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Abstract

In recent years several countries have started massive highway franchising programs auctioned to private

firms. In these auctions, the regulator typically sets the franchise term and firms bid on tolls or, alternatively,

the regulator sets tolls and the winner is the firm that asks for the shortest franchise term. In both cases,

the franchise term is fixed before the franchise begins. In this paper we propose a new auction mechanism,

where the regulator sets the toll schedule and the firm that bids the least present value of toll revenue wins

the franchise. With this scheme the franchise length adjusts endogenously to demand realizations.

Assuming that the regulator is not allowed to make transfers to the franchise holder, and that firms are

unable to diversify risk completely, we characterize the full information optimal contract and show that

it can be implemented with a Least-Present-Value-of-Revenue (LPVR) auction. Furthermore, for demand

uncertainty and risk aversion parameters typical of developing countries, welfare gains associated with sub-

stituting an LPVR for a fixed-term auction are large (e.g., one third of the cost of the highway).
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The greater part of public works may easily be so managed, as to afford a particular revenue sufficient

for defraying their own expense, without bringing any burden upon the general revenue of society [. . . ]

When high roads [. . . ] are in this manner made and supported by the commerce that is carried on by means

of them, they can be made only where that commerce requires them. Their expence too, their grandeur and

magnificence, must be suited to what that commerce can afford to pay. [. . . ] A magnificent road cannot be

made [. . . ] merely because it happens to lead to the country villa of the intendant of the province, or to that

of some great lord to whom the intendant finds it convenient to make his court.

Adam Smith,The Wealth of Nations, V.1.III.1

1 Introduction

There is widespread agreement that most developing countries urgently need massive highway construction

programs.2 Highways have traditionally been viewed as public goods that should be built, financed and

operated by the public sector. However, in recent decades chronic budgetary problems have led governments

to neglect the upkeep of existing roads while traffic has grown well ahead of their capacity. The task of

rebuilding and making new roads is beyond the capabilities of most governments, so that it has become

increasingly accepted that private firms should build, finance and operate highways, and that users should

pay for their cost.3

In recent years many countries have started massive highway franchising programs via so-called build-

operate-and-transfer (BOT) contracts.4 Under such a contract, a private firm builds and finances the highway

and then collects tolls for a long period, usually between 10 and 30 years. When the franchise ends the road

reverts to the state.

The first franchises were usually conferred in bilateral negotiations, but increasingly, competitive auc-

tions are being used to award them. Many highways are natural monopolies,5 and the premise that underlies

the use of auctions is that they lead to efficient outcomes—competitionfor the field as a good substitute for

competitionin the field, an idea that goes back to Chadwick (1859) and was popularized by Demsetz (1968).

Typically, the regulator fixes the franchise term, and the road is awarded to the firm that bids the lowest toll;

alternatively, the regulator fixes the toll and the winner is the firm that bids the shortest franchise term. Both

are fixed-term franchises, i.e. the franchise term is fixed before the franchise begins.

In this paper we show that fixed-term franchises can be improved upon significantly by allowing the

franchise term to adjust with demand realizations. We first characterize the full-information optimal con-

tract. This contract trades off optimally the distortions caused by tolls against the revenue uncertainty faced

by the risk averse franchise holder. A key characteristic of this contract is that franchises last longer when
2See for example Irwin et al. (1997).
3According toThe Economist, “As many countries have neither the finances nor the managerial resources for the task [...],

private companies will have to do much of the job.” (February 1, 1997, p. 63.)
4See Ǵomez-Ib́añez and Meyer (1993) for a thorough discussion of the international experience.
5Mexico was an interesting exception, where the franchised highways were built parallel to free (but congested) public highways.

Perhaps coincidentally, most of these projects had to be rescued by the government.
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demand turns out to be low. We next show that the optimal contract can be implemented with a simple

competitive auction, where firms bid on the present value of toll revenue they want to obtain over the life-

time of the franchise—a Least-Present-Value-of-Revenue (LPVR) auction. Finally, we develop a simple

methodology to estimate the benefits from moving from fixed term to LPVR auctions. These calculations

suggests that the gains are significant: approximately one-third of investment costs using parameter values

typical for developing countries.

Highway franchises have several distinctive features. First, a large fraction of the costs of the franchise

are sunk when the road is built and before demand becomes known; operating and maintenance costs are

comparatively small and are therefore ignored. Second, in order to alleviate strained budgets, roads have

to be financed by tolls on users. For this reason we introduce a ‘self-financing constraint’, which implies

that tolls may have to be set above those that induce drivers to internalize congestion optimally (henceforth

congestion tolls). Third, it has often been overlooked that medium- and long-term traffic forecasts are very

imprecise. This leads to considerable demand uncertainty, most of it beyond the control of the franchise

holder.6 Since it appears that firms are often unable to fully diversify idiosyncratic risks, we assume risk

averse firms.7 As in principal-agent models, the less risk averse party —in our case the planner— is assumed

to be risk neutral.

Our strategy is to characterize the full information optimal contract and then to show that it can be

implemented with an LPVR auction. The intuition behind our main results is simplest in the case of a

high-demand road, i.e., a road that can be financed in all states of the world charging the congestion toll.8

Then, the optimal contract is such that the firm collects tolls until the present value of revenue equals the up

front investment. After this time, the road reverts to the state. Hence the firm bears no risk, congestion tolls

are charged in all states of demand, the franchise lasts longer when demand is low, and the self-financing

constraint is not binding.

This contract can be implemented via a simple auction where participants bid a sum representing the

present value of toll revenues they would want, assuming that the government will set the congestion toll

in each state of demand. The franchise lasts until the franchise holder collects its desired revenue and then

reverts to the state, which continues to charge the congestion toll. If all bidders have the same technology, the

winning bid equals the investment required to build the road and rents are dissipated by competition. Hence,

the franchise term varies across states of demand while revenues collected by the firm remain constant in

present value. This means that the auction replicates the full-information optimal contract.

Also note that in the high-demand case described above, an LPVR auction provides full insurance to
6For example, in the case of the privately owned Dulles Greenway toll road, joining Dulles Airport near Washington, D.C.

to Leesburg, two independent traffic consultant companies predicted a daily flow of 35,000 vehicles for an average toll of $1.75.
Actual traffic turned out to be 8,500.

7It is a well established fact that private firms and financiers usually refuse to participate unless governments pledge guarantees
against commercial risks. If project related risks could be diversified, there would be no demand for guarantees. See Irwin et al.
(1997) for an extensive discussion of government guarantees in private infrastructure projects and Appendix D in Engel, Fischer
and Galetovic —henceforth EFG— (1998) for an example where agency problems prevent an entrepreneur from diversifying risks.

8Recall that thecongestion tollis the toll that induces drivers to internalize congestion optimally in the absence of a self-financing
constraint.
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the franchise holder and there are no toll-induced distortions. By contrast, in the standard infrastructure

auction where the franchise is awarded on the basis of the minimum toll for a fixed term, the franchise

holder receives different amounts of revenue in different states of the world. A risk averse franchise holder

will require an additional return in order to bear this risk, leading to a suboptimal outcome.

An LPVR auction is also optimal when the congestion toll is not sufficient to finance the road in all states

of demand. To get the intuition in this case, assume that there is one (henceforth thelow-demand) state where

the present value of congestion toll revenues is insufficient to pay for the road even if the franchise were to

last forever. An analogy to static Ramsey pricing suggests that the planner should set distortionary tolls not

only in the low-demand state but also in the remaining (henceforthhigh-demand) states, in order to smooth

income across demand realizations for a risk averse firm. In the present case however, the time dimension

adds an additional degree of freedom since revenue in high-demand states can be raised by lengthening

the franchise without introducing distorting tolls. This fact implies that the optimal contract has a simple

structure.

First, in all high demand states, the present value of tolls collected by the franchise holder is the same,

congestion tolls are charged, and franchise terms are finite. Second, it is optimal to distort tolls in the low-

demand state, since a small distortion leads to a first order welfare gain via risk reduction and only a second

order welfare loss due to toll distortion. Third, since it is better to introduce small distortions for a long time

than to introduce large distortions for short periods, in low demand states the franchise lasts forever. Last,

revenue in each high-demand state is higher than in the low-demand state (and also higher than investment),

and the franchise holder bears some risk.

The characteristics described above enable the planner to implement the optimal contract with an LPVR

auction. First, the winning bid will equal the present value of revenue common to all high-demand states.

Second, the winning bid provides the planner with the information necessary to set the tolls from the optimal

contract both in high- and low-demand states. Third, in a high-demand state the franchise lasts until revenues

equal to the winning bid are collected; in low-demand states it lasts forever.

An LPVR auction exploits the fact that the present value of revenue is the only one-dimensional bidding

variable that enables the regulator to implement the optimal contract. By contrast, if firms bid on the toll, the

resulting contract will have a toll that is constant across states of demand and therefore cannot be optimal.

Alternatively, if the regulator sets state-contingent tolls and firms compete on the shortest franchise term,

the resulting contract cannot be optimal either since its length does not vary with demand realizations.

In order to implement the contract described above, the planner must be able to resist the temptation

to help the franchise holder in those states of demand where it makes losses. For this reason we call this

contract theoptimal commitment contract. Experience suggests that contracts are often renegotiated when

demand turns out to be lower than expected.9 For this reason we also study the case where the planner sets
9For example, in Spain, 12 concessions were awarded before 1973. In several of these, building costs were 4 to 5 times higher

than projected, and traffic was about one-third of original projections. As a result, three firms went bankrupt, two were absorbed by
stronger franchise holders, and toll increases and term extensions were granted by the government; see Gómez-Ib́añez and Meyer
(1993, chs. 8, 9 and 10). As another example, Mexico franchised the construction and operation of more than 3,000 miles of
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tolls that guarantee the franchise holder a normal return in all states of demand, i.e., it provides full insurance.

We call this contract theoptimal no-commitment contract. We derive the optimal full-information contract,

show that it can also be implemented with an LPVR auction and that it differs from fixed term contracts.

The planner’s problem can be viewed as an extension of the standard Ramsey problem where the length

of a franchise is an additional choice variable. This paper is also related to the literature on franchise bidding

pioneered by Chadwick (1859) and Demsetz (1968) (see also Stigler [1968], Posner [1972] and Riordan and

Sappington [1987]).10 Following this literature, we show how competition for the franchise can be used to

regulate a monopoly. Our contribution is to study how demand risk affects the optimal contract, considering

explicitly the intertemporal nature of franchise contracts. Finally, this paper is also related to the literature

on the optimal regulation of natural monopolies (see, for example, Laffont and Tirole [1993]).

