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Abstract—We analyze the tracking performance of the least
mean square (LMS) algorithm for adaptively estimating a time
varying parameter that evolves according to a finite state Markov
chain. We assume the Markov chain jumps infrequently between
the finite states at the same rate of change as the LMS algorithm.
We derive mean square estimation error bounds for the tracking
error of the LMS algorithm using perturbed Lyapunov function
methods. Then combining results in two-time-scale Markov chains
with weak convergence methods for stochastic approximation,
we derive the limit dynamics satisfied by continuous-time in-
terpolation of the estimates. Unlike most previous analyzes of
stochastic approximation algorithms, the limit we obtain is a
system of ordinary differential equations with regime switching
controlled by a continuous-time Markov chain. Next, to analyze
the rate of convergence, we take a continuous-time interpolation
of a scaled sequence of the error sequence and derive its diffusion
limit. Somewhat remarkably, for correlated regression vectors
we obtain a jump Markov diffusion. Finally, two novel examples
of the analysis are given for state estimation of hidden Markov
models (HMMs) and adaptive interference suppression in wireless
code division multiple access (CDMA) networks.

Index Terms—Adaptive filtering, adaptive multiuser detection,
diffusion process, hidden Markov model (HMM), jump Markov
linear diffusion, limit theorems, Markov chain, stochastic approx-
imation, tracking.

I. INTRODUCTION

THIS paper deals with analyzing how well the least mean
square (LMS) algorithm can track a time-varying param-

eter process that undergoes infrequent jump changes with pos-
sibly large jump sizes. The values of the time-varying parameter
process belong to a finite state space. At any given instance,
the parameter process takes one of the possible values in this
finite state space. It then sojourns in this state for a random
duration. Next, the process jumps into a new location (i.e., a
switching of regime takes place). Then, the process sojourns in
this new state in a random duration and so on. Naturally the
parameter can be modeled by a finite-state Markov chain. We
assume that the regime changes take place infrequently. Thus,
the time-varying parameter is a discrete-time Markov chain with
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“near identity” transition matrix. Henceforth, for brevity, we
often call it a slowly varying Markov chain or a slow Markov
chain. The slowness is meant to be in the sense of infrequent
jumps (transitions). Due to practical concerns arising from many
applications, it is crucial to analyze the performance (such as
asymptotic error bounds and evolution of the scaled tracking
error sequence) of the LMS algorithm. In this paper, we derive
mean squares error bounds, treat an interpolated sequence of
the centered estimation errors, and examine a suitably scaled
sequence via martingale problem formulation.

A. Motivation

A number of examples in fault diagnosis and change detec-
tion fit into the slow Markovian model (see [2]), as do prob-
lems in target tracking, econometrics (see [11]) and the refer-
ences therein. As will be seen later, such problems also appear
in emerging applications of adaptive interference suppression
in wireless code division multiple access (CDMA) networks
and state estimation of hidden Markov models (HMMs). To the
best of our knowledge, in analyzing LMS algorithms with time-
varying parameters, most works up to date have assumed that the
parameter varies continuously but slowly over time with small
amount of changes; see [2], [7], [8], [15], [16], [20], and [28]. In
contrast, we deal with the case when the parameter is constant
over long periods of time and then jump changes by possibly a
large amount. By considering the Markovian time-varying pa-
rameter dependence, we formulate it as a Markov chain with
two-time scales. Using recent results on two-time-scale Markov
chains [33], [34], we examine the asymptotic properties of the
tracking algorithm. A salient feature of the analysis in this paper
is: It allows for the parameter to evolve as fast (i.e., on the same
time scale) as the LMS tracking algorithm, which is more rel-
evant to applications involving jump change parameters. Two
of our recent papers [31], [32] examine similar tracking prob-
lems—but yield different results; see description titled “Con-
text” at the end of this section.

B. Main Results

We assume that the true parameter (called the hypermodel
in [2]) evolves according to a slow finite-state Markov chain
with transition probability matrix where is a small
parameter, and that the LMS algorithm operates with a step size

. We consider both unscaled and scaled sequences of tracking
errors. The main results of the paper are as follows.

1) In Section III, our focus is on the unscaled tracking
error sequence. It is further divided into two parts.
First, we present a mean square stability analysis of
the LMS algorithm using perturbed Liapunov function
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methods in Section III-A, and show the mean square
tracking error being . Thus, as long
as the true parameter (a slow Markov chain with tran-
sition probability matrix ) evolves on the same
time scale as the stochastic approximation algorithm
with step size ( ), the mean square error is

.
Then, in Section III-B we examine the limit of an in-

terpolated sequence of tracking errors of the LMS al-
gorithm. One of the novelties of this work is the deriva-
tion of switching limit dynamics. For stochastic ap-
proximation algorithms, a standard and widely used
technique is the so-called ordinary differential equa-
tion (ODE) method [14], [16], [18], which combines
analysis with probability theory. In most of the re-
sults up to date, the limit of the interpolated sequence
of estimates generated by a stochastic approximation
algorithm results in an autonomous ODE. In certain
cases (see [16]), one gets a nonautonomous system
of ODEs but the equations are still deterministic. In
this paper, due to the Markovian parameter, the ex-
isting results of stochastic approximation cannot be
applied. In Section III-B, by using martingale aver-
aging, we derive a hybrid limit system, namely, ordi-
nary differential equations modulated by a continuous-
time Markov chain. A remarkable feature of our result
is that the limit is no longer a deterministic ODE, but
rather a system of ODEs with regime switching (i.e.,
a system of ODEs modulated by a continuous-time
Markov chain). Due to the random varying nature of
the parameter, the results of stochastic approximation
in [16] cannot be directly applied to the current case.
Thus, we use a martingale formulation to treat the (es-
timate, parameter) pair of processes and derive the de-
sired limit.

