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In this article we study post-model selection estimators that apply ordinary least squares (OLS) to the
model selected by first-step penalized estimators, typically Lasso. It is well known that Lasso can estimate
the nonparametric regression function at nearly the oracle rate, and is thus hard to improve upon. We show
that the OLS post-Lasso estimator performs at least as well as Lasso in terms of the rate of convergence, and
has the advantage of a smaller bias. Remarkably, this performance occurs even if the Lasso-based model
selection “fails” in the sense of missing some components of the “true” regression model. By the “true”
model, we mean the best s-dimensional approximation to the nonparametric regression function chosen by
the oracle. Furthermore, OLS post-Lasso estimator can perform strictly better than Lasso, in the sense of
a strictly faster rate of convergence, if the Lasso-based model selection correctly includes all components
of the “true” model as a subset and also achieves sufficient sparsity. In the extreme case, when Lasso
perfectly selects the “true” model, the OLS post-Lasso estimator becomes the oracle estimator. An important
ingredient in our analysis is a new sparsity bound on the dimension of the model selected by Lasso, which
guarantees that this dimension is at most of the same order as the dimension of the “true” model. Our rate
results are nonasymptotic and hold in both parametric and nonparametric models. Moreover, our analysis
is not limited to the Lasso estimator acting as a selector in the first step, but also applies to any other
estimator, for example, various forms of thresholded Lasso, with good rates and good sparsity properties.
Our analysis covers both traditional thresholding and a new practical, data-driven thresholding scheme
that induces additional sparsity subject to maintaining a certain goodness of fit. The latter scheme has
theoretical guarantees similar to those of Lasso or OLS post-Lasso, but it dominates those procedures as
well as traditional thresholding in a wide variety of experiments.

Keywords: Lasso; OLS post-Lasso; post-model selection estimators

1. Introduction

In this work, we study post-model selection estimators for linear regression in high-dimensional
sparse models (hdsms). In such models, the overall number of regressors p is very large, pos-
sibly much larger than the sample size n. However, there are s = o(n) regressors that capture
most of the impact of all covariates on the response variable. hdsms [9,16] have emerged to deal
with many new applications arising in biometrics, signal processing, machine learning, econo-
metrics, and other areas of data analysis where high-dimensional data sets have become widely
available.

Several authors have investigated estimation of hdsms, focusing primarily on mean regression
with the �1-norm acting as a penalty function [4,6–9,12,16,22,24,26]. The results of [4,6–8,12,
16,24,26] demonstrate the fundamental result that �1-penalized least squares estimators achieve
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the rate
√

s/n
√

logp, which is very close to the oracle rate
√

s/n achievable when the true model
is known. [12,22] demonstrated a similar fundamental result on the excess forecasting error loss
under both quadratic and nonquadratic loss functions. Thus the estimator can be consistent and
can have excellent forecasting performance even under very rapid, nearly exponential growth
of the total number of regressors p. In addition, [3] investigated the �1-penalized quantile re-
gression process and obtained similar results. See [4,6–8,11,13,14,17] for many other interesting
developments and a detailed review of the existing literature.

In this article we derive theoretical properties of post-model selection estimators that apply
ordinary least squares (OLS) to the model selected by first-step penalized estimators, typically
Lasso. It is well known that Lasso can estimate the mean regression function at nearly the or-
acle rate, and thus is hard to improve on. We show that OLS post-Lasso can perform at least
as well as Lasso in terms of the rate of convergence, and has the advantage of a smaller bias.
This nice performance occurs even if the Lasso-based model selection “fails” in the sense of
missing some components of the “true” regression model. (By the “true” model, we mean the
best s-dimensional approximation to the regression function chosen by the oracle.) The intuition
for this result is that Lasso-based model selection omits only those components with relatively
small coefficients. Furthermore, OLS post-Lasso can perform better than Lasso in the sense of
a strictly faster rate of convergence, if the Lasso-based model correctly includes all components
of the “true” model as a subset and is sufficiently sparse. Of course, in the extreme case, when
Lasso perfectly selects the “true” model, the OLS post-Lasso estimator becomes the oracle esti-
mator.

Importantly, our rate analysis is not limited to the Lasso estimator in the first step, but applies
to a wide variety of other first-step estimators, including, for example, thresholded Lasso, the
Dantzig selector, and their various modifications. We provide generic rate results that cover any
first-step estimator for which a rate and a sparsity bound are available. We also present a generic
result from using thresholded Lasso as the first-step estimator, where thresholding can be per-
formed by a traditional thresholding scheme (t-Lasso) or by a new fitness-thresholding scheme
that we introduce here (fit-Lasso). The new thresholding scheme induces additional sparsity sub-
ject to maintaining a certain goodness of fit in the sample and is completely data-driven. We
show that OLS post-fit Lasso estimator performs at least as well as the Lasso estimator, but can
be strictly better under good model selection properties.

