval t ES. Assume e>O and x>y, then the following may occur:

Path 1 Path 2 Path 3 Path4 ...
Time= 1 X x+e x+2e x+3e ...
Time2 y y-e y-2e y-3e ...

No path listed above is better than any other €or both time intervals. Thus, all paths must be

maintained. This applies to I > 2. +
Since an arbitrarily large number of paths may be maintained at each node, although finite,

this algorithm can perform, in the worst-case, very poorly -- nonpolynomially. However, as is

shown in numerical experiments in Section 4, the average performance of this algorithm for

networks with an average in- and out-degree of 4 from each node is much better than predicted by

the worst-case computational complexity analysis. Similar results were shown by Brumbaugh-

Smith and Shier (1989) with respect to the performance of label correcting procedures for finding

all nondominated solutions to the bicriterion “shortest” path problem in deterministic networks.

2 Lower Bound on Least Expected Time Path

In this section, an efficient algorithm, referred to as the ELB algorithm, is presented for

determining lower bounds on the expected times of the least expected time paths in G=(V,fl,S,%P)

defined in Section 1.1, V i E Vto a single destination, tJ t E S. This lower bound can provide a

benchmark against which to evaluate one or more paths that may have been generated using a

heuristic (but efficient) path search procedure. With minor modification, the ELB algorithm also

provides an exact solution in the form of hyperpaths to the problem of determining the least

expected time paths from all origins to a given destination for each departure time tE S, when the

driver can select the next arc upon arrival at a node, i.e. after experiencing the revealed (actual)

travel times on traveled arcs while en route (Le. in a time-adaptive route choice framework). The

modifications are given parenthetically in the algorithm description.

The ELB algorithm, like the EV algorithm, is a specialized modified label correcting

algorithm. Here, a single label vector, [hi (t)ltEs, is associated with every node. At termination of

the algorithm, each hi (t) is a lower bound on the a priori least expected time for any path to the

10

destination node for time t. Before termination of the algorithm, hi (t) remains an upper bound to

the desired value. However, these labels do not necessarily correspond to individual paths and

paths cannot be reconstructed upon termination. To track the solution hyperpaths for the time-

adaptive route choice problem, a second label vector can be introduced, [~ i (t)] ~ ~ ~ , where xi (t)

indicates the arc to be followed from node i and time t. The SE list used in this algorithm consists

of a list of nodes.

Let the vector [qi(t)ltEs be the temporary label from node i. Denote by h': (t) the current

label component, associated with departure time t, at the end of the kth iteration. At the k + l h

iteration, the optimality conditions can be stated as follows: (t) = min(hk(t),qi(t)} for

1

k + l
h.

1 1

each t E S. The steps of the ELB algorithm are presented next.

Step 0. Initialization

Initialize the node labels:

h i (t) = - V i E ? r \ N , t E S.

(X i (t) = - V i E W , t E 297.

h,(t) = o V t E s.

Initialize the scan eligible list:

Create the scan eligible list, SE, and insert N.

Step 1. Choose Current Node

If the SE list is empty, go to step 3.

Otherwise, select the first node from the SE list. Call this node the current node, j.

Step 2. Update the Node Labels

For each i E r-*(j), (Le., V i I (ij) E A), update the vector [hi (t)ltE5 as follows:

For each t E s:

where p is the set of indices of possible travel times on arc (ij) at time t.

If qi(t) < hi(t), then hi(t) = qi((t), (7Ti(t) = (i,j))* and if i e SE, put i in SE list.

If all ie I'--l(j) have been considered, go to step 1.

Additional label vector of hyperpath pointers required for the time-adaptive route choice problem.
* Modification required to address the time-adaptive route choice problem.

11

Step 3. Stop

The algorithm terminates with a lower bound on the expected time of the a priori LET paths, V

tE S, from every node i E Vto the destination node N.

Proposition 5. The final solution provides a lower bound on the a priori LET for any path from

each node in ?/to destination node N, V t E S.

Proof. Let b[en (t)]} be the vector of expected times associated with the c* path from node j
t€S

to N and [h .(t)]tEs defined previously. Trivially, [kN(t)]tEs = {E[0; (t)]} because it is
J t€S

assumed that there is only one path from the destination node to itself (with zero travel time for

every departure time).

Consider the construction of a label from an origin node j, where there are several possible

paths to the destination node. Suppose path c has the lowest expected time of all paths at time ti

and path d has the lowest expected time of all paths at time t2, both paths from node j ,

hj(t l)=E 8 . (t) and h . (t)=E 0 . (t) . Now suppose a label is constructed from node i

through node j. Suppose also that for time Q there are two possible travel times, T ~ = T;,~ (to) and

T ~ = T [~ (Q) with associatedprobabilities of occuning of Pr(T1)=p . .(to) and Pr(22}=pi, j (~) .

The possible arrival times at node j are t l and t2, respectively. Let path e be a path from node i to

destination node N, constructed from arc (ij) and subpath c from node j to N. Similarly, let path f

be a path from i to N, constructed from arc (ij) and subpath d from j to N.

Then

[f l] J 2 [: 2 1

1 2

1, J

h.(to)=(2, 1 + hjttl,)(pr(TlI)+(T2 + hj(t2))(Pr(22})

and is also

Thatis, h i (t o) I E and h i (t o) S E . Thiscanbeextended V t E s . Note

that if for some subpath m, h.<t J 1) = E [8 r (t l)] and k j (t z) = E [8 r (t 2)] then hi(to) is

constructed through only one path, m, and hi (to)=E[(to)], where path n is constructed from

arc (ij) and subpath m from j to N. Any h,(t) may be constructed from either a single path or

12

from the best values of several paths; and therefore, hi (t) I E[e! (t)] (for any path g from i to

N). This can be extended to all possible origins in the network. Thus, for each t E S, the label

vector [hi (t)]tE~ gives a lower bound on the expected time of the a priori LET path. +

Note that the final label for any node is exactly the least expected time for a path to the destination

node if only one path from that node contributes to its label. computational

experiments, described in Section 4, suggest that a high percentage of solutions are composed of

travel times from only a single path. For such solutions, actualpaths can be identified. An

example is shown in Appendix B to illustrate the ELB algorithm and to clarify Proposition 5.