2) In comparison to Section III-A, Section IV is devoted
to suitably scaled tracking errors. Based on the system
of switching ODEs obtained in Section III-B, we ex-
amine the limiting behavior of the normalized tracking
errors of the LMS algorithm. It is well known that for a
stochastic approximation algorithm, if the true param-
eter is a fixed constant, then a suitably scaled sequence
of estimation errors has a Gaussian diffusion limit. We
show that if the regression vector is independent of the
parameter then although the limit system involves Mar-
kovian regime switching ODEs, the scaled sequence of
tracking errors of the LMS algorithm has a Gaussian
diffusion limit.

3) The Gaussian diffusion limit implies that the iterate
averaging can be used to accelerate the convergence
of the tracking algorithm. In Section IV-B, we show
that iterate averaging reduces the asymptotic covari-
ance of the estimate of the LMS algorithm. Originally
proposed in [23] for accelerating the convergence of
stochastic approximation algorithms, it is well known
[16] that for a constant true parameter and decreasing
step size, iterate averaging results in asymptotically
optimal convergence rate (the same rate as the recur-

sive least squares), which use a matrix step sizes, with
an order of magnitude lower computational complexity
than RLS.

In the tracking case for a random walk time-varying
parameter, it has recently been shown in [19] that the
fixed step size LMS algorithm with iterate averaging
has similar properties to a recursive least squares
algorithm with a forgetting factor. Section IV-B shows
that if (parameter evolves as fast as LMS
tracking algorithm), and the averaging window width
is (where denotes the step size of the LMS
algorithm), then iterate averaging still results in an
asymptotically optimal tracking algorithm. To our
knowledge, apart from [31] where we showed a sim-
ilar result for the more restrictive case with ,
this is the first example of a case where iterate aver-
aging results in a constant step size LMS algorithm
with optimal tracking properties.

4) In Section V, we present expressions for the proba-
bility of error of the quantized state estimate of the
LMS algorithm when tracking the state of a slow HMM
Also an example in adaptive multiuser detection in
wireless CDMA networks is given.

5) In Section VI, we analyze the LMS algorithm when the
regression vector depends on the parameter (in con-
trast to Section IV with the regression vector being
independent of the parameter). Examples of such de-
pendent regression vector models include autoregres-
sive models with Markov regime that have been widely
used in econometrics, failure detection, and maneu-
vering target tracking; see [9], [11], [12], and the ref-
erences therein. Unlike, the independent case studied
in Section IV, somewhat remarkably, for the depen-
dent case the scaled tracking error sequence generated
by the LMS algorithm does not have a diffusion limit.
Instead, the limit is a system of diffusions with Mar-
kovian regime switching. In the limit system, the dif-
fusion coefficient depends on the modulating Markov
chain, which reveals the distinctive time-varying na-
ture of the underlying system and provides new insight
on Markov modulated stochastic approximation prob-
lems. This result is in stark contrast to the traditional
analysis of the LMS algorithm for constant parameter
where the scaled sequence of estimation errors has a
Gaussian diffusion limit.

C. Context

In Sections III-B, IV–VI, we assume that the dynamics of
the true parameter (a slow Markov chain with transition matrix

) evolve on the same time scale as the adaptive algorithm
with step size , i.e., . We note that the case

addressed in this paper is more difficult to handle than
(e.g., ), which is widely used in the analysis

of tracking algorithms [2]. The meaning of is that the
true parameter evolves much slower than the adaptation speed
of the stochastic optimization algorithm and is more restrictive
than considered in this paper.



YIN AND KRISHNAMURTHY: LEAST MEAN SQUARE ALGORITHMS WITH MARKOV REGIME-SWITCHING LIMIT 579

Recently, in [31] and [32], we have considered two related al-
gorithms with different tracking properties. In [32], we studied
the tracking performance of an adaptive algorithm for updating
the occupation measure of a finite-state Markov chain when

. One of its applications is the so-called discrete sto-
chastic optimization in which gradient information cannot be in-
corporated. The resulting analysis yields a system of Markovian
switching differential equations and also a switching diffusion
limit for the scaled errors of the occupation measure estimate.
In such a case, due to the switching Markov diffusion, iterate
averaging does not improve the performance. In [31], we con-
sidered the LMS algorithm tracking a slow Markov parameter,
where the parameter evolves according to a Markov chain being
an order of magnitude slower than the dynamics of the LMS al-
gorithm, i.e., . In that reference, we obtained a stan-
dard ODE, whereas with we show for the first time
in this paper that one obtains a randomly switching system of
ODEs. In [31], with , iterate averaging was shown to
result in an asymptotically optimal tracking algorithm. Here, we
show that even with , i.e., much faster evolving param-
eter, iterate averaging still results in an asymptotically optimal
performance. Finally, in this paper, we also consider the case
where the regression vector depends on the parameter yielding
a Markov switching diffusion limit.

Throughout this paper, for , denotes its transpose.
We use to denote a generic positive constant. The convention

and will be used without further notice.
Detailed proofs appear in the Appendix .

II. FORMULATION

Let be a sequence of real-valued signals representing the
observations obtained at time , and be the time-varying
true parameter, an -valued random process. Suppose that

(1)

where is the regression vector, is the vector-
valued parameter process and represents the zero mean
observation noise. Throughout this paper, we assume that is
a discrete-time Markov chain.

A. Assumptions on the Markov Chain

(A1): Suppose that there is a small parameter and
that is a discrete-time homogeneous Markov chain, whose
state–space is

(2)

and whose transition probability matrix is given by

(3)

where is an identity matrix and
is an irreducible generator (i.e., satisfies for

and for each ) of a contin-
uous-time Markov chain. For simplicity, assume the initial dis-
tribution to be independent of for each

, where and .