Finally, we conduct a series of computational experiments and find that the results confirm
our theoretical findings. Figure 1 provides a brief graphical summary of our theoretical results,
showing how the empirical risk of various estimators change with the signal strength C (coeffi-
cients of relevant covariates are set equal to C). For very low signal levels, all estimators perform
similarly. When the signal strength is intermediate, OLS post-Lasso and OLS post-fit Lasso sig-
nificantly outperform Lasso and the OLS post-t Lasso estimators. However, we find that the OLS
post-fit Lasso outperforms OLS post-Lasso whenever Lasso does not produce very sparse solu-
tions, which occurs if the signal strength level is not low. For large levels of signal, OLS post-fit
Lasso and OLS post-t Lasso perform very well, improving on Lasso and OLS post-Lasso. Thus,
the main message here is that OLS post-Lasso and OLS post-fit Lasso perform at least as well as
Lasso and sometimes a lot better.

To the best of our knowledge, this article is the first to establish the aforementioned rate results
on OLS post-Lasso and the proposed OLS post-fitness-thresholded Lasso in the mean regression
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Figure 1. This figure plots the performance of the estimators listed in the text under the equicorrelated
design for the covariates xi ∼ N(0,�), �jk = 1/2 if j �= k. The number of regressors is p = 500, and the
sample size is n = 100 with 1000 simulations for each level of signal strength C. In each simulation, there
are 5 relevant covariates whose coefficients are set equal to the signal strength C, and the variance of the
noise is set to 1.

problem. Our analysis builds on the ideas of [3], who established the properties of postpenalized
procedures for the related, but different problem of median regression. Our analysis also builds
on the fundamental results of [4] and the other works cited above that established the properties
of the first-step Lasso-type estimators. An important ingredient in our analysis is a new sparsity
bound on the dimension of the model selected by Lasso, which guarantees that this dimension is
at most of the same order as the dimension of the “true” model. This result builds on some in-
equalities for sparse eigenvalues and reasoning previously given by [3] in the context of median
regression. Our sparsity bounds for Lasso improve on the analogous bounds of [4] and are com-
parable to the bounds of [26] obtained under a larger penalty level. We also rely on the maximal
inequalities of [26] to provide primitive conditions for the sharp sparsity bounds to hold.

The article is organized as follows. Section 2 reviews the model and discusses the estimators.
Section 3 revisits some benchmark results of [4] for Lasso, allowing for a data-driven choice
of penalty level, develops an extension of model selection results of [13] to the nonparametric
case, and derives a new sparsity bound for Lasso. Section 4 presents a generic rate result on OLS
post-model selection estimators. Section 5 applies the generic results to the OLS post-Lasso
and the OLS post-thresholded Lasso estimators. The Appendix contains main proofs, and the
supplemental article [2] contains auxiliary proofs, as well as the results of our computational
experiments.



524 A. Belloni and V. Chernozhukov

Notation

When making asymptotic statements, we assume that n → ∞ and p = pn → ∞, and also allow
for s = sn → ∞. In what follows, all parameter values are indexed by the sample size n, but
we omit the index whenever this omission will not cause confusion. We use the notation (a)+ =
max{a,0}, a ∨ b = max{a, b}, and a ∧ b = min{a, b}. The �2-norm is denoted by ‖ · ‖, the �1-
norm is denoted by ‖ · ‖1, the �∞-norm is denoted by ‖ · ‖∞, and the �0-norm ‖ · ‖0 denotes
the number of nonzero components of a vector. Given a vector δ ∈ R

p and a set of indices
T ⊂ {1, . . . , p}, we denote by δT the vector in R

p in which δTj = δj if j ∈ T and δTj = 0 if
j /∈ T . The cardinality of T is denoted by |T |. Given a covariate vector xi ∈ R

p , we let xi[T ]
denote the vector {xij , j ∈ T }. The symbol E[·] denotes the expectation. We also use standard
empirical process notation

En[f (z•)] :=
n∑

i=1

f (zi)/n and Gn(f (z•)) :=
n∑

i=1

(
f (zi) − E[f (zi)]

)
/
√

n.

We denote the L2(Pn) norm by ‖f ‖Pn,2 = (En[f 2• ])1/2. Given covariate values x1, . . . , xn, we
define the prediction norm of a vector δ ∈ R

p as ‖δ‖2,n = {En[(x′•δ)2]}1/2 = (δ′
En[x•x′•]δ)1/2.