The rest of the paper is organized as follows. In Section 2 we present the model and the planner’s

problem. The latter is solved in Section 3. In Section 4 we show that an LPVR auction implements the

social optimum. Moreover, we show that a fixed-term auction generically cannot implement the optimum. In

Section 5 we make a quantitative comparison between LPVR and fixed-term auctions. Section 6 concludes

and discusses extensions. An appendix follows.

2 The model and the planner’s problem

A benevolent social planner wants to hire a private firm to build a highway whose technical characteristics

are exogenous.11 The firm can only be compensated with toll revenues, as we assume that other sorts of

compensation, such as monetary transfers from the planner to the firm, are not allowed. The planner’s

objective is to maximize the expected present value of driver welfare subject to finding a firm willing to

build the road.12 The road is franchised for a period during which the franchise holder collects tolls. When

the franchise ends the road reverts to the state and any future tolls are returned to drivers lump-sum.

There aren possible states of demand. In statei, which occurs with probabilityπi > 0, the marginal

benefit of an additional trip whenQ trips are made isBi(Q). We assume that the state of demand becomes

known immediately after the road is built, so that demand remains constant through time. The toll charged

for using the road in statei is Pi ≥ 0, and the time-cost of using the road whenQ vehicles are on it isc(Q),

which is independent of the state. ThenP+ c(Q) is the generalized travel cost, and the number of cars on

the road in statei is determined by

highways in the late 1980’s and early 1990’s. Virtually all concessions were renegotiated after cost overruns and low revenues, with
a (declared) cost to the government of US$6 billion. This amount does not include the cost to users due to term extensions, since
in several cases the terms more than doubled (seeEl Mercurio, June 17, 1996, p. A8, “Apertura Vial Lleva a Desastre Económico,”
an article reproduced from theLos Angeles Times, and the article in the Mexican weeklyProcesoof February 12, 1996).

10But see Williamson (1976, 1985) for a critique.
11Thus, in this paper we do not study the problem of choosing the optimal scale and timing of the project.
12This objective function assumes that the income of users is uncorrelated with the benefit of using the road, so that if users spend

a small fraction of their incomes on tolls they will value the benefits produced by the road as if they were risk neutral. See Arrow
and Lind (1970).
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Bi(Qi) = Pi +c(Qi).(1)

We impose some technical restrictions on the marginal benefit and cost functions:

Bi(q) > 0, B′i(q) < 0 andB′′i (q)≤ 0; for 0≤ q < q̄i , with Bi(q̄i) = 0 andBi(0) > c(0);(2)

c, c′ c′′ ≥ 0 .(3)

That is, in all states the marginal benefit function is strictly positive, strictly decreasing and concave and the

time-cost function is increasing and convex in the number of drivers on the road.13

It will be useful to work with a demand functionQi(P) that is determined from the equilibrium con-

dition (1). It is straighforward to show that this demand function is well defined, concave and strictly

decreasing (that is,Q′
i(P) < 0, Q′′

i (P) ≤ 0). Moreover, the demand elasticityηi(P) is strictly decreasing

with ηi(0) = 0 andηi(PM
i ) =−1, wherePM

i is the monopoly toll in statei.14

In statei consumer surplus is given by

CSi(P)≡
Z Qi(P)

0
Bi(q)dq−Qi(P) [P+c(Qi(P))] ,(4)

which, given assumptions (2) and (3), is finite. Since tolls paid by drivers redistribute income between

drivers and the franchise holder, the net instantaneous social surplus is

Gi(P)≡CSi(P)+PQi(P).(5)

The functionGi is strictly concave by conditions (2) and (3).15 It follows that when congestion costs are

unimportantGi(P) is decreasing for allP, and therefore attains its maximum atP∗i = 0. On the other hand,

when congestion costs are considerable,Gi(P) has a unique interior maximum atP∗i > 0. It is evident

that whenPi = P∗i , users internalize the congestion externality they create.16 Thus, we denote byP∗i the

congestion tollin statei.

For each possible state of demand the planner chooses two tolls, the one that users pay to the franchise

holder during the life of the franchise and a second toll that is collected by the planner after the end of the

franchise. The revenue from the latter is returned to users as a lump-sum. The tolls in statei are denoted by

PF
i andPA

i , where the superscripts “F” and “A” stand forfranchiseandafter, respectively. The length of the

franchise in statei is denoted byTi .

Since we are not interested in construction cost uncertainty, we assume that there are many identical

firms that can build the highway at costI > 0. There are no maintenance costs and the road does not de-
13Thus, we are assuming that there is no hypercongestion.
14For proofs of these results see Appendix A in EFG (1998).
15See Appendix A in EFG (1998).
16Lemma A.3 in EFG (1998) provides a proof.
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preciate.17 Firms are risk-averse expected-utility maximizers, with twice-continuously differentiable utility

functionsu defined over net revenuePVRi− I , where

PVRi ≡
Z Ti

0
PF

i Qi(PF
i )e−rt dt

is the present value of the franchise holder’s income in demand statei, discounted at the risk-free interest

rate,r. Each firm has an outside option that yields utilityu(0).

We assume that a dollar in the hands of users is socially more valuable than in the pocket of the franchise

holder (as in Laffont and Tirole [1993]).18 Given this assumption, it is easy to show that there is no loss

of generality in assuming that the objective function of the planner does not include the rents accruing to

the franchise holder.19 Thus, the planner wants to extract all rents from the franchise holder and the firm’s

participation constraint holds with equality:

Eu(PVRi− I) = u(0).(6)

Since the planner returns the revenue he receives after the franchise ends to users, as a lump sum, his

payoff in statei may be written as:

Wi(PF
i ,PA

i ,Ti)≡
Z Ti

0
CSi(PF

i )e−rt dt+
Z ∞

Ti

CSi(PA
i )e−rt dt+

Z ∞

Ti

PA
i Qi(PA

i )e−rt dt,

which after some rewriting, and definingLi ≡ e−rTi , is equal to

Gi(PF
i )

r
(1−Li)+

Gi(PA
i )

r
Li −PVRi .(7)

The planner chooses a toll and franchise-period schedule(PF
i ,PA

i ,Li)n
i=1 to maximize the expected value

of (7) subject to the firm’s participation constraint (6).20

If the planner could make monetary transfers to the franchise holder, she would choosePF
i and PA

i

equal to the congestion tollP∗i .21 Since the participation constraint is no longer relevant at the end of

the franchise, the planner always setsPA
i = P∗i . Nevertheless, in order to raise revenue and satisfy the

participation constraint, the planner may need to distort tolls during the franchise. The optimal toll in statei
17With a minor change in notation all results in this paper can be shown to hold when maintenance costs are proportional to the

number of vehicles using the road. The engineering literature on this issue suggests that, except for low quality roads, deterioration
depends mainly on use, not time. See Small et al. (1989).

18One justification could be social preferences on the distribution of income; another that, particularly in developing countries,
many foreign firms participate in the highway business.

19In fact, LPVR is still optimal when franchise rents are as valuable as consumer surplus.
20The objective function (7) assumes a benevolent planner, which may be somewhat contradictory with forcing a self-financing

constraint—a benevolent planner should be given free hand to use subsidies to maximize welfare. We follow the regulation literature
in studying the normative Ramsey-Boiteaux problem given the self-financing constraint. See also the discussion in Laffont and
Tirole (1993, ch. 3.4).

21As taxes are usually distortionary, actually the optimal toll should be slightly above the congestion toll.
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during the franchise, which we denote byPO
i ,22 satisfies

P
∗
i ≤ PO

i ≤ PM
i .(8)

That is, the optimal toll lies between the congestion toll and the monopoly toll.23 In the remainder of the

paper, the following definitions and notation will be useful. First, if

PiQi(Pi)
r

≥ I ,

then we say thatthe road is self-financing in statei charging tollPi . Second

PVR∗i ≡
P∗i Qi(P∗i )

r
(9)

is the present value of revenue collected if the franchise lasts forever and the toll equals the congestion toll.

Analogously, definePVRM
i by substitutingPM

i for P∗i in (9). Finally,

PVRO
i ≡

PO
i Qi(PO

i )
r

(1−LO
i )

is the present value of revenue collected by the franchise holder if tolls and franchise terms are chosen

optimally.24 Now we can study the planner’s problem.

3 The planner’s solution

In this section we find the contract that solves the planner’s problem, and develop a simple classification of

roads based on this contract.

3.1 Thecommitmentcase

Most highway franchises have been awarded under a contract that fixes a state-independent toll and franchise

term before the road is built; that is for alli, j, PF
i = PF

j = P andTi = Tj = T. In such fixed-term contracts

the government has committed in principle (though often not in practice) to change neither tolls nor the

franchise period. This is a special case of a more general contract where the planner commits to a toll and

franchise-term schedule(PF
i ,PA

i ,Li)n
i=1 before the realization of demand. In this subsection we characterize

the optimal contract within this class.
22Henceforth the superscript “O” will denote the optimal value of a variable during the franchise period.
23To rule outPO

i < P∗i , note that raisingPO
i increases welfare (sinceGi is concave and attains its maximum atP∗i ) and increases

revenue (since demand is relatively inelastic). A similar argument rules outPO
i > PM

i .
24Recall thatLO

i = e−rT O
i , whereTO

i is the optimal franchise term in statei.
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From (7) we have that the planner solves

max
(PF

i ,PA
i ,Li)n

i=1

∑
i

πi

[

Gi(PF
i )

r
(1−Li)+

Gi(PA
i )

r
Li −PVRi

]

(10)

subject to the firm’s participation constraint (6). Suppose that∑i πiu
(

PVRM
i − I

)

≥ u(0), that is, that the

road is self-financing under monopoly tolls. Then there exists a solution for this problem.25 The assumption

of commitment implies that the planner can compel the franchise holder to accept losses in some states,

and guarantee to compensate him with profits in other states; that is,u(PVRi − I) = u(0) need only hold

on average, not in every state of demand. Commitment gives the planner the possibility of distorting less

in low-demand states and compensating the franchise holder with a longer franchise in high-demand states,

thereby trading off user distortions against the risk borne by the franchise holder.

The planner’s problem may be viewed as a Ramsey pricing problem. The state-contingent tolls can

be viewed as the prices of the different goods while the firm’s participation constraint corresponds to the

budget constraint. Two aspects of our problem differ from standard Ramsey problems. First, the firm is risk

averse with respect to income. Second, and more important, the planner has twice as many instruments at

his disposal: she can set a toll and also choose the franchise length for each state of demand. As we show

shortly, it is the possibility of exploiting the time dimension that underlies the main results in this paper.

We start with an important lemma that characterizes the trade-off between toll distortions and risk forced

on the franchise holder.