B. LMS Algorithm

The LMS algorithm is a constant step size stochastic approx-
imation algorithm that recursively operates on the observation
sequence to generate a sequence of parameter estimates

according to

(4)

where denotes the small constant step size.
Using (1) with denoting the estimation error,

we obtain

(5)

Our task is to figure out the bounds on the deviation .
Remark 2.1: The parameter is termed a hypermodel in

[2]. Although the dynamics (3) of the hypermodel will be
used in our analysis, the implementation of the LMS algorithm
(4), does not require any explicit knowledge of these dynamics.

C. Assumptions on the Signals

Let be the -algebra generated by
, and denote the conditional expectation with respect to

by . We will use the following conditions on the signals.
(A2): The sequences and are independent of ,

the parameter. Either i) is a sequence of bounded sig-
nals such that there is a symmetric and positive–definite matrix

satisfying that for each

(6)

or ii) is a martingale difference sequence satisfying
and for some .

Remark 2.2: The signal models include a large class of prac-
tical applications. Conditions (6) are modeled after mixing pro-
cesses. This allows us to work with correlated signals whose re-
mote past and distant future are asymptotically independent. To
obtain the desired result, the distribution of the signal need not
be known. The boundedness is a mild restriction, for example,
one may consider truncated Gaussian process, etc. Moreover,
dealing with recursive procedures in practice, in lieu of (4), one
often uses a projection or truncation algorithm of the form

(7)

where is a projection operator and is a bounded set. When
the iterates is outside of , it will be projected back to the con-
strained set . Extensive discussions for such projection algo-
rithms can be found in [16]. On the other hand, for the pos-
sibly unbounded signals, we can treat martingale difference se-
quences. With some modification, such an approach can also be
used to treat moving average type signals; see [30] for such an
approach. In the subsequent development, we will deal with pro-
cesses satisfying (6). The proof for the unbounded martingale
difference sequence is slightly simpler. For brevity, henceforth,
we will omit the verbatim proof for such processes.
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III. UNSCALED TRACKING ERRORS

A. Mean Square Error Bounds

This section establishes a mean square error estimate,
, for the LMS algorithm. We use a stability argument in-

volving perturbed Liapunov function methods [16].
Theorem 3.1: Under conditions (A1) and (A2), for suffi-

ciently large

(8)

In view of Theorem 3.1, to balance the terms in
, we need to have . Therefore, we arrive at the

following corollary.
Corollary 3.2: Under the conditions of Theorem 3.1, if

, then for sufficiently large , .
Thus, the mean square tracking error is of the order

given that the step size , i.e., given that the true pa-
rameter evolves at the rate as the adaptation speed of the LMS
algorithm. For notational simplicity, in the rest of this paper
we assume . Naturally, all the following results hold for

(with obvious modifications), i.e., the main assump-
tion is that the LMS algorithm and true parameter process
evolve on the same time scale.

B. Limit System of Switching ODE

As is well known since the 1970s, the limiting behavior
of a stochastic approximation algorithm (such as the LMS
algorithm) is typically captured by a system of deterministic
ODEs—indeed, this is the basis of the widely used “ODE ap-
proach” for convergence analysis of stochastic approximation
algorithms—see [16]. Here we show the somewhat unusual
result that the limiting behavior for the LMS algorithm (4)
when the true parameter evolves according to (3) is not
a deterministic ODE—instead it is a regime switching ODE
modulated by a continuous-time Markov chain. To obtain the
result, we use weak convergence methods, which require that
first the tightness of the sequence be verified and then the limit
be characterized via the martingale problem formulation.

We work with a piecewise interpolated sequence
defined by on . Then

, the space of -valued functions defined on
that have right continuous sample paths and left-hand

limits endowed with the Skorohod topology (see [3], [5], and
[16]). Similarly, we define the interpolated process for the
time-varying parameter by for .
The rest of the section is divided into three parts. The first sub-
section presents preliminary results concerning the asymptotics
of ; the second subsection derives a tightness result; the
third subsection obtains the limit switching ODE.

1) Asymptotic Results of the Interpolated Process
: This section is concerned with limit results of the

interpolation of the Markov parameter process . The
main ideas follow from the recent progress in two-time-scale
Markov chains; see [33]–[35] and the references therein.

Lemma 3.3: Assume (A1) and . For the Markovian
parameter . The following assertions hold: i) Denote

. Then

(9)

ii) The continuous-time interpolation converges weakly to
, a continuous-time Markov chain generated by .
Proof: The proof of the first assertion is in [34] and the

second one can be derived from [35].
2) Tightness: We work with the pair . The de-

sired tightness is essentially a compactness result. This is stated
next followed by the proof.

Theorem 3.4: Assume (A1) and (A2). Then, the pair
is tight in .

Proof: By virtue of Lemma 3.3, is tight. In view
of the Crámer and Wold Lemma [3], it suffices to verify the
tightness of . Applying the tightness criterion [13, p. 47],
it suffices that for any and with such
that . Direct
calculation leads to

(10)

By first taking and then in (10), the desired
tightness follows.

3) Switching ODE Limit: We have demonstrated that
is tight. Since tightness is equivalent to sequen-

tial compactness on any complete separable metric space, by
virtue of the Prohorov’s theorem, we may extract a weakly
convergent subsequence. For notational simplicity, still de-
note the subsequence by with limit denoted by

. We proceed to identify the limit process. Assume
the following condition.

(A2’): Condition (A2) holds with (6) replaced by

(11)

both in probability as uniformly in .
Theorem 3.5: Assume (A1) and (A2’). Then,

converges weakly to such that is the continuous-
time Markov chain given in Lemma 3.3 and is the solution
of the following regime switching ODE:

(12)

modulated by the continuous-time Markov chain .
Proof: The proof is relegated to the Appendix .