We use the notation a � b to denote a ≤ Cb for some constant C > 0 that does not depend
on n (and thus does not depend on quantities indexed by n like p or s), and a �P b to denote
a = OP (b). For an event A, we say that A wp → 1 when A occurs with probability approaching
1 as n increases. In addition, we write c̄ = (c + 1)/(c − 1) for a chosen constant c > 1.

2. Setting, estimators, and conditions

2.1. Setting

Condition M. We have data {(yi, zi), i = 1, . . . , n} such that for each n,

yi = f (zi) + εi, εi ∼ N(0, σ 2), i = 1, . . . , n, (2.1)

where yi are the outcomes, zi are vectors of fixed regressors, and εi are i.i.d. errors. Let P(zi)

be a given p-dimensional dictionary of technical regressors with respect zi , that is, a p-vector of
transformation of zi , with components

xi := P(zi)

of the dictionary normalized so that

En[x2•j ] = 1 for j = 1, . . . , p.

In making asymptotic statements, we assume that n → ∞ and p = pn → ∞, and that all pa-
rameters of the model are implicitly indexed by n.
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We would like to estimate the nonparametric regression function f at the design points,
namely the values fi = f (zi) for i = 1, . . . , n. To set up the estimation and define a performance
benchmark, we consider the following oracle risk minimization program:

min
0≤k≤p∧n

c2
k + σ 2 k

n
, (2.2)

where

c2
k := min‖β‖0≤k

En[(f• − x′•β)2]. (2.3)

Note that c2
k + σ 2k/n is an upper bound on the risk of the best k-sparse least squares estimator,

that is, the best estimator among all least squares estimators that use k out of p components of
xi to estimate fi for i = 1, . . . , n. The oracle program (2.2) chooses the optimal value of k. Let s

be the smallest integer among these optimal values, and let

β0 ∈ arg min‖β‖0≤s
En[(f• − x′•β)2]. (2.4)

We call β0 the oracle target value, T := support(β0) the oracle model, s := |T | = ‖β0‖0 the
dimension of the oracle model, and x′

iβ0 the oracle approximation to fi . The latter is our inter-
mediary target, which is equal to the ultimate target fi up to the approximation error

ri := fi − x′
iβ0.

If we knew T , then we could simply use xi[T ] as regressors and estimate fi , for i = 1, . . . , n,
using the least squares estimator, achieving the risk of at most

c2
s + σ 2s/n,

which we call the oracle risk. Because T is not known, we estimate T using Lasso-type meth-
ods and analyze the properties of post-model selection least squares estimators, accounting for
possible model selection mistakes.

Remark 2.1 (The oracle program). Note that if argmin is not unique in the problem (2.4), then
it suffices to select one of the values in the set of argmins. Supplemental article [2] provides
a more detailed discussion of the oracle problem. The idea of using oracle problems such as
(2.2) for benchmarking the performance follows its previous uses in the literature (see, e.g., [4],
Theorem 6.1, where an analogous problem appears in upper bounds on performance of Lasso).

Remark 2.2 (A leading special case). When contrasting the performance of Lasso and OLS
post-Lasso estimators in Remarks 5.1 and 5.2 given later, we mention a balanced case where

c2
s � σ 2s/n, (2.5)

which says that the oracle program (2.2) is able to balance the norm of the bias squared to be not
much larger than the variance term σ 2s/n. This corresponds to the case where the approximation
error bias does not dominate the estimation error of the oracle least squares estimator, so that the
oracle rate of convergence simplifies to

√
s/n, as mentioned in the Introduction.
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2.2. Model selectors based on Lasso

Given the large number of regressors p > n, some regularization or covariate selection is needed
to obtain consistency. The Lasso estimator [19], defined as follows, achieves both tasks by using
the �1 penalization:

β̂ ∈ arg min
β∈Rp

Q̂(β) + λ

n
‖β‖1, where Q̂(β) = En[(y• − x′•β)2], (2.6)

and λ is the penalty level, the choice of which is described later. If the solution is not unique,
then we pick any solution with minimum support. The Lasso is often used as an estimator, and
most often only as a model selection device, with the model selected by Lasso given by

T̂ := support(β̂).

Moreover, we let m̂ := |T̂ \ T | denote the number of components outside T selected by Lasso
and let f̂i = x′

i β̂, i = 1, . . . , n, denote the Lasso estimate of fi, i = 1, . . . , n.
Often, additional thresholding is applied to remove regressors with small estimated coeffi-

cients, defining the so-called “thresholded” Lasso estimator,

β̂(t) = (β̂j 1{|β̂j | > t}, j = 1, . . . , p), (2.7)

where t ≥ 0 is the thresholding level. The corresponding selected model is then

T̂ (t) := support(β̂(t)).