Lemma 3.1 (a) For all statesi, PO
i > 0, andTO

i > 0 (i.e.,LO
i < 1).

(b) The following term is independent of the statei:

Qi(PO
i )[1+ηi(PO

i )]
Qi(PO

i )[1+ηi(PO
i )]−G′

i(P
O
i )

u′i ≡ u′.(11)

Proof See Theorem 7.1 in the appendix.

Part (a) of the lemma says that the franchise holder receives positive revenues in all states. Part (b)

summarizes the insurance-distortion tradeoff. In the planner’s solution, the term in (11) is smaller in those

states in which the firm’s revenue is larger (since the expression is increasing inu′, which is decreasing in

revenue) and when tolls are higher (as reflected both byηi(PO
i ) andG′

i(P
O
i ), both of which have an absolute

value that increases withPO
i ).

Even though (11) characterizes the solution in the commitment case, it does not provide much intuition

on the form of the optimal franchise contract, nor does it suggest how to design an auction that implements

the planner’s solution. For this reason we use (11) to derive a series of propositions that provide a simple
25See Proposition 7.1 in the Appendix for a proof.
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description of the optimal contract and that serve as a basis to derive its implementation via a competitive

auction. The first proposition shows that if the road is self financing charging congestion tolls in all states of

demand (PVR∗i ≥ I for all i) then the optimal contract sets the congestion toll in all states, the participation

constraint holds in every state of demand and the franchise holder receives full insurance.26

Proposition 3.1 (Full insurance) Let PVR∗i ≥ I for all i. Then the optimal franchise contract is such that

for all statesi, PF
i = P∗i andPVRO

i = I .

Proof SincePVR∗i ≥ I , the solution is feasible and meets the participation constraint. IfPF
i = P∗i then

G′
i(P

∗
i ) = 0, and from Lemma 3.1 we have thatu′i = u′j for all i, j, so thatPVRO

i = PVRO
j . Finally,PVRO

i = I

minimizes the transfer to the franchise holder.

The intuition behind this proposition is quite straightforward. First, if the road is self-financing when

the congestion toll is charged in all states of demand, there is no need to distort in order to satisfy the

participation constraint. Second, since the franchise holder is risk-averse, the transfer is minimized when he

is given full insurance. Last, since in generalPVR∗i 6= PVR∗j , the franchise term is variable: the franchise

lasts longer when demand is low.

Proposition 3.1 is not general, because nothing ensures thatPVR∗i ≥ I for all i. For roads such that

PVR∗i < I in at least some statei, the planner must trade off the benefit of insuring the franchise holder

(i.e., that reduced risk implies a smaller transfer to the franchise holder) against the costs of raising tolls and

creating a distortion. In what follows we characterize this tradeoff.

WhenPVR∗i < I in at least some statei, states of demand can be classified in two categories: those

where the planner sets congestion tolls and those where the planner, optimally, chooses to distort tolls by

settingPF
i > P∗i . We begin by studying tolls in a statei where the planner optimally setsPF

i > P∗i . Suppose

that, for the optimal contract, the franchise holder’s revenue in statei is PVRO
i . In principle the planner faces

the following tradeoff: givenPVRO
i , a lower toll means a smaller instantaneous distortion, but for a longer

term. The next proposition shows that the concavity ofGi implies that the planner has a preference fortoll

smoothing, so that it is optimal to charge forever the lowest possible toll consistent with PVRi = PVRO
i .

Proposition 3.2 (Toll smoothing) For all statesi such thatPO
i > P∗, TO

i = ∞.

Proof Given the concavity ofGi , the proof is similar to that of standard insurance results, see EFG (1998)

for details.

Next we characterize revenues in those states where congestion tolls are charged.

Proposition 3.3 For all statesi, j such thatPO
i = P∗i andPO

j = P∗j , PVRO
i = PVRO

j .
26In EFG (1997a) we prove this result assuming perfectly inelastic demands, no congestion and no demand-contingent tolls.
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Proof Note thatG′
i(P

∗
i ) = G′

j(P
∗
j ) = 0. From Lemma 3.1,u′i = u′j ; hence PVROi = PVRO

j .

The intuition behind this result is quite simple, at least in the case where the optimal franchise length in

both states is finite. Consider two statesi, j wherePO
i = P∗i andPO

j = P∗j , but wherePVRO
i < PVRO

j . Then if

we extend the franchise a bit in statei and shorten it in statej so that expected revenue does not change, the

planner’s objective function does not change and the firm’s participation constraint becomes slack. Hence,

the franchise terms ini and j were suboptimal.

The next proposition shows that the franchise holder will collect more revenue in states where congestion

tolls are charged than in states with distortionary tolls.

Proposition 3.4 For all statesi, j such thatPO
i > P∗i andPO

j = P∗j , PVRO
i < PVRO

j .

Proof Suppose thatPO
i > P∗i andPO

j = P∗j . SinceG′
i(P

∗
i ) = 0, by Lemma 3.1 we have that

Qi(PO
i )[1+ηi(PO

i )]
Qi(PO

i )[1+ηi(PO
i )]−G′

i(P
O
i )

u′i = u′j .

SinceG′
i(P

O
i ) < 0 andηi(PO

i ) ≥ −1, the fraction on the LHS is smaller than one. Thusu′i > u′j and hence,

by concavity ofu, PVRO
i < PVRO

j .

Note that Propositions 3.3 and 3.4 imply that if there exists at least one state where optimal tolls are

distortionary, then in those states where congestion tolls are charged we have PVRO > I , that is, the franchise

holder makes a profit. It follows that ifPVR∗i < I then PO
i > P∗i .27 Moreover, since the participation

constraint must bind, the franchise holder must lose money in some states.

To conclude we show that if in a given state it is optimal to charge the congestion toll, then in all states

with higherPVR∗ it is also optimal to charge the corresponding congestion toll.

Proposition 3.5 If PVR∗i ≤ PVR∗j andPO
i = P∗i , thenPO

j = P∗j .

Proof See Appendix A in EFG (1998).

Proposition 3.5 allows us to order states of demand in a simple way. Without loss of generality, assume

thatPVR∗1 ≤ PVR∗2 ≤ ... ≤ PVR∗n (we will keep this convention in the rest of the paper). It follows that if

PO
i = P∗i , thenPO

i+1 = P∗i+1, ... ,PO
n = P∗n . Conversely, ifPO

i > P∗i , thenPO
i−1 > P∗i−1, ... ,PO

1 > P∗1 .

To summarize, the preceding results show that when the planner can commit, the structure of the opti-

mal contract(PO
i ,Li)n

i=1, is quite simple. First, either tolls are distorted and the franchise lasts forever, or

congestion tolls are set and the franchise lasts until a givenPVR is collected (Propositions 3.2 and 3.3).

Second, the revenues of the franchise holder are higher in those states where congestion tolls are optimal

(Proposition 3.4). Finally, if it is optimal to charge the congestion toll in a particular state of demandi then
27The converse is not true: if PVR∗i ≥ I , it does not follow thatPO

i = P∗i .
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it is optimal to set congestion tolls in all statesj that collect at least as much revenue asi when congestion

tolls are set (Proposition 3.5).

3.2 Theno-commitmentcase

As mentioned in the introduction, in the real world it is common for franchise contracts to be renegotiated

in those states of demand where the franchise holder loses money under the original contract.28 For political

economy reasons, once it becomes apparent that the franchise holder will suffer losses, governments seem

unable to resist pressures to renegotiate. Since the franchise holder will lose money in those states of demand

i such thatPVR∗i < I , it follows that in many cases it may be unrealistic to expect governments to implement

the optimal contract. However, as in the case of utilities, the government may be able to precommit to allow

the franchise holder a normal rate of returnin every state of demand: that is, after the road is built, for all

statesi she will set tolls such thatPiQi(Pi) = rI . In that case, for alli the planner solves

max
PF

i ,PA
i ,Li

Gi(PF
i )

r
(1−Li)+

Gi(PA
i )

r
Li−PVRi(12)

subject toPVRi = I .

The following proposition characterizes the optimum.

Proposition 3.6 Assume that for all statesi: PVRM
i ≥ I . Then:

(a) if PVR∗i ≥ I , thenPF
i = PA

i = P∗i , andTi is set so as to satisfyPVRi = I ;

(b) if PVR∗i < I , thenTi = ∞ and the optimal toll is determined by

PO
i Qi(PO

i )
r

= I .

Proof In case (a), the maximum is attained atPF
i = PA

i = P∗i and the self-financing constraint determines

the franchise lengthTi . The proof of part (b) is similar to that of Proposition 3.2.

Just as in the previous commitment case, states of demand can be ordered in a simple way: ifPO
i = P∗i ,

then PO
i+1 = P∗i+1, ... ,PO

n = P∗n . Conversely, ifPO
i > P∗i , then PO

i−1 > P∗i−1, ... ,PO
1 > P∗1 . Contrary to

the case of commitment, however, the optimal no-commitment contract always gives full insurance to the

franchise holder. Consequently, whenPVR∗i ≥ I in all states, the solution to problem (12) is identical to

the commitment contract: in all states the franchise ends whenPVRi = I . But whenPVR∗i < I in at least

one state of demand, the optimal contract is inferior to the commitment contract. First, the participation

constraint must not only hold on average, but in every state of demand. Thus, insurance and distorted tolls

cannot be traded off and this contract gives too much insurance and distorts tolls too much. Second, roads

for which PVRM < I in at least one state of demand will never be built, independently of their profitability

in other states, whereas they might have been built under the optimal commitment contract.
28See footnote 9 for evidence.
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Note that the optimal no-commitment contract is analogous in spirit to traditional rate of return reg-

ulation, which seeks to set the price of the service so that the public utility earns a normal rate of return

contingent on the particular realization of demand and cost parameters.29 The main difference is that the

franchise period is limited, a consequence of the assumption that all investments are sunk and need to be

made only once.

3.3 Additional results

It is interesting to relate the optimal contracts with Ramsey pricing. We first note that the commitment

case corresponds to the Ramsey assumption of a single budget constraint, while the no commitment case

considers a “per service” budget constraint.

Next we describe how, in the case with commitment,30 optimal tolls and franchise lengths vary as the

construction costI increases. We start with a sufficiently low value ofI , so that in all states of demand the

road can be financed with congestion tolls in finite time.31 As I increases in this range, the optimal franchise

length increases, with no change in tolls, since additional revenue can be collected in all states of demand

without distorting tolls. In contrast to standard Ramsey problems, the additional instrument available in our

case, namely the franchise length, makes it possible to collect more revenue without creating distortions.