Remark 3.6: A distinctive feature of the limit dynamic
system (12) is that it is not deterministic—due to the presence
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of the modulating Markov jump process the dynamic
system randomly changes its regime. This is different from
most results in the stochastic approximation literature, where
the limit is a deterministic ODE.

IV. LIMIT DISTRIBUTION OF A SCALED TRACKING

ERROR SEQUENCE

Here, we analyze the asymptotic distribution of the sequence
of tracking errors . We wish to find suitable scaling
factor so that converges to a nontrivial limit. In
view of Corollary 3.2, the natural scaling is . Again, we
work with a continuous-time interpolation to better describe the
evolution of the tracking errors. Note that our analysis focuses
on the evolution of and the quantity being centered is the true
parameter process , which is time varying and is stochastic.
The scaling factor together with the asymptotic covariance ma-
trix can be viewed as a “figure of merit” for tracking. That is,
not only does it tell how close the algorithm tracks the true pa-
rameter, but also yields the asymptotic convergence rate of the
tracking algorithm in terms of the asymptotic distribution of the
tracking errors. Indeed, we show that is asymptot-
ically normal from which the error covariance can be obtained.

A. Limit Distribution

Recall and denote . Owing to (5),
we obtain

(13)

By virtue of Theorem 3.1 and Corollary 3.2, and noting the
quadratic structure of the Liapunov function, there is a
such that is tight. To further reveal the asymp-
totic properties of the tracking error, define the piecewise con-
stant interpolation , for

. It is easily seen that for any , by telescoping

(14)
To examine the asymptotic distribution of , we state a
Lemma, which is essentially a second moment bounds for the
iterates and the interpolation. Its proof together with the proofs
of Lemma 4.3 and Theorem 4.4 is in the Appendix.

Lemma 4.1: The following moment bounds hold:

(15)

With the previous a priori estimates at hand, we proceed to
establish the tightness of . We first give another condi-
tion. Then, we state a lemma concerning the tightness.

(A3): The and are stationary uniform
-mixing signals with mixing measure (see [5, Ch. 7])

satisfying and . The mixing measure
satisfies .

Remark 4.2: By (A3), the sequence con-
verges to , where is a standard Brownian motion
and is a positive–definite matrix.

Lemma 4.3: Assume (A1)–(A3). Then, is tight
in . Moreover, any limit process has continuous
sample paths w.p. 1.

Since is tight, by Prohorov’s theorem, we may ex-
tract weakly convergent subsequences. Select such a sequence,
still index it by for simplicity, and denote the limit process by

. By Skorohod representation, we may assume that
converges to w.p. 1 and the convergence is uniform on any
bounded time interval. In addition, the limit process has con-
tinuous sample paths w.p. 1. Our task is to identify the limit
process. We will show that the limit process turns out to be a
diffusion process.

Theorem 4.4: Under the conditions of Lemma 4.3,
converges weakly to such that is the solution of the
stochastic differential equation

(16)

where is a standard Brownian motion and

Note that (16) is linear so it admits a unique solution for each
initial condition. The stationary covariance of the aforemen-
tioned diffusion process is the solution of the Lyapunov equation

(17)

Note also . In view of The-
orem 4.4, the tracking errors is asymptotically normal
with mean 0 and covariance .

B. Iterate Averaging and Minimal Window of Averaging

In this section, we illustrate the use of iterate averaging for
tracking the Markov parameter . Iterate averaging was origi-
nally proposed in [23] for accelerating the convergence of sto-
chastic approximation algorithms. It is well known [16] that for
a constant parameter, i.e., in (3), and decreasing step size
[e.g., with in (4)], iterate averaging re-
sults in asymptotically optimal convergence rate, i.e., identical
to recursive least squares (which is a matrix step size algorithm).
In the tracking case for a random walk time-varying parameter,
in general iterate averaging does not result in an optimal tracking
algorithm [19]. In light of Theorem 4.4, it is shown below for
the slow Markov chain parameter that iterate averaging results
in an asymptotically optimal tracking algorithm.

The rationale in using iterate averaging is to reduce the sta-
tionary covariance. To see how we may incorporate this into the
current setup, we begin with a related algorithm
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where is an matrix. Redefine
for the previous algorithm. Set and let
be the piecewise constant interpolation of on and

. Then, using an analogous argument, we
arrive at converges weakly to , which is the solution
of the stochastic differential equation

(18)

Note that and replace and in (16).
The additional term is due to the use of step size
[16, p. 329]. Minimizing the stationary covariance

of the diffusion given in (18) with resect to the matrix parameter
leads to the “optimal” covariance . In view of the

previous discussion, we consider the iterate averaging algorithm
with fixed step size as

(19)

We are taking the averaging for a sufficiently large . Note
that the averaging is taken with a window of width ,
so-called minimal window width of averaging (see [16, Ch. 11]).
To analyze the algorithm, we let and be nonnegative real
numbers that satisfy , define

(20)
where as . Then, consider the scaled cumulative
tracking error

(21)

Using a similar argument as [16, p. 379], we obtain the fol-
lowing theorem.

Theorem 4.5: Assume (A1)–(A3) hold. For each fixed ,
converges in distribution to a normal random vector

with mean 0 and covariance .
Remark 4.6: Note that is the optimal asymp-

totic covariance of recursive least squares when estimating a
constant parameter. Thus, iterate averaging over a window of

when results in an tracking algorithm with
asymptotically optimal covariance.

