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SUMMARY

A least-squares method based on the first-order velocity-pressure-
vorticity formulation for the Stokes problem is proposed. This method leads to
a minimization problem rather than to a saddie-point problem. The choice of
the combinations of elements is thus not subject to the Ladyzhenskaya-Babuska-
Brezzi (LBB) condition. Numerical results are given for the optimal rate of
convergence for equal-order interpolations.

INTRODUCTION

The Stokes problem has counterparts in many branches of engineering and
physics. The Stokes operator is a basic ingredient of more complicated models
of physical phenomena such as the incompressible Navier-Stokes equations. Any
good solver of Navier-Stokes equations should at least be able to solve the
Stokes equations. For this reason, the Stokes equations have been a focal
point of finite element research for over 20 years.

For the Stokes flow, the Galerkin mixed method of velocity-pressure formu-
lation is widely used. However, the mixed method leads to a saddle-point prob-
lem. Consequently, the combination of velocity and pressure interpolations is
required to satisfy the Ladyzhenskaya-BabusSka-Brezzi (LBB) condition (refs. 1
to 3), which precludes the application of many seemingly natural pairs of
velocity and pressure elements. Although various convergent combinations of
velocity and pressure elements have been developed, most of them are not

convenient.

In attempting to overcome this difficulty, Hughes and his colleagues
(ref. 4) introduced the Petrov-Galerkin method. They put an additional least-
squares term into the classical Galerkin mixed formulation in order to circum-
vent the LBB test and to apply an equal-order interpolation. Recently, Hughes
et al. (ref. 5) have improved this formulation, and a symmetric matrix is

attained.
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C.L. Chang, in a paper entitled "A Mixed Finite Element Method for Stokes
Problem: Acceleration-Pressure Formulation," proposed a method employing
equal-order interpolations for the Stokes problem. By changing variables and
transforming the classical velocity-pressure formulation into two first-order
systems with four and two variables, respectively, the least-squares method is
applied to the systems sequentially. He has proved the optimal rate of conver-
gence for both velocity and pressure by using Wendland's approach (ref. 6).

In this report we develop another least-squares method, a method based on
the first-order velocity-pressure-vorticity formulation. The least-squares
method leads to a minimization problem and thus is not subject to the restric-
tion of the LBB condition. It can accommodate equal-order interpolations.

In order to show the properties of the least-squares finite element method
for first-order systems, we include an error analysis and numerical experiments
for a simple one-dimensional problem.

In the following pages the least-squares method is introduced through a
simple one-dimensional problem and then an error analysis for this simple prob-
lem is presented. The velocity-pressure-vorticity formulation for the Stokes
problem is described, followed by an introduction to the least-squares finite
element method for the Stokes problem. Numerical results showing the optimal
rate of convergence are then given.

ONE-DIMENSIONAL PROBLEM

In order to show the difference between the Galerkin mixed method and the
least-squares method, we introduce here a simple one-dimensional problem as

2
d——S:f in(0,1)
dx
ap)
du
u(0) =0 ax (1) =0

where f € LZ(O,I). It can be rewritten as the following first-order system:

dp _ .
ax = f in(o, 1
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A weak form of the Galerkin method corresponding to equation (2) is given
in reference 7. Find u€H and p € S, such that



J] (p %% + fv> dx =0 Yv € H
O] (3

du)
f (p - gx) 99x = 0 ¥q €S
0 dx
where H = {v € H'(0,1), v(0) = 0}, and S = {q € L2(0,1)}.
One can construct the finite element method based on equation (3), but
the interpolation of u and p cannot be chosen independently. To assure

the existence of the discrete solutions, the following LBB condition must be
satisfied:

]

J q %% dx : 1/2
0 2

Vq € Sh, sup 77 2 C(f q dx) (4)

v E Hh (I; <V2 . %¥12> dx> 0

where Hp, Sy denote the corresponding finite element subspace. If we choose
Hh = set of piecewise linear continuous functions and Sp = set of piecewise
constant functions, then the rate of convergence is

(J; ((“ - “h|2 *

Now let us consider a least-squares method for equation (2). We construct
a least-squares functional

2 1/2
%; (u - uh)) + ,p - phiz> dx) < ¢h (%)

J: XxH>»R
(6)

Ip.w = 5 f; [ b f>2 . <p - g 2} dx

where X = {q € H1(0,1); q¢1) = 0}. Taking the variation with respect to p
and u, and letting &J = O lead to a least-squares weak statement, find
U= (p,u) € X x H such that

1 1
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YW = (q,v)> € X x H

(7

The corresponding finite element problem is then to find Up = (ph,un) € Xy x Hp
such that

B(UR,Vp) = L(Vp) YWh = (gh,vh) € Xp x Hp (8



where

Q

dp dg u dv
n 9% dup ¢y
B(U V) = (E?‘ " X ) + (ph - ax 9 T dx ) (9)

dqh
L(Vh) =|f, ax (10)

in which (.,.) denotes the L2 inner product and h s the mesh parameter.