Similar to the adaptation of the EV aIgorithm presented in Section 1.3, the ELB algorithm

can be modifid to determine lower bounds on a priori least expected path costs. Let the label

vector [hi(t)ltEs, V i E V, now denote the lower bounds on the cost of least expected cost paths

from node i to the destination at time t. Equation (3) of step 2 can be replaced by equation (3'):

Extensive

q i (t) = x z [(c c (t> + (hj(t + x i (1))) * q;(t). pE (t)] (3')
k x

where k=l, 2, ..., Ki,j(t), x=l, 2, ..., Xij(t).

Note that the ELB algorithm provides an upper bound on the expected least time,

E minO:(t) , through the network, i.e. the wait-and-see bound of Madansky (1960). This

measure would be obtained by taking the expectation, over many realizations, of the minimum

travel time path through the network for a given joint realization of all arc weights.

[c I

Proposition 6. The ELB algorithm terminates in a finite number of steps.

Proof. The algorithm terminates in a finite number of steps if the SE List is empty in a finite

number of steps. Suppose the SE list is not empty in a finite number of steps, then at least one

node must be inserted in the SE list an infinite number of times. This implies that the label at the

node has improved by at least a positive real-value of travel time. If the improvement at the node

continues an infinite number of times, then the travel time on the path would eventually become

negative which contradicts the assumption of positive travel times. This contradicts the

supposition that the SE list is not empty in a finite number of steps and hence shows that the ELB

algorithm terminates in a finite number of steps. +

The next proposition establishes that the ELB algorithm determines the exact least expected

time (cost) from every origin to N for each departure time interval t E S for the time-adaptive route

choice problem. To obtain the associated hyperpaths (optimal strategies), an additional label vector

13

must be updated, as noted in the algorithm description, (see Appendix B for an example problem).

Proposition 7. The ELB algorithm terminates with the set of least expected time (cost) paths (Le.

hyperpaths) for the time-adaptive route choice problem.

Proof. Upon termination, the following relation holds for every label at every tE S:

successor nodes of node i (i.e. jl (ij) E A). Suppose at termination a component of a label vector,

hi(t), exists such that

Ki, j(t)

k = l
h,(t) > {[Ttj(t) + hj(t + '$j(t))]. pt,} for some jc r+l(i), then j was not scanned and

hence must be in the SE list. This contradicts the assumption of termination and hence, the

assumption that such a label exists. Therefore, the algorithm terminates with the minimum label

for each node at each tE s.

To show that this label corresponds to the LET hyperpath for the time-adaptive route choice

problem from the associated node to the destination for the given departure time, we proceed by

induction. Let k be the number of arcs on a path to the destination node. If k is zero then the path

to the destination is trivial and obviously leads to the LET path for every departure time. For

arbitrary k, we assume the label from a given node j for departure time t gives the LET path for this

problem by providing the first arc (j,h) on the path to N. For k+l, the label for a given node

iE r-l(j), for departure time t, provides the arc (ij) such that j is k arcs from n (given i is k+l arcs

from n). Suppose there are Kij(t) possible arc travel times for departure time t, Ti,j(t), Ti,j(t),

..., %i,f.J(')(t), then there are Kij(t) possible arrival, and hence departure, times from node j:

1 2

K* *

[t + 7"] . Once the driver traverses (ij) the travel time along the arc is no longer
l J k=l,..,K. .(t)

1.1

uncertain and the exact departure time from node j is known. For the known departure time, the

corresponding arc on which to proceed (in order to follow the least expected time path in this

framework) is given from node j which is k arcs from N. Therefore, k+k+l for arbitrary k and

hence it follows by mathematical induction that the label and associated arc provides the least

expected time and associated hyperpath for the time-adaptive route choice problem. +

Proposition 8 establishes that the ELB algorithm has similar worst-case computational complexity

to that of the time-dependent least time algorithm presented by Ziliaskopoulos and Mahmassani

(1993) (- O (w)) for deterministic, time-dependent networks.

14

Proposition 8 . The ELB algorithm with a basic FIFO SE list structure has worst-case

computational complexity -O(I*v3P), where I is the number of time intervals into which the peak

period is discretized, v is the number of nodes in the network and P is the maximum number of

possible values of the discrete arc travel time random variable for a time interval.

Proof. Once the destination node is removed from the SE list, it will never again be updated, i.e.,

it is permanently set. AH of its predecessor nodes are added to the SE list for updating. Thus, the

SE list contains at most v-1 nodes. From all nodes initially inserted in the SE list (Le.

predecessors of the destination node), the one with the least label for a given departure time will be

updated permanently. By scanning all nodes (at most v-1) of the SE list in as many as v-1

repetitions of step 2, at least one label will be permanently set. This procedure may be repeated at

most (I)(v-1) times because there are (I)(v-1) label components in total that can be improved.

Thus, there are at most I(v-l)* repetitions of step 2. Step 2 requires a maximum of P(I)(v-1)

-O(l) computations because, in the worst-case, each node can be reached by v-1 nodes and each

node has I labels, requiring P computations. This results in worst-case computational complexity

of -O((I)(v-l)2~(P)(I)(v-l)), or -O(PV~P). +

3 Discussion of Rationale for the EV and ELB Algorithms

This section explains why is it more difficult to determine the LET path in stochastic, time-

dependent (STV) networks than it is to find the Ieast time paths in deterministic, timedependent

networks, and clarifies some of the differences between the EV and ELB algorithms. The intent is

to provide the reader with deeper insight into the complexity of the problem, why and how the

algorithms presented work, as well as the trade-off between computational burden and desired

solution.

