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LEAST— I NDEX RESOLUTION OP I)ECENFRACY IN QUADRATIC PROC RAZ~Q4IN G

by

Yow—Yi eh CHANG and Richard  W. COTTLE
Dep ar tment  of Operat ions  Research

Stanford University

ABSTRACT

In this study, we combine least—Index pivot selection rules with

Keller ’s algorithms for quadratic programming to obtain a finite method

for processing degenerate problems .

1. Introduction.

Degeneracy is a theoretically troublesome phenomenon in the analysis

of simplicial methods for linear programming although , according to

folklore , it Is not a serious impediment tt~ practical computation [7 , p. 2311.

For the record , a basic solution to a linear programming problem is said

7, p. 81! to be ~~~enerate If at  least one of the basic (i.e. dependent)

variables equals 0. Even if the initial basic solution is non—degenerate ,

an adjacent extreme point algorithm such as Dantzlg ’s simplex method may

selec t degenerate basic so~utlons as a consequence of t ies In the

minimum ratio test used to determine the exiting basIc variable. This in

t t1~~~~ ~~m lead to the phenomenon known as circ~,!p~ (alias ç~y~in~): a

sequence of bases whi ch (after finitely many steps) repeats itself. De-

generacy per se Is not the~ probLem; hut when It is present , circling is

.1 possibility and must be a.~oided if the  simp lex method and procedures Uke

it are to work and be finite. The “degeneracy problem” refers to the

diffi c ult les associated with circling.

I
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Unt il quite recently , the theoretical procedures available for

handling the degeneracy problem were Charnes’ perturbation technique I 3 1 ,

the lexicographic method of Dantzig, Orden and Wolfe 1 8 1, the ad hoc method

of Wolfe 151 . We shall not attempt to review these technical procedures

here, but simply remark that their actual implementations are commonly be-

lieved to entail storage requirements and computational effort out of all

proportion to the need for them . In 1976, Bland ( 2 1 announced a finite

version of the simplex method based upon a double least—index pivot selection

rule. In Bland ’s method , the entering basic variable Is chosen as the

candidate with the smallest index. The variable it replaces (if any) is

determined by the usual minimum ratio test with ties broken according to

the least—index rule. The method seems so natural , it is difficult to

understand why it was not published earlier.

At this point , Bland ’s contribution is of greater importance to linear

programming theory than practice. A study by Avis and Chv~ta1 1 1 1 shows

that the method (in the form sketched above) is less efficient than those

which choose the entering variable by paying more attention to decreasing the

ob l ective function. Avis and Chvi tal found , however, that prior arrangement

of the variables may help to bring about treater efficiency as compared with

the other methods. Another possible shortcoming of Bland ’s method may lie

in its disregard of the magnitude of the pivot entry. Recognizing these

objections, we regard Bland ’s least—index rule as a significant contribution

to LP theory and hope that it will develop into a viable practical approach

as well.

- 
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In this paper we demonstrate that Bland’s least—index pivot selection

rules can be applied to handle the degeneracy problem in the Dant~
ig/van de

Panne—Whinston/Keller algorithm for quadratic prograimning. (See (6 1, (71,

( 131 , ( 9  1.) In a nutshell , wha t ii shown ii that by using Bland ’s least—

index rules in Keller ’s algori thm, one can prevent circling and reach one

of the terminal forms after finitely many pivot steps . From this one

either has knowledge that the objective func t ion is unbounded below or else

a solution of the Kuhn—Tucker conditions.

1:
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2. Quadratic programmi~~

In this section we consider th. application of Bland ’s least index

rule to the symmetric Dantzig/van de Panne—Whinston/Keller quadratic

programming algorithm. This procedure in its most general form (given

by Keller) aims to find a local minimum in a nonconvex quadratic program-

ming problem .

2.1 Statement of the problem .

We express the quadratic programming problem in the form

(1) minimize Q(x) — 
T 

+ ;SX
T

DX

subject to Ax ‘C b

x > O

The matrix D is always (without loss of generality) assumed symmetric .

When we speak of convex quadratic programming, we refer to the case where

D is positive semi—definite; but for the moment this is not assumed .