OnceI exceeds PVR∗1, the optimal toll in state 1 will be above the corresponding congestion toll,P∗1 .

When trading off toll distortions and the risk premium, the planner always chooses a positive level of toll

distortion, since the associated welfare cost is second order while that associated with increasing the risk

premium is first order. AsI continues increasing, the franchise lengths in states2 throughn continue

increasing. By contrast, in state1 it is the toll that increases, aiming at keeping a balance between the

toll distortion this creates and the risk premium associated with the lower present value of revenue that the

franchise holder receives in this state. EventuallyI reaches a threshold where the franchise length in state 2

is infinite. Values ofI above this threshold lead to distortionary tolls in states 1 and 2.

As I continues increasing, distortionary tolls (and indefinite franchise lengths) set in, consecutively,

in states 3, 4, and so on. By the timeI > PVR∗n, distortionary tolls (and indefinite franchise lengths) are

required in all states of demand.

It follows from our discussion above that for a particular statek the present value of revenue collected

during the franchise increases monotonically withI . For small values ofI it is an increasing franchise length

that accounts for this increase; for larger values the franchise length is indefinite and additional revenue is

collected by increasing the toll.

The results described above can be summarized in the following proposition:

29Since demand is exogenous in the present model, there is no tradeoff between rent extraction and incentives. Moreover, in this
section the regulator acts with full information about the relevant parameters. Thus, rent extraction is the sole aim of the regulator
and rate of return regulation is appropriate.

30All of what follows has an obvious counterpart in the case without commitment.
31Since we adopted the convention that PVR∗

i ≤ PVR∗j if i < j this is equivalent to PVR∗1 > I .
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Proposition 3.7 (Increasing revenue as a function ofI ) The present value of revenue collected in a given

state of demand by the optimal contract is a strictly increasing function of the construction costI , both in

the case with and without commitment.

Proof See EFG (1998).

The above digression motivates a classification of roads according to whether the optimal contract re-

quires toll distortions:

1. High-demand road: In all states of demand the optimal toll is equal to the congestion toll, i.e., there

are no distorted states.32

2. Intermediate demand road: There exists an indexk between2 andn, such that the optimal contract’s

toll in statei is above the corresponding congestion toll for alli < k and equal to the congestion toll

all i ≥ k. that is, there are some states with distortionary tolls.

3. Low-demand road: In all states the optimal toll is higher than the congestion toll.

4 Least-Present-Value-of-Revenue auctions

In this section we show how the optimal contract derived in the preceding section can be implemented with a

competitive auction. Auctioning a highway franchise requires designing the franchise contract and choosing

a bidding variable. Since the auction takes place before demand is realized, the bidding variable cannot be

state-contingent. Implementing the optimal contract via a competitive auction therefore requires finding

a bidding variable that does not vary across states of demand and that can replicate the optimal franchise

lengths and tolls, both of which vary with demand.

If the regulator sets the franchise term and firms compete on the lowest toll, the resulting contract has

a toll that is equal to the winning bid, and therefore constant across states of demand. It follows that the

optimal contract cannot be replicated in this way. This holds even if the length of the franchise is demand-

contingent. Similarly, if the regulator sets state-contingent tolls and firms compete on the shortest franchise

term, the resulting contract cannot be optimal since its length does not vary with demand realizations.

In this section we show that the bidding variable that solves the problem described above is the present

value of toll revenue. The corresponding auction proceeds as follows: First, the regulator announces the

discount rate and the toll that the franchise holder will be allowed to charge in each state of demand. This

toll is the optimal contract toll in each state of demand. Second, firms bid on the present value of toll

revenue and the lowest bid wins the franchise contract. The road is built, the planner observes the state of

demand and sets the corresponding optimal toll. The franchise holder collects tolls until the present value

of tolls equals the winning bid, then the road is transferred to the state. If the sum is never collected, the
32It is interesting to note that urban highways are likely to be high-demand roads.
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franchise lasts forever. In the next section we show that this Least-present-value-of-revenue (LPVR) auction

implements the optimal contract. We consider separately the cases of high-, intermediate- and low-demand

roads.

4.1 High-demand road

It follows from Section 3 that in this case the optimal contract involves the same present value of revenue,

I , in all states of demand.33 It is also easy to see that the winner’s expected utility is an increasing function

of her (winning) bid. Also, a bid equal toI achieves the break-even point. Thus, Nash competition between

identical firms implies that the winner will bidI . If statek occurs, the franchise term,Tk, is such that present

value of toll revenue during the franchise is equal toI . ThusTk is determined from:Z Tk

0
PO

k Qk(PO
k )e−rt dt = I ,

which is precisely the condition for the optimal contract’s franchise length,TO
i . It follows that the LPVR

auction implements the optimal contract.

It is interesting to note that in the case of a high demand road the regulator does not need to know the

probability distribution of states of demand or firms’ utility functions in order to implement the optimal

contract. The only information she needs are the optimal congestion tolls.

In the case of intermediate and low-demand roads, an analogous argument shows that an LPVR auction

implements the optimal contract in the cas of no commitment. The case with commitment is more difficult

and we turn to it next.

4.2 Intermediate- and low-demand roads

We begin with an intermediate demand road. Fori ≥ k the optimal contract sets congestion tolls, while in

the remaining states (i < k) it sets distortionary tolls and the franchise lasts forever.

It is obvious that in an LPVR auction the franchise holder’s expected utility is an increasing function

of her (winning) bid. Next we show that her participation constraint holds with equality when she bids the

present value of revenue common to all states where the optimal contract sets congestion tolls (that such a

value exists follows from Proposition 3.3). This, combined with the fact that the winning bid leads to the

same franchise length as the optimal contract in all states of demand, implies that Nash competition between

identical firms replicates the optimal contract.

Since the present value of revenue is higher in states with congestion tolls than in states with distortionary

tolls (Proposition 3.4), we have that the franchise lasts indefinitely when one of the lower demand states

occurs, as is the case under the optimal contract. In high-demand states, the argument of the previous

section shows that the LPVR and the optimal contract coincide.
33This holds both for the case with and without commitment.
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Denote by PVROi the present value of revenue collected by the franchise holder with the optimal contract

in statei. An LPVR auction implements the optimum because a firm biddingmaxi PVRO
i will collect PVRO

i

in statei, as long as the regulator sets the optimal toll corresponding to statei. In the case of a high-demand

road, all the PVROi ’s are equal toI . By contrast, in the case of an intermediate demand road,maxk PVRk is

equal to the common revenue obtained in all those states where the optimal toll equals the corresponding

congestion toll. Noting that the winning bid will also bemaxi PVRi , an argument similar to the one given

for an intermediate demand road can be used to show that an LPVR auction is optimal for a low-demand

road.

4.3 Informational requirements

The informational requirements needed to implement the optimum are quite formidable in the case of an

intermediate or low-demand road with commitment. The regulator needs to know construction costsI , the

probability distribution of demand states,πi , and the demand schedules,Qi , i = 1, . . . ,n. By contrast, we

showed that in the case of a high-demand road the regulator does not need to know neitherI nor theπi ’s,

since knowing the congestion tolls suffices in this case.

Since the winning bid,maxi PVRO
i , is (strictly) increasing inI (see Proposition 3.7), the regulator can use

this relation to inferI from the winning bid. Thus, knowledge ofI is not necessary to implement the optimal

contract not only in the case of high-demand roads, but also in the case of intermediate and low-demand

roads. This holds both in the case with and without commitment.

The results derived in this section are summarized in the following proposition:

Proposition 4.1 Denote bymaxi PVRO
i (I) the maximum, over all states of demand, of the present value of

revenue collected under the optimal contract when construction costs equalI .34

Then an LPVR auction implements the social optimum if the regulator announces that for a winning bid

of β the toll schedule will be the optimal state-contingent tolls associated with the value ofI that satisfies

maxi PVRO
i (I) = β.35 This holds both for the cases with and without commitment.

Proof The main elements of the proof we discussed in this section. A more formal approach is in EFG

(1998).

Having established the optimality of LPVR auctions, we note that fixed-term auctions, which are the

standard highway auction mechanisms throughout the world, are optimal only ifPVR∗i is the same across all

states of demand and the common value is larger thanI . Thus generically fixed-term auctions are subopti-

mal.36 Furthermore, as we show in the next section, not only are LPVR auctions better than their fixed-term

counterpart, but welfare differences are important.
34Regarding possible values ofI , see EFG (1998).
35That such a value ofI exists and is unique follows from Proposition 3.7.
36For a formal proof see Appendix C in EFG (1998).
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5 LPVR and fixed-term franchises compared

As we mentioned before, most highways that have been franchised around the world have been awarded

under a fixed-term contract. In this section we develop a procedure to quantitatively compare LPVR auctions

with fixed-term auctions and apply it to data from Chilean highways to obtain estimates of the savings

involved in using an LPVR auction (a massive highway franchising program is currently underway in Chile,

see EFG [1996]). Since we do not have data to estimate demand elasticities we work with a simplified

version of the model where demand in each state is perfectly inelastic. Uncertainty comes from the fact that

demand depends on user income, whose growth is stochastic. Given that tolls play no allocational role in

this setting, we also assume that in all states of demand the toll is the same and high enough to finance the

road.

5.1 Model

In a fixed term auction the planner can either set the franchise termT and the auction is won by the firm who

bids the lowest toll; or it can fix a tollP and the auction is won by the firm who bids the shortest franchise

term. In both cases Nash competition implies that the following identity must hold in equilibrium:

∑
i

πiu(P·PVQi(T)− I) = u(0).(13)

WherePVQi(T) denotes the present value of traffic flow in state of demandi,37 andPVRi = P·PVQi . Note

that if the term of the franchise is fixed,PVQi varies with the state of demand. Thus with a fixed-term

franchise the franchise holder cannot be offered full insurance. By contrast, an LPVR auction gives full

insurance to the franchise holder.

Let ζ(T) ≡ E[PVQi(T)] be the expected present value of traffic flows if the term of the franchise isT,

and letσ2(T) ≡ E
[

[PVQi(T)−ζ(T)]2
]

denote the corresponding variance. Proposition 5.1 calculates the

risk premium charged by the franchise holder in a fixed-term auction.

Proposition 5.1 To a first order approximation, the risk premium charged by the franchise holder in a

fixed-term franchise is
(

CV
√

A/2

1−CV
√

A/2

)

I .(14)

WhereAdenotes the coefficient of relative risk aversion (evaluated atPζ− I ) andCV ≡ σ/ζ denotes the

coefficient of variation of the present value of traffic flows.

Proof Given T or P, equilibrium tolls or franchise terms are determined by condition (13). A first-order

Taylor expansion of the RHS of (13) and a second-order Taylor expansion of the LHS, both around the risk
37Note thatQi is no longer a function ofPi . Also note that, in contrast with the preceding sections, we do not assume that

uncertainty is resolved in the first period.
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premiumPζ(T)− I , lead to:

∑
i

πi

[

ū+P(PVQi−ζ)ū′+
1
2

P2(PVQi −ζ)2ū′′
]

∼= ū− (Pζ− I)u′.

Whereū≡ u(Pζ(T)− I), ū′ ≡ u′(Pζ(T)− I) andū′′ ≡ u′′(Pζ(T)− I). It follows that−1
2P2σ2 ū′′

ū′
∼= Pζ− I ,

and hence, multiplying both sided byPζ− I

1
2

P2σ2A∼= (Pζ− I)2,(15)

which leads to

P∼=
I

ζ[1−CV
√

A/2]
.

SubstitutingP back into (15) and taking the square root yields (14) which completes the proof.

Now consider an LPVR auction. If tolls are set high enough to make the road self-financing in all

states,38 then the following corollary follows trivially:

Corollary 5.1 If the toll P is fixed so that the road is self-financing in all states, then expression (14) is also

the expected value of the reduction in toll income in a competitive auction.

5.2 Empirical implementation

We calculate risk premia for values ofAbetween1.0 and3.0 (see Table 1).39 We obtainCV as follows. We

assume that traffic flows increase according to

Qt+1 = egt Qt

and define

PVQ≡
T−1

∑
t=0

e−rt Qt.(16)

There are two sources of uncertainty: the annual growth rates of the traffic flow,gt , and the initial traffic

flow, Q0. We assume that annual growth rates are independently distributed and satisfy

gt ≡ (ηy + εη
t )(gy + εM

t + εm
t ).

Whereηy denotes the average income elasticity of traffic flows,εη
t are random shocks that affect this elas-

ticity, gy is the average growth rate of GDP, andεM
t andεm

t are, respectively, the variations in this rate due
38Since demand is inelastic, general equilibrium considerations ignored throughout this paper suggest that the toll should be set

equal to road users’ reservation toll.
39These values are representative of those estimated in the literature.
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Table 1:SAVINGS AS A PERCENTAGE OF ORIGINAL INVESTMENT

Coef. Rel. Risk Aversion
1.0 1.5 2.0 2.5 3.0

0.05: 16.6 21.1 25.2 29.0 32.7
CV 0.10: 18.4 23.5 28.2 32.6 36.8
of 0.15: 21.2 27.3 32.9 38.3 43.5
Q0 0.20: 24.8 32.2 39.1 45.8 52.5

0.25: 29.3 38.4 47.2 55.9 64.6

to macro- and micro-economic factors. The parameterηy is taken as1.6, the estimated income elasticity of

traffic flows in Chile in the period 1985–1995;gy is set equal to0.06, the average rate of growth of Chile’s

GDP over the same period;εη
t , εM

t andεm
t are assumed to be mutually independent and uncorrelated over

time, following a normal distribution with zero mean and standard deviations of, respectively, 0.2, 0.02 and

0.04. The standard deviations assumed for macro- and micro-economic risk are consistent with the growth

rates of national and regional GDP in Chile over the 1985–1995 period.40 The variation ofQ0 cannot be

estimated from actual data. Thus, as in the case of the coefficient of relative risk aversion, we calculate

risk-premia for values of the coefficient of variation of initial traffic between0.05and0.25.

If the length of the franchise (T), the discount rate (r), the relative risk aversion coefficient (A) and the

coefficient of variation ofQ0 are all given, the coefficient of variation of the sum (16) can be estimated by

simulating paths forgt . We assume thatT = 20 years (several highways in Chile were franchised with that

term) andr = 0.06(this has been close to the average real rate paid by a 20-year bond issued by the Central

Bank during the nineties).CV can be calculated assuming that traffic growth rates are independent from the

initial level and holding constant the coefficient of variation ofQ0.41

Table 1 shows the savings to users as a percentage of the initial investment, for alternative combinations

of the coefficient of variation ofQ0 and the relative risk aversion coefficient,A.42

It can be read from Table 1 that if the coefficient of risk aversion of firms is 2 and the coefficient

of variation ofQ0 is 0.15, then the risk premium charged by the franchise holder if the term is fixed is

approximately one-third (32.9%) of the initial investment. The median of the values in the table is 32.6%—

the mean is even higher. With a discount rate of 8% instead of 6%, the median is 31.1%.
40The standard deviations forεM

t andεm
t are obtained decomposing yearly regional GDP growth rates into the sum of a common

component (equal to the average growth rate across regions) and an idiosyncratic component (the residual). The standard deviation
of the common component is 1.82%, the standard deviation of idiosyncratic shocks varies between 2.79% (1989–1990) and 5.75%
(1993–1994) with an average of 4.21% over the period considered. We thank Raimundo Soto for providing the regional GDP data.

41Here we use the result that relates the coefficient of variation of the product of two independent variables,X andY, to the
coefficient of variation of the individual variables:CV2

X·Y = CV2
X +CV2

Y +CV2
X ·CV2

Y .
42Each value in this table is based upon a coefficient of variation of the sum (16) obtained from 25,000 simulations. This leads

to a relative approximation error smaller than 0.4%.
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6 Conclusion

In this paper we have shown that fixed-term contracts, which are commonly used to franchise highways, do

not allocate demand risk optimally. We characterized the optimal risk sharing contract and showed that it

can be implemented with a fairly straightforward mechanism—an LPVR auction. Instead of bidding on a

toll (or a franchise length), as in the case of fixed term franchises, in an LPVR auction the regulator sets a

toll schedule and bidders announce present values of toll revenues. The lowest bid wins and the franchise

ends when that amount has been collected. Finally, we showed that the welfare gains that can be attained by

replacing fixed-term auctions with LVPR auctions are substantial.

Throughout the paper we focused on the risk sharing properties of alternative highway franchising con-

tracts. Worldwide evidence with highway franchising suggests that there are additional characteristics of

these contracts that should be considered. We comment on them briefly.43

Since the franchise term adjusts to demand realizations, LPVR auctions are much less sensitive to de-

mand information and thus more cost oriented than fixed term franchises. For example, if we allow for

heterogeneity in construction costs and assume that all bidders can recuperate their building costs with con-

gestion tolls, then in a second–price LPVR auction all firms will bid their construction cost, no resources

will be spent on estimating demand, and the winner will be the most efficient firm. By contrast, in the case

of a fixed term franchise, demand realizations affect bidders’ profits, so that bidders have incentives to spend

resources on estimating demand. Furthermore, in this case it is likely that the winner will not be the firm

with lowest construction costs, since bids will also reflect differences in demand forecasts.

The actual experience of countries that have franchised highways to the private sector has often been

unhappy. Two problems have been prominent: private firms and financiers usually refuse to participate

unless governments pledge guarantees against commercial risks;44 and franchise holders are generally able

to renegotiate and shift losses to taxpayers and users whenever they get into financial trouble.45 As we have

argued elsewhere (see EFG [1997b]), government guarantees and renegotiations are undesirable, because

they are not accounted for in the budget, blunt the incentives to be efficient, encourage firms with experience

in lobbying to lowball in the expectation of a future renegotiation, and make white elephants more likely.46

We believe LPVR franchises moderate these pitfalls.47 By reducing demand risks, they reduce the demand

for guarantees. Moreover, the fact that each firm’s bid reveals the income required to earn a normal profit

reduces the scope for post-contract opportunistic renegotiations, since any wealth transfer by the government

must take the form of a cash transfer whose amount can be readily understood by the public and compared

with the initial winning bid. For the same reason, it should be politically more difficult for the government to

exploit the franchise holder by changing the original contract, since the winning bid is a clear and observable
43The presentation is at an intuitive level since we are currently working on formalizing these insights.
44For example, for nine out of ten highways franchised in recent years in Chile, the government provided a guarantee that the

revenue would equal 70% of construction and maintenance costs. See Irwin et et al. (1997) for more examples.
45See footnote 9.
46Where by white elephant we mean a road with negative net present social value.
47And are therefore more robust to Williamson’s (1976, 1985) critique of franchise bidding.
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benchmark that makes it easy to value any wealth expropriation.

LPVR auctions also are more flexible than their fixed term counterparts. For example, if for some

reason, the franchise needs to be terminated ahead of time, a fair compensation for the franchise owner is

the difference between the winning bid and revenue collected thus far.48 This should be contrasted with

fixed term franchises, where compensations based on estimates of expected profits during the remainder of

the franchise are subject to dispute.49 Underlying this intuition is the fact that an LPVR franchise is an

incomplete contract where one of the parties (the franchise holder) has little to fear if the other party (the

regulator) is given fullex postcontrol (in the Grossman–Hart–Moore sense). The government can react

to unforeseen circumstances in a variety of ways without affecting the franchise holder’s profits, since the

franchise holder only cares about eventually recovering the up front investment. This implies that under

LPVR, the government has more flexibility to react to demand realizations, than under a fixed term scheme.

The main caveat regarding LPVR auctions is that they provide insufficient incentives to exert effort in

demand- and quality-enhancing activities (e.g. building a road of the right standard, providing adequate

maintenance without supervision, or providing expeditious service at toll booths). For example, potholes

reduce demand for the road, yet the franchise owner has few incentives to maintain the road adequately,

since the associated revenue shortfall will be made up through a longer franchise length. Throughout the

paper we assumed that demand was exogenous, thereby ignoring the insurance–quality tradeoff. In the case

of monopoly highways, there appear to be few demand enhancing activities, so omitting the effects of in-

centives appears reasonable. Nevertheless, as Tirole (1997) has stressed, this suggests that LPVR contracts

should be complemented with other regulatory innovations, such as third parties who verify minimum qual-

ity standards, and appropriate fines for non-compliance. In the case of highway franchises this should not

be a major problem since objective measures for road and service quality can be defined and verified at a

low cost, yet this sets limits to the application of LPVR auctions to other types of infrastructure projects.50

Finally it is interesting to mention that LPVR auctions are not only a theoretical construct. An LPVR

auction was used in February of 1998 in Chile to franchise the Santiago-Valparaı́so-Viña del Mar concession.

The project contemplates major improvements and extensions of the 100 mile highway and the construction

of three tunnels, with estimated costs of almost US$400 million. The toll schedule was fixed in advance

(in real terms) as was the discount rate. Five firms participated in the auction and the present value of toll

revenue demanded by the winner turned out to bebelowestimated construction and maintenance costs. One

possible explanation for this outcome is that, given the relatively low risk associated with LPVR auctions,

the discount rate set by the regulator—equal to the risk free rate plus 4%—was higher than the discount rate

used by firms. Also, firms were given the option to buy government insurance against demand risks, but the
48We have ignored maintenance costs throughout this paper. If they are added, an estimate for savings associated with these cost

should be subtracted.
49In early 1997 the government of Argentina announced it wanted to end airport franchises in order to reauction them under

new terms. These were fixed-term franchises. Estimates of adequate compensation for franchise holders varied between US$400
million (government estimates) and US$40 million (former Economics Minister Domingo Cavallo’s estimates). SeeEl Mercurio,
February 6, 1997.

50Another case where LPVR auctions are appropriate is water reservoirs.
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winner declined the offer.
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7 Appendix

Proposition 7.1 There exists a solution for the social planner’s problem with commitment.

Proof The implicit function theorem and (6) can be used to expressPF
1 as a function of the remainingPF

i ’s

and of theLi ’s. This expression can be used to rewrite the planner’s problem as an unconstrained maxi-

mization problem over allLi ’s andPF
2 ,PF

3 , . . . ,PF
n . From (8) we then have that the planner is maximizing a

continuous function over a compact set. Existence of a solution now follows.

As will become clear shortly, the following functions are closely related to the degree to which the

self-financing constraint leads to distortions in a particular state of demand.

Definition 7.1 (Distortion functions) We define:

Hi(P) ≡ Qi(P)(1+ηi(P))
Qi(P)(1+ηi(P))−G′

i(P)
,

vi(P,L) ≡ Hi(P)u′ (PVRi(P,L)− I) ,(17)

where:

PVRi(P,L)≡ PQi(P)
r

(1−L).

Lemma 7.1 The functionsHi(P) satisfiesHi(P) < 1, for all P > P∗i .

Proof The result follows from the fact thatGi is concave and attains its maximum atP∗i .

Theorem 7.1 (Optimality conditions) The planner’s solution to the problem with commitment satisfies

PO
i > 0 andTO

i > 0 for all statesi. Also, for any pair of statesk andl we have:

vk(PO
k ,LO

k ) = vl (PO
l ,LO

l ),(18)

or equivalently:

Hk(PO
k )u′k = Hl (PO

l )u′l .

Wherevi(P,L) is defined in (17) andu′i = u′(PVRO
i − I).

Proof We divide the states of demand in two groups. The first group includes those states whereLO
k < 1 (or

equivalentlyTO
k > 0) andPO

k > 0. The second group includes all the remaining states, that is those where

eitherLO
k = 1 or PO

k = 0. Note thatPO
k can take any value whenLO

k = 1, sinceTO
k = 0 in this case. Thus we

may assume, without loss of generality, thatPO
k = 0 andLO

k < 1 for all states in the second category.
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The first group of states has to be non-empty, since otherwise the firm’s participation constraint cannot

be satisfied (all states in the second group provide no revenue for the firm). The initial statement of the

proposition is that all states belong to the first group.

The remainder of the proof proceeds as follows. We first prove (18) for any pair of states in the first

category. Next we show that no state can belong to the second group.

The Lagrangian corresponding to the social planner’s problem is:

L =
1
r

n

∑
i=1

πi
{

[Gi(PF
i )−PF

i Qi(PF
i )](1−Li)+Gi(PA

i )Li
}

+λ
n

∑
i=1

πiu(PVRi− I).

The first order condition inPF
k for a state in the first category implies:

vk(PO
k ,LO

k ) =
1
λ
,(19)

so that (18) holds for any pair of statesi andk in this category.

If statek belonged to the second category, we would have:

vk(PO
k ,LO

k )≤ 1
λ
.(20)

From Corollary A.1 in EFG (1998) and (8) we have thatP∗k = 0 andc(Q) is constant. Thus (26) implies that

G′(PO
k ) = 0, and henceHk(PO

k ) = 1. It follows from (19), (20) and (48) in EFG (1998) that:

u′k ≤ 1
λ
,

u′l ≥ 1
λ
.

Wherel is a state in the first category. Concavity ofu and the two preceding inequalities imply that the

revenue obtained by the firm in statek is larger or equal than that obtained in statel . Since the former is

zero, the latter is also zero. This contradicts the firms’ participation constraint, thus showing that there exist

no states in the second category.

Corollary 7.1 If PVR∗i ≤ PVR∗j andPO
i = P∗i thenPO

j = P∗j .

Proof We assumePO
j > P∗j and arrive at a contradiction.

If PO
j > P∗j , thenTO

j = ∞ (Proposition 3.2). SinceH j(PO
j ) < 1 andHi(PO

i ) = 1 (Lemma B.1 in EFG
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[1998]), from Theorem 7.1 it follows thatu′i < u′ j and therefore

PVRO
i > PVRO

j .(21)

On the other hand, since demand is relatively inelastic (see Proposition A.2 in EFG [1998] for a formal

proof) and in view of condition (8) it follows that:

PVRO
j > PVR∗j .(22)

Also, trivially (since the optimal toll isP∗i ) we have:

PVRO
i ≤ PVR∗i .(23)

From (23), (21) and (22):

PVR∗i ≥ PVRO
i > PVRO

j > PVR∗j ,

and therefore PVR∗i > PVR∗j , contradicting one of our assumptions.
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Less Important Appendices

A Concavity of Gi

In this appendix we prove concavity of the net instantaneous social welfare function,Gi . The notation and

definitions are those given in the main text.

Proposition A.1 (Existence of a demand function)Given a priceP the demand schedule in statei, Qi(P),

is determined implicitly by

Bi(Qi(P))−c(Qi(P)) = P.(24)

We also have:

Q′(P) = [B′(Q(P))−c′(Q(P))]−1 < 0,(25)

Q′′(P) = − [B′′(Q(P))−c′′(Q(P))]
[B′(Q(P))−c′(Q(P))]3

≤ 0.

Where in the last two expressions we dropped the subscripti for ease of presentation.51

Proof Since the generalized travel cost isP+ c(Q), in equilibrium the number of cars on the road is

determined by (24), as long as there exists aQ≥ 0 satisfying this condition. From assumptions (2) and (3)

it follows that such aQ exists (and is unique) as long asP is below some state-specific maximum tollP̂i .

The expressions forQ′(P) andQ′′(P) follow from implicitly differentiating (24) with respect toP.

From the above proof it is evident thatP̂i defines the threshold toll beyond which demand is zero and

Qi(0) defines the maximum demand that can attain, both in statei. In the statements we make in the remain-

der of this appendix, unless otherwise statedP andQ will take values in[0, P̂i ] and[0,Qi(0)], respectively.

Definition A.1 (Net Social Surplus, Elasticity) It will be helpful to define net social surplus as a function

of Q:

G̃i(Q)≡
Z Q

0
Bi(q)dq−Qc(Q).

We define the price-elasticity of demand and (instantaneous) revenue in statei at priceP as

ηi(P)≡ PQ′i(P)
Qi(P)

51We will do this often throughout this appendix.
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and

Ri(P) = PQi(P).

Lemma A.1 The net social surplus, as a function ofP, satisfies:

G′(P) = Q(P)[η(P)−c′(Q(P))Q′(P)],(26)

G′′(P) =
−(B′′−c′′)(B−c−Qc′)+(B′−c′)(B′−2c′−Qc′′)

(B′−c′)3 .(27)

Where we have omitted the subscripti and all functions on the right hand side of (27) are evaluated atQ(P).

Proof From (4) and (5) it follows that

Gi(P) =
Z Qi(P)

0
Bi(q)dq − Qi(P)c(Qi(P)).

Differentiating both sides of this identity with respect toP and rearranging terms leads to (26). Differentiat-

ing (26) with respect toP leads to:

G′′(P) = Q′′(P)[P−c′(Q(P))Q′(P)]+Q′(P)[1−Q′(P)c′(Q(P))−Q(P)Q′(P)c′′(Q(P))].

SubstitutingQ′(P) andQ′′(P) by the expressions in Proposition A.1 leads to (27).

Lemma A.2 The social surplus, as a function ofQ, satisfies:

G̃′(Q) = B(Q)−c(Q)−Qc′(Q),(28)

G̃′′(Q) = B′(Q)−2c′(Q)−Qc′′(Q) < 0.(29)

It follows thatG̃(Q) is strictly concave.

We also have the following relations between net social surplus as a function ofP and as a function of

Q:

G(P) = G̃(Q(P)),(30)

G′(P) = G̃′(Q(P))Q′(P),(31)

G′′(P) = G̃′′(Q(P))[Q′(P)]2 + G̃′(Q(P))Q′′(P).(32)

Proof Expressions (28) and (29) follow directly from the definition ofG̃(Q). Expression (30) is by defini-

tion; expressions (31) and (32) follow directly from (30).
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Definition A.2 (Monopolist’s toll) We denote the toll a monopolist charges in statei, that is the toll that

maximizesPQi(P), byPM
i . We also denoteQ(PM

i ) byQM
i .

The following proposition shows that our assumptions—the non-trivial one being the concavity of the

Bi ’s—ensure that demand is inelastic for all tolls below the monopolist’s tolls, becoming more elastic as

tolls increase.

Proposition A.2 (Properties ofη and R ) The price-elasticityηi satisfies:

ηi(0) = 0,(33)

η′i(P) < 0,(34)

ηi(PM
i ) = −1.(35)

Also, the (instantaneous) revenue function,Ri , satisfies:

R ′
i (PM

i ) = 0,

R ′
i (P) > 0 for P < PM

i ,(36)

R ′
i (P) < 0 for P > PM

i .

Proof From (25) we have that:

η(P) =
P

Q(P)[B′(Q(P))−c′(Q(P))]
.(37)

Evaluating this expression atP = 0 proves (33).

Differentiating (37) with respect toP we have:

η′(P) =
Q[B′−c′]−PQ′[B′−c′]+PQ′Q[B′′−c′′]

[Q(B′−c′)]2
.

Where the functionsQ, B, c and their derivatives are evaluated atQ(P). Since our assumptions ensure that

the three terms in the numerator have negative signs (with the first one being strictly negative), we conclude

thatη′(P) < 0.

Finally, (35) follows from the monopolist’s first order condition:

Q(P)+PQ′(P) = 0.

The properties forR follow from (34) and (35).
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Proposition A.3 (Unimodality of Gi) The net social surplus function,Gi(P), is unimodal forP≥ 0.

Proof We have that̃G′(Q= 0) = B(0)−c(0) > 0 (due to Assumption (2)). SincẽG is concave (Lemma A.2),

there are two possibilities:

1. G̃′(Q) > 0 for all Q. In this case it follows from (31) and (25) thatG′(P) < 0 for all P > 0. Hence

G(P) is unimodal attaining its maximum atP = 0.