ERROR ANALYSIS FOR ONE-DIMENSIONAL PROBLEM

It is easy to verify that
B(U,V) < CHU”] . HVH] an

where HUH% = “p”% + Hu“?, in which H-H] denotes the H' norm. Thus,

B(.,.) is continuous on X x H. B(-,-) is symmetric and the inequalities in
the Lax-Milgram theorem reduce to the single coercivity requirement. There
exists a constant o« > O such that for V € X x H

BOV,V) > V)% (12)
In fact,
2 2
_ ||9a _dv
B(V,V) = “dx” N ”q o (13)
in which |-l denotes the L, norm. Consequently,
gg' 2
B(V,V) > Ndx” (14)
2
BV, V) > g - g%’ (15)
From equation (13) we have
2 2
d 2 dv dv
BCV,V) = ”d_g” e llal? « 3 - 2(a. )

| v

2
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(by integration-by-parts and the boundary conditions in equation (2), and by

dv||® 2
the Friedrichs inequality ||l 2 Ivll=, vv € B). So
da . %,
BCV,V) > Ndx + v“ + |lall (16)
From equation (16)
dg 2
B(V,V) > ax * VY an
2
BV, V) > |lafl a8
The combination of equations (14) and (17) leads to
1/2 d d d d
2(B(V,V)) > a% + H% + v” = “— H% + a% + v“ > vl
so that
4BV, V) > [v)|? (19
Similarly, the combination of equations (15) and (18) leads to
1/2 dv dv dv
260,25 o - 2+ ol = 3 - a + nall 2 [$Y
so that
2
dv
4B(V,V) > ”EY“ 20
By combining equations (14), (18), (19), and (20) together, we obtain the
coercivity
1 2 2 1 2
BV, V) > 15 (lall§ + IvIF) = 15 VIS @)

Therefore, the following theorem about the rate of convergence of the corre-
sponding finite element solutions can be proved directly (ref. 3).

Theorem. - Assume f 1is smooth enough and the finite element interpola-
tion estimates hold; that is,

20

2
lp - myelly < Coh

A

(22)

C h2m

2
lu - mul? < c,

[ZaY



then
Io - pyll; + lu - ull? < ccn®® + nM (23)

where 1y denotes the finite element interpolation, & and m denote the
orders of polynomials for p and u, respectively, and Cp» Cu» and C are
the constants which do not depend on the mesh size h.

We may utilize the Aubin-Nitsche trick to obtain the optimal L2 esti-
mates of the error

Chk+1

IA

flu - Uh”
(24)

Chk+]

|~

Ip - pyl

where k = min(Q,m).

From the above procedure, we know that the boundary conditions play an
important role in guaranteeing the coercivity. Now let us consider the same
problem with different boundary conditions as follows:

0, uw( =0

Case (a) u(0)

(25)

0

Case (b) u(®) =0, p®

In case (a), more boundary conditions are given for one variable, and no bound-
ary condition is prescribed for the other variable. A similar situation is
found in the Stokes problem, where more boundary conditions are related to
velocity, and less or no boundary conditions are known for pressure and vortic-
ity. This makes the verification of solvability of the first-order systems
nontrivial.

In case (a), we may follow the same procedure as before to prove the coer-
civity of the corresponding bilinear form B(V,V).

In case (b), we still have equations (14) and (15). From equation (14)
and the Friedrichs inequality |dq/dx||2 > |lq||2, Vg € H, we have

B(V,V) > |lqll2 (26)

The combination of equations (15) and (26) leads to

o+ 52 |5
4 dx|l = {idx

28V, v 2 (gl +

so that

dv 2
4B(V,V) > “E?“ 27)



From equation (27) and the Friedrichs inequality for Vv € H, we have

4B,V > |v|? (28)

By combining equations (14), (26), (27), and (28) together, we obtain the coer-
civity, that is, for V &€H x H

] 2
BV, 2 15 IIVIIS (29)

Remark 1. - The symmetry of the bilinear form B(U,V) and the coercivity
of B(V,V) guarantee that the matrix for the least-squares finite element
method is symmetric positive definite. This is an important advantage of the
least-squares method over the mixed methods.