V. EXAMPLES: STATE ESTIMATION OF HMMS AND ADAPTIVE

INTERFERENCE SUPPRESSION IN CDMA WIRELESS NETWORKS

A. HMM With Infrequent Jumps

We analyze the performance of the LMS algorithm with step
size for tracking the state of an HMM [4], where the under-
lying -state slowly varying Markov chain’s transition proba-
bility is of the form with being a small pa-

rameter. The optimal HMM state filter (which yields the condi-
tional mean estimate of the state) requires computations
at each time instant and, hence, intractable for very large . For
sufficiently small , it might be expected that LMS would do a
reasonable job tracking the underlying Markov chain since the
states change infrequently. The LMS algorithm requires
computational complexity for an -state HMM (i.e., the com-
plexity is independent of ). Recently, an complexity
asymptotic (steady-state) HMM state filter was proposed in [6];
see also [26]. It is therefore of interest to analyze the perfor-
mance of an LMS algorithm (in terms of error probabilities) for
tracking a time-varying HMM with infrequent jump changes.

A conventional HMM [4], [25] comprising of a finite-state
Markov chain observed in noise is of the form (1) where
for all and the states of the Markov chain , are
scalars. For this HMM case, the LMS algorithm (4) has com-
plexity , i.e., independent of . With denoting of (4)
denoting the “soft” valued estimate of the state of the Markov
chain , let denote the “hard” valued estimate of ob-
tained by quantizing to the nearest Markov state, i.e.,

where (22)

Assume that the zero mean scalar noise process in (1) has
finite variance .

Error Probability for Slow Hidden Markov Model: For no-
tational convenience assume that the Markov states of the
above HMM are arranged in ascending order and are equally
spaced, i.e., , and is a
positive constant. Equation (17) implies that (that is
a scalar). The probability of error can be computed as follows:

where is the complementary Gaussian distribution func-
tion, , denotes the probabilities of the contin-
uous-time Markov chain for ; see (9).

Error Probability and Iterate Averaging: Iterate averaging
(Section IV-B) can be used for vector state HMMs to reduce
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the error probability of estimates generated by the LMS algo-
rithm. Recall that the purpose of iterate averaging is to con-
struct a scalar step size LMS algorithm that leads to the same
asymptotic convergence rate as a matrix step size algorithm for
estimating a vector parameter. (Iterate averaging is, thus, only
useful when the parameter is vector valued). Thus, we con-
sider a vector state HMM.

As is well known in digital communications, for more than
two vector states, it is difficult to construct an explicit expres-
sion for the error probability as it involves multidimensional
Gaussian integrals over half spaces (apart from special cases,
e.g., if the vectors are symmetric about the origin). Thus, for
convenience, we assume the underlying Markov chain has two
states ( ), , and is a sequence of
i.i.d. random variables independent of and .

Define and define the hard valued estimates
, where . The probability of

error of the LMS algorithm in tracking this vector state HMM
is

(23)

However, since ,

we have

.
First, let us compute the error probability for the state estimate

generated by the LMS algorithm without using iterate aver-
aging. The weak convergence result Theorem 4.4 implies that

is asymptotically normal with mean 0 and variance
. This implies that conditional on ,

. Substituting in (23) yields the following error
probability for the state estimates generated by the LMS algo-
rithm (without iterate averaging)

(24)

Now, consider computing the error probability when iterate av-
eraging is used. With iterate averaging, using Theorem 4.5, the
covariance in (24) is replaced by iterate averaged covariance

where is defined in (A3) of Section IV – thus the
error probability for state estimates generated by the iterate av-
eraged LMS algorithm satisfies

(25)

Since (positive definite) and is mono-
tonically decreasing, the error probability of the state estimates
generated by LMS with iterate averaging (25) is lower than that
for the LMS algorithm without iterate averaging (24).

B. Effect of Admission/Access Control on Adaptive Multiuser
Detector

In this section, we examine the tracking performance of an
adaptive linear multiuser detector in a cellular DS/CDMA wire-
less network when the profile of active users changes due to
an admission or access (scheduling) controller at the base sta-
tion. The main point is to show that in many cases, the op-
timal linear minimum mean square error (LMMSE) multiuser
detector [29] varies according to a finite Markov chain—hence,
the previous weak convergence analysis for the LMS algorithm
directly applies to the corresponding adaptive linear multiuser
detector which aims to track the LMMSE detector coefficients.

Consider a synchronous DS-CDMA system with a max-
imum of users and an additive white Gaussian noise
channel. Here, user 1 is the one of interest. Let de-
note the power set of an arbitrary finite set . For user 1,
the set of all possible combinations of active users (inter-
ferers) is (where denotes the null set, i.e., no interferer)

. Let
denote a finite-state (set-valued) discrete time process that

evolves on the state–space . Thus at each time
instant , denotes the set of active users.

After the received continuous-time signal is preprocessed and
sampled at the CDMA receiver (the received signal is passed
through a chip-matched filter followed by a chip-rate sampler),
the resulting discrete-time received signal at time , denoted by

, is given by (see [22] for details)

(26)

Here, is an -dimensional vector; is called the processing
(spreading) gain; is an -vector denoting the normalized
signature sequence of the th user, so that ;
denotes the data bit of the th user transmitted at time ;
is the received amplitude of the th user; is a sequence of
white Gaussian vectors with mean zero and covariance matrix

where denotes the identity matrix and is a
scalar. It is assumed that the discrete-time stochastic processes

, and are mutually independent, and that
is a collection of independent equiprobable random vari-
ables.