2. There exists aQ∗ > 0 such thatG̃ is strictly increasing forQ< Q∗ and strictly decreasing forQ> Q∗,

with G̃′(Q∗) = 0.52

Let P∗ denote the uniqueP such thatQ(P) = Q∗. It then follows from (31) and (25) thatG(P) is

strictly increasing forP < P∗ and strictly decreasing forP > P∗, attaining its maximum value atP∗.

Lemma A.3 The congestion toll,P∗i , satisfies:

P∗i < PM
i ,(38)

G′
i(P

∗
i ) = 0,(39)

P∗i = Q(P∗i )c′(Q(P∗i )).(40)

Proof To prove (38) we show that the number of trips chosen by the social planner,Q∗, is larger than the

number of trips chosen by the monopolist,QM.53 It then follows from (25) thatP∗ < PM.

The monopolist choosesQM as to maximize[B(Q)−c(Q)]Q, which leads to the first order condition:

[B(Q)−c(Q)]−Qc′(Q)+QB′(Q) = 0.

Thus it follows from (28) thatG̃′(QM) > 0, and sinceG̃′′ < 0, we have thatQM < Q∗.

To prove (39) we consider the two situations into which we broke up the proof of the preceding proposi-

tion. Equation (39) obviously holds in the second case. In the first case, whereP∗i = 0,54 we have, from (26)

and (33), that:

G′(P∗) =−Q(0)c′(Q(0))Q′(0)≥ 0.
52We convene throughout this appendix that a functionf (x) is increasing whenf ′(x)≥ 0 and strictly increasing whenf ′(x) > 0.

A similar convention holds for what we call decreasing and strictly decreasing.
53As usual, we drop the subscripti.
54Strictly speaking in this case we haveG′(0+) = 0.
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Yet, from what we saw in the proof of Proposition A.3, in this caseG′(P) < 0 for all P> 0. From continuity

of G′(P) it follows thatG′(0) = G′(P∗i ) = 0.

Corollary A.1 If P∗i = 0 thenc(Q) is constant.

Proof From Lemma A.3 we have thatG′(P∗) = 0 implies that eitherQ′(0) = 0 or c′(Q(0)) = 0. The former

cannot hold due to Proposition A.1. Thusc′(Q(0)) = 0, and sincec(Q) is convex andQ(0) ≥ Q(P), it

follows thatc′(Q) ≤ 0. Since we assumed thatc′(Q) ≥ 0, it follows thatc′(Q) ≡ 0 and thus thatc(Q) is

constant.

Lemma A.4 Define

J(P)≡ B(Q(P))−c(Q(P))−Q(P)c′(Q(P)).

Then:

J(P∗) = 0,(41)

J′(P) ≥ 1 for all P > 0,(42)

J(P) > 0 for all P > P∗.(43)

Proof Expression (41) follows from (24) and (40).

It follows from (41) that:

J′(P) = 1−Q′(P)c′(Q(P))−Q(P)Q′(P)c′′(Q(P)).

Then (42) follows from the fact that bothQ′c′ andQQ′c′′ are negative.

Finally, (43) is a direct consequence of (41) and (42).

Proposition A.4 (Concavity of the net social surplus)The functionGi(P) is strictly concave forP≥ P∗i .

Proof SinceB′−c′ < 0, B′−2c′−Qc′′ < 0, andB′′−c′′ ≤ 0, it follows from (27) that a sufficient condition

for G′′(P) < 0 is thatB−c−Qc′ ≥ 0, which holds due to Lemma A.4.

Example A.1 ConsiderB(Q) = B0−B2Q2, for Q≤ (B0/B2)1/2 andB(Q) = 0 elsewhere. Also consider

c(Q) =C0+C2Q2 and assume that the constantsB0, B2, C0 andC2 are positive withB0 >C0. It then follows

from (2) that the demand function is given by:

Q(P) =







√

B0−C0−P
B2+C2

if P≤ B0−C0,

0 otherwise.
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Hence, forP≤ B0−C0:

Q′(P) = − 1
√

(B2 +C2)(B0−C0−P)
< 0,(44)

η(P) = − P
2(B0−C0−P)

.(45)

Consistent with Proposition A.2,η(0) = 0 andη′(P) < 0. We also have thatη(PM) =−1 leads to:

PM =
2
3
(B0−C0).

From (26), (44) and (45) we have that:

G′(P) =
2C2(B0−C0)− (B2 +3C2)P
2(B2 +C2)3/2

√
B0−C0−P

.

From the preceding expression and (39) it follows that:

P∗ =
2C2(B0−C0)

3C2 +B2
=

2(B0−C0)
3+ B2

C2

,

which implies that, as implied by (38),P∗ < PM. Finally we have that from (27):

G′′(P) =−B0−C0 +(B2 +3C2)Q2

4(B2 +C2)2Q3 < 0.

B Planner’s solution

In this appendix we characterize the planner’s solution in the commitment case.

We denote byIc
max andInc

max, the highest construction cost for a given road consistent with firms’ partici-

pation constraint, respectively in the case with and without commitment. ThusIc
max is the uniqueI satisfying

∑
i

πiu
(

PVRM
i − I

)

= u(0),

while

Inc
max = min

i
PVRM

i .

It is obvious thatIc
max≥ Inc

max, with equality only in exceptional cases. In what follows we assume that

I ≤ Ic
max in the case with commitment andI ≤ Inc

max in the case without commitment.
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Lemma B.1 The functionsHi(P) andvi(P,L) satisfy:

Hi(P∗i ) = 1,(46)

Hi(PM
i ) = 0,(47)

H ′
i (P) < 0, for P∗i ≤ P < PM

i ,(48)

Hi(P) =
1+ηi(P)

1+c′(Qi(P))Q′
i(P)

,(49)

∂vi

∂P
(P,L) < 0, for P∗i ≤ P≤ PM

i ,(50)

∂vi

∂L
(P,L) > 0, for 0≤ L≤ 1.

Proof Identity (46) follows from (39); identity (47) from (35).

Expression (48) follows from the fact thatQ(P)(1+η(P)) is positive and strictly decreasing inP for P≤
PM (see Proposition A.2) andG′(P) is negative and strictly decreasing inP for P> P∗ (see Proposition A.4).

Expression (49) follows from (26).

Thatv(P,L) is strictly decreasing in the first argument follows from the fact that it is the product of two

positive, strictly decreasing functions ofP.55 Finally, v(P,L) is strictly increasing in its second argument

becausePVRi(L) is decreasing inL andu concave.

Lemma B.2 Fix s∈ {1,2, . . . ,n} and define:

Pk(s) = P∗k , for k = s,s+1, . . . ,n;

Lk(s) = 1− PVR∗s
PVR∗k

, for k = s,s+1, . . . ,n;

Lk(s) = 0, for k = 1,2, . . . ,s−1.

Denote byPk(s), k = 1,2, . . . ,s−1, the uniqueP that satisfies:56

vk(P,0) = vs(P∗s ,0).

Then there exists a unique value ofI , which we denote byI(s), for which the tolls and franchise lengths

defined above correspond to the social planner’s choice when commitment is possible. Furthermore,I(s) is

increasing ins.

55Thatu′
(

PQi(P)
r (1−L)− I

)

is strictly decreasing inP follows from Proposition A.2.
56The existence of a unique solution follows from the fact thatvk(P,0) is strictly decreasing inP (see (50)), withvk(P∗k ,0) ≥

vk(P∗s ,0) (since PVR∗k ≤ PVR∗s) andvk(PM
k ,0) = 0 < vk(P∗s ,0) (due to (47)).
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Proof The tolls and franchise lengths satisfy the first order conditions specified in (18) by construction.

Denote the present value of the revenue the franchise holder receives in statei by PVRi(s). To complete the

proof we must show that there existsI = I(s) such that:

n

∑
i=1

πiu(PVRi(s)− I) = u(0).(51)

This follows from the fact that the left hand side of the preceding equation is (a) strictly decreasing inI ;

(b) larger thanu(0) when evaluated atI = 0; and (c) smaller thanu(0) when evaluated atI larger than

maxi PVRi(s).

To show thatI(s) increases withs, we note that by construction thePi(s)’s are increasing ins, which

implies that the PVRi(s)’s also increase withs (from (36)) and therefore, due to (51), so do theI(s).

Definition B.1 Lemma B.2 shows that there exists a unique value ofI for which the social planner’s solution

sets an indefinite franchise in states with toll equal toP∗s . The corresponding tolls, franchise lengths and

franchise revenues are denoted byPi(s), Ti(s) and PVRi(s), respectively. The corresponding value ofI is

denoted byI(s).

Theorem B.1 (Characterization whenI ≤ I(1)) AssumeI ≤ I(1).57 Then the unique solution to the plan-

ner’s problem is obtained settingPi = P∗i andLi(I) = 1− (I/PVR∗i ).

Proof It follows from the definition ofPi andLi that the franchise holder’s revenue in all states of demand is

I . Since we also have non distortionary tolls, thePi ’s andLi ’s satisfy the first order conditions (18). Finally,

the firm’s participation constraint is (trivially) satisfied.

Theorem B.2 (Characterization whenI > I(n)) AssumeI > I(n),58 For 0≤α≤ u′(PVR∗n− I) definePi(α)

as the unique (due to (50)) solution to:

vi(Pi(α),0) = α, for i = 1, . . . ,n,(52)

and set the franchise lengths at infinity for all states of demand:

Li(α) = 0, for i = 1, . . . ,n.
57This is the case where the road is relatively cheap to build compared with expected revenues, so that it can be financed charging

the congestion toll in every state of demand.
58This means that the road is relatively expensive compared with the revenue it can generate. As usual, the firm’s participation

constraint holds, that is:

∑
i

πiu(PVRM
i − I)≥ u(0).

Where PVRMi denotes the firm’s revenue if it charge’s the monopoly toll in an indefinite franchise in statei.
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Then there exists a unique value ofα such that the tollsPi(α) and franchise lengthsLi(α); i = 1, . . . ,n,

fully characterize the planner’s solution. The corresponding value ofα is the unique solution to:

∑
i

πiu(PVRi(α)− I) = u(0).(53)

Where PVRi(α) = Pi(α)Qi(Pi(α))/r.

Proof By construction the(Pi(α),Li(α))’s satisfy the first order conditions (18). From (52) and (50) it

follows thatPi , and thereforePVRi is strictly decreasing inα. Denoting the left hand side of (53) byS(α) it

then follows thatS is continuous and strictly decreasing inα. We also have, due to (47):

S(0) = ∑
i

πiu(PVRM
i − I)≥ u(0).(54)

And, with the definition ofI(n) and PVRi(n) given in Definition B.1:

S(u′(PVR∗n− I)) = ∑
i

πiu(PVRi(n)− I)

< ∑
i

πiu(PVRi(n)− I(n))

= u(0).

Where the strict inequality follows from the assumption thatI > I(n). Existence and uniqueness ofα

satisfying (53) now follow.

Theorem B.3 (Characterization whenI(1) < I ≤ I(n)) Assume thatI(s)≤ I ≤ I(s+1) for s∈{1,2, ...,n−
1}.59 Givenγ ∈ [0,1] define:

Pi(γ) = P∗i , for i = s+1, . . . ,n;

Li(γ) = 1−
PVR∗s+1

PVR∗i
(1− γ), for i = s+1, . . . ,n.

For i ≤ ssetLi(γ) = 0 and definePi(γ) as the uniqueP satisfying:60

vi(P,0) = u′(PVRi(γ)− I).
59That a unique integersbetween 1 andn−1 satisfying these inequalities exists follows from the fact thatI(s) is increasing ins,

see Lemma B.2.
60The argument explaining why such aP is uniquely determined is the same as that in footnote 56.
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Where

PVRi(γ) =
Pi(γ)Qi(Pi(γ)))

r
(1−Li(γ)).

Then the unique solution to the planner’s problem with commitment is the set ofPi(γ)’s andLi(γ)’s corre-

sponding to the unique value ofγ (in [0,1− (PVR∗s/PVR∗s+1)]) that satisfies:

S(γ)≡∑
i

πiu(PVRi(γ)− I) = u(0).

Proof We first note that the assumptionI(s)≤ I ≤ I(s+1) implies that:

∑
i

πiu(PVRi(s)− I)≤ u(0),(55)

∑
i

πiu(PVRi(s+1)− I)≥ u(0).(56)

By construction the(Pi(γ),Li(γ))’s satisfy (18). Thus all that remains to be shown is that there exists a

uniqueγ that satisfiesS(γ) = u(0).

We have that PVRi(γ) is strictly decreasing inγ,61 and thereforeS′(γ) < 0. Furthermore, from the

definition of the PVR(s)’s in Definition B.1, and (55) and (56) it follows that:

S(0) = ∑
i

πiu(PVRi(s+1)− I)≥ u(0),

S

(

1− PVR∗s
PVR∗s+1

)

= ∑
i

πiu(PVRi(s)− I)≤ u(0).

Thus the characterization of the planner’s solution holds.

Definition B.2 For everyi define˜Pi as the unique toll that satisfiesPQi(P) = rI .

Corollary B.1 (Comparison of solutions with and without commitment)

(a) WhenI ≤ I(1) the planner’s solution with and without commitment are the same.

(b) WhenI > I(1), the planner’s solutions with and without commitment are the same if and only ifHi(˜Pi)

does not vary withi.

Proof Since in the case without commitment the franchise holder’s revenue is the same in all states of

demand, (18) implies that theHi(˜Pi)’s do not vary withi when both solutions coincide. Statements (a) and

(b) now follow directly.
61The argument for the case wherei ≥ s+1 may be found in the proof of Theorem B.1; the one for the case wherei ≤ s in the

proof of Theorem B.2.
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In most cases (generically) we have that the planner’s solutions without and with commitment are the

same only whenI ≤ I(1), that is, when the road is sufficiently cheap to build (relative to expected demand)

so that in all states of demand it can be financed setting the congestion toll. The only interesting exception

we can think of is when there is no congestion (c′(Q) ≡ 0) and demand in different states of nature only

differs by a multiplicative constant:

Qi(P) = ziB
−1(P).

Corollary B.2 Denote byPVRO
k (I) the present value of revenue received in state of demandk under the

optimal contract with commitment when construction costs are equal toI . ThenPVRO
k is strictly increasing

in I .

Proof The intuition behind this result is the following. The franchise holder’s revenue in statek increases

with I either because the franchise length increases (I < I(k)) or because the optimal toll increases (I > I(k)).

The formal proof considers three ranges forI :

1. I ≤ I(1).

It follows from Theorem B.1 that in this casePVRO
k is equal toI (and therefore strictly increasing in

I ).

2. I ≥ I(n).

With the notation introduced in the proof of Theorem B.2 we have that (52) and (50) imply that

PVRk(α) is strictly decreasing inα. It then follows from the firm’s participation constraint

∑
i

πiu(PVRi(α(I))− I) = u(0),

thatα is strictly decreasing inI . ThusPVRO
k is strictly increasing inI .

3. I(s)≤ I ≤ I(s+1).

With the notation introduced in the proof of Theorem B.3 we have thatPVRk(γ) is strictly decreasing

in γ. It then follows from

∑
i

πiu(PVRi(γ(I))− I) = u(0)

thatγ is strictly decreasing inI . ThusPVRO
k is strictly increasing inI .
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C Sub-optimality of fixed-term auctions

Proposition C.1 (Suboptimality of fixed-term auctions) A fixed term auction is optimal if and only if

PVR∗i is the same in all states of demand, and this common value is larger thanI . Thus generically a

fixed term franchise is suboptimal.

Proof We present the proof for the case with commitment. The case without commitment is analogous.

A necessary condition for a fixed term franchise to be optimal is that, in the planner’s solution, the

franchise length be the same in all states of demand. From Proposition 3.6 it follows that this holds in two

situations. First, whenPVR∗i is the same in all states and this common value is larger thanI . In this case

the optimal franchise length is the same across states of demand and finite. The planner setsPi = P∗i and the

winning bid attains the planner’s solution.

The second case where the franchise length is the same in all states of demand is when it extends

indefinitely. Yet in this case the planner cannot infer from the winning bid which is the value ofI and

therefore is unable to set the optimal tolls after the winning bid is revealed. It follows that a fixed term

franchise is optimal only in the first case.

D A model of a risk averse firm

In this appendix we present a model that rationalizes a paradoxical feature of the financing of highway

franchises, namely that entrepreneurs seem to be unable to diversify risks.

Consider the case of the owner of a construction firm whose profits ares, a random variable with cu-

mulative distribution functionF( · ; s̄,σ2
s), wheres̄andσ2

s denote the corresponding mean and variance. The

entrepreneur is the sole owner of the firm and is risk averse, so that his expected utility is

W =
Z

u(y) dG(y).

Whereu is strictly increasing and strictly concave,y denotes the entrepreneur’s net income andG(y) the

corresponding cumulative distribution function.

In general the entrepreneur will be willing to shed some risk. Consider a risk neutral investor who is

considering whether to invest in this project. She knows thats is a private signal and that the entrepreneur,

either as a member of a partnership or as the manager of a company fully owned by the investor, always

declares that company profits are zero if not monitored.62,63

62The investor leaves the entrepreneur as a manager due to his superior specialized knowledge.
63This strategy is weakly dominant in the subgame after the investment is committed.
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The investor can always verify, i.e., make claims to a fractionα(e) of total profits at a coste of effort in

monetary terms. As usual,α(e) ∈ [0,1], α′ > 0, α′′ < 0. For simplicity, we assume that the pricep of the

company set by the entrepreneur does not depend on the share that the investor buys.64 The expected profits

for the investor of buying a shareβ of the company is

Π(e,β) = βα(e)s̄−e−βp.

Since the investor is risk neutral, she maximizes expected utility as a function of effort and the share of the

company she buys. As we assumed thatp does not depend onβ, the maximization problem leads toβ = 1

if the investor buys at all, and hence effort satisfies

α′(e)s̄= 1.(57)

It follows that the maximum pricep at which the investor is willing to buy the company is the price that

solves

s̄α(e∗)−e∗− p = 0.(58)

Wheree∗ is the profit maximizing level of effort (characterized by (57)).

Consider now the utility of the entrepreneur in the two polar cases. If he asks for a price such that the

investor does not buy into the firm (he holds the firm) his welfare is given by

Wh =
Z

u(s) dF(s).(59)

Whereas if the investor buys out the firm and leaves the entrepreneur as the manager, the manager’s welfare

from selling is

Ws =
Z

u((1−α∗)s+ p) dF(s)

=
Z

u(s+α∗(s̄−s)−e∗)dF(s).(60)

Where we used (58) in the last step,α∗ ≡ α(e∗), and we have assumed that the manager appropriates the

non-verifiable profits. Next, consider two extreme cases for the entrepreneur’s attitude toward risk. If he is

risk neutral, he has a cost advantage over the investor, since he does not have to incur the verification cost

and he gets the full profits from the project. In this case he does not sell the firm. On the other hand, if he

is infinitely risk averse, he maximizes the lowest expected utility, which occurs when he sells the firm. It
64Even though the derivation is more complex, the result that follows continues holding if this assumption is relaxed.
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follows that as the entrepreneur’s risk aversion grows, there is a positive degree of risk aversion at which he

switches from keeping to selling the project. In what follows, we prove this intuition.

A second order Taylor approximation foru arounds̄ leads from (60) to

Ws '
Z

[u(s̄)+{(1−α∗)(s− s̄)−e∗}u′(s̄)+ 1
2{(1−α∗)(s− s̄)−e∗}2u′′(s̄)]dF(s)

= u(s̄)−e∗u′(s̄)+ 1
2(1−α∗)2σ2

su′′(s̄)+ 1
2e∗2u′′(s̄),

and from (59) to

Wh ' u(s̄)+ 1
2σ2

su′′(s̄).

Taking the difference, we have

Ws−Wh ' 1
2[(α∗2−2α∗)σ2

s +e∗2]u′′(s̄)−e∗u′(s̄).(61)

Denoting byρ = −u′′(s̄)s̄/u′(s̄) the entrepreneur’s coefficient of relative risk aversion evaluated ats̄, we

have that (61) is equivalent to

Ws−Wh '
u′(s̄)

s̄

[

1
2

{

α∗(2−α∗)σ2
s−e∗2}ρ−e∗s̄

]

.

Hence, given that the investor’s optimal choice of efforte∗ is independent of the entrepreneur’s degree of

relative risk aversion (see (57)), we have the following proposition:

Proposition D.1 Supposeα∗(2−α∗)σ2
s > e∗2,65 then there existsρ∗ > 0 such that forρ < ρ∗, the en-

trepreneur does not sell the firm. Whenρ > ρ∗, the firm is sold.

The relevant part of the proposition is that for allρ ∈ (0,ρ∗) the entrepreneur prefers not to sell and

must, therefore, assume all the risk of the company. For these values ofρ the behavior of the firm is that of

the risk averse entrepreneur.

65Other things equal, this holds ifσ2
s is sufficiently large.
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