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A Ithough a number of investigators have
been concerned with the problem of cal-
culation of stability constants, the methods
presented have in general been approxima-
tion techniques (cf. e. g. Ref.l). With the
growing use of high-speed computors, it
becomes feasible to re-examine some of the
data in the literature using a least square
technique to calculate such stability con-
stants. In addition, the use of such a com-
putor enables the experimentalist to assign
standard deviations to constants so cal-
culated. This feature of computor calcu-
lation is & valuable contribution, since it
provides an objective measure of the preci-
sion associated with such constants.

The necessity for such an approach is
rather pointedly illustrated when one con-
siders the compilation prepared by Bjer-
rum, Schwarzenbach and Sillén 2, where,
for example, in the system Fe(III)-SCN-
there are 35 different investigations tabul-
arized. In the absence of any measure of
precision (not considering systematic
errors) of the calculated stability con-
stants, the user of this compilation is forced
to ad hoc considerations.

The authors have therefore started &
series of studies in order to reveal the
advantage and precision of using least
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square methods in combination with high-
speed digital computors for the calculation
of stability constants. The results of our
studies will be given in & series of papers
dealing with the application of the method
to systems containing simple complexes
(one central atom and one type of ligand,
e.g. MA,), composite complexes (one
central atom and several different types of
ligands, e. g. MA,B;) and polynuclear com-
plexes (several central atoms of same kind
for each kind of ligand, e.g. MmA,) as
studied by means of solvent extraction,
jon exchange, spectrophotometric and
e.m.f. methods.

In the present paper, as an example, the
treatment of a simple system will be briefly
described.

The U(IV)-acetylacetone
system

This system, which has been studied by
means of solvent extraction 3, was chosen
partly because of its familiarity to one of
the authors, and partly because of its
regular behavior in the present treatment.

Outline of the mathematical treatment.
U(IV), here abbreviated to M +4, is assumed
to form a series of complexes, MA,*-*, with
acetylacetone, HA, in aqueous solutions.
The uncharged complex MA, can be extrac-
ted into inert organic solvents like CgH,
and it is assumed that this complex is the
only extractable one of M. The distri-
bution ratio, g, of all species of M between
the organic and aqueous solvents will
then be

[Morg
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(1)

where Ay is the distribution constant of the
uncharged complex MAy between the
organic and aqueous phases, and x, is the
over-all stability constant for the n:th
complex:
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If we introduce the following notations

_ Mlaq
Y= ™o °

z = [A], a, =

into eqn. (1), it will yield

2= S apar 3

This can be solved for a,, provided n com-
binations of z(x) are available. Usually the
number L of experimental points is d)n,
and the L equations of type 3 can therefore
be solved with & least square technique.
However, ¢ and 2 are experimentally
determined quantities and therefore have
associated with them errors, which makes it
necessary to properly weight the equations.
The details of the procedures will be descri-
bed in a later paper.

Computer operations. In the U(IV) case
it was assumed that the errors in [A-] could
be mneglected compared to the errors in
[MJorg and [MJaq, which will be called gorg
and oaq. The computer was therefore pro-
grammed for these five kinds of data: [A-],
[M]org :tO’org and [M]aq + Oaq, 'Whl(}h were
punched on cards together with informa-
tion of N, L and maximum number of n.
In the programming, the computor was
ordered, 1) to print the best combination of
positive a, for a minimum number of =,
2) to print the standard deviations of a,,
3) to print the z; values, calculated accord-
ing to eqn. (1) with the a, given by the
computor, for the various input z; values,
4) to print the standard deviations of these
2;, 5) to print the over-all accuracy of the
computation. This latter information is
given in the form of Smin/k*, which should
have a value between 1.5 and 0.5 for
reliable data.

* The significance of the funetion

”
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where w; is the weight of the point 7, will be
fully discussed in a subsequent paper.
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For n = N = 4, and L = 35, the time
of the whole operation (<. e. putting in pro-
gram and data cards, running the compu-
tor and printing out) is about 5 min for the
computer used (an I.B.M. 704).