Specification of Active Users: We assume that the network
admission/access controller operates on a slower time scale
(e.g., multiframe by multiframe basis) than the bit duration,
i.e., the finite-state process evolves according to a slower
time scale than the bits . This is usual in DS/CDMA
systems where typically a user arrives or departs after several
multiframes (i.e., several hundreds of bits). Then, can be
modeled as a slow finite-state Markov chain with transition
probability matrix in the following examples.

i) Consider a single class of users (e.g., voice) with
Poisson arrival rate and exponential departure rate

. Then, the active users form a continuous time
Markov chain (birth death process) with state space

and generator . The time sampled
version, sampled at the chip-rate , is then a slow
Markov chain with .
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ii) Markov decision based admission control of multiclass
users: The formulation in [27] considers admission
control in a multiservice CDMA network comprising
voice and data users. Assuming a linear multiuser
detector at the receiver, the admission controller aims
to minimize the blocking probability of users seeking
to access the network subject to signal to interference
ratio (quality-of-service) constraints on the active
users . Assuming that the arrival rate of voice and
data users are Poisson and departure rates of active
users are exponential, the problem of devising the
optimal admission policy is formulated in [27] as
a semi-Markov decision process with exponential
holding times. Again, assuming that the arrival and
departure of users are at a slower time scale (e.g.,
several frames) than the bit duration, a time sampled
version of this continuous-time process at chip rate
results in a slow Markov chain.

Here, we consider the effect of the above Markovian or peri-
odic admission/access control strategies on two types of adap-
tive multiuser detectors—decision directed receiver and pre-
combining receiver. In both cases, the optimal receiver weight
coefficients evolve according to a finite-state Markov chain and
the adaptive linear receiver is a LMS algorithm which attempts
to track this Markovian weight vector.

Adaptive Decision Directed Multiuser Detection: We as-
sume that user 1 is the user of interest. Assuming knowledge
of the active user set , the optimal linear multiuser detector
seeks to compute the weight vector such that

(27)

where is a training data sequence (or else the estimates
of the bits when the receiver is operating in the decision di-
rected mode). As shown in [24], where

. Given is a slow Markov chain, it follows from
(26) that and, thus, the optimal weight vector are also

state slow finite-state Markov chains, respectively. It is
clear that the above formulation is identical to the signal model
(1) with (observation), (slow Markov
chain parameter), (regression vector). Indeed ,
with , is a sequence of i.i.d. random variables
due to the orthogonality principle of Wiener filters.

Now, consider the adaptive multiuser detection problem
where the active user set is not known. Thus is
the observation sequence of an HMM. Hence, in principle,
the optimal (conditional mean) estimate of and therefore

given the observation history can be com-
puted using the HMM state filter. However, due to the large
state–space (exponential in the number of users ), this is
computationally prohibitive. For this reason, the adaptive linear
multiuser detector [29] uses the LMS algorithm (4) to minimize
(27) without taking into account the Markovian dynamics of

, i.e., is the hypermodel (see Remark 2.1). For such
an adaptive linear multiuser detector, the weak convergence
analysis in Theorem 4.4 implies that if , the estimate
of the adaptive multiuser detector is approximately normally
distributed with mean and covariance .

Precombining Adaptive Multiuser Detectors for Fading
Channels: A performance analysis of MMSE receivers for
frequency selective fading channels is presented in [21]. In
general, the optimal receiver weight coefficient of the
LMMSE receiver varies rapidly in time depending on the
instantaneous channel values. Here, we consider a receiver
structure, developed in [17], called a precombining LMMSE
receiver (also called LMMSE-RAKE receiver) which results in
the optimal receiver weight vector evolving according to a
slow finite-state Markov chain.

The continuous-time received signal for a frequency selective
fading channel has the form

where denotes the symbol interval, is the number of propa-
gation paths, is a complex-valued zero mean additive white
Gaussian noise with variance , is the complex atten-
uation factor for the th user and th path, and is the propa-
gation delay. The received discrete-time signal over a data block
of symbols after antialias filtering and sampling at the rate

(where is the number of samples per chip,
is the number of chips per symbol) is (see [17] for details)

, where is the sampled
spread sequence matrix, is the channel coefficient matrix,

is a matrix of received amplitudes (the time variation in the
notation is because inactive users, i.e., are considered
to have zero amplitude, thus, is a slow finite-state Markov
chain), is the data vector and is the complex-valued
channel noise vector. Assuming knowledge of the active users

, the precombining LMMSE receiver seeks to find to
minimize . The optimal receiver is

where is the co-
variance matrix of which consists of transmitted user
powers and average channel tap powers. As remarked in [17],
this shows that the precombining LMMSE receiver no longer
depends on the instantaneous values of the channel complex co-
efficients but on the average power profiles of the channel .
Thus is a finite-state Markov chain.

In the case when the active users are unknown, i.e.,
is the hypermodel (see Remark 2.1), the adaptive precom-

bining LMMSE receiver uses the LMS algorithm to optimize
. This is again of the form (4) and the

weak convergence tracking analysis of Theorem 4.4 applies.
Iterate Averaging: In all three cases with , iterate

averaging (Section IV-B) over a window of results in
an adaptive receiver with asymptotically optimal convergence
rate.

VI. SWITCHING DIFFUSION LIMIT FOR -DEPENDENT

REGRESSION VECTOR

Up to this point, we have derived a number of properties for
the tracking algorithms. One of the premise is that the signals are
independent of the parameter process , which does cover im-
portant cases such as HMM arising in many applications. One of
the interesting aspects of the results is that the scaled sequence
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of tracking errors leads to a diffusion limit. However, there are
other important cases involving regression of .
In such a case, is -dependent.

A. Example: Linear Autoregressive Processes With Markov
Regime

A linear th order autoregressive process with Markov regime
is of the form (1), where the regressor
and the jump Markov parameter vector with each

being the coefficients of the AR model for regime ,
. We refer the reader to [9], [11], [12], and the

references therein for extensive examples of such processes in
modeling business cycles in econometrics, failure detection, and
target tracking.