In deterministic, time-varying networks a single scalar label is associated with each

departure time interval at a node, representing the travel time to the destination. Say a path is

constructed from node i through node j , via arc (i,j). Given the labels at node j for all time

intervals, a label at node i for departure time t can be constructed by adding the travel time of arc

(id) for the respective departure time to the label at node j corresponding to the appropriate (single)

arrival time. The path tree can be maintained through two pointers from each node at each time

interval: a pointer to node j and another to the arrival time interval. See Ziliaskopoulos and

Mahmassani (1993) for more information on solving the deterministic, time-dependent least time

path problem.

Assume now that the travel time on arc (ij) is a random variable with given probability

density or mass function. In such a network, arrival time at node j from i depends on the actual

travel time on arc (i,j). Assume there are two possible arrival times, s and q. If the LET labels at

node j at times s and q correspond to different paths, then it will no longer be possible to maintain a

15

single path label for node i at time t (hence the hyperpath structure of the solution for the time-

adaptive route choice problem). If only a single label is maintained, it can give a lower bound on

the least expected time that may be obtained via either subpath from node j at time intervals s and q .
One can no longer maintain the paths in a shortest path tree structure. In order to continue to

maintain the least expected times and their associated paths it will be necessary to maintain more

than one label at node i for time interval t. This is the essential concept underlying the EW

algorithm. Unfortunately, it is in part for this same reason that the EV algorithm is theoretically

inefficient.

In the next section, results are given from a series of experiments conducted on randomly

generated networks in order to examine the actual average performance of the algorithms.

4 Numerical Experiments

The performance of both the EV and ELB algorithm is examined through numerical

experiments on randomly generated networks with average in- and out-degree each of four;

additional tests are also conducted on networks with higher average degree. The methodology for

generating the networks with their stochastic, time-varying arc weights is described and the

experimental design is given. The results of the tests are presented and analyzed.

The specific hypotheses investigated through these experiments are as follows: (1) the

increase in actual (average-case) run time, as the network size increases, is better than predicted

through worst-case computational complexity for both the EV and ELB procedures; (2) the number

of EV-nondominated paths from any node is small and (3) the number of labels required to

determine these paths does not grow exponentially with the size of the network; (4) the lower

bounds on the least expected times determined by the ELB procedure are close to the expected

times of the true least expected time paths; and (5) the EV-nondominated paths determined by the

EV algorithm are robust in the sense that they have the least expected time for more than one

departure time interval. In order to test these hypotheses, the EV and ELB procedures are

evaluated in terms of the following applicable performance characteristics: (1) actual run times; (2)

maximum and (3) average numbers of EV-nondominated paths from any origin; (4) number of

pairwise comparisons; (5) percent relative difference, (6) maximum and (7) average percent relative

difference of the ELB algorithm lower bounds from the true least expected times; and (8) number

of time intervals an EV-nondominated path has the least expected time.

4.1 Experimental Design

The experiments described in this section are conducted on twelve randomly generated

networks with randomly generated time-varying pmfs (probability mass functions) of the arc

travel time random variables, as described hereafter.

16

4.1.1 Generating the Networks and Arc Travel Time Random Variables

A random network generator (RNG) adapted from Ziliaskopoulos (1994) is for these

experiments. The number of nodes is prespecified, the arcs are directed and are uniformly

randomly generated. The procedure used to ensure connectivity is detailed in Miller-Hooks

(1997). The networks were generated such that their average in-degree and out-degree at a node

are each approximately 4 (between 3.6 and 4.8), consistent with the application to transportation

systems. The in- or out-degree of each node in these networks can vary between 2 and 9. The

results of another set of experiments on networks with higher average degrees are discussed later

in this section. The relatively constant average degree ensures that networks with the same number

of nodes will have nearly the same number of arcs.

Given a specified network topology, the pmf's of the independent arc weight random

variables, for each t ES, were randomly generated. The pmf's correspond to either discrete

random variables or approximations of continuously distributed random variables. The number of

elements in the pmf's, P, is assumed constant across arcs and departure times. For each departure

time interval, for each directed arc, P pairs of scaled uniform random variates are generated; the

first corresponding to a possible travel time and the second to the probability of the Occurrence of

such a travel time. These are then normalized such that the sum of the second random variates is

one. The values are sorted by value of the first random variate and the probabilities associated with

identical travel times are added to produce the pmf for one departure time.

4.1.2 Design of the Experiments

Three factors must be specified in order to generate the network topology and L\e pmf s of

the arc travel time random variables: the number of nodes, duration of the peak period (i.e.

number of time intervals), and the number of elements in the pmf s. Four levels of the number of

nodes are considered: 50, 100,500 and lo00 nodes. Three topological networks of each level are

generated, for a total of 12 networks. The time interval size is one time unit in duration and is

constant over all the experiments. Four levels of the duration of the peak period are considered:

10,30, 60, and 90 time intervals. Finally, three levels of the constant number of elements in the

pmf's are considered: 5, 10 and 20. This results in 144 different combinations, as every

combination of the number of time intervals and number of elements in the pmf s are considered

for each of the 12 networks. The three networks with the same number of nodes are described by

the (n,t,p)-triple corresponding to n nodes, t time intervals and p elements in the arc weight pmfk.

The EV and ELB algorithms are implemented in FORTRAN and run on a DEC 600/5/266

Alphastation with 256 megabytes ram, mnning under DEC UNIX 3.2C. For each run, a

destination node is randomly selected. Thirty such destination nodes are chosen, resulting in 30

17

runs for each of the 144 combinations. A set of 30 runs for one of the 144 combinations is

referred to as an experiment. A total of 144 experiments, consisting of 4320 runs, are conducted

on both the EV and ELB procedures on the networks with average in- and out-degrees of four,

resulting in 8640 runs. Additional runs are completed on two 500 node networks with average in-

and out-degrees of 10, to estimate the effects of the average degree of the network on the closeness

of the ELB lower bounds to the true least expected times.