Note that, when setting t = 0, we have T̂ (t) = T̂ , so Lasso is a special case of thresholded Lasso.

2.3. Post-model selection estimators

Given the foregoing, all of our post-model selection estimators or OLS post-Lasso estimators
will take the form

β̃t = arg min
β∈Rp

Q̂(β) :βj = 0 for each j ∈ T̂ c(t). (2.8)

That is, given that the model selected a threshold Lasso T̂ (t), including the Lasso’s model T̂ (0)

as a special case, the post-model selection estimator applies OLS to the selected model.
Along with the case of t = 0, we also consider the following choices for the threshold level:

traditional threshold (t): t > ζ = max
1≤j≤p

|β̂j − β0j |,
fitness-based threshold (fit): t = tγ := max

t≥0
{t : Q̂(β̃t ) − Q̂(β̂) ≤ γ }, (2.9)

where γ ≤ 0, and |γ | is the gain of the in-sample fit allowed relative to Lasso.
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As discussed in Section 3.2, the standard thresholding method is particularly appealing in
models in which oracle coefficients β0 are well separated from 0. However, this scheme may
perform poorly in models with oracle coefficients not well separated from 0 and in nonparamet-
ric models. Indeed, even in parametric models with many small but nonzero true coefficients,
thresholding the estimates too aggressively may result in large goodness-of-fit losses and, con-
sequently, slow rates of convergence and even inconsistency for the second-step estimators. This
issue directly motivates our new goodness-of-fit based thresholding method, which sets as many
small coefficient estimates as possible to 0, subject to maintaining a certain goodness-of-fit level.

Depending on how we select the threshold, we consider three types of post-model selection
estimators:

OLS post-Lasso: β̃0 (t = 0),

OLS post-t Lasso: β̃t (t > ζ ),

OLS post-fit Lasso: β̃tγ (t = tγ ).

(2.10)

The first estimator is defined by OLS applied to the model selected by Lasso, also called Gauss-
Lasso; the second, by OLS applied to the model selected by the thresholded Lassol and the third,
by OLS applied to the model selected by fitness-thresholded Lasso.

The main purpose of this article is to derive the properties of the post-model selection esti-
mators (2.10). If model selection works perfectly, which is possible only under rather special
circumstances, then the post-model selection estimators are the oracle estimators, whose proper-
ties are well known. However, of much more general interest is the case when model selection
does not work perfectly, as occurs for many designs of interest in applications.

2.4. Choice and computation of penalty level for Lasso

The key quantity in the analysis is the gradient of Q̂ at the true value,

S = 2En[x•ε•].
This gradient is the effective “noise” in the problem that should be dominated by the regular-
ization. However, we would like to make the bias as small as possible. This reasoning suggests
choosing the smallest penalty level λ possible to dominate the noise, namely

λ ≥ cn‖S‖∞ with probability at least 1 − α, (2.11)

where probability 1 − α needs to be close to 1 and c > 1. Therefore, we propose setting

λ = c′σ̂�(1 − α|X) for some fixed c′ > c > 1, (2.12)

where �(1 − α|X) is the (1 − α) quantile of n‖S/σ‖∞, and σ̂ is a possibly data-driven estimate
of σ . Note that the quantity �(1 − α|X) is independent of σ and can be easily approximated
by simulation. We refer to this choice of λ as the data-driven choice, reflecting the dependence
of the choice on the design matrix X = [x1, . . . , xn]′ and a possibly data-driven σ̂ . Note that the
proposed (2.12) is sharper than c′σ̂2

√
2n log(p/α) typically used in the literature. We impose

the following conditions on σ̂ .
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Condition V. The estimated σ̂ obeys

� ≤ σ̂ /σ ≤ u with probability at least 1 − τ,

where 0 < � ≤ 1 and 1 ≤ u and 0 ≤ τ < 1 are constants possibly dependent on n.

We can construct a σ̂ that satisfies this condition under mild assumptions, as follows. First,
set σ̂ = σ̂0, where σ̂0 is an upper bound on σ that is possibly data-driven, for example, the
sample standard deviation of yi . Second, compute the Lasso estimator based on this estimate
and set σ̂ 2 = Q̂(β̂). We demonstrate that σ̂ constructed in this way satisfies Condition V and
characterize quantities u and � and τ in the supplemental article [2]. We can iterate on the last
step a bounded number of times. We also can use OLS post-Lasso for this purpose.