In this section, we demonstrate how to generalize the results
obtained thus far to such parameter-dependent processes. One
of the main techniques is the use of fixed -process. We assume
that

Denote . Define a fixed- process
for each with initial condition . That is, the

process starts at value at time and then evolves as if the
parameter were fixed at for all . Similarly,
define and to be .

In what follows, we provide the conditions needed, give the
main results, and illustrate how the proofs of previous theorems
can be modified for this more general case. We will use the
following assumptions.

(A4): and are sequences of bounded signals such
that: i) is uniform mixing and is independent of the pa-
rameter process; ii) for each , there is a symmetric and
positive–definite matrix satisfying that for each

(28)

and iii) as , the following limits in probability exist
uniformly in :

(29)

With the conditions given previously, we can derive the fol-
lowing results; see Appendix for its proof.

Theorem 6.1: Assume (A1) and (A4). Then, i) the conclusion
of Theorem 3.1 continue to hold; ii) the conclusion of Theorem
3.5 continue to hold with the ODE (12) replaced by

(30)

and iii) the conclusion of Theorem 4.4 continues to hold with
(16) replaced by the jump Markov linear diffusion

(31)

where, for

Lemma 6.2: Suppose that there exist symmetric posi-
tive–definite matrices , , and positive constant

satisfying

(32)

for all , , . Then, there exists an in-
variant distribution for the switching diffusion defined in
(31), such that as , the law of converges to indepen-
dently of the initial condition . Moreover, all moments
of are finite.

Proof: According to [1, Th. 3.1], a sufficient condition
for the existence of an invariant distribution with finite moment

is that (32) holds. Choose for all . Then,
since , the left-hand side becomes .
Since , are positive–definite, clearly

for some for all .
Comparing with the results in the previous sections, the sig-

nals depending on results in different asymptotic behavior. In
Section IV, the approximation yields a diffusion limit. This pic-
ture changes for -dependent signals. In lieu of a diffusion limit,
a switching diffusion limit is obtained. This reveals the funda-
mental difference of -dependent and -independent processes.
Note that when the signals are independent of the parameter
process, Theorem 6.1 reduces to the previous diffusion limit in
Theorem 4.4.

VII. CONCLUSION

We analyzed the tracking properties of the least mean square
algorithm LMS algorithm with step size for tracking a pa-
rameter that evolves according to a Markov chain with transi-
tion probability matrix , where , i.e., the pa-
rameter evolves as fast as the LMS algorithm with infrequent
jumps but possibly large jump sizes. To the best of our knowl-
edge, the results we derived such as switching ODE limit and
switching diffusions associated with the tracking problem ap-
pear to be the first one of their types. We illustrated these re-
sults in low complexity HMM state estimation (when the un-
derlying Markov chain evolves slowly) and adaptive multiuser
detection in DS-CDMA multiuser detection. These results are
also useful in other applications of recursive estimation in signal
processing and communication networks. While we have fo-
cused exclusively on the LMS algorithm in this paper, the ideas
can be extended to adaptive estimation via the recursive least
squares (RLS) algorithm with forgetting factor for tracking a
slow Markov chain. It is a worthwhile extension to see if with
forgetting factor such that , whether the limiting be-
havior of the RLS algorithm also exhibits Markov modulated
regime switching. Finally, while the application presented in
Section V-B dealt with adaptive multiuser detection, the anal-
ysis can also be applied to equalization of Markov modulated
communication channels. In particular, using a similar analysis
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to this paper it can be shown that blind adaptive equalization al-
gorithms such as the constant modulus algorithm (CMA) [10]
also exhibit a switching regime ODE limit for a Markov modu-
lated channel.

APPENDIX

PROOFS OF RESULTS

A. Proof of Theorem 3.1

Define . Direct calculation leads to

(33)

In view of the Markovian assumption, the independence of the
Markov chain with the signals , and the structure of
the transition probability matrix given by (3)

(34)

Note that we are taking conditional expectation w.r.t. , and
is -measurable. Similarly, we also have

(35)

Using an elementary inequality for two real
numbers and , we have , so

(36)

By virtue of the boundedness of the signal

(37)

Using (35)–(37), we obtain

(38)

To proceed, we need to “average out” the terms in the next
to the last line and the first term on the last line of (38). This is

accomplished by using perturbed Liapunov functions. To do so,
define a number of perturbations of the Lyapunov function by

(39)

For each , by virtue of (A2), it is easily verified that

, so

(40)

Similarly, for each

(41)

Note that the irreducibility of implies that of . Thus,
there is an such that for all , ,
where denotes the stationary distribution associated with the
transition matrix . Using telescoping and the aforemen-
tioned estimates, for all

and, hence

(42)

Likewise, it can be shown that

(43)

Note also that

(44)

It follows that

(45)

by virtue of (A2). In addition

(46)
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Using (5), similar estimates as that of (35) yields

(47)

Moreover

(48)

and

(49)

Therefore, we obtain

(50)

Analogous estimate for leads to

(51)

Likewise, it can be shown that

(52)

and

(53)

Define

Then, using (38) and (50)–(53), upon cancellation, we obtain

(54)

for some . In (54), from the second line to the third
line, since is positive definite, there is a such that

. From the third to the last line, we used esti-
mates (40)–(43) and replaced by , which re-
sults in an term by the boundedness of ; we also used

via an elementary inequality.
Choose and small enough so that there is a satis-

fying and . Then we
obtain .

Taking this expectation and iterating on the resulting inequality
yield

By taking large enough, we can make .
Thus . Finally, applying
(40)–(43) again, we also obtain .
Thus, the desired result follows.