4.2 Principal Performance Measures Considered

The performance measures used to evaluate the EV and ELB procedures are described in

this section. Each of these measures is used in evaluating the suggested hypotheses.

(1) Run time in c.D.u. seconds: The average "user" c.p.u.9 time required to run each procedure

over the 30 destination nodes is measured for each (n,t,p)-triple for each of the 3 networks with n

nodes. The run times do not include i/o time. All other steps of the procedures, including

statements required to measure other performance characteristics, are included.

(2) Average number of EV-nondominated paths: The average number of EV-nondominated paths

over all origins and all 30 destinations is computed for each (n,t,p)-triple, for each of the three

networks with n nodes.

(3) Maximum number of EV-nondominated uaths: For each (n,t,p)-triple, for each of the three

networks with n nodes, the maximum number of EV-nondominated paths from any origin is

determined. The average maximum value over the 30 destinations is computed.

(4) Number of label comparisons: The number of pairwise label comparisons in step 2 in the EV

and ELB algorithms are measured. Each comparison consists of a set of comparisons over the

time period S. For each (n,t,p)-triple, for each of the three networks with n nodes, the average

number of label comparisons over all origins and the 30 destinations is computed.

(5) Percent relative difference: For each (n,t,p)-triple, for each of the three networks with n nodes,

the percent relative difference is the difference between the true expected time of the LET path

(obtained from running the EV algorithm) and the lower bound of the least expected time (obtained

from running the ELB algorithm) for a given departure time and given origin divided by the lower

bound obtained from the ELB procedure and multiplied by 100.

(6) Maximum percent relative difference: For each (n,t,p)-triple, for each of the three networks

with n nodes, the maximum percent relative difference from every node, for every departure time

interval and for each of the 30 destinations for the ELB lower bound is determined.

(7) Average Dercent relative difference: For each (n,t,p)-triple, for each of the three networks with

n nodes, the percent relative differences computed in (5) are averaged over all origins, all departure

User C.P.U. time refers to the C.P.U. run time used only by the individual program: and therefore, accounts for time
used by other programs simultaneously running on the Same server.

18

times and the 30 destinations.

(8) Number of time intervals for which the EV-nondominated paths have the least expected time:

For each (n,t,p)-triple, for each of the three networks with n nodes, the average number of time

intervals for which each label corresponding to an EV-nondominated path from a given origin has

the least expected time is taken over all origins, all nondominated paths at each origin and all 30

destinations.

50 10
20

5
100 10

20
5

500 10
20

5
lo00 10

20

4.3 Experimental Results

The results of these experiments are summarized in Tables 1 through 13. The number of

nodes in the networks is indicated by the heading "Nodes," the number of time intervals by "TI"

and the number of elements in the pmf's by "Prob." The results are averaged for the networks that

can be specified by the same (n,t,p)-triple (equivalent "Nodes," "TI" and "Prob"). In all of the

tests, the SE list of each algorithm is implemented as a deque list (see Pape (1974) for additional

0.02 0.06 0.14 0.22
0.02 0.10 0.23 0.37
0.02 0.10 0.25 0.44
0.03 0.18 0.30 0.50
0.05 0.20 0.50 0.82
0.14 0.64 2.08 3.27
0.17 0.92 2.28 3.70
0.30 1.47 3.54 5.54
0.27 1.32 2.80 6.54
0.36 1.76 4.36 6.94
0.58 2.71 6.64 10.50

detail). These tests are not intended to test the performance of the procedures under a variety of SE

list structures.

4.3.1 Run Times

The actual average run times for the EV and ELB procedures are given in Tables 1 and 2,

respectively. In order to characterize the performance of the EV and ELB algorithms for this class

of networks, the natural log of the run time in C.P.U. milliseconds is regressed against the natural

log of the number of nodes, number of time intervals and number of elements in the pmf's,

resulting in the following equations:

TEV = (0.0024)(nl-l)(t1.4)(pO.5) (4)

TELB = (O.OOO59) (nl.2) (tI.2)(PO.*) (5)

where TEV and Tmp, are the average of the 30 pertinent run times, corresponding to the 30

randomly selected destination nodes, for an (n,t,p)-triple.

Nodes1 Rob 1 T I = l O 1 TI=30 I TI=m I n = 9 0
1 5 1 0.01 I 0.05 I 0.11 1 0.19

19

Nods Rob n=lO TI=30 TI=60 TI=90
5 0.004 0.017 0.022 0.043

50 10 0.007 0.023 0.048 0.080

I 1 20 I 0.012 I 0.041 I 0.093 I 0.155

1 5 1 0.007 I 0.028 I 0.062 I 0.109
100 10 0.014 0.069 0.108 0.174

20 0.025 0.086 0.203 0.344
5 0.052 0.196 0.579 0.993

20

Table 2

As suggested by Tables 1 and 2 and the estimated coefficients of regression equations (4)

and (5), the run times of both the EV and ELB algorithms grow nearly linearly with the number of

nodes, somewhat worse than linearly with increasing number of time intervals, and better than

linearly with increasing number of elements in the pmf's. The EV algorithm takes approximately 2

to 3 times longer than the ELB algorithm to terminate.