The approach taken in the Dantzig/van de Panne—Whinston/Keller

algorithms for solving (1) is to find a solution of its Kuhn—Tucker con—

dit ions, i.e. its necessary conditions of optimality, namely

(2) u ” c + D x + A
T
y

v b — A x

x > 0 ,y )O , u > 0 , v > O

T T
x u O , y v — O

In the convex quadratic programming case these conditions are also suffic ient

4
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or the  optima l i t  v ot . In  the uencou v ex case • 
h ey a rc not in genera l j

so i f  Ic lent , even I or a lo ca l  m i n i m u m ,  ‘1

The method of Keller (which ext ends those of I ) an t z lg  and van de Panne—

W h i n s t o n )  is capable of f i n d i n g  a loca l  m i n i m u m  ci a nondegenerate non—

convex QP in f i n i t e ly  many steps . Thi s  is done by obtaining a suitable

solut ton of (2). We show here tha t  by us ing  a na tu r a l  adap ta t i on  of Bland ’s

least—index ru l e  we can dispense with the nondegeneracy assumption and find

a solution of 
~
1) , .~~ a in in f m i t  c iv  m any  steps.

2 .2 B land ’s l e a s t — i n d e x rule for  I P .

In lQ 7h , R .C .  Bland I 2 1 showed tha t  a cer ta in  simple and na tur a l

pivot  se lec t ion  r u l e  never leads to  c i r c l ing . His pivot ing rule is a

ref inement  ot the s i m p l e x  ru le  ob t a in ed  by imposing the following restric-

t ions:

(a) among .i 11 he • and idat es t o  en te r  the  b as ic  set of var tab los ,

se le c t  th e  nonhas ic var  tab 1’  h a v i n g  the l owest Index .

(b) among :% 11 c and I d.m t es to  I c.ivt ’ t he basic set , select the basic

var iab le  having the l owest index.

It is well to understand what is meant by these  statements. We

Imagine the linear program to be expressed In the canonical simplex tableau

consis t ing  of m + I l i ne ar ly  tndepend ant  rows and n + 2 columns :

Bas ic var iable s x x • . • x 1
0 1 mt

; .1 • • • .i~ b

. ~

0 a ‘ a b
mu ml mutt mu

S

_ _ _ _
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It is assumed that  B
0 

0 , 1 < B
1 

< 11 for  1 1, . . . ,  m , and the

matrix formed from the columns headed by x
6 

, X
B ~ ~~~ 

x~ 
constitutes

0 1 mu 4

an ident i ty  matr ix  of order (m + 1). In par t icu lar , the columns

associated with has a 1 in row I and 0 elsewhere.

I

The least—index selection rule for choosing the incoming variable is

clear although it differs from the customary one. We want to stress that in

choosing the exiting basic variable one uses the usual candidacy rule and

breaks ties accord ing to the least index of the affected basic variables

rather than by the least row number of such variables . To be precise ,

suppose x
5 

is the incoming variable. Then the exiting basic variable

(if any) is the one whose Index (subscript) satisfies

bQ
(3) 8 mm B

2
: a

9 
> 0 and — — m i n i — — : a~ > 0

is

The pivot element is then a
rs

e The important point is that the minimization

in (3) is over 8
9 

rather than 2.

2.3 Keller ’s algorithm.

In describing Keller’s algor ithm, it Is convenient to introduce a change

of notation in (2). Suppose A E ~~~~ Initially, we define .
‘ — 11 , ..., nI

— 
~n + 1, ..., n + m } , and then put

(4) x
1 

— x , x . — V , y, — u • y7 y

_____  - 
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Accord ingly, (2) can he r ep laced by the  hlsymmetr i c  schema:

i
(S) 

1 ~~~ ,

y
1
- c D A

T

x . h —A 0

The var iable 0 Ia related to the object ive function through the

equa tion

•1. ‘1’
(6) 0 — 2Q — x y

~ 
— x ,y,

This equation is a consequence of two other equations represented in (5).

Actually, Keller ’s method works with the slightly more general schema

(7) 1 
~~~~

U — 2m
~ 

T 
b r ]

y .- — c D A
t

x . — b —A E

in which E is symmetric and positive semi—definite and 
~ is a constant.

(In our origina l schema (5) we have E — 0 and 
~ 

— 0.) The most important

reason for working with such a schema is that one encounters this type of

forma t in subsequent principal pivotal transforms of (5), so one might as

well regard it as given from the start. A second rationale for (7) is that

7
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It co rresponds to the one used for  s imu et r i c  dual  quadra t i c  programs 1 4 1 .

In such a schema, we regard the variables ii € . )  and X

j 
(i E ,

~
) ~is

basic. The variables x
1 

(I ~ ) and y
~ 

(j 
~ ~
) are then non—basic.

It is h e l p f u l  to notice that the entries in the schema can be considered as

partial derivatives. For example

~
Yi

/3x
j 

- d
1~

It is assumed that b 
~ 0. This amounts to a (primal) feasibility

condition . In a given instance, If b is not nonnegative one can as an

initialization step execute the P
~tase I procedure 0 LP to make it so or

else determine the infeasibIlity of the constraints. The remaining steps

of the original method f or the nondegenerate case run as follows:

Step 1. If all basic y—variables are nonnegative , stop. A local minimum has

has been found. Otherwise choose a negat ive y—component , say y ,  as the

“distinguished variable”.

Step~~ . If ay/~x < 0 go to Step 3. Otherwise , determine the “blocking

variable”, i.e. the basic variable (either y or X
je ~ 

E 
~) which reaches

the value 0 first as x is increased from 0.
a

a. If y
5 

is the blocking variable, perform the tn—pivot 
~~~~~~~~~ 