Da [AIN =y 2N

,and z = [Mlore

Results of the computations. In the U(IV)-
acetylacetone system ®, it was felt that
there was no obvious way to unambigously
establish the analytical errorsin the determ-
inations of [M]org and [MJ]aq. Therefore,
the error in log ¢ was estimated from the
spread. of the individual points; see Fig. 1.
For this purpose, points with very close
lying log [A-] values were chosen. From 6
such groups, comprising altogether 14
points, at various log [A-], an average error
of +0.04 in log ¢ was estimated, which
corresponds to & -+10 9 error in g on a
linear scale. For the sake of simplicity, and
also in order to make the data more suit-
able to the input form of the computor, the
whole error was attributed to [M]aqg. Thus
the data put into the machine were [MJorg =
g £ 0.00, [M]aq = 1.00 & 0.10, and [A~].
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Table 1. Ecjuilibrium constants calculated by
the least square method.

Reaction Constants
UL+ 4 A e TUA3+ (1,04 + 0.69) 100
UAS+ 4 A-===>TALT (1.80 4 0.64) 10°
VAT + A-===2UAT (3.31 4 0.72) 10°
UAT + A-<=—=>TA, (0.95 + 0.19) 108

UA, (aq.)=—=>UA, (CoH,) (4.38 -+ 0.25) 10

In addition to the 10 9 error in [M]aq,
a number of other errors were also tested.
The Smin/k values of these runs were 15.5
(for & 5 9 error), 3.9 (10 % error), 1.0
(20 9 error) and 0.4 (30 %, error), indicat-
ing that the 10 9 error first assigned to the
experimental points was too small.

In this particular system, it turned out
that the best fit of the experimental data
to the curve given by eqn. (1) is obtained
when all constants x,...... %, and A, are
present. The stepwise formation constants
ky, as well as the distribution constant A,
are given in Table 1. It is seen that the
standard deviation is very large for k,
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the constants, the agreement between the
constants calculated with the least square
method and those of the two-parameter
method is rather good, while it is less good
for the ligand number method. Since both
these latter methods are graphical in na-
ture, the better agreement of the two-para-
meter method probably stems from the
fact that the experimental data in that
method are used directly for the estima-
tion of the stability constants, and that
the sequence-values of the stability con-
stants are of the suitable two-parameter
type. In the ligand number method, the
graphical derivation of the smoothed curve
through the experimental points makes
possible the introduction of large errors.

From Table 2 it is further seen that the
precision assigned to the constants obtain-
ed by the two graphical methods is far
too small. While all errors in the primary
data are considered in the least square
computations, only errors in a very narrow
range of data can be regarded for estimat-
ing the errors of the constants obtained by
the graphical methods. This illuminates
one of the statements made in the intro-
duction, namely the inherent difficulty of
the approximation methods in making

Table 2. Comparison of equilibrium constants (log x,) obtained with three different calcula-
tion procedures.

Least square

Reaction method
Uttt + A-e=2TA+ 9.02 - 0.29
Ut+ + 2A-emexTUAST 17.27 4+ 0.26
Ut+ 4 BA-==>UAT 23.79 + 0.26
Utt + 4A-e=—>TA, 29.77 + 0.29
UA, (aq.)e===UA, (C,H,) 3.64 + 0.025

(about 70 %), but diminishes successively
up to k, (about 20 %). The precision in
Ay is unusually good. With these values

n
(or rather %, = % kn), the curve in Fig. 1

is calculated.

In Table 2, the log », and log A, values
are given in order to compare them with
the constants manually calculated in the
original paper . There, two different sets
of constants were given for the two-para-
meter method; here, the average values are
given, and the errors are the spread be-
tween these two values. When comparing

Ligand number Two-parameter

method method
8.6 + 0.2 9.05 + 0.1
17.0 4 0.2 17.02 + 0.15
234 4 0.1 23.92 + 0.1
295 4 0.1 29.76 4 0.1
3.62 4 0.05 3.62 4 0.05

valid estimates of the precision of the
stability constants.
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