Remark 2. - For the least-squares method, the choice of interpolations for
p and u is not subject to any restriction as longas 2 > 1, m> 1. How-
ever, inspection of the second part of equation (2) shows that in order to make
the residual of this equation equal to zero throughout, one may choose the
interpolation for u as one order higher than that for p.

To show the convergence of the least-squares finite element method, we
performed numerical experiments for three simple, one-dimensional, boundary-
value problems. We used a uniform mesh containing elements of length h. MWe
are interested in the behavior of the error ep = P - Ph and ey = u - up 1in
L2 norm for various choices of polynomials of degree & for php and m for
Up. Results of numerical experiments are shown in figure 1 and summarized in
the following computed convergence rates for three model problems.

Problem 1: u' = p, p' = x3, u(0) = u(1) =0

Order 2 | Order m | flepll lleyll
1 1 0(h2) | 0(h?)
2 1 0(h2) | 0(h2)
1 2 0(hZ) | 0(h®)
2 2 0(h3) | 0(h3)
Problem 2: wu' + 3u = p, p' - 2u = —2x% 4 bx - 2, u(0) =u(1) =0
Problem 3: —(a(x)u)' =p, p' = f, u(0) =u(l) =0
a{x) :l+a(x—x )2
1Y 0
f(x) =2 + 2a(x - x.) §t n—][(x ) tan” (ax )
= ol X 0 {a 44 XO + a (10}

a = 0.5, x,. = 0.5

0

Order ¢ | Order m "epu CH
] 1 0(h2) | 0(h?2)

2 2 0(h3) | 0(h3)




We obtained the rate of convergence of the method by calculating the norm
of the error for each h, plotting log |lerror| versus log h, and calculating
the stope of this line. All of the computed rates of convergence agree with
the estimate (eq. (24)). Of course, the error estimate for problem 2 must be
proved theoretically.

VELOCITY-PRESSURE-VORTICITY FORMULATION OF STOKES EQUATIONS
Let us consider an application of the least-squares method to the Stokes
equations. By introducing the vorticity w = curl u as an auxiliary variable,
the Stokes equations can be written as
divu=20
veurl w+ grad p = f (30)
w-curl u=0

where u is the velocity vector, p is the pressure, f is the body force vec-

tor, and v is the viscosity. We shall consider the following two-dimensional
problem only:

in Q 3

+ du _ dv _ 0
@ dy  dx

where « denotes the z—comBonent of w, (fy,fy) is the body force vector, and
Q 1is a bounded domain in R¢ with piecewise smooth boundary T. For accommo-
dating various combinations of boundary conditions, let ({I7,[7,I3,T4,T5}
denote the sides of TI. The unit outward normal vector to T is denoted by
n, and the tangential vector to T is denoted by t.
We can write equation (31) in the general form of a first-order system:
tu = f

or

au au
3% * A2 3y * Bu = f (32)



where

1 0 0 0 0O 1 0 0
w00 1o A0 0 0
1510 0 0 -v 2=lo o 1 o

0 -1 0 0 1 0 0 0

0O 0 0 0 0 u
o 0o o o Bt v
B=10 0 0 o0 f= 3 u=1,

0 0 0 1 oY @

The boundary conditions should be supplemented to complete the boundary-
value problem. We may consider the following boundary conditions:

u,v given on I
Up,w given on I
p,ut given on T3 (33)
p,w given on TIg
p,uy given on TIg

For example, Ty could be the inflow, outflow, or wall boundary; Ip, I3, Ig,
and Tg could be the free surface, inflow, or outflow boundary.

The solvability of the boundary-value problem depends on the combination
of the boundary conditions. For many practical problems, the boundary operator
does not satisfy the Lopatinski condition (ref. 6). Thus, the proof of solva-
bility involves a technical difficulty. We address this problem and give the
error analysis in "An Error Analysis of Least-Squares Finite Element Method of
Velocity-Pressure-Vorticity Formulation for Stokes Problem." (Technical
Report, Cleveland State University, 1988.)