x )

by which y and x are exchanged. Replace 
~~

‘ by ,
‘ U (s} and I by

- {s}. Return to Step 1.

b. If x
~ 

is the blocking var iable and 
~
x
~
/3Y

~ 
> 0 then perform the

out—pivot (x , y~
) by which x~ and y

1 
are exchanged . Replace •

T by

J — (ii and I by T U (tI. Repeat Step 2 (with x still the driving

B
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va r i ab l e) .  I f  ~x — 0 , tlic ~. p I t  c r i t  the o\chmI
~jc j~Ivot  ( x~ , x

( y
s
, 

~~~ 
th rou gh which x and x are exchanged and y

5 
and y~ -i re

exchanged . Replace 
~

‘ by (
~

‘ — ( t  ~ U (s) and I by ( — (a ) ) U{t).

Return to Step 1.

Step 3. Determine whether x h 1 o c h e ~1. if 
~
x /ix 

-> 0 for all
S .1 s~~~

j  € 
~ -‘ then x is unblocked . Stop. itice Q —

~~~~. Otherwise x
5 

Is

blocked . If  .
~
x
~

/ :t v
~ 

0, perform the out—pivot x~~, 
v~ > ; replace I T

by J — (t
~ 

and by ~ U (t ’. Rercr’~ 
to Step 2. H ~~~~~~~~~~ 

— 0,

perform the exchange pivot (x
c
, \ )  , ( v , v

~
) ; rep lace J by

(~
r _ (t})U(s} and T by (I— ~s~)U(t). Return to Step 1.

We do not intend to justitv the m et h o d  or even discuss it at length.

For this one shou)d see 91. However . ‘.se do wish to draw the reader ’s

attention to some of its salient feat~ iro~
;.

1. The nondegeneracy assumpt ion j p ’pj  t h ot  the re  is a lways at mos t one

blocking variable.

2. The method uses only princ ipal p ivots  c
~t order 1 (in—pivots and out—

pivots) or order 2 (ex change  p : ’  ct~
;).

3. The property of bisymrnerrv Ic ~ro~
;ervc-i by princ ipal pivoting (regard-

less of the order). This is proved Ic 114

4. The nonnegat ivi ty  of the x—v t~~
I .iblcs Ic pr eserved throughout the

procedure.

5. Given the current index set ~~

‘ the principal submatrix ~ 
corresponding

to the rows and columns indexed by is always positive semi—definite

and its nullity equals t h a t  of the or i 0ina l  , E.

6. According to quadratic prograuuning theorY , a Kuhn—Tucker point Is a local

9 V. ;
‘-I .

~
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minimum in the nondegenerate case provided ~ 
is positive s

~~i—

definite. However, in the degenerate case, more than just the positive

semi—definiteness of E is needed. In effect , a type Oi copositivity

condition is required. (See [10] and [11]). Unfortunately Keller ’s

method makes no provision for this; hence we make no claim tha . t~ e

mo~
ified Keller method described below actually yields a local minimum

in the degenerate case. Nevertheless, the method leads in finitely ma!~y

steps to an indication of unboundedness or else to a solution of the

Kuhn—Tucker conditions, and in the case of convex quadratic programmi ag,

this is enough for global optimality.

2.4 Finiteness of Keller ’s method with the least index rule.

We now give a modification of Keller’s algorithm and prove its

finiteness without recourse to a nondegeneracy assumption. To accomplish

this, we introduce a ref inement of Keller ’s algorithm which imposes the

following double least—index rule:

(1) In Step 1, choose the distinguished variable y
5 

so that

s — n t in (i E I: yj <O}

(ii) In Steps 2(b) and 3, choose the blocking variable x
~ 
so that

t — mm E J: —a < 0 and —i-- — mm : k E J, —a ~js a
j5 

a
kS 

ks

10
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In Step 2, there could I II  i “t i - ” betw een y and x~ for

blocking. The statement of S tc ;  2 Ic ~r t t e n d c d  to mean that  under

these circumstances , one should chocce  y as t h e  blocking variable.