2.5. Choices and computation of thresholding levels

Our analysis covers a wide range of possible threshold levels. Here, however, we propose some
basic options that give both good finite-sample and theoretical results. In the traditional thresh-
olding method, we can set

t = c̃λ/n, (2.13)

for some c̃ ≥ 1. This choice is theoretically motivated by Section 3.2, which presents the perfect
model selection results, where under some conditions, ζ ≤ c̃λ/n. This choice also leads to near-
oracle performance of the resulting post-model selection estimator. Regarding the choice of c̃,
we note that setting c̃ = 1 and achieving ζ ≤ λ/n is possible based on the results of Section 3.2 if
the empirical Gram matrix is orthogonal and approximation error cs vanishes. Thus, c̃ = 1 is the
least aggressive traditional thresholding that can be performed under conditions of Section 3.2.
(Also note that c̃ = 1 has performed better than c̃ > 1 in our computational experiments.)

Our fitness-based threshold tγ requires specification of the parameter γ . The simplest choice
delivering near-oracle performance is γ = 0; this choice leads to the sparsest post-model selec-
tion estimator that has the same in-sample fit as Lasso. However, we prefer to set

γ = Q̂(β̃0) − Q̂(β̂)

2
< 0, (2.14)

where β̃0 is the OLS post-Lasso estimator. The resulting estimator is sparser and produces a
better in-sample fit than Lasso. This choice also results in near-oracle performance and leads to
the best performance in computational experiments. Note also that for any γ , we can compute tγ
by a binary search over t ∈ sort{|β̂j |, j ∈ T̂ }, where sort is the sorting operator. This is the case
because the final estimator depends only on the selected support, not on the specific value of t

used. Therefore, because there are at most |T̂ | different values of t to be tested, using a binary
search, we can compute tγ exactly by running at most �log2 |T̂ |� OLS problems.
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2.6. Conditions on the design

For the analysis of Lasso, we use the following restricted eigenvalue condition on the empirical
Gram matrix:

Condition (RE(c̄)). For a given c̄ ≥ 0,

κ(c̄) := min‖δT c‖1≤c̄‖δT ‖1,δ �=0

√
s‖δ‖2,n

‖δT ‖1
> 0.

This condition is a variant of the restricted eigenvalue condition introduced by [4], which is
known to be quite general and plausible (see [4] for related conditions).

For the analysis of post-model selection estimators, we use the following restricted sparse
eigenvalue condition on the empirical Gram matrix:

Condition (RSE(m)). For a given m < n,

κ̃(m)2 := min‖δT c‖0≤m,δ �=0

‖δ‖2
2,n

‖δ‖2
> 0, φ(m) := max

‖δT c‖0≤m,δ �=0

‖δ‖2
2,n

‖δ‖2
.

Condition RSE(m) depends on T and can be viewed as an extension of the restricted isometry
condition [9]. Here m denotes the restriction on the number of nonzero components outside
the support T . The standard concept of (unrestricted) m-sparse eigenvalues corresponds to the
restricted sparse eigenvalues when T = ∅ (see, e.g., [4]). It is convenient to define the following
condition number associated with the empirical Gram matrix:

μ(m) =
√

φ(m)

κ̃(m)
. (2.15)

The following lemma demonstrates the plausibility of the foregoing conditions for the case
where the values xi , i = 1, . . . , n, have been generated as a realization of the random sample;
there are other primitive conditions as well. In this case, the empirical restricted sparse eigen-
values are bounded away from 0 and from above, so that (2.15) is bounded from above with
high probability. The lemma assumes as a primitive condition that the sparse eigenvalues of the
population Gram matrix bounded away from zero and from above. The lemma allows for many
standard bounded dictionaries that arise in the nonparametric estimation, for example, regression
splines, orthogonal polynomials, and trigonometric series (see [10,20,21,25]). Similar results are
known to hold for standard Gaussian regressors as well [26].

Lemma 1 (Plausibility of RE and RSE). Suppose that x̃i , i = 1, . . . , n, are i.i.d. mean-zero
vectors, such that the population Gram matrix E[x̃x̃′] has all of the diagonal elements equal
to 1, and

0 < κ2 ≤ min
1≤‖δ‖0≤s logn

δ′E[x̃x̃′]δ
‖δ‖ ≤ max

1≤‖δ‖0≤s logn

δ′E[x̃x̃′]δ
‖δ‖ ≤ ϕ < ∞.
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Define xi as a normalized form of x̃i , namely xij = x̃ij /(En[x̃2•j ])1/2. Suppose that

max
1≤i≤n

‖x̃i‖∞ ≤ Kn a