B. Proof of Theorem 3.5

We will show that the pair of stochastic processes
converges weakly to that is a so-

lution of the martingale problem associated with the operator
defined by

(55)

for each , where

(56)
and is a real-valued and twice continuously differen-
tiable test function with compact support. Note that is the
generator for the process .

We note that by virtue an argument similar to [33, Lemma
7.18], it can be verified that the martingale problem associ-
ated with the operator has a unique solution. To complete
the proof, we need only prove that the limit is in-
deed the solution of the martingale problem, i.e., for each

, for any twice continuously differentiable function ,
is a continuous-time mar-

tingale. To verify this, it suffices to show that for any positive
integer , any and , and
with , and any bounded and continuous function
for each

(57)

Indeed, as described in [5, p. 174], is a solution to
the martingale problem if and only if (57) is satisfied. To verify
(57), in the rest of the proof we work with the processes indexed
by and derive (57) by taking the limit as . This task is
divided into several sub-tasks.

Step 1: For notational simplicity, denote

(58)
By the weak convergence of to and the
Skorohod representation [3], [5], [16], as

(59)
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Step 2: To proceed, choose a sequence such that
as , but , and divide into intervals
of width . Then, the following is obtained:

(60)

Step 3a: To complete the proof, we work on the last two
lines of the right-hand side of (60) separately. By virtue of the
smoothness and boundedness of (for each ), it
can be seen that as

where as . Thus, we need only work with the
remaining term on the right-hand side of the aforementioned
equation. Letting and

(61)

Step 3b: Since and are -measurable, by virtue
of the continuity and boundedness of ; see the equation

at the bottom of the page, where as . We claim
that as

(62)

and

(63)

Assume (62) and (63) hold temporarily. Then, (59) and (61),
together with (62) and (63), imply (57), which completes the
proof of Theorem 3.5.

Thus, it only remains to verify (62) and (63). To this end,
replacing by use of (1), we obtain

(64)

since by virtue of (11)

Using a partial summation

(65)
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It follows that

(66)

by virtue of (34). In similar spirit

as (67)

In addition, sending , by the weak convergence of
to and the Skorohod representation

(68)

Thus, (62) holds. To verify (63), note that

(69)

Thus

as

by using (4) and the boundedness of the signals.
Finally, as ,

(70)

and, hence

Thus, (63) is verified and the proof of Theorem 3.5 is concluded.

C. Proof of Lemma 4.1

Using (13), we obtain

Then, for

By virtue of the boundedness of the signal

(71)

Using the mixing property of

(72)

Similar to (35), , so

(73)

Combining (71)–(73), .
An application of the well-known Gronwall’s inequality leads
to . Moreover,
taking over yields . The a
priori bound is obtained.
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D. Proof of Lemma 4.3

Step 1: Corresponding to (13), define

(74)

It can be shown that there is a (relabeling when needed)
such that both and are tight. In
addition, . Note that

(75)

Using (14) and (75) and noting the boundedness of

(76)

Using (13) and (74) and applying Gronwall’s inequality, we ob-
tain

(77)

Moreover, (77) holds uniformly for . Thus, to obtain
the tightness of , it suffices to consider .

Step 2: Working with , the rest of the proof
uses techniques similar to that of Theorem 3.4. For any

and with , by virtue of the bound-
edness of the signal , Lemma 4.1, and the inequality

, it is easily verified that

(78)

Next, using the mixing inequality [13, Lemma 4.4]

(79)

Thus, , and

as a result, . By
the tightness criterion, (78)–(79) yield the tightness of .
Moreover, similar as in the proof of (78)–(79), we can also show
that . Thus, all limit of sample
paths are continuous w.p. 1. Furthermore, Step 1 of the proof
implies that the same assertion holds with replaced by

. The lemma is proved.

E. Proof of Theorem 4.4

By virtue of step 1) in the proof of Lemma 4.3, we need only
work with the sequence since and have
the same weak limit. By virtue of the paragraph preceding The-
orem 4.4, it suffices to characterize the limit process owing
to Lemma 4.3. We will show that is a solution of the mar-
tingale problem with the operator

(80)

for any twice continuously differentiable with compact sup-
port. The linearity in (16) implies that it has a unique solution for
each initial condition so the solution of the martingale problem
associated with the operator defined in (80) is also unique.

Similar to the proof of Theorem 3.5 (although no jump terms
are involved and a diffusion is added) we need to show that
for any positive integer , and , and any real-valued
bounded and continuous function

(81)

Again working with the process indexed by , choose a se-
quence as and . We obtain

(82)

where

Note that in (82), the term involving yields the limit
drift, whereas the term consisting leads to the
limit diffusion coefficient.
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For the drift term, using averaging procedure, as

(83)

and

(84)

For the diffusion term, as , we have the estimates

and

Thus

Therefore, in view of Remark 4.2, we arrive at

and, hence

(85)

Combining (82)–(85), (81) holds. Finally, by virtue of (77),
converges to the same limit as that of . Thus, the

desired result follows.

F. Ideas of Proof of Theorem 6.1

Since the proofs are similar in spirit to the previous sections,
we will be brief with only the distinct features noted and the
details omitted. To prove i), as in Theorem 3.1, we still use per-
turbed Liapunov function methods. With , modify the
definition of by

. Note that , which facili-
tates the desired cancellation. Note also since , we can
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still find a single such that . The rest of the
proof is similar to the previous case.

To prove ii), we need to average out terms of the form
, and .

We illustrate how this can be done for the first expression shown
previously. In view of our notation,
and

(86)

where in probability. By virtue of the Markov prop-
erty of and the boundedness of

Thus, the last term in (86) does not contribute anything to the
limit. Moreover, we obtain

and

The rest of the proof is similar to that of Theorem 3.5 with sim-
ilar modifications as before. Part iii) can be proved using analogs
modifications for the fixed- process shown previously.
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