This would decrease the ob j ect i ve  f u n c t  io’i value.

In Keller’s method , each return to :~t~’p 1 completes a major cycle.

Lemma 1. Each major cycle of Keller ’s ai p o r i t h m  (with or without the

least index rule) is finite.

Proof. The pivots in Keller ’n method are of three types: in—pivots,

out—pivots, and exchange—p iv”tc . l3oth 5 n—pivots and exchange—pivots lead

back to Step 1, hence each completi.’ - a major cycle. Each out—pivot

reduces the card inality of e’ by 1, so there can be only finitely many

out—pivots within a major cycle. 0

Lemma 2. If circling oc curs in O c h er ’s a lg o r i t hm , then during circling,

only exchange—pivots are used .

Proof. By Lemma 1, if c i rc l ing occurs , tht re must be infinitely many

returns to the same complementary basis in terms of which the schema is

uniquely determined. Kc iic r shows tha t  regardless of whether degeneracy

is present, the val ue of 0 I s  l l e i i t n L c a s J n g  under all steps of the

algorithm. Hence during c - i r c t l t i p ,  0 must  be fixed . This implies

there can be no in—pivots  d ur h i g  c i r c l l u ~~, 
for these always decrease the

value of 8. Now It remains to  rh ow I -ha t during circling , there are no

out—pivots. To see t h is  we note .  tha t  each out—p tvot increases the

cardinality of the  index set T (oi rr~spo nding to the basic y—variables).

11 ~~~~~

~-
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Since exchange—pivots do not affect the cardinality of I and in—pivots

cannot occur by our previous argument, there can be no out—pivots

during circling. 0

Suppose circling occurs during the execution of Keller ’s algorithm.

We know that each major cycle must be f inite, so the only remaining

possibility is that there are infinitely many major cycles (returns

to Step 1). A circle begins at a complementary schema, a principal

pivotal transform of the original schema (7). Since non—terminal

principal transforms of (7) share its properties (bisysmmetry, positive

semi—definiteness of E, b ) 0, c 0), we may assume for simpl icity

that the circling starts at (7). The circling consists of a sequence

of (at least two) exchange pivots returning to (7). Assuming the

circling starts at (7) we focus attention on the variables actually

exchanged.

Definition. Let

K — {j E J: x
3 

becomes nonbasic during circling)

Accordingly, by delet ing from (7) those rows and columns j such that

j ~~
K , we obtain a subschema with much the same character , namely

1 x
1 

y
(8) K

e — ~~~~~~T —b~

y
1
- c D 

4

x~~~~~b -A E
K K K. X~

A1

12
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Caution: In (8) and the lemma below , we indulge in an abuse of

notation . The symbols b
~ 

k
1~, , 

and E~~ ref er to those parts of

b , A , and E corresponding to the basic variables xX.