LEAST-SQUARES FINITE ELEMENT FORMULATION FOR STOKES PROBLEM

We first discretize the domain Q as a union of finite elements and then
introduce an appropriate finite element basis. Let Ng denote the number of
nodes for one element, w5 denote the element shape functions, and us, Vi, Pj,
and w3 be the nodal va?ues. Equal-order interpolations are emp]oyeg, SO we
can write the expansion

Y3
']

gh(x,y) = 2: wj(x,y) pj (34)
“i



We define the least-squares functional

4
3 (M) s R
I = &, - £ =1 |a i Y S £ 2 (35)
=h’ =7 M2 T 2 M e T2y =h

4
where each element in <H;(Q)> satisfies the boundary conditions.

By introducing the finite element approximation defined in equation (34)
into the functional equation (35), we have the minimization problem as follows:

4
find u, € <H;(Q)> , such that

4

]
Hu) <Ay Wy, € (Hh<9)> (36)

h

Obviously, this problem is equivalent to solving the aigebraic equations

KU = F 3n

where the U 1is the global vector of nodal values, the global matrix K is
assembled from the element matrices

;
K, = JQ (Lpy Ly - olgg) | (LbpuLgy,. o oLy dxdy (38)

e
and the vector F s assembled from the element vector
Fo= | Lyt Ly, 0T £ dxdy (39)
e~ Yot o t¥Ne
Q
e
in which

Lys = w5 WAy + vy Ay + B

i, x LPi,_y 0 0
Y. vy,
- 1. X Ty (40)
Yi,y "V x
Yy Hix O ¥

and T denotes the transposition. We observe that the matrix K is symmetric
positive definite.

As is customary, we use Gaussian quadrature to evaluate the coefficients
of Ke and Fg. The number of "Gauss" points required for the solution is of

10



some importance. Inspection of the fourth part of equation (31) shows that the
vorticity w and the derivatives of velocity components u and v appear
simultaneously. When an equal-order interpolation is employed, it is impracti-
cable to reduce the residual of this equation to zero throughout. For this
reason, in our numerical experiments we use reduced integration (ref. 8).

NUMERICAL RESULTS FOR STOKES PROBLEM

We construct a model problem (ref. 9) corresponding to the polynomial
divergence-free velocity field

ulx,y) = x2(1 - x)2(2y —6y2 + 4y3)
vOXL,Y) = y2(1 - y)2(=2x + 6x2 - 4x3)

the pressure field
p(x,y) = x2 - yz
and the vorticity field
wlx,y) = =x2(1 = x)2(2 = 12y + 12y2) + y2(1 - yI2(-2 + 12x - 12x2)
with three groups of boundary conditions shown in figure 2.

The bilinear element and the eight-node quadratic element were tested and
uniform meshes were used. We employed one-point Gaussian quadrature for the
bilinear element, and 2 x 2 quadrature for the eight-node quadratic element.
The numerical results of the rate of convergence are shown in figure 3. We
found that in all tested cases

k+1 K+1 k+1

lle Il < ch

llegll < ch llell < ch

where k is the order of polynomial of shape functions; that is, all variables
u, v, p, and w converge in Lo norm at the optimal rate.

CONCLUSIONS

In contrast to the Galerkin mixed method based on the velocity-pressure-
vorticity formulation of the Stokes problem (refs. 7 and 10), the least-squares
method presented here does not depend on the LBB condition. MWe have shown that
the least-squares method converges at the optimal rate for equal-order interpo-
lations. In contrast to the penalty method (refs. 11 and 12) and the Petrov-
Galerkin method (refs. 4 and 5), the least-squares method does not have any
added parameters in the scheme. This means that the least-squares method is
robust. In contrast to the methods based on the stream function-vorticity for-
mulation (refs. 10 and 12), the least-squares method produces the velocity and
pressure directly without further numerical calculation. This method can also
be extended to three-dimensional cases.

The least-squares methods have been successfully applied to many problems,
including high-speed flow with strong shocks (B.N. Jiang and G.F. Carey, "A
Stable Least-Squares Finite Element Method for Nonlinear Hyperbolic Problems,

11




Int. J. Numer. Meth. Fluids, to be published, and ref. 13). It is possible to
make a general-purpose program based on the first-order system in order to at-
tack various types of problems. To adapt the method to other problems, it is
necessary only to modify the subroutines associated with the coefficient matri-
ces Ay, Ap, and B and the vector function f. The only disadvantage of the
least-squares method is that each node has more variables.

The method presented here has already been extended to the incompressible
Navier-Stokes equations and will be discussed in another paper.
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FIGURE 3. - COMPUTED CONVERGENCE RATE FOR STOKES PROBLEM.
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