4.3.2 The Number of EV-nondominated Paths

The average and maximum numbers of EV-nondominated paths are given in Tables 3 and

4, respectively, in order to assess the second hypothesis that the number of paths with the least

expected time for at least one time interval is small. As shown in Table 3, the average number of

EV-nondominated paths from each origin node is between one and four, and most often two. This

does not appear to be affected by the size of the network and grows only slightly with the number

of time intervals. The maximum number of EV-nondominated paths from an origin, as shown in

Table 4, is reasonably low for the EV algorithm and appears to be nearly unaffected by the number

of elements in the pmf s, with the exception that the number is consistently highest for the lowest

value, Rob = 5.

20

Table 4

4.3.3 Lube1 Comparisons

The average number of label comparisons for the EV algorithm are given in Table 5. In

order to contrast this with the ELB procedure which only requires one label vector for each node,

the results of similar tests on the ELB procedure are presented in Table 6. These results are

intended to assess the third hypothesis that the number of labels required for determining these

paths does not grow exponentially with the size of the network.

6004 8680 10049 10270
5699 7506 8805 8879

Table 5

Nodm h o b TI=10 TI=30 TI=60 TI=90

5 230 236 252 266
50 10 212 213 2 14 214

I 20 1 210 I 210 1 210 I 210
1 5 1 450 I 476 1 499 I 523

100 I 10 I 412 I 415 I 419 I 420 I
20 408 409 409 409
5 2362 2483 2651 2774

500 10 2158 2170 2175 2190
20 2090 2085 2087 2084

5 4522 4761 5014 5246
1000 10 4108 4131 4176 4183

20 3957 3960 3971 3958

Table 6

21

Tables 5 and 6 show that the number of label comparisons (comparisons between two

labels over the peak period) increases linearly with increasing number of nodes, and decreases

slightly with increasing number of elements in the pmf s for both the EV and ELB algorithms.

There is nearly no increase in the number of label comparisons of the ELB algorithm with

increasing number of time intervals; however, there is significant increase in this factor with

increasing number of time intervals for the EV algorithm. The increased number of comparisons

of the EV algorithm, as compared to the ELB algorithm, is a consequence of the number of

comparisons required of each new label that is constructed. That is, more than one label may be p-

optimal and thus, the new label may be compared to a set of labels, -as opposed to a single label in

the ELB algorithm, over the time period. The growth in the number of comparisons with an

increasing number of time intervals can be explained by the fact that an increasing number of time

intervals leads to a higher likelihood of a path having the least expected time for at least one time

interval. However, for the EV algorithm, there is no indication that an exponentially growing

number of label comparisons is made with increasing network size, suggesting that the number of

labels required to obtain the final least expected time paths does not grow exponentially with the

network size.

4.3.4 Tightness of the ELB lower bound

Three measures are used to assess the fourth hypothesis (the lower bounds on the expected

time determined by the ELB procedure are close to the expected times of the least expected time

paths). The results of the related tests are presented next. Additional testing is conducted to

compare these results for the networks of average in- and out-degree of four to networks with

higher average in- and ou t-degree.

I . Percent Relative Diflerence

Table 7 gives the results of the tests to determine the percent relative difference of the lower

bound computed by the ELB procedure and the true expected times of the least expected time

paths. The first column indicates the level of the percentage of solutions that are less than the

indicated percent difference. For example, the second row shows that for 30 time intervals and 5

elements in the pmfs, 91 of 100 solutions of the ELB algorithm have a relative difference from the

time of the least expected time paths of 0.01. The results given in this table are taken from the

average of the three 500 node networks with average degree approximately 4, as described

previously. Only 30 and 90 time intervals and 5 and 20 elements in the pmf's are considered.

For approximately 80% of the results, the lower bound is identical to the actual time on the

least expected time path for the given time interval. Approximately 90% of the results are within

1% relative difference of the corresponding least expected time. Although this cannot be seen from

Table 7, as the table gives the results for 2 significant figures, there are a few outlying results for

22

which the worst lower bound has a greater than 5% relative difference. More extensive testing is

required to determine the effects of the size of the network.

Diff.

%51%
%d%

%G%

%d%

%13%

Prob TI=30 TI=90

5 82 79
5 91 88
5 96 94
5 98 97
5 100 99
5 100 100
20 86 82
20 96 94
20 100 99
20 100 100

Table 7

2. Maximum Percent Relative Difference

Table 8 shows the maximum percent relative difference from any node to any of the thirty

destinations for the given time intervals and number of elements in the pmf s. The results given in

this table are taken from the average of the three 500 node networks with average degree

approximately 4, as described previously.

Rob I TI=30 I TI=90
5 I 12.5 I 12.7

4.3 I 4.6 I
Table 8

3. Average Percent Relative Difference

Similarly, Table 9 shows the average percent relative difference over all origins to any of the thirty

destinations considered for the given time intervals and number of elements in the pmfs. The

results given in this table are taken from the average of the three 500 node networks Wi-ik .;-
degree approximately 4, as described previously. All values are less than 1%.

Rob I TI=30 I TI=90
5 1 0.24 I 0.3 1

0.15 I
Table 9

4.3.5 Percent Relative Difference Measures for Denser Networks

From Proposition 5, it is apparent that the larger the number of possible paths from a node,

the more likely a label from an upstream node will be composed of labels corresponding to a

mixture of times from several paths. It seems likely that the larger the average degree of a

network, the further the lower bound determined by the ELB algorithm will be from the expected

time on the true least expected time path. Two additional 500 node networks with an average in-

and out-degree of approximately 10 (with a range of 2 - 19) are randomly generated to verify this

23

assertion. Only 30 and 90 time intervals and 5 and 20 elements in the pmfs are considered. The

average results from these two 500 node networks are summarized in Tables 10 through 12.

Diff.