Lenin. 3. Under the assumptions made above ,

(9) b
~ 

— 0 and E
x 

— 0 E.~ 
— 0

Proof. Let x be the first driving variable . Since this must lead

to an exchange—pivo t, let x~ be the blocking variable. Since we must

perform an exchange—pivot (rather than an out—pivot) we must have 
~~~ 

— 0.

This implies

— 0 , E
~~ 

— 0

because E is syiunetric and positive semi—definite. As a result of an

exchange—pivo t , 2K becomes

re -, b d
2K + b  I— ! -  + .L(

~ + 
t i s

t i a  a a
i t s  ta

each of the sumeands within th. square brackets is negative . Since

b
~ 

is nonnegative and P does not change during circling , we must have

b
t 

— 0. Under these circumatanc.., the entries of b
~ 

and are not

affec ted by the •~u’he~g .—pivot . Since each row indexed by k E K

involved in an .nchanp.—plvo t. th e argument just given applies and

th. proo f is co
~
,I.te.. 0

I’
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Now we come to our result on quadratic programming.

Theorem 1 With the double least index rule, Keller ’s algorithm is

finite.

Proof. If the method is not finite, there is a subachema of the form

(10) 
1 x 1. 

~~

T
0 2K c 0

T
y
1
- c D A

x

0 0

in which circling occurs. All of the transformations of this subschema

arise as exchange—pivots. The matrix D has no affect on the transforms

of c and A~~. Indeed c and A
~ 

would be transformed the same way

if D were the zero matrix. But when D — 0, we are just doing Bland’s

refinement of the simplex method which is finite. 0

Corollary. If circling occurs when Keller’s method (without degeneracy

precautions) is applied to the quadratic program (1 ), then m > 2 and

m + n > 6. The bounds are sharp. I’

I

Proof. The arguments given above imply the existence of a linear

program based on a subset of the variables in which circling occurs. But

Marshall and Suurballe (121 have shown that such an LP must have at least

two equations and at least six variables. Hence, m > 2 and m + n > 6.

14
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The bounds given by Marsh all and Sut&r b ~i 11e i r e  sharp,  so they must

be sharp here too. [3

Example. The t ol low tug miii i u - i  I examp 1 - Is a mod i I icat ion of one

given in 1121.

1 x
1 

x
l 

x
.~

I e~~ 0 — l 1 1 2 0 0

— — .1 —1 0 0 0 1/2 1/2

y2 — 7 0 — 1 0 0 —11 /2 —1/2

y
3 

— 1 0 0 —1 0 —5/2 —1/2

y —  2 0 0 0 — ) 9 1

x
5 

— 0 —1/2 11/2 5/2 —9 0 0

x
6 

— 0 —1/2 1/2 1/2 — 1 0 0

After  6 p ivots , one re turns  to the same schema.

2.5. 0n dro
~ p~~ j&je~~

twracy 
~
recaut ions .

As is well known, it is c us t oma r v in pra ctice to ignore the

degeneracy problem in many m a t h e m a t I c a l  progr amming schemes. Quadra t ic

programming is no exception. h ero we wish  t o  draw some at  t ‘ntion to the

fact  tha t occasionally this  can be done w i t h  abso lu te  confidence.  To

this end, we consider the a p p l i c a t i o n  of Keller ’s a lg o r i t h m  (minus

degeneracy precautions) to a specia l  t vpt ’ of prob l em.

I ‘-~
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Theorem 2. Kel le r ’s algori thm app lied to the bisynmetric schema

1 ,c , y ,

T T
U — 2

~ c —b

- A
T 

-

x~~~~
- b —A F

in which h ‘ 0 and F is positive definite, provided e~ 
$ 4 .  uses

only in—pivots and out—pivots.

Proof. Suppose J is vacuous. Let ‘
~
‘ be the distinguished variable;

then x is the driving variable. Since ~ — 4 , y is the only

eligible blocking variable. If d
5 

— ay /Dx < 0, then y does not

block x .  The procedure terminates with 8 going to minus i n f in i ty .

1 d > 0 then the in—pivot ( y ,  x
5
) brings about a bisy-mmetric

schema with J — (s} , I — T — {sI , and F — [l/d 1.

Thus, we may assume el I •. Note that so long as F remains

positive definite, there will be no exchange pivots , for these came about

when some x blocks an x and 
~x /~1v - e - 0. Now clearly an

t S t ~ t t t  -

out—pivot (X
e
. 

~~~ 
preserves the positive definiteness of F unless

— ( t ) .  Und er the action of an in—pivot ( v , x )  F is rep laced

by a principal  t ransform of the positive de f in i t e  mat r i x

[d . 
A

T

E

Hence E will be positive definite when it is nonva ’uous. 0

lb

—~~~---~~~~~~ _ _ _
_, ~~~~~~~~~~
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Coroll .
~~~~ 

Under the assumptions ot Theorem 1 ,. Keller ’s method

is f i n i te .

Proof.  If c i rc l ing  occurs In K e l l e r ’s method there must be at least

two exchange—pivots.  0

Remarks. Some related r e su f ls  should be mentioned in connection with

Theorem 2. In his Ph.D. t h e si s  110 1, Keller notes that his method

executes no exchange—pivots when I) is positive semi—definite and E

is positive definite , but th~’ d i s c u s s t hn  there is  not related to the

degeneracy problem. Also, in Appendix I of I ~ I , Cottle and Djang

observe that the syninetric vai~ ti e Paiine’—Wlitnston algorithm (131 applied

to the least—distance problem s tud i ed by ~~‘ite I IbJ does not require

a non—degeneracy assumpt Ion to  •o;sure its f in i ten e s s .

We have presented the a p p h i c a t  Ion of Bland ’s double least—index

rule to Kell er ’s method (and t b e r e I o i ~ I m p l i c i t l y  to the van de Pamw—

Whinston symmetric algorithm). There is reason to bel ieve that such

a rule could apply to other a l g or i t h m s , but we do not pursue this

possibility here.

______ - 
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