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Abstract
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The greater part of public works may easily be so managed, as to afford a particular revenue sufficient
for defraying their own expense, without bringing any burden upon the general revenue of society [...]
When high roads [...] are in this manner made and supported by the commerce that is carried on by means
of them, they can be made only where that commerce requires them. Their expence too, their grandeur and
magnificence, must be suited to what that commerce can afford to pay. [...] A magnificent road cannot be
made [...] merely because it happens to lead to the country villa of the intendant of the province, or to that
of some great lord to whom the intendant finds it convenient to make his court.

Adam Smith,The Wealth of Nations/.1.111.1

1 Introduction

There is widespread agreement that most developing countries urgently need massive highway construction
programs’ Highways have traditionally been viewed as public goods that should be built, financed and
operated by the public sector. However, in recent decades chronic budgetary problems have led governments
to neglect the upkeep of existing roads while traffic has grown well ahead of their capacity. The task of
rebuilding and making new roads is beyond the capabilities of most governments, so that it has become
increasingly accepted that private firms should build, finance and operate highways, and that users should
pay for their cosé

In recent years many countries have started massive highway franchising programs via so-called build-
operate-and-transfer (BOT) contrattslinder such a contract, a private firm builds and finances the highway
and then collects tolls for a long period, usually between 10 and 30 years. When the franchise ends the road
reverts to the state.

The first franchises were usually conferred in bilateral negotiations, but increasingly, competitive auc-
tions are being used to award them. Many highways are natural monopatesthe premise that underlies
the use of auctions is that they lead to efficient outcomes—competfitiahe field as a good substitute for
competitionin the field, an idea that goes back to Chadwick (1859) and was popularized by Demsetz (1968).
Typically, the regulator fixes the franchise term, and the road is awarded to the firm that bids the lowest toll;
alternatively, the regulator fixes the toll and the winner is the firm that bids the shortest franchise term. Both
are fixed-term franchises, i.e. the franchise term is fixed before the franchise begins.

In this paper we show that fixed-term franchises can be improved upon significantly by allowing the
franchise term to adjust with demand realizations. We first characterize the full-information optimal con-
tract. This contract trades off optimally the distortions caused by tolls against the revenue uncertainty faced
by the risk averse franchise holder. A key characteristic of this contract is that franchises last longer when

23ee for example Irwin et al. (1997).

3According toThe Economist‘As many countries have neither the finances nor the managerial resources for the task [...],
private companies will have to do much of the job.” (February 1, 1997, p. 63.)

4See @mez-IEfiez and Meyer (1993) for a thorough discussion of the international experience.

5Mexico was an interesting exception, where the franchised highways were built parallel to free (but congested) public highways.
Perhaps coincidentally, most of these projects had to be rescued by the government.



demand turns out to be low. We next show that the optimal contract can be implemented with a simple
competitive auction, where firms bid on the present value of toll revenue they want to obtain over the life-
time of the franchise—a Least-Present-Value-of-Revenue (LPVR) auction. Finally, we develop a simple
methodology to estimate the benefits from moving from fixed term to LPVR auctions. These calculations
suggests that the gains are significant: approximately one-third of investment costs using parameter values
typical for developing countries.

Highway franchises have several distinctive features. First, a large fraction of the costs of the franchise
are sunk when the road is built and before demand becomes known; operating and maintenance costs are
comparatively small and are therefore ignored. Second, in order to alleviate strained budgets, roads have
to be financed by tolls on users. For this reason we introduce a ‘self-financing constraint’, which implies
that tolls may have to be set above those that induce drivers to internalize congestion optimally (henceforth
congestion tolls Third, it has often been overlooked that medium- and long-term traffic forecasts are very
imprecise. This leads to considerable demand uncertainty, most of it beyond the control of the franchise
holder® Since it appears that firms are often unable to fully diversify idiosyncratic risks, we assume risk
averse firmg. As in principal-agent models, the less risk averse party —in our case the planner— is assumed
to be risk neutral.

Our strategy is to characterize the full information optimal contract and then to show that it can be
implemented with an LPVR auction. The intuition behind our main results is simplest in the case of a
high-demand road, i.e., a road that can be financed in all states of the world charging the congeS8tion toll.
Then, the optimal contract is such that the firm collects tolls until the present value of revenue equals the up
front investment. After this time, the road reverts to the state. Hence the firm bears no risk, congestion tolls
are charged in all states of demand, the franchise lasts longer when demand is low, and the self-financing
constraint is not binding.

This contract can be implemented via a simple auction where participants bid a sum representing the
present value of toll revenues they would want, assuming that the government will set the congestion toll
in each state of demand. The franchise lasts until the franchise holder collects its desired revenue and then
reverts to the state, which continues to charge the congestion toll. If all bidders have the same technology, the
winning bid equals the investment required to build the road and rents are dissipated by competition. Hence,
the franchise term varies across states of demand while revenues collected by the firm remain constant in
present value. This means that the auction replicates the full-information optimal contract.

Also note that in the high-demand case described above, an LPVR auction provides full insurance to

5For example, in the case of the privately owned Dulles Greenway toll road, joining Dulles Airport near Washington, D.C.
to Leesburg, two independent traffic consultant companies predicted a daily flow of 35,000 vehicles for an average toll of $1.75.
Actual traffic turned out to be 8,500.

"It is a well established fact that private firms and financiers usually refuse to participate unless governments pledge guarantees
against commercial risks. If project related risks could be diversified, there would be no demand for guarantees. See Irwin et al.
(1997) for an extensive discussion of government guarantees in private infrastructure projects and Appendix D in Engel, Fischer
and Galetovic —henceforth EFG— (1998) for an example where agency problems prevent an entrepreneur from diversifying risks.

8Recall that theongestion tolis the toll that induces drivers to internalize congestion optimally in the absence of a self-financing
constraint.



the franchise holder and there are no toll-induced distortions. By contrast, in the standard infrastructure
auction where the franchise is awarded on the basis of the minimum toll for a fixed term, the franchise
holder receives different amounts of revenue in different states of the world. A risk averse franchise holder
will require an additional return in order to bear this risk, leading to a suboptimal outcome.

An LPVR auction is also optimal when the congestion toll is not sufficient to finance the road in all states
of demand. To get the intuition in this case, assume that there is one (hencefdoth-tleemangi state where
the present value of congestion toll revenues is insufficient to pay for the road even if the franchise were to
last forever. An analogy to static Ramsey pricing suggests that the planner should set distortionary tolls not
only in the low-demand state but also in the remaining (hencefogirdemanyistates, in order to smooth
income across demand realizations for a risk averse firm. In the present case however, the time dimension
adds an additional degree of freedom since revenue in high-demand states can be raised by lengthening
the franchise without introducing distorting tolls. This fact implies that the optimal contract has a simple
structure.

First, in all high demand states, the present value of tolls collected by the franchise holder is the same,
congestion tolls are charged, and franchise terms are finite. Second, it is optimal to distort tolls in the low-
demand state, since a small distortion leads to a first order welfare gain via risk reduction and only a second
order welfare loss due to toll distortion. Third, since it is better to introduce small distortions for a long time
than to introduce large distortions for short periods, in low demand states the franchise lasts forever. Last,
revenue in each high-demand state is higher than in the low-demand state (and also higher than investment),
and the franchise holder bears some risk.

The characteristics described above enable the planner to implement the optimal contract with an LPVR
auction. First, the winning bid will equal the present value of revenue common to all high-demand states.
Second, the winning bid provides the planner with the information necessary to set the tolls from the optimal
contract both in high- and low-demand states. Third, in a high-demand state the franchise lasts until revenues
equal to the winning bid are collected; in low-demand states it lasts forever.

An LPVR auction exploits the fact that the present value of revenue is the only one-dimensional bidding
variable that enables the regulator to implement the optimal contract. By contrast, if firms bid on the toll, the
resulting contract will have a toll that is constant across states of demand and therefore cannot be optimal.
Alternatively, if the regulator sets state-contingent tolls and firms compete on the shortest franchise term,
the resulting contract cannot be optimal either since its length does not vary with demand realizations.

In order to implement the contract described above, the planner must be able to resist the temptation
to help the franchise holder in those states of demand where it makes losses. For this reason we call this
contract theoptimal commitment contracExperience suggests that contracts are often renegotiated when
demand turns out to be lower than expectdebr this reason we also study the case where the planner sets

9For example, in Spain, 12 concessions were awarded before 1973. In several of these, building costs were 4 to 5 times higher
than projected, and traffic was about one-third of original projections. As a result, three firms went bankrupt, two were absorbed by
stronger franchise holders, and toll increases and term extensions were granted by the governméntezdif®z and Meyer
(1993, chs. 8, 9 and 10). As another example, Mexico franchised the construction and operation of more than 3,000 miles of



tolls that guarantee the franchise holder a normal return in all states of demand, i.e., it provides full insurance.
We call this contract theptimal no-commitment contraciVe derive the optimal full-information contract,
show that it can also be implemented with an LPVR auction and that it differs from fixed term contracts.

The planner’s problem can be viewed as an extension of the standard Ramsey problem where the length
of a franchise is an additional choice variable. This paper is also related to the literature on franchise bidding
pioneered by Chadwick (1859) and Demsetz (1968) (see also Stigler [1968], Posner [1972] and Riordan and
Sappington [1987]3° Following this literature, we show how competition for the franchise can be used to
regulate a monopoly. Our contribution is to study how demand risk affects the optimal contract, considering
explicitly the intertemporal nature of franchise contracts. Finally, this paper is also related to the literature
on the optimal regulation of natural monopolies (see, for example, Laffont and Tirole [1993]).