%=O%O

%S1%

%a%
%53%
%a%
%S5%

%G%
%S7%
%18 %

?7&0

%SI%
%12%
9653%
9614%

h o b
5
5
5
5
5
5
5
5
5
20
20
20
20
20
Tat

TI=30
79
86
90
94
96
98
99
100
100

83
91
97
99
100

: 10

TI = 90

77
84
89
93
95
97
99
99
100
80
88
96
99
100

Table 11

h o b TI=30 TI=90
5 0.48 0.55
20 0.27 0.60

Table 12

Comparing the results of the 4 degree networks in Tables 7 through 9 with the results of

the 10 degree networks in Tables 10 through 12 indicates that the relative difference in the

solutions increases with increasing average degree. However, even for an average degree of 10,

more than 80% of the solutions are within 1% of the true least expected time. Several more

networks of varying average degree would need to be tested in order to generalize these results.

As the principal focus of this work is on transportation systems, further testing is beyond the scope

of this paper.

4.3.6 Robustness of the EV-Nondominated Paths

The EV algorithm terminates with all the EV-nondominated paths. Each EV-nondominated

path may be the least expected time path for only a subset of time intervals. In order to test the

robustness of the solutions (hypothesis 5), the average number of time intervals for which each

EV-nondominated path is the least expected time path for the test networks is obtained. The results

of these tests, rounded to the nearest whole number, are given in Table 13.

24

N& h o b TI=lO TI=30

5 6 14
50 10 7 16

20 7 16

5 6 13
100 10 7 16

20 7 17

5 6 13
500 10 7 16

20 7 17

5 6 14
lo00 10 7 17

20 8 18

In general, each EV-nondominated path has the least expected time for approximately one-

half of the time intervals. This is consistent with the results of Table 3 where, on average, two

(between one and four) least expected time paths exist from each origin node. Such solutions are

considered robust.

TI=60 TI=90
25 35
30 45
31 46
24 34
30 44
31 46

22 31
29 42
31 45
23 33
30 - 4 4
32 47

5 Conclusions and Discussion

Two algorithms for solving the least expected time (LET) path problem in STV networks

were presented. The EV algorithm determines the apriori least expected time paths with the

associated expected time from all nodes to a given destination for each departure time interval in the

period of interest. Although worst-case computational complexity is nonpolynornial, for networks

with an average in- and out-degree each of four from the nodes, the average actual computational

effort was estimated to be -Tavg(11~4vl~1~~5), where I is the number of time intervals in the peak

period, v is the cardinality of nodes in G and P is the number of elements in the pmf s. For very

large networks, or dense networks, the number of paths that may be examined can grow quite

large and thus, this algorithm may perform rather poorly. Hence, an efficient method is required.

The ELB algorithm is an efficient algorithm that determines a lower bound on the expected times of

the LET paths. Although this algorithm does not give any path information, in every case

examined, including 500 node networks with an average in- and out-degrees each of 10, at least

73% of the solutions were identical to the actual least expected path times. Thus, by saving path

information in the course of the algorithm, the paths of at least these labels would be correctly

identified. The ELB algorithm also provides an exact solution to the problem of identifying the

LET path where the driver is permitted to react to revealed travel times on traveled arcs en route

(Le. in a time-adaptive route choice framework, also known as a routing problem with recourse).

The average performance of each algorithm is clearly better than predicted by worst-case

computational complexity analyses. Several factors may contribute to this average performance.

25

In the case of the ELB algorithm, the networks used in the tests are sparse while in the worst-case

analyses the networks are assumed to be complete. From the test results, it appears that the times

found by the ELB algorithm are likely to be closer to the true least expected path times in sparse

networks, because fewer paths contribute to the construction of these bounds in sparser networks.

The EV algorithm also performs better than worst-case analysis predicts. That is, the

number of paths that are nondominated in pairwise comparisons does not grow exponentially with

the size of the network for the class of networks tested.

In this work, the pmfs were generated such that each arc has the same likelihood of

having the same pmf. If the arc pmf‘s are similar, it is more likely that there will be several EV-

nondominated paths at each node. The run time of the EV algorithm will be reduced if only a few

outstanding paths or subpaths exist, as is likely to occur in transportation networks. Furthermore,

a path that is best in one time interval is likely to continue to be best in many consecutive time

intervals. This correlation is not considered here. Further investigation of this aspect may lead to

valuable insights into the performance of these algorithms as well as into the structure of the

problem itself.

In addition to the tests described in Section 4, both algorithms were run on a network with

9000 nodes and over 36000 arcs. The ELB algorithm was also run on a network of 15000 nodes,

61386 arcs, 30 time intervals and 5 elements in the pmfs, with average run time over 30 randomly

generated destination nodes of 12.5 user C.P.U. seconds.

Acknowledgment. The authors are grateful to Dr. Athanasios Ziliaskopoulos, presently at Northwestern
University, for many useful discussions in the general area of multidimensional optimum path algorithm
implementation. The authors would like to thank the anonymous referees for their valuable comments. We in
especially grateful to one of the refrees who sharpened our understanding of the usefulness of the ELB algorithm.
Partial funding for the work reported herein came from a research contract through the Amarillo National Research
Center for Plutonium, as well as from support through the Southwest (Region 6) University Transportation Center.

References
R. Ahuja, Network Flows in Handbooks in Operations Research and Management Science: Volume

I , Optimization, eds. G. Nemhauser, A. Kan and M. Todd, North-Holland, New York, 1989.
R. Ahuja, T. Magnanti and J. Orlin, Network Flows, Chapter 5, Prentice-Hall, New Jersey, 1993.
R, Bellman, “On a Routing Problem,” Quart. Appl. Math 16, 87-90 (1958).
J. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York,

J. Brumbaugh-Smith and D. Shier, “An Empirical Investigation of Some Bicritenon shortest path

A. Chames, W. Cooper and G. Thompson, “Critical Path Analyses via Chance Constrained and

G. Corea and V. Kulkarni, “Shortest Paths in Stochastic Networks with ARC Lengths Having Discrete

A. Eiger, P. Mirchandani and H. Soroush, “Path Preferences and Optimal Paths in Probabilistic

H. Frank, “Shortest Paths in Probabilistic Graphs,” Operations Research 17, 583-599 (1969).
G. Gallo and S. Pallottino, “Shortest Path Methods: A Unifying Approach,” Mathematical

F. Glover, D. Klingman, N. Phillips and R. Schneider, “New Polynomial Shortest Path Algorithms

1997.

Algorithms,” European Journal of Operational Research 43, 216-224 (1989).

Stochastic Programming,” Operations Research 12, 460-470 (1964).

Distributions,” Networks 23, 175-1 83 (1993).

Networks,” Transportation Science 19, 75-84 (1985).

Programming Study 26, 38-64, North-Holland, Amsterdam, 1986.

26

and their Computational Attributes,” Management Science 31, 1106-1 128 (1985).

Transportation Science 20, 182-188 (1986).
R. Hall, “The Fastest Path through a Network with Random Time-Dependent Travel Times,”

P. Hansen, “Bicriterion Path Problem,” in Multiple Criteria Decision Making: Theory and
Applications. Lecture Notes in Economics and Mathkmatical Systems 177, Springe;-Verlag, Berlin,
109-127 (1980).

D. Kaufman and- R. Smith, “Fastest Paths in Time-Dependent Networks for Intelligent Vehicle

V. Kulkami, “Shortest Paths in Networks with Exponentially Distributed Arc Lengths,” Networks 16,

R. Loui, “Optimal Paths in Graphs with Stochastic or Multidimensional Weights,” Communications

A. Madansky, “Inequalities for Stochastic Linear Programming Problems,” Management Science 6,

D. Malcolm, J. Roseboom and C. Clark, “Application of Technique for Research and Development
Program Evaluation,” Operations Research 7, 646-669 (1959).

E. Miller-Hooks, “Optimal Routing in Time-Varying, Stochastic Networks: Algorithms and
Implementation,” Ph.D. Dissertation, Department of Civil Engineering, The University of Texas at
Austin, 1997.

E. Miller-Hooks and H. Mahmassani, “Least Possible Time Paths in Stochastic, Time-Varying
Networks,” Computers and Operations Research 25, 1107-1 125 (1998).

P. Mirchandani and H. Soroush, “Optimal Paths in Probabilistic Networks: A Case with Temporary
Preferences,” Computers and Operations Research 12, 365-38 1 (1985).

I. Murthy and S. Sarkar, “A Relaxation-Based Pruning Technique for a Class of Stochastic Shortest
Path Problems,” Transportation Science 30, 220-236 (1 996).

S . Nguyen and S. Pallottino, “Hyperpaths and Shortest Hyperpaths,” Combinatorial Optimization,
Lecture Notes in Mathematics 1403, Sprinter-Verlag, Berlin, 258-27 1 (1986).

A. Orda and R. Rom, “Minimum Weight Paths in Time-Dependent Networks,” Networks 21, 295-
319 (1991).

S . Pallottino, “Shortest-Path Methods: Complexity, Interrelations and New Propositions,” Networks

U. Pape, “Implementation and Efficiency of Moore-Algorithms for the Shortest Route Problem,”

H. Psaraftis and J. Tsitsiklis, “Dynamic Shortest Paths in Acyclic Networks with Markovian Arc

Highway Systems Applications,” ZVHS Journal 1, 1-1 1 (1993).

255-274 (1986).

of the ACM 26, 670-676 (1983).

197-204 (1 960).

14, 257-267 (1984).

Mathematical Programming 7, 2 12-222 (1974).

Costs,” Operations Research 41, 91-101 (1993).
C. Sigal, A.-Pritsker and J. Solberg, “The Stochastic Shortest Route Problem,” Operations Research

28, 1122-1 129 (1980).
Van Slyke, R. (1963) Monte Carlo Methods and the PERT Problem. Rand Research Memorandum,

A. Ziliaskopoulos, “Design and Implementation of Some I(Shortest Path Algorithms with
Application to Intelligent Vehicle Highway Systems,” Master‘s Report, Department of Civil
Engineering, The University of Texas at Austin, 1992.

A. Ziliaskopoulos and H. Mahmassani, “Time-Dependent, Shortest-Path Algorithm for Real-Time
Intelligent Vehicle Highway System Applications,” Transportation Research Record 1408, 94-100,
(1993).

A. Ziliaskopoulos, “Optimum Path Algorithms on Multidimensional Networks: Analysis and Design,
Implementation and Computational Experience,” Ph.D. Dissertation, Department of Civil
Engineering, The University of Texas at Austin, 1994.

A. Ziliaskopoulos and H. Mahmassani, Design and Implementation of a Shortest Path Algorithm with
Time-Dependent Arc Costs,” Proceedings of 5th Advanced Technology Conference, US. Postal
Service, Washington D.C., 1179-1 194 (1992).

RM-3 3 67-PR .

Appendix A

Both the EV and ELB algorithms take advantage of the fact that the expected value of a path

can be calculated from the distribution of a single arc at a given departure time and the expected

times over all time intervals of the remaining subpath. For example, in Figure 1, the expected time

27

on path 1-2-3-4 at departure time interval 0 can be determined from the pmf of arc a at departure

time 0 and the expected travel times of subpath 2-3-4 at all the possible arrival times at node 2.

Figure 1

The travel time pmf's for the example network in Figure 1 are given in Table 14 where the travel

time (probability) are given for each arc at the relevant time intervals. Travel times can be in any

unit of time, assume in minutes.

t = O 1 t = O I t = 2 t = 3 I t = 2 t = 3 1 t = 4 t = 5 t = 6 t = 7

2(0.5) I 5(0.4) I 4(0.8) l(0.3) I 3(0.8) 6(0.4) I 4(0.2) 5(0.3) l(0.9) 3(0.3)

I 3(0.5) I 7(0.6) I 5(0.2) 3(0.7) I 7(0.2) 7(0.6) I 6(0.8) 8(0.7) 2(0.1) 4(0.7) I
Table 14

The expected travel times can be calculated as follows:

Expected time on subpath 2-3-4 at t = 2 is (4+1.1)(0.8)+(5+3.7)(0.2) = 5.82 minutes.

Expected time on subpath 2-3-4 at t = 3 is (1+5.6)(0.3)+(3+8.3)(0.7) = 9.89 minutes.

Expected Time on path 1-2-3-4 at t = 0 is (2+5.82)(0.5)+(3+9.89)(0.5) = 10.355 minutes.

Appendix B: Example Problem

For the example in Figure 1 and Table 14 of Appendix A, determine the lower bound on

the least expected time for any path from node 1 to node 4 at departure time 0. The associated

xi (t)'s for the time-adaptive route choice problem are also indicated.

0. Initialization

hi(t) = = a n d ni(t) = 00 V i E (1,2,3}, t ES =(0,1, ... 7).

h4(t)=Oand x 4 (t) = 0 V t E S .

Put node 4 in the SE list.

1. Scannode4.

2. For each i E p (4) = { 2,3}, determine the lower bound on th expected tim

~ 2 (2) = (3+0)(0.8)+(7+0)(0.2)=3.8 < 00, h2(2) = 3.8, ~ 2 (2) = d .

q2(3) = (6+0)(0.4)+(7+0)(0.6)=6.6 c 00, h2(3) = 6.6, ?C2(3)=d.

S E = (2)

Similar calculations for node 3 lead to:

to nod 4.

28

h3(4) = 5.6, n;3(4)=e.

h3(5) = 7.1, 7c3(5)=e.

h3(7) = 3.7, 7r3(7)=e.

SE = {2,3)

1. Scan node 2 -- for all i E r-1(2) = { 1)

2. ql(0) = (2+3.8)(0.5)+(3+6.6)(0.5)=7.7<-, h,(O) = 7.7, -nl(O)=a.

SE= 13)

1. Scan node 3 -- for all i E F (3) = { 1,2)

2. ~ ~ (0) = (5+7.1)(0.4)+(7+3.7)(0.6)=11.26>7.7

q2 (2) = (4+1.1)(0.8)+(5+3.7)(0.2)=5.82>3.8

X3(6) = 1.1, n;3(6)=e.

~ 2 2 3) = (1+5.6)(0.3)+(3+1.1)(0.7)=4.85<6.6, h2(3) = 4.85, 7T2(3)=C.

S E = (2)

1. Scan node 2 -- for all i E r-1(2) = (1)

2. ql(0) = (2+3.8)(0.5)+(3+4.85)(0.5)=6.825 < 7.7,h1(0) = 6.825, nl(O)=a.

S E = { }

Note that in this example, calculations for hl(t) and n;l(t) for t=O only are shown. The algorithm

actually calculates , 'R: i (t) V i E Vand t E S.

A priori least expected time paths: If the subpaths of the a priori LET path are the E T paths

for all time intervals, then this algorithm will determine the least expected time of a single path,

which can be identified through the use of path pointers. This example is constructed such that for

each possible arrival time at node 2 a different path would have the least expected travel time.

Thus, more than one path contributes to the node label at node 1. In the example problem, path

2-4 is best for time interval 2 and path 2-3-4 is best for time interval 3. Therefore, the label from

node 1 through node 2 uses the expected times from both paths 2-4 and 2-3-4 and the label will

have a lower value than the expected time on either path 1-2-4 or 1-2-3-4. The least expected travel

time for any path in the network is 7.7 minutes and 6.825 minutes is a lower bound on this

duration.

Least expected time paths for time-adaptive route choice: The resulting hyperpaths for

this problem formulation are given in the form of a tree as shown in Figure 2. For a given arc

corresponding to the next arc on the path, at the given departure time t from the arc's origin node,

the expected value (EV) for the path is given. For example, if the travel time on arc (1,2) is 3

minutes then the arrival time at node 2 is t=3. The driver will choose arc (2,3) next and the

remainder of the path to node 4 will have an expected time of 4.85 minutes.

qi(0) = (5+7.1)(0.4)+(7+3.7)(0.6)=11.26 > 7.7

3. stop

29

EV=3.8

EV=6.825

Figure 2

30

EV=l.l t=6 -@

List of Figures

Figure 1. An example network

Figure 2. Resulting hyperpaths as shown through conditional tree structure

List of Tables

Table 1. Run times in C.P.U. seconds for EV algorithm

Table 2. Run times in C.P.U. seconds for ELB algorithm

Table 3. Average number of EV-nondominated paths at each node for EV algorithm (rounded to

nearest whole number)

Table 4. Maximum number of EV-nondominated paths at any node for EV algorithm (rounded to

nearest whole number)

Table 5. Average number of label comparisons for the EV algorithm

Table 6. Average number of label comparisons for the ELB algorithm

Table 7. Percent relative difference of the results from the ELB algorithm (to 2 significant figures)

Table 8. Maximum percent relative difference

Table 9. Average percent relative difference

Table 10. Percent relative difference of the results from the ELB algorithm for the network with

degree 10 (to 2 significant figures)

Table 11. Maximum percent relative difference for networks with degree 10

Table 12. Average percent relative difference for networks with degree 10

Table 13. Average number of time intervals for which each EV-nondominated path has the least

expected time for the EV algorithm

Table 14. Travel times and associated probabilities for the example network show in Figure 1.

	average results from these two 500 node networks are summarized in Tables 10 through
	%S1%
	%53%
	%S5%
	%G%
	%S7%
	%18 %
	%SI%
	%12%
	Table
	Table

	However even for an average degree of
	these tests rounded to the nearest whole number are given in Table