The rest of the paper is organized as follows. In Section 2 we present the model and the planner’s
problem. The latter is solved in Section 3. In Section 4 we show that an LPVR auction implements the
social optimum. Moreover, we show that a fixed-term auction generically cannot implement the optimum. In
Section 5 we make a quantitative comparison between LPVR and fixed-term auctions. Section 6 concludes
and discusses extensions. An appendix follows.

2 The model and the planner’s problem

A benevolent social planner wants to hire a private firm to build a highway whose technical characteristics
are exogenoust The firm can only be compensated with toll revenues, as we assume that other sorts of
compensation, such as monetary transfers from the planner to the firm, are not allowed. The planner’s
objective is to maximize the expected present value of driver welfare subject to finding a firm willing to
build the road-? The road is franchised for a period during which the franchise holder collects tolls. When
the franchise ends the road reverts to the state and any future tolls are returned to drivers lump-sum.
There aren possible states of demand. In statevhich occurs with probabilityt > 0, the marginal
benefit of an additional trip whe@ trips are made i8;(Q). We assume that the state of demand becomes
known immediately after the road is built, so that demand remains constant through time. The toll charged
for using the road in stateis P > 0, and the time-cost of using the road wh@wvehicles are on it is(Q),
which is independent of the state. ThRR-c(Q) is the generalized travel cost, and the number of cars on
the road in stateis determined by

highways in the late 1980’s and early 1990’s. Virtually all concessions were renegotiated after cost overruns and low revenues, with
a (declared) cost to the government of US$6 billion. This amount does not include the cost to users due to term extensions, since
in several cases the terms more than doubledEs&tercurio, June 17, 1996, p. A8, “Apertura Vial Lleva a Desastre Exnito,”
an article reproduced from theos Angeles Timeand the article in the Mexican weekBrocesoof February 12, 1996).

10But see Williamson (1976, 1985) for a critique.

1Thus, in this paper we do not study the problem of choosing the optimal scale and timing of the project.

12This objective function assumes that the income of users is uncorrelated with the benefit of using the road, so that if users spend
a small fraction of their incomes on tolls they will value the benefits produced by the road as if they were risk neutral. See Arrow
and Lind (1970).



(1) Bi(Q) =R +¢(Qi).

We impose some technical restrictions on the marginal benefit and cost functions:
(2) Bi(q) > 0, B{(q) < 0andB'(q) < 0; for 0 < g < ¢, with Bj(gj) = 0 andB;(0) > c(0);

(3) c,dcd’>0.

That s, in all states the marginal benefit function is strictly positive, strictly decreasing and concave and the
time-cost function is increasing and convex in the number of drivers on the'foad.

It will be useful to work with a demand functio@;(P) that is determined from the equilibrium con-
dition (1). It is straighforward to show that this demand function is well defined, concave and strictly
decreasing (that i9Q{(P) < 0, Q/(P) < 0). Moreover, the demand elasticity(P) is strictly decreasing
with n;(0) = 0 andn;(PM) = —1, wherePM is the monopoly toll in state!*

In statei consumer surplus is given by

Q(P)
@ cs(P)= [~ Bi@da—Q(P)P+c(Q(P)];

which, given assumptions (2) and (3), is finite. Since tolls paid by drivers redistribute income between
drivers and the franchise holder, the net instantaneous social surplus is

(5) Gi(P) =CS(P)+PQ(P).

The functionG; is strictly concave by conditions (2) and (3).It follows that when congestion costs are
unimportantG; (P) is decreasing for alP, and therefore attains its maximumRit= 0. On the other hand,
when congestion costs are consideraldgP) has a unique interior maximum & > 0. It is evident
that whenP, = P, users internalize the congestion externality they créatéhus, we denote b* the
congestion tolin statei.

For each possible state of demand the planner chooses two tolls, the one that users pay to the franchise
holder during the life of the franchise and a second toll that is collected by the planner after the end of the
franchise. The revenue from the latter is returned to users as a lump-sum. The tollsiimstatenoted by
PF andP?, where the superscript&* and “A” stand forfranchiseandafter, respectively. The length of the
franchise in stateis denoted byf;.

Since we are not interested in construction cost uncertainty, we assume that there are many identical
firms that can build the highway at cdst- 0. There are no maintenance costs and the road does not de-

13Thus, we are assuming that there is no hypercongestion.
14For proofs of these results see Appendix A in EFG (1998).
15See Appendix A in EFG (1998).

186 emma A.3 in EFG (1998) provides a proof.



preciatel’ Firms are risk-averse expected-utility maximizers, with twice-continuously differentiable utility
functionsu defined over net revenl®VR, — |, where

PVR =/Ti PFQi(PF)e"dt
— 0 [ (AN

is the present value of the franchise holder’s income in demandistiteounted at the risk-free interest
rate,r. Each firm has an outside option that yields utilitQ).

We assume that a dollar in the hands of users is socially more valuable than in the pocket of the franchise
holder (as in Laffont and Tirole [1993}1§ Given this assumption, it is easy to show that there is no loss
of generality in assuming that the objective function of the planner does not include the rents accruing to
the franchise holdé® Thus, the planner wants to extract all rents from the franchise holder and the firm’s
participation constraint holds with equality:

(6) Eu(PVR —1) = u(0).

Since the planner returns the revenue he receives after the franchise ends to users, as a lump sum, his
payoff in state may be written as:

Ti 0 0
W(PF,RAT) = [ CS(FF)e Mdt+ [ CS(PYe Mdt+ [ RAQI(RMe "dt,

which after some rewriting, and defining= e"", is equal to

Gi(R)

|
r

Gi(RY

W (1-1)+ =1L - PR,

The planner chooses a toll and franchise-period sché@ild”, Li){" ; to maximize the expected value
of (7) subject to the firm’s participation constraint £8).

If the planner could make monetary transfers to the franchise holder, she would doasel PA
equal to the congestion toR*.?! Since the participation constraint is no longer relevant at the end of
the franchise, the planner always sBfs= P*. Nevertheless, in order to raise revenue and satisfy the
participation constraint, the planner may need to distort tolls during the franchise. The optimal toll in state

17with a minor change in notation all results in this paper can be shown to hold when maintenance costs are proportional to the
number of vehicles using the road. The engineering literature on this issue suggests that, except for low quality roads, deterioration
depends mainly on use, not time. See Small et al. (1989).

180ne justification could be social preferences on the distribution of income; another that, particularly in developing countries,
many foreign firms participate in the highway business.

199n fact, LPVR is still optimal when franchise rents are as valuable as consumer surplus.

20The objective function (7) assumes a benevolent planner, which may be somewhat contradictory with forcing a self-financing
constraint—a benevolent planner should be given free hand to use subsidies to maximize welfare. We follow the regulation literature
in studying the normative Ramsey-Boiteaux problem given the self-financing constraint. See also the discussion in Laffont and
Tirole (1993, ch. 3.4).

21As taxes are usually distortionary, actually the optimal toll should be slightly above the congestion toll.



during the franchise, which we denote BY,?? satisfies
(8) P <PC<PM

That is, the optimal toll lies between the congestion toll and the monopol§?tdii.the remainder of the
paper, the following definitions and notation will be useful. First, if

RQi(R)

r

>1,

then we say thahe road is self-financing in statecharging tollR. Second

PrQIR)

r

(9) PVR =

is the present value of revenue collected if the franchise lasts forever and the toll equals the congestion toll.
Analogously, definVRM by substitutingP™ for P in (9). Finally,

PVRC = PQ‘ )(1—Li0)

is the present value of revenue collected by the franchise holder if tolls and franchise terms are chosen
optimally?* Now we can study the planner’s problem.

3 The planner’s solution

In this section we find the contract that solves the planner’s problem, and develop a simple classification of
roads based on this contract.

3.1 Thecommitmentcase

Most highway franchises have been awarded under a contract that fixes a state-independent toll and franchise
term before the road is built; that is for a|lj, PiF = PjF =PandT, =T; =T. In such fixed-term contracts

the government has committed in principle (though often not in practice) to change neither tolls nor the
franchise period. This is a special case of a more general contract where the planner commits to a toll and
franchise-term schedul®F, PA,L;)!_, before the realization of demand. In this subsection we characterize

the optimal contract within this class.

22Henceforth the superscrip®” will denote the optimal value of a variable during the franchise period.

23To rule outP® < P, note that raising?® increases welfare (sing is concave and attains its maximumR) and increases
revenue (since demand is relatively inelastic). A similar argument ruIeBQ)ut PiM.

24Recall that O = e"T°, whereT.C is the optimal franchise term in state



From (7) we have that the planner solves

G(RY
i

(10) max Zm 1 L)+ Li — PVR,

(PP PALHN

[ B

subject to the firm’s participation constraint (6). Suppose E]attu(PVR,M — I) > u(0), that is, that the

road is self-financing under monopoly tolls. Then there exists a solution for this prébl€he assumption

of commitment implies that the planner can compel the franchise holder to accept losses in some states,
and guarantee to compensate him with profits in other states; thatH¥R — 1) = u(0) need only hold

on average, not in every state of demand. Commitment gives the planner the possibility of distorting less
in low-demand states and compensating the franchise holder with a longer franchise in high-demand states,
thereby trading off user distortions against the risk borne by the franchise holder.

The planner’s problem may be viewed as a Ramsey pricing problem. The state-contingent tolls can
be viewed as the prices of the different goods while the firm’s participation constraint corresponds to the
budget constraint. Two aspects of our problem differ from standard Ramsey problems. First, the firm is risk
averse with respect to income. Second, and more important, the planner has twice as many instruments at
his disposal: she can set a toll and also choose the franchise length for each state of demand. As we show
shortly, it is the possibility of exploiting the time dimension that underlies the main results in this paper.

We start with an important lemma that characterizes the trade-off between toll distortions and risk forced
on the franchise holder.

Lemma 3.1 (a) For all states, P° > 0, andT.° > 0 (i.e.,L° < 1).

(b) The following term is independent of the stiate

Qi(P°)[1+n;(PO)] ,
(1) Q(PO) 1+ (FO)] —Gi(Po) 4 =Y

Proof See Theorem 7.1 in the appendig

Part (a) of the lemma says that the franchise holder receives positive revenues in all states. Part (b)
summarizes the insurance-distortion tradeoff. In the planner’s solution, the term in (11) is smaller in those
states in which the firm’s revenue is larger (since the expression is increasifjguvhich is decreasing in
revenue) and when tolls are higher (as reflected botty (RP) andGi’(PiO), both of which have an absolute
value that increases wifP).

Even though (11) characterizes the solution in the commitment case, it does not provide much intuition
on the form of the optimal franchise contract, nor does it suggest how to design an auction that implements
the planner’s solution. For this reason we use (11) to derive a series of propositions that provide a simple

253ee Proposition 7.1 in the Appendix for a proof.



description of the optimal contract and that serve as a basis to derive its implementation via a competitive
auction. The first proposition shows that if the road is self financing charging congestion tolls in all states of
demand PVR' > | for all i) then the optimal contract sets the congestion toll in all states, the participation
constraint holds in every state of demand and the franchise holder receives full instfrance.

Proposition 3.1 (Full insurance) Let PVR' > | for all i. Then the optimal franchise contract is such that
for all statesi, PF = P* andPVRP = 1.

Proof SincePVR'" > I, the solution is feasible and meets the participation constrain‘f’iF H= P* then
G|(P) =0, and from Lemma 3.1 we have thgt= U foralli, j, so thatPVRC = PVR?. Finally, PVRC =1
minimizes the transfer to the franchise holdeg.

The intuition behind this proposition is quite straightforward. First, if the road is self-financing when
the congestion toll is charged in all states of demand, there is no need to distort in order to satisfy the
participation constraint. Second, since the franchise holder is risk-averse, the transfer is minimized when he
is given full insurance. Last, since in geneRAlR’ # PVR], the franchise term is variable: the franchise
lasts longer when demand is low.

Proposition 3.1 is not general, because nothing ensureifiat > | for all i. For roads such that
PVR" < | in at least some state the planner must trade off the benefit of insuring the franchise holder
(i.e., that reduced risk implies a smaller transfer to the franchise holder) against the costs of raising tolls and
creating a distortion. In what follows we characterize this tradeoff.

WhenPVR' < | in at least some state states of demand can be classified in two categories: those
where the planner sets congestion tolls and those where the planner, optimally, chooses to distort tolls by
settingP™ > P*. We begin by studying tolls in a staitevhere the planner optimally se®§ > P*. Suppose
that, for the optimal contract, the franchise holder’s revenue in smt@\/Ro In principle the planner faces
the following tradeoff: giverPVRP, a lower toll means a smaller instantaneous distortion, but for a longer
term. The next proposition shows that the concavitgpimplies that the planner has a preferencetédir
smoothingso that it is optimal to charge forever the lowest possible toll consistent with PAFR/RP.

Proposition 3.2 (Toll smoothing) For all statesi such thatP® > P*, TC = e,

Proof Given the concavity o6, the proof is similar to that of standard insurance results, see EFG (1998)
for details. 1

Next we characterize revenues in those states where congestion tolls are charged.

Proposition 3.3 For all statesi, j such thatP® = P* and PjO =P, PVRC = PVRJQ.

26In EFG (1997a) we prove this result assuming perfectly inelastic demands, no congestion and no demand-contingent tolls.




Proof Note thatG|(Py) = G}(P;) = 0. From Lemma 3.1} = U}; hence PVR = PVR®.

The intuition behind this result is quite simple, at least in the case where the optimal franchise length in
both states is finite. Consider two statepwhereP° = P* andP® = P, but wherePVRP < PVRY. Then if
we extend the franchise a bit in statend shorten it in statgso that expected revenue does not change, the
planner’s objective function does not change and the firm’s participation constraint becomes slack. Hence,
the franchise terms inand j were suboptimal.

The next proposition shows that the franchise holder will collect more revenue in states where congestion
tolls are charged than in states with distortionary tolls.

Proposition 3.4 For all statesi, j such thatP® > Py andP? = P;, PVR® < PVR?.

Proof Suppose tha® > P andeO = Pj. SinceG{(R") = 0, by Lemma 3.1 we have that

QPAL+PO
Q)L+ ni(RO) -~ GI(RY)

i

SinceG{(P°) < 0 andn;(P°) > —1, the fraction on the LHS is smaller than one. This- U} and hence,
by concavity ofu, PVRC < PVR?. ]

Note that Propositions 3.3 and 3.4 imply that if there exists at least one state where optimal tolls are
distortionary, then in those states where congestion tolls are charged we ha¥%e-RViRat is, the franchise
holder makes a profit. It follows that PVR" < | then PiO > P*.27 Moreover, since the participation
constraint must bind, the franchise holder must lose money in some states.

To conclude we show that if in a given state it is optimal to charge the congestion toll, then in all states
with higherPVR* it is also optimal to charge the corresponding congestion toll.

Proposition 3.5 If PVR" < PVR andP° = Py, thenP? = P;.
Proof See Appendix A in EFG (1998).1

Proposition 3.5 allows us to order states of demand in a simple way. Without loss of generality, assume
thatPVR] < PVR; < ... < PVR; (we will keep this convention in the rest of the paper). It follows that if
PO =P, thenPQ, =P, ... ,PY = P;. Conversely, iP°® > P*, thenP®, > P ,, ... ,PP > P},

To summarize, the preceding results show that when the planner can commit, the structure of the opti-
mal contract(P°,L;)"_,, is quite simple. First, either tolls are distorted and the franchise lasts forever, or
congestion tolls are set and the franchise lasts until a ghR¥R is collected (Propositions 3.2 and 3.3).
Second, the revenues of the franchise holder are higher in those states where congestion tolls are optimal

(Proposition 3.4). Finally, if it is optimal to charge the congestion toll in a particular state of dantizem

27The converse is not true: if P{R> |, it does not follow thaP® = P*.
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it is optimal to set congestion tolls in all statgthat collect at least as much revenue agen congestion
tolls are set (Proposition 3.5).

3.2 Theno-commitmentase

As mentioned in the introduction, in the real world it is common for franchise contracts to be renegotiated

in those states of demand where the franchise holder loses money under the original €bRwapblitical

economy reasons, once it becomes apparent that the franchise holder will suffer losses, governments seem
unable to resist pressures to renegotiate. Since the franchise holder will lose money in those states of demand
i such thaPVR' < 1, it follows that in many cases it may be unrealistic to expect governments to implement

the optimal contract. However, as in the case of utilities, the government may be able to precommit to allow
the franchise holder a normal rate of retimrevery state of demandhat is, after the road is built, for all

states she will set tolls such th&Q;(R) =rl. In that case, for all the planner solves

(DF _
(12) max GI(Pi )(1_Li)+LPiA)|_i —PVR
PEPAL T r

subject toPVR, = 1.
The following proposition characterizes the optimum.

Proposition 3.6 Assume that for all statés PVR™ > |. Then:
(@) if PVR' > I, thenP" = PA = P, andT; is set so as to satisfVR, = I;
(b) if PVR' < I, thenT; = « and the optimal toll is determined by

POQi(P°)
r

Proof In case (a), the maximum is attainedRit = PA = P* and the self-financing constraint determines
the franchise lengtf;. The proof of part (b) is similar to that of Proposition 332.

Just as in the previous commitment case, states of demand can be ordered in a simpl®WayPif
thenPQ, =P, ... ,R? =P;. Conversely, iff° > Pr, thenP®, > P*, .. ,P? > P;. Contrary to
the case of commitment, however, the optimal no-commitment contract always gives full insurance to the
franchise holder. Consequently, whBNR' > | in all states, the solution to problem (12) is identical to
the commitment contract: in all states the franchise ends Wh&R = |I. But whenPVR' < | in at least
one state of demand, the optimal contract is inferior to the commitment contract. First, the participation
constraint must not only hold on average, but in every state of demand. Thus, insurance and distorted tolls
cannot be traded off and this contract gives too much insurance and distorts tolls too much. Second, roads
for which PVRM < [ in at least one state of demand will never be built, independently of their profitability

in other states, whereas they might have been built under the optimal commitment contract.

283ee footnote 9 for evidence.
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Note that the optimal no-commitment contract is analogous in spirit to traditional rate of return reg-
ulation, which seeks to set the price of the service so that the public utility earns a normal rate of return
contingent on the particular realization of demand and cost parani&td@irse main difference is that the
franchise period is limited, a consequence of the assumption that all investments are sunk and need to be
made only once.

3.3 Additional results

It is interesting to relate the optimal contracts with Ramsey pricing. We first note that the commitment
case corresponds to the Ramsey assumption of a single budget constraint, while the no commitment case
considers a “per service” budget constraint.

Next we describe how, in the case with commitm&hbptimal tolls and franchise lengths vary as the
construction cost increases. We start with a sufficiently low valuel pgo that in all states of demand the
road can be financed with congestion tolls in finite tithé\s | increases in this range, the optimal franchise
length increases, with no change in tolls, since additional revenue can be collected in all states of demand
without distorting tolls. In contrast to standard Ramsey problems, the additional instrument available in our
case, namely the franchise length, makes it possible to collect more revenue without creating distortions.

Oncel exceeds PVR the optimal toll in state 1 will be above the corresponding congestionRall,

When trading off toll distortions and the risk premium, the planner always chooses a positive level of toll
distortion, since the associated welfare cost is second order while that associated with increasing the risk
premium is first order. Ad continues increasing, the franchise lengths in statésroughn continue
increasing. By contrast, in stafeit is the toll that increases, aiming at keeping a balance between the
toll distortion this creates and the risk premium associated with the lower present value of revenue that the
franchise holder receives in this state. Eventublgaches a threshold where the franchise length in state 2

is infinite. Values of above this threshold lead to distortionary tolls in states 1 and 2.

As | continues increasing, distortionary tolls (and indefinite franchise lengths) set in, consecutively,
in states 3, 4, and so on. By the tihe- PVR;,, distortionary tolls (and indefinite franchise lengths) are
required in all states of demand.

It follows from our discussion above that for a particular statke present value of revenue collected
during the franchise increases monotonically witkor small values of it is an increasing franchise length
that accounts for this increase; for larger values the franchise length is indefinite and additional revenue is
collected by increasing the toll.

The results described above can be summarized in the following proposition:

29Since demand is exogenous in the present model, there is no tradeoff between rent extraction and incentives. Moreover, in this
section the regulator acts with full information about the relevant parameters. Thus, rent extraction is the sole aim of the regulator
and rate of return regulation is appropriate.

30A|l of what follows has an obvious counterpart in the case without commitment.

31Since we adopted the convention that Fi'\&RPVR’J-k if i < j this is equivalent to PVR> I.
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Proposition 3.7 (Increasing revenue as a function dfy The present value of revenue collected in a given
state of demand by the optimal contract is a strictly increasing function of the constructioh bash in
the case with and without commitment.

Proof See EFG (1998). 1

The above digression motivates a classification of roads according to whether the optimal contract re-
quires toll distortions:

1. High-demand road: In all states of demand the optimal toll is equal to the congestion toll, i.e., there
are no distorted statés.

2. Intermediate demand road There exists an inddxbetweer2 andn, such that the optimal contract’s
toll in statei is above the corresponding congestion toll foriall k and equal to the congestion toll
alli > k. that is, there are some states with distortionary tolls.

3. Low-demand road: In all states the optimal toll is higher than the congestion toll.

4 Least-Present-Value-of-Revenue auctions

In this section we show how the optimal contract derived in the preceding section can be implemented with a
competitive auction. Auctioning a highway franchise requires designing the franchise contract and choosing
a bidding variable. Since the auction takes place before demand is realized, the bidding variable cannot be
state-contingent. Implementing the optimal contract via a competitive auction therefore requires finding
a bidding variable that does not vary across states of demand and that can replicate the optimal franchise
lengths and tolls, both of which vary with demand.

If the regulator sets the franchise term and firms compete on the lowest toll, the resulting contract has
a toll that is equal to the winning bid, and therefore constant across states of demand. It follows that the
optimal contract cannot be replicated in this way. This holds even if the length of the franchise is demand-
contingent. Similarly, if the regulator sets state-contingent tolls and firms compete on the shortest franchise
term, the resulting contract cannot be optimal since its length does not vary with demand realizations.

In this section we show that the bidding variable that solves the problem described above is the present
value of toll revenue. The corresponding auction proceeds as follows: First, the regulator announces the
discount rate and the toll that the franchise holder will be allowed to charge in each state of demand. This
toll is the optimal contract toll in each state of demand. Second, firms bid on the present value of toll
revenue and the lowest bid wins the franchise contract. The road is built, the planner observes the state of
demand and sets the corresponding optimal toll. The franchise holder collects tolls until the present value
of tolls equals the winning bid, then the road is transferred to the state. If the sum is never collected, the

32|t is interesting to note that urban highways are likely to be high-demand roads.
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franchise lasts forever. In the next section we show that this Least-present-value-of-revenue (LPVR) auction
implements the optimal contract. We consider separately the cases of high-, intermediate- and low-demand
roads.

4.1 High-demand road

It follows from Section 3 that in this case the optimal contract involves the same present value of revenue,
[, in all states of demant?. It is also easy to see that the winner’s expected utility is an increasing function
of her (winning) bid. Also, a bid equal toachieves the break-even point. Thus, Nash competition between
identical firms implies that the winner will bid If statek occurs, the franchise terriy, is such that present

value of toll revenue during the franchise is equal.tdhusTy is determined from:

Tk
/0 POQk(PQ)e dt =1,

which is precisely the condition for the optimal contract’s franchise Ien'g‘t)m, It follows that the LPVR
auction implements the optimal contract.

It is interesting to note that in the case of a high demand road the regulator does not need to know the
probability distribution of states of demand or firms’ utility functions in order to implement the optimal
contract. The only information she needs are the optimal congestion tolls.

In the case of intermediate and low-demand roads, an analogous argument shows that an LPVR auction
implements the optimal contract in the cas of no commitment. The case with commitment is more difficult
and we turn to it next.

4.2 Intermediate- and low-demand roads

We begin with an intermediate demand road. Fork the optimal contract sets congestion tolls, while in
the remaining states £ k) it sets distortionary tolls and the franchise lasts forever.

It is obvious that in an LPVR auction the franchise holder’s expected utility is an increasing function
of her (winning) bid. Next we show that her participation constraint holds with equality when she bids the
present value of revenue common to all states where the optimal contract sets congestion tolls (that such a
value exists follows from Proposition 3.3). This, combined with the fact that the winning bid leads to the
same franchise length as the optimal contract in all states of demand, implies that Nash competition between
identical firms replicates the optimal contract.

Since the present value of revenue is higher in states with congestion tolls than in states with distortionary
tolls (Proposition 3.4), we have that the franchise lasts indefinitely when one of the lower demand states
occurs, as is the case under the optimal contract. In high-demand states, the argument of the previous
section shows that the LPVR and the optimal contract coincide.

33This holds both for the case with and without commitment.
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Denote by PVR the present value of revenue collected by the franchise holder with the optimal contract
in statei. An LPVR auction implements the optimum because a firm biddiag PVR-o will collect PVR-O
in statei, as long as the regulator sets the optimal toll corresponding toistatéhe case of a high-demand
road, all the PVI?’S are equal td. By contrast, in the case of an intermediate demand moad PVRy is
equal to the common revenue obtained in all those states where the optimal toll equals the corresponding
congestion toll. Noting that the winning bid will also beax PVR;, an argument similar to the one given
for an intermediate demand road can be used to show that an LPVR auction is optimal for a low-demand
road.

4.3 Informational requirements

The informational requirements needed to implement the optimum are quite formidable in the case of an
intermediate or low-demand road with commitment. The regulator needs to know construction tduests
probability distribution of demand stater, and the demand schedul€g, i = 1,...,n. By contrast, we
showed that in the case of a high-demand road the regulator does not need to knowl nesthbreTg’s,
since knowing the congestion tolls suffices in this case.

Since the winning bidnax PVRP, is (strictly) increasing im (see Proposition 3.7), the regulator can use
this relation to infell from the winning bid. Thus, knowledge bfs not necessary to implement the optimal
contract not only in the case of high-demand roads, but also in the case of intermediate and low-demand
roads. This holds both in the case with and without commitment.

The results derived in this section are summarized in the following proposition:

Proposition 4.1 Denote bymax PVR(1) the maximum, over all states of demand, of the present value of
revenue collected under the optimal contract when construction costs egfual

Then an LPVR auction implements the social optimum if the regulator announces that for a winning bid
of B the toll schedule will be the optimal state-contingent tolls associated with the valuthalf satisfies
max PVR(1) = B.3° This holds both for the cases with and without commitment.

Proof The main elements of the proof we discussed in this section. A more formal approach is in EFG
(1998)1

Having established the optimality of LPVR auctions, we note that fixed-term auctions, which are the
standard highway auction mechanisms throughout the world, are optimal 8\/Rjfis the same across all
states of demand and the common value is larger thd@mus generically fixed-term auctions are subopti-
mal 3% Furthermore, as we show in the next section, not only are LPVR auctions better than their fixed-term
counterpart, but welfare differences are important.

34Regarding possible values bfsee EFG (1998).
35That such a value dfexists and is unique follows from Proposition 3.7.
36For a formal proof see Appendix C in EFG (1998).
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5 LPVR and fixed-term franchises compared

As we mentioned before, most highways that have been franchised around the world have been awarded
under a fixed-term contract. In this section we develop a procedure to quantitatively compare LPVR auctions
with fixed-term auctions and apply it to data from Chilean highways to obtain estimates of the savings
involved in using an LPVR auction (a massive highway franchising program is currently underway in Chile,
see EFG [1996]). Since we do not have data to estimate demand elasticities we work with a simplified
version of the model where demand in each state is perfectly inelastic. Uncertainty comes from the fact that
demand depends on user income, whose growth is stochastic. Given that tolls play no allocational role in
this setting, we also assume that in all states of demand the toll is the same and high enough to finance the
road.

5.1 Model

In a fixed term auction the planner can either set the franchiseTfteanu the auction is won by the firm who
bids the lowest toll; or it can fix a tolP and the auction is won by the firm who bids the shortest franchise
term. In both cases Nash competition implies that the following identity must hold in equilibrium:

(13) ¥ TU(P-PVQ(T) 1) = u(0).

WherePVQ (T) denotes the present value of traffic flow in state of demaf@ndPVR, = P-PVQ. Note
that if the term of the franchise is fixe®VQ, varies with the state of demand. Thus with a fixed-term
franchise the franchise holder cannot be offered full insurance. By contrast, an LPVR auction gives full
insurance to the franchise holder.

Let{(T) = E[PVQ(T)] be the expected present value of traffic flows if the term of the franchiBe is
and leto?(T) = E [[PVQ(T) —(T)]?] denote the corresponding variance. Proposition 5.1 calculates the
risk premium charged by the franchise holder in a fixed-term auction.

Proposition 5.1 To a first order approximation, the risk premium charged by the franchise holder in a
fixed-term franchise is
CV/A/2
(14) — 1.
1-CV, /A/2
WhereAdenotes the coefficient of relative risk aversion (evaluatedat 1) andCV = o/ denotes the

coefficient of variation of the present value of traffic flows.

Proof GivenT or P, equilibrium tolls or franchise terms are determined by condition (13). A first-order
Taylor expansion of the RHS of (13) and a second-order Taylor expansion of the LHS, both around the risk

37Note thatQ; is no longer a function oPj. Also note that, in contrast with the preceding sections, we do not assume that
uncertainty is resolved in the first period.
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premiumP¢(T) —1, lead to:

3 16 T+ P(PVQ ~ )T + JPP(PVQ )’ | = i~ (PL— ).
|

Wheretu= u(P{(T) —1), 0 = U (P{(T) — 1) andd’ = u"(PZ(T) — 1. It follows that—3P?c?% =~ P71,

and hence, multiplying both sided B — |

(15) %PZGZA’:V (P —1)?,

which leads to |

{[1-CV\/A/2]

SubstitutingP back into (15) and taking the square root yields (14) which completes thepproof.

P

12

Now consider an LPVR auction. If tolls are set high enough to make the road self-financing in all
states’® then the following corollary follows trivially:

Corollary 5.1 If the toll P is fixed so that the road is self-financing in all states, then expression (14) is also
the expected value of the reduction in toll income in a competitive auction.

5.2 Empirical implementation

We calculate risk premia for values Abetweerl.0 and3.0 (see Table 1§° We obtainCV as follows. We
assume that traffic flows increase according to

Q1 =€e*Q

and define

T-1
16 PVQ= § e Q.
(16) t;

There are two sources of uncertainty: the annual growth rates of the trafficgfloand the initial traffic
flow, Qo. We assume that annual growth rates are independently distributed and satisfy

o= (y+e)(gy+&" +ef).

Whereny denotes the average income elasticity of traffic floslsare random shocks that affect this elas-
ticity, gy is the average growth rate of GDP, ag)ll andel" are, respectively, the variations in this rate due

38since demand is inelastic, general equilibrium considerations ignored throughout this paper suggest that the toll should be set
equal to road users’ reservation toll.
39These values are representative of those estimated in the literature.
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Table 1:SAVINGS AS A PERCENTAGE OF ORIGINAL INVESTMENT

Coef. Rel. Risk Aversion
10 15 20 25 3.0
0.05: 16.6 21.1 252 29.0 32.7
Cv 0.10: 184 235 28.2 326 36.8
of 0.15: 21.2 27.3 329 38.3 435
Qo 0.20: 248 322 39.1 458 525
0.25: 29.3 384 47.2 559 64.6

to macro- and micro-economic factors. The paramegas taken ad.6, the estimated income elasticity of
traffic flows in Chile in the period 1985-199§y is set equal t®.06, the average rate of growth of Chile’s

GDP over the same periody, eV ande are assumed to be mutually independent and uncorrelated over
time, following a normal distribution with zero mean and standard deviations of, respectively, 0.2, 0.02 and
0.04. The standard deviations assumed for macro- and micro-economic risk are consistent with the growth
rates of national and regional GDP in Chile over the 1985-1995 p&tiddhe variation ofQq cannot be
estimated from actual data. Thus, as in the case of the coefficient of relative risk aversion, we calculate
risk-premia for values of the coefficient of variation of initial traffic betw@edb and0.25.

If the length of the franchise€T(), the discount rater], the relative risk aversion coefficier)and the
coefficient of variation of)y are all given, the coefficient of variation of the sum (16) can be estimated by
simulating paths fog;. We assume thalt = 20 years (several highways in Chile were franchised with that
term) andr = 0.06 (this has been close to the average real rate paid by a 20-year bond issued by the Central
Bank during the ninetiesCV can be calculated assuming that traffic growth rates are independent from the
initial level and holding constant the coefficient of variatiorQaf**

Table 1 shows the savings to users as a percentage of the initial investment, for alternative combinations
of the coefficient of variation oy and the relative risk aversion coefficieAt??

It can be read from Table 1 that if the coefficient of risk aversion of firms is 2 and the coefficient
of variation of Qg is 0.15, then the risk premium charged by the franchise holder if the term is fixed is
approximately one-third (32.9%) of the initial investment. The median of the values in the table is 32.6%—
the mean is even higher. With a discount rate of 8% instead of 6%, the median is 31.1%.

40The standard deviations faﬁ" ande[" are obtained decomposing yearly regional GDP growth rates into the sum of a common
component (equal to the average growth rate across regions) and an idiosyncratic component (the residual). The standard deviation
of the common component is 1.82%, the standard deviation of idiosyncratic shocks varies between 2.79% (1989-1990) and 5.75%
(1993-1994) with an average of 4.21% over the period considered. We thank Raimundo Soto for providing the regional GDP data.

41Here we use the result that relates the coefficient of variation of the product of two independent vaXiabidy;, to the
coefficient of variation of the individual variable8VZ,, = CViZ + CWZ +CVig - C\Z.

42Each value in this table is based upon a coefficient of variation of the sum (16) obtained from 25,000 simulations. This leads
to a relative approximation error smaller than 0.4%.
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6 Conclusion

In this paper we have shown that fixed-term contracts, which are commonly used to franchise highways, do
not allocate demand risk optimally. We characterized the optimal risk sharing contract and showed that it
can be implemented with a fairly straightforward mechanism—an LPVR auction. Instead of bidding on a
toll (or a franchise length), as in the case of fixed term franchises, in an LPVR auction the regulator sets a
toll schedule and bidders announce present values of toll revenues. The lowest bid wins and the franchise
ends when that amount has been collected. Finally, we showed that the welfare gains that can be attained by
replacing fixed-term auctions with LVPR auctions are substantial.

Throughout the paper we focused on the risk sharing properties of alternative highway franchising con-
tracts. Worldwide evidence with highway franchising suggests that there are additional characteristics of
these contracts that should be considered. We comment on them ttiefly.

Since the franchise term adjusts to demand realizations, LPVR auctions are much less sensitive to de-
mand information and thus more cost oriented than fixed term franchises. For example, if we allow for
heterogeneity in construction costs and assume that all bidders can recuperate their building costs with con-
gestion tolls, then in a second—price LPVR auction all firms will bid their construction cost, no resources
will be spent on estimating demand, and the winner will be the most efficient firm. By contrast, in the case
of a fixed term franchise, demand realizations affect bidders’ profits, so that bidders have incentives to spend
resources on estimating demand. Furthermore, in this case it is likely that the winner will not be the firm
with lowest construction costs, since bids will also reflect differences in demand forecasts.

The actual experience of countries that have franchised highways to the private sector has often been
unhappy. Two problems have been prominent: private firms and financiers usually refuse to participate
unless governments pledge guarantees against commercidt¥ihkd;franchise holders are generally able
to renegotiate and shift losses to taxpayers and users whenever they get into financiaftrésbie have
argued elsewhere (see EFG [1997b]), government guarantees and renegotiations are undesirable, because
they are not accounted for in the budget, blunt the incentives to be efficient, encourage firms with experience
in lobbying to lowball in the expectation of a future renegotiation, and make white elephants moréQikely.

We believe LPVR franchises moderate these pitfdliBy reducing demand risks, they reduce the demand

for guarantees. Moreover, the fact that each firm’s bid reveals the income required to earn a normal profit
reduces the scope for post-contract opportunistic renegotiations, since any wealth transfer by the government
must take the form of a cash transfer whose amount can be readily understood by the public and compared
with the initial winning bid. For the same reason, it should be politically more difficult for the government to
exploit the franchise holder by changing the original contract, since the winning bid is a clear and observable

43The presentation is at an intuitive level since we are currently working on formalizing these insights.

44For example, for nine out of ten highways franchised in recent years in Chile, the government provided a guarantee that the
revenue would equal 70% of construction and maintenance costs. See Irwin et et al. (1997) for more examples.

45See footnote 9.

46Where by white elephant we mean a road with negative net present social value.

47And are therefore more robust to Williamson's (1976, 1985) critique of franchise bidding.
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benchmark that makes it easy to value any wealth expropriation.

LPVR auctions also are more flexible than their fixed term counterparts. For example, if for some
reason, the franchise needs to be terminated ahead of time, a fair compensation for the franchise owner is
the difference between the winning bid and revenue collected th® fahis should be contrasted with
fixed term franchises, where compensations based on estimates of expected profits during the remainder of
the franchise are subject to dispdfe Underlying this intuition is the fact that an LPVR franchise is an
incomplete contract where one of the parties (the franchise holder) has little to fear if the other party (the
regulator) is given fullex postcontrol (in the Grossman—Hart—Moore sense). The government can react
to unforeseen circumstances in a variety of ways without affecting the franchise holder’s profits, since the
franchise holder only cares about eventually recovering the up front investment. This implies that under
LPVR, the government has more flexibility to react to demand realizations, than under a fixed term scheme.

The main caveat regarding LPVR auctions is that they provide insufficient incentives to exert effort in
demand- and quality-enhancing activities (e.g. building a road of the right standard, providing adequate
maintenance without supervision, or providing expeditious service at toll booths). For example, potholes
reduce demand for the road, yet the franchise owner has few incentives to maintain the road adequately,
since the associated revenue shortfall will be made up through a longer franchise length. Throughout the
paper we assumed that demand was exogenous, thereby ignoring the insurance—quality tradeoff. In the case
of monopoly highways, there appear to be few demand enhancing activities, so omitting the effects of in-
centives appears reasonable. Nevertheless, as Tirole (1997) has stressed, this suggests that LPVR contracts
should be complemented with other regulatory innovations, such as third parties who verify minimum qual-
ity standards, and appropriate fines for non-compliance. In the case of highway franchises this should not
be a major problem since objective measures for road and service quality can be defined and verified at a
low cost, yet this sets limits to the application of LPVR auctions to other types of infrastructure pe8jects.

Finally it is interesting to mention that LPVR auctions are not only a theoretical construct. An LPVR
auction was used in February of 1998 in Chile to franchise the Santiago-Viaipafiia del Mar concession.

The project contemplates major improvements and extensions of the 100 mile highway and the construction
of three tunnels, with estimated costs of almost US$400 million. The toll schedule was fixed in advance
(in real terms) as was the discount rate. Five firms participated in the auction and the present value of toll
revenue demanded by the winner turned out tbdlewestimated construction and maintenance costs. One
possible explanation for this outcome is that, given the relatively low risk associated with LPVR auctions,
the discount rate set by the regulator—equal to the risk free rate plus 4%—was higher than the discount rate
used by firms. Also, firms were given the option to buy government insurance against demand risks, but the

48\We have ignored maintenance costs throughout this paper. If they are added, an estimate for savings associated with these cost
should be subtracted.

49In early 1997 the government of Argentina announced it wanted to end airport franchises in order to reauction them under
new terms. These were fixed-term franchises. Estimates of adequate compensation for franchise holders varied between US$400
million (government estimates) and US$40 million (former Economics Minister Domingo Cavallo’s estimateg). M&eurio,
February 6, 1997.

50Another case where LPVR auctions are appropriate is water reservoirs.
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winner declined the offer.
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7 Appendix
Proposition 7.1 There exists a solution for the social planner’s problem with commitment.

Proof The implicit function theorem and (6) can be used to epr§sas a function of the remainirfgf ’s

and of thel;’s. This expression can be used to rewrite the planner’s problem as an unconstrained maxi-

mization problem over all;’s and PZF,PE,...,P,T. From (8) we then have that the planner is maximizing a
continuous function over a compact set. Existence of a solution now follogvs.
As will become clear shortly, the following functions are closely related to the degree to which the

self-financing constraint leads to distortions in a particular state of demand.

Definition 7.1 (Distortion functions) We define:

Q(P)(1+ni(P))

WP = QP niP) - GP)
(17) Vi(RL) = Hi(P)U(PVR(PL)-1I),
where:
pvR(PL) = PP 4y,

r

Lemma 7.1 The functiondH; (P) satisfiedH;(P) < 1, for all P > P.
Proof The result follows from the fact th&; is concave and attains its maximumRit g

Theorem 7.1 (Optimality conditions) The planner’s solution to the problem with commitment satisfies
PO > 0andT,° > 0for all statesi. Also, for any pair of statesand! we have:

(18) Vi(RO, L) = wi (PP, LP),
or equivalently:

Hk(PO)U'k = Hi (RO)U!1.
Wherev; (P L) is defined in (17) and’; = u/'(PVRP —1).

Proof We divide the states of demand in two groups. The first group includes those state:t@/hele(or
equivalentIkaO > 0) and PE > 0. The second group includes all the remaining states, that is those where
eitherLY = 1 or PO = 0. Note thatP can take any value whetf = 1, sinceT?° = 0in this case. Thus we

may assume, without loss of generality, tﬁﬁt: 0 andL‘k) < 1for all states in the second category.
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The first group of states has to be non-empty, since otherwise the firm’s participation constraint cannot
be satisfied (all states in the second group provide no revenue for the firm). The initial statement of the
proposition is that all states belong to the first group.

The remainder of the proof proceeds as follows. We first prove (18) for any pair of states in the first
category. Next we show that no state can belong to the second group.

The Lagrangian corresponding to the social planner’s problem is:

£=7 3 MG E) ~FFQEIA-L) +GRIL} A 3 TuPVR —1)

The first order condition if for a state in the first category implies:

=

(19) (R, L) = 5

so that (18) holds for any pair of stateandk in this category.
If statek belonged to the second category, we would have:

(20) w(PO,LP) < %

From Corollary A.1in EFG (1998) and (8) we have tRat= 0 andc(Q) is constant. Thus (26) implies that
G/'(P) =0, and hencé(PY) = 1. It follows from (19), (20) and48) in EFG (1998) that:

Uk <

up >

> >

Wherel is a state in the first category. Concavitywand the two preceding inequalities imply that the
revenue obtained by the firm in statas larger or equal than that obtained in sthat&Since the former is
zero, the latter is also zero. This contradicts the firms’ participation constraint, thus showing that there exist

no states in the second category.
O _ O __ px*
Corollary 7.1 If PVR' < PVR andP- = R’ thenP;” = P;.

Proof We assum@jO > Pj* and arrive at a contradiction.
If P2 > P;, thenT® = e (Proposition 3.2). Sincél;(PP) < 1 andH;(R°) = 1 (Lemma B.1 in EFG
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[1998]), from Theorem 7.1 it follows that; < u’; and therefore
(21) PVR® > PVR?.

On the other hand, since demand is relatively inelastic (see Proposition A.2 in EFG [1998] for a formal
proof) and in view of condition (8) it follows that:

(22) PVR® > PVR:.
Also, trivially (since the optimal toll i$") we have:
(23) PVRP < PVR'.

From (23), (21) and (22)
O @) ok

and therefore PVR> PVR], contradicting one of our assumptiong
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Less Important Appendices

A Concavity of G;

In this appendix we prove concavity of the net instantaneous social welfare fun@tiofihe notation and
definitions are those given in the main text.

Proposition A.1 (Existence of a demand function)Given a priceP the demand schedule in stat€; (P),
is determined implicitly by

(24) Bi(Qi(P)) —c(Qi(P)) =P.

We also have:

(25) Q(P) = [B(QP)-Cc(QP) <0,
L BIQP) QP
CP = ~EeE) caP)P =

Where in the last two expressions we dropped the subsddpease of presentatioH.

Proof Since the generalized travel costRst ¢(Q), in equilibrium the number of cars on the road is
determined by (24), as long as there exis@ 2 0 satisfying this condition. From assumptions (2) and (3)
it follows that such & exists (and is unique) as long Bss below some state-specific maximum ll

The expressions fd@' (P) andQ”(P) follow from implicitly differentiating (24) with respect t8. 1

From the above proof it is evident thBt defines the threshold toll beyond which demand is zero and
Qi (0) defines the maximum demand that can attain, both in statehe statements we make in the remain-
der of this appendix, unless otherwise staeahdQ will take values in0, B] and [0, Q;(0)], respectively.

Definition A.1 (Net Social Surplus, Elasticity) It will be helpful to define net social surplus as a function
of Q: 0
G(Q = [ Bi(@da—Qo(Q).

We define the price-elasticity of demand and (instantaneous) revenue inataigce P as

PQ(P)
Qi(P)

ni(P)

51we will do this often throughout this appendix.
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and

Ri(P) = PQ(P).

Lemma A.1 The net social surplus, as a functionRfsatisfies:

(26) G() = APIE)-C@PIPL
o —(B'—)(B—c— Q)+ (B~ ¢)(B - 2¢ — QC)
(27) G'(P) = R ~

Where we have omitted the subscriphd all functions on the right hand side of (27) are evaluateQ@).

Proof From (4) and (5) it follows that

Qi(P)
Gi(P) = /0 Bi(a)dq — Qi(P)c(Qi(P)).

Differentiating both sides of this identity with respectR@nd rearranging terms leads to (26). Differentiat-
ing (26) with respect t® leads to:

G"(P)=Q'(P)[P—c(Q(P))Q(P)]+ Q' (P)[1-Q'(P)c(Q(P)) - QP)Q'(P)c"(Q(P))].
SubstitutingQ' (P) andQ”(P) by the expressions in Proposition A.1 leads to (2.

Lemma A.2 The social surplus, as a function Qf satisfies:

(28) G(Q = B(Q-c(Q-QC(Q),
(29) G'(Q B'(Q) —2¢'(Q) —Qc’(Q) < 0.

It follows thatG(Q) is strictly concave.

We also have the following relations between net social surplus as a functi®arat as a function of

Q:

(30) G(P) = G(Q(P)),

(31) G(P) = G(QP)Q(P),

(32) G'(P) = G'(QP)[Q(P)P+G(QP)Q'(P).

Proof Expressions (28) and (29) follow directly from the definition@ﬂQ). Expression (30) is by defini-
tion; expressions (31) and (32) follow directly from (30
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Definition A.2 (Monopolist’s toll) We denote the toll a monopolist charges in statiat is the toll that
maximizeQ (P), by PM. We also denot®(PM) by QM.

The following proposition shows that our assumptions—the non-trivial one being the concavity of the
Bi's—ensure that demand is inelastic for all tolls below the monopolist’s tolls, becoming more elastic as

tolls increase.

Proposition A.2 (Properties ofn and ®) The price-elasticity); satisfies:

(33) ni(0) = 0
(34) ni(P) < 0
(35) niP"y = -1

Also, the (instantaneous) revenue functi®p,satisfies:

K@Y = o
(36) R'(P) > 0 forP<PM
R'(P) < 0 forP>PM,

Proof From (25) we have that:

(37) n(P) =

Evaluating this expression Bt= 0 proves (33).
Differentiating (37) with respect tB we have:

QB —c]-PQ[B —c]+PQQ[B" -]
[Q(B —c)]? '

n'(P) =

Where the function®), B, c and their derivatives are evaluatedHP). Since our assumptions ensure that
the three terms in the numerator have negative signs (with the first one being strictly negative), we conclude
thatn’(P) < 0.

Finally, (35) follows from the monopolist’s first order condition:

Q(P)+PQ(P)=0.

The properties foR follow from (34) and (35). &
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Proposition A.3 (Unimodality of G;) The net social surplus functio;(P), is unimodal forP > 0.

Proof We have tha€'(Q = 0) = B(0) — c(0) > 0 (due to Assumption (2)). Sindgis concave (Lemma A.2),

there are two possibilities:

1. G(Q) > Ofor all Q. In this case it follows from (31) and (25) th&(P) < 0 for all P > 0. Hence

G(P) is unimodal attaining its maximum &= 0.

2. There exists * > 0 such thaG is strictly increasing foQ < Q* and strictly decreasing f@p > Q*,
with G'(Q*) = 0.52
Let P* denote the uniqu® such thatQ(P) = Q*. It then follows from (31) and (25) tha®(P) is

strictly increasing folP < P* and strictly decreasing fd? > P*, attaining its maximum value &".

Lemma A.3 The congestion tolR*, satisfies:

(38) A< RY
(39) G(R) = o
(40) R = QR)EQR)).

Proof To prove (38) we show that the number of trips chosen by the social pla@hes larger than the
number of trips chosen by the monopoligt .52 It then follows from (25) thaP* < PM.
The monopolist choosed" as to maximizéB(Q) — ¢(Q)]Q, which leads to the first order condition:

[B(Q) —¢(Q)] —Qc(Q) +QB(Q) =0.

Thus it follows from (28) tha6'(QM) > 0, and since5” < 0, we have thaQ" < Q*.
To prove (39) we consider the two situations into which we broke up the proof of the preceding proposi-
tion. Equation (39) obviously holds in the second case. In the first case, Rher8,>* we have, from (26)
and (33), that:
G/(P*) = —Q(0)c(Q(0))Q(0) > O.

52e convene throughout this appendix that a funcfigx) is increasing wherd’(x) > 0 and strictly increasing wheff (x) > 0.
A similar convention holds for what we call decreasing and strictly decreasing.

53As usual, we drop the subscript

54gtrictly speaking in this case we ha@(0") = 0.
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Yet, from what we saw in the proof of Proposition A.3, in this c&g) < 0 for all P > 0. From continuity
of G'(P) it follows thatG'(0) = G'(P*) =0. 1

Corollary A.1 If P = 0thenc(Q) is constant.

Proof From Lemma A.3 we have th& (P*) = 0 implies that eithe) (0) = 0 or ¢/(Q(0)) = 0. The former
cannot hold due to Proposition A.1. Tha§Q(0)) = 0, and sincec(Q) is convex andQ(0) > Q(P), it
follows thatc’(Q) < 0. Since we assumed the{Q) > 0, it follows thatc'(Q) = 0 and thus that(Q) is
constant.

Lemma A.4 Define

Then:

(41) JIP) = 0,

(42) J(P) > 1 forall P>0,
(43) J(P) > 0 forall P> P*.

Proof Expression (41) follows from (24) and (40).
It follows from (41) that:

Then (42) follows from the fact that botf/'c’ andQQ'c” are negative.
Finally, (43) is a direct consequence of (41) and (43).

Proposition A.4 (Concavity of the net social surplus) The functionG;(P) is strictly concave foP > P*.

Proof SinceB' —c¢' <0, B —2¢ —Qc’ < 0, andB” —¢” <0, it follows from (27) that a sufficient condition
for G’(P) < Ois thatB—c— Qc > 0, which holds due to Lemma A.4.x

Example A.1 ConsiderB(Q) = Bg — B,Q?, for Q < (By/B2)Y/2 andB(Q) = 0 elsewhere. Also consider
c(Q) = Co+C,Q? and assume that the constaBgs By, Co andC, are positive wittBg > Cy. It then follows
from (2) that the demand function is given by:

%% P ifP<By-Co
0 otherwise.
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Hence, forP < By — Cg:

, _ 1
(44) QP) = (B> +Co)(Bo—Co—P) <0,
(45) nP) = _Z(BO—F;ZO—P)'

Consistent with Proposition A.2,(0) = 0 andn’(P) < 0. We also have thaj(PM) = —1 leads to:

m_ 2

p
3

(Bo—Co).

From (26), (44) and (45) we have that:

. ZCZ(BO —Co) - (Bz + 3C2)P
- 2(B2+Cp)¥2/By—Co— P’

From the preceding expression and (39) it follows that:

G'(P)

pr _ 2C2(Bo—Co) _ 2(Bo—Co)
3C2+ By 3+%

9

which implies that, as implied by (38F; < PM. Finally we have that from (27):

_ Bo—Co+ (Bz+3C2)Q2

G'(P) = 4(Bp +Cp)2Q83

< 0.

B Planner’s solution

In this appendix we characterize the planner’s solution in the commitment case.
We denote by, andlg,, the highest construction cost for a given road consistent with firms’ partici-

pation constraint, respectively in the case with and without commitment. [Ehuis the uniqué satisfying
Zn‘iu(PVR,M —1) =u(0),
|

while

| mex = MINPVRY.
|

It is obvious thatl$,,, > s, With equality only in exceptional cases. In what follows we assume that

| <154« the case with commitment and< 1115, in the case without commitment.
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Lemma B.1 The functionsd; (P) andv;(P,L) satisfy:

(46) Hi(P) = 1,
(47) H(PY) = o,
(48) H/(P) < 0, forP* <P <PM,
_ 14+ni(P)
“ NP = Te@eyame)
(50) g\;(PL) < 0, forPr<P<PM,
ovi

<L<L1
aL(PL) > 0, foro<L<1

Proof Identity (46) follows from (39); identity (47) from (35).

Expression (48) follows from the fact th@{P)(1+n(P)) is positive and strictly decreasingifor P <
PV (see Proposition A.2) an@ (P) is negative and strictly decreasingRrior P > P* (see Proposition A.4).
Expression (49) follows from (26).

Thatv(P L) is strictly decreasing in the first argument follows from the fact that it is the product of two
positive, strictly decreasing functions Bf°® Finally, v(P,L) is strictly increasing in its second argument

becausdVR;(L) is decreasing ih andu concave. i

LemmaB.2 Fixse {1,2,...,n} and define:

R(s) = R, fork=s,s+1,...,n;

PVF§
L(s) PVR,’
Lk(s) = 0, fork=12,...,s— 1

fork=ss+1,...,n;

Denote byP(s), k=1,2,...,s— 1, the uniqueP that satisfies?®
Vi (P,0) = vs(P;,0).

Then there exists a unique valuelofwhich we denote bi/s), for which the tolls and franchise lengths
defined above correspond to the social planner’s choice when commitment is possible. Furthgshizre,

increasing ins.

55Thatu/ (m(lf L)— I) is strictly decreasing iR follows from Proposition A.2.

S6The existence of a unique solution follows from the fact #dP,0) is strictly decreasing i (see (50)), withw(P;,0) >
vi(P,0) (since PVR < PVRY) andvi(PM,0) = 0 < w(P%,0) (due to (47)).
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Proof The tolls and franchise lengths satisfy the first order conditions specified in (18) by construction.
Denote the present value of the revenue the franchise holder receives insst&¥eR (s). To complete the

proof we must show that there exists- | (s) such that:
n
(51) Zlm u(PVRi(s) —1) =u(0).
i=

This follows from the fact that the left hand side of the preceding equation is (a) strictly decreasjng in
(b) larger thanu(0) when evaluated dt = 0; and (c) smaller thamw(0) when evaluated dt larger than
max PVRi(s).

To show thatl (s) increases witts, we note that by construction th#(s)’s are increasing irs, which
implies that the PVRSs)’s also increase witk (from (36)) and therefore, due to (51), so do t(®. 1

Definition B.1 Lemma B.2 shows that there exists a unique vallidéafwhich the social planner’s solution
sets an indefinite franchise in stagavith toll equal toP;. The corresponding tolls, franchise lengths and
franchise revenues are denoted Rys), Ti(s) and PVR(s), respectively. The corresponding valuel aé
denoted by (s).

Theorem B.1 (Characterization whenl < 1(1)) Assume < 1(1).5” Then the unique solution to the plan-
ner’s problem is obtained settirgy = P* andL;(l) = 1— (I /PVR/).

Proof It follows from the definition of? andL; that the franchise holder’s revenue in all states of demand is
I. Since we also have non distortionary tolls, Bye andL;’s satisfy the first order conditions (18). Finally,

the firm’s participation constraint is (trivially) satisfiedn

Theorem B.2 (Characterization whenl > I(n)) Assumé > |(n),>8 For0<a < u'(PVR,—1) defineR, (a)

as the unique (due to (50)) solution to:
(52) Vi(R(a),0) =a, fori=1,...,n,
and set the franchise lengths at infinity for all states of demand:

Li(a)=0, fori=1,...,n.

5"This is the case where the road is relatively cheap to build compared with expected revenues, so that it can be financed charging
the congestion toll in every state of demand.

58This means that the road is relatively expensive compared with the revenue it can generate. As usual, the firm's participation
constraint holds, that is:

Zn‘;u(PVRiM —1) > u(0).

Where PVFR/I denotes the firm’s revenue if it charge’s the monopoly toll in an indefinite franchise ini state
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Then there exists a unique valueco§uch that the toll$% (a) and franchise lengthki(a); i=1,...,n,

fully characterize the planner’s solution. The corresponding valwe isfthe unique solution to:
(53) ZTEU(PVR(C()—l) =u(0).
|

Where PVRa) =R (a)Qi(R(a))/r.

Proof By construction thgP (a),L;j(a))’s satisfy the first order conditions (18). From (52) and (50) it
follows tha®, and thereforé®VR, is strictly decreasing in. Denoting the left hand side of (53) I§a) it
then follows thatSis continuous and strictly decreasinganWe also have, due to (47):

(54) S(0) = Y mu(PVR —1) > u(0).
And, with the definition of (n) and PVR(n) given in Definition B.1:
SU(PVR,—1)) = ¥ TU(PVR(n)—1)

< Y TWUu(PVR(n) —1(n))
= u(0).

Where the strict inequality follows from the assumption that I (n). Existence and uniqueness of
satisfying (53) now follow. 1

Theorem B.3 (Characterization whenl (1) < | <1(n)) Assume thdt(s) <I| <I(s+1)forse{1,2,....n—
1}.%° Giveny € [0, 1] define:

Py = P, fori=s+1,...,n
) — PVR1 .
Lily = 1- PVR (1—y), fori=s+1,...,n

Fori < ssetL;(y) = 0 and defineP(y) as the uniqué satisfying®°

Vi(P0) = U (PVR(y)—1).

59That a unique integexbetween 1 and — 1 satisfying these inequalities exists follows from the fact thigltis increasing irs,
see Lemma B.2.
60The argument explaining why suctPds uniquely determined is the same as that in footnote 56.
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Where

Then the unique solution to the planner’s problem with commitment is the Béyp$ andL;(y)’s corre-
sponding to the unique value p{in [0,1— (PVR;/PVR{, ,)]) that satisfies:

Sy) = 3 mu(PVR(y) — 1) = u(0).
|
Proof We first note that the assumptidfs) < | <1(s+ 1) implies that:

(55) > TU(PVR(s) — 1) < u(0),
|
(56) > MU(PVRi(s+1) —1) > u(0).
I
By construction th€PR (y),Li(y))’s satisfy (18). Thus all that remains to be shown is that there exists a
uniquey that satisfie§(y) = u(0).

We have that PVRYy) is strictly decreasing iry,®* and thereforeS(y) < 0. Furthermore, from the
definition of the PVRs)’s in Definition B.1, and (55) and (56) it follows that:

S0) = Y muPVR(s+1)-1)>u(0),

s<1— PF\’/VRE) = STUPVR(9 1) < u0)

Thus the characterization of the planner’s solution holds.
Definition B.2 For everyi defineP, as the unique toll that satisfieQ (P) =rl.
Corollary B.1 (Comparison of solutions with and without commitment)

(@) Whenl <1(1) the planner’s solution with and without commitment are the same.

(b) Whenl > 1(1), the planner’s solutions with and without commitment are the same if and dl§F
does not vary wit.

Proof Since in the case without commitment the franchise holder’s revenue is the same in all states of

demand, (18) implies that thé (R )’s do not vary withi when both solutions coincide. Statements (a) and
(b) now follow directly. §

61The argument for the case where s+ 1 may be found in the proof of Theorem B.1; the one for the case wh€r®in the
proof of Theorem B.2.
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In most cases (generically) we have that the planner’s solutions without and with commitment are the
same only whem < I(1), that is, when the road is sufficiently cheap to build (relative to expected demand)
so that in all states of demand it can be financed setting the congestion toll. The only interesting exception
we can think of is when there is no congestiaf{@) = 0) and demand in different states of nature only
differs by a multiplicative constant:

Qi(P)=zB}(P).

Corollary B.2 Denote byPVRY(1) the present value of revenue received in state of derkamttler the
optimal contract with commitment when construction costs are eqdal‘ltbenPVRf? is strictly increasing

inl.

Proof The intuition behind this result is the following. The franchise holder’s revenue inlstateeases
with | either because the franchise length increalsed (k)) or because the optimal toll increases-(I (k)).
The formal proof considers three rangeslfor
1.1 <I1(2).
It follows from Theorem B.1 that in this caﬁ/RE is equal tal (and therefore strictly increasing in
.
2. 1 >1(n).

With the notation introduced in the proof of Theorem B.2 we have that (52) and (50) imply that
PVRy(a) is strictly decreasing in. It then follows from the firm’s participation constraint

5 MUPVR (a(1)) ~1) = u(0),

|
thata is strictly decreasing ih. ThusPVR? is strictly increasing in.

3. 1(s) <1 <I(s+1).

With the notation introduced in the proof of Theorem B.3 we haveRR,(y) is strictly decreasing

iny. It then follows from

S TU(PVR(v(1)) ~1) = u(0)

thaty is strictly decreasing ih. ThusPVRE is strictly increasing in. 1
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C Sub-optimality of fixed-term auctions

Proposition C.1 (Suboptimality of fixed-term auctions) A fixed term auction is optimal if and only if
PVR' is the same in all states of demand, and this common value is largerlthd@mus generically a

fixed term franchise is suboptimal.

Proof We present the proof for the case with commitment. The case without commitment is analogous.

A necessary condition for a fixed term franchise to be optimal is that, in the planner’s solution, the
franchise length be the same in all states of demand. From Proposition 3.6 it follows that this holds in two
situations. First, wheRVR' is the same in all states and this common value is largerlthémthis case
the optimal franchise length is the same across states of demand and finite. The plarifer Bétand the
winning bid attains the planner’s solution.

The second case where the franchise length is the same in all states of demand is when it extends
indefinitely. Yet in this case the planner cannot infer from the winning bid which is the valleof
therefore is unable to set the optimal tolls after the winning bid is revealed. It follows that a fixed term

franchise is optimal only in the first casel

D A model of arisk averse firm

In this appendix we present a model that rationalizes a paradoxical feature of the financing of highway
franchises, namely that entrepreneurs seem to be unable to diversify risks.

Consider the case of the owner of a construction firm whose profits, areandom variable with cu-
mulative distribution functiorr (-;S,02), wheresanda? denote the corresponding mean and variance. The

entrepreneur is the sole owner of the firm and is risk averse, so that his expected utility is

w = [ uy) dG(y)

Whereu is strictly increasing and strictly concawedenotes the entrepreneur’s net income &fy) the
corresponding cumulative distribution function.

In general the entrepreneur will be willing to shed some risk. Consider a risk neutral investor who is
considering whether to invest in this project. She knows sh& private signal and that the entrepreneur,
either as a member of a partnership or as the manager of a company fully owned by the investor, always

declares that company profits are zero if not monitSreis.

62The investor leaves the entrepreneur as a manager due to his superior specialized knowledge.
63This strategy is weakly dominant in the subgame after the investment is committed.
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The investor can always verify, i.e., make claims to a fractiog) of total profits at a cost of effort in
monetary terms. As usuale) € [0,1], a’ > 0, a” < 0. For simplicity, we assume that the pripeof the
company set by the entrepreneur does not depend on the share that the investbieysxpected profits
for the investor of buying a shafeof the company is

M(ep) = Ba(e)s—e—Pp.

Since the investor is risk neutral, she maximizes expected utility as a function of effort and the share of the
company she buys. As we assumed thabes not depend di the maximization problem leads o= 1
if the investor buys at all, and hence effort satisfies

(57) a'(e)5=1.

It follows that the maximum price at which the investor is willing to buy the company is the price that
solves
(58) so(e’)—e"—p=0.

Wheree* is the profit maximizing level of effort (characterized by (57)).
Consider now the utility of the entrepreneur in the two polar cases. If he asks for a price such that the
investor does not buy into the firm (he holds the firm) his welfare is given by

(59) W, = / u(s) dF(s).

Whereas if the investor buys out the firm and leaves the entrepreneur as the manager, the manager’s welfare

from selling is

W — /u((l—a*)s+ p) dF (s)

(60) _ /u(s+ a*(5—s) —)dF(9).

Where we used (58) in the last step, = a(e"), and we have assumed that the manager appropriates the
non-verifiable profits. Next, consider two extreme cases for the entrepreneur’s attitude toward risk. If he is
risk neutral, he has a cost advantage over the investor, since he does not have to incur the verification cost
and he gets the full profits from the project. In this case he does not sell the firm. On the other hand, if he

is infinitely risk averse, he maximizes the lowest expected utility, which occurs when he sells the firm. It

64Even though the derivation is more complex, the result that follows continues holding if this assumption is relaxed.
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follows that as the entrepreneur’s risk aversion grows, there is a positive degree of risk aversion at which he
switches from keeping to selling the project. In what follows, we prove this intuition.
A second order Taylor approximation foraroundsleads from (60) to

W~ U@+ {(L-a")(s-§ e W(§+H{(1-a")(s-§ - Al (FdF(s)
— U -eU(F+11-ar)2e(§+ L (S,

and from (59) to
Wh =~ u(§) + $02u"(§).

Taking the difference, we have
(61) We —Wh ~ 3[(0*2 — 20%) 02 + e 2|u"(§) — e'U/(§).

Denoting byp = —u”’(S)s/u'(S) the entrepreneur’s coefficient of relative risk aversion evaluatei e
have that (61) is equivalent to
u'(s
Ws — W, ~ g [1{a*(2—-a*)oZ—e?}p—e].

Hence, given that the investor's optimal choice of efigris independent of the entrepreneur’s degree of
relative risk aversion (see (57)), we have the following proposition:

Proposition D.1 Supposex*(2 — a*)o? > €255 then there exist®* > 0 such that forp < p*, the en-
trepreneur does not sell the firm. When- p*, the firm is sold. &

The relevant part of the proposition is that for plEe (0,p*) the entrepreneur prefers not to sell and
must, therefore, assume all the risk of the company. For these valpah®behavior of the firm is that of
the risk averse entrepreneur.

850ther things equal, this holdsdg is sufficiently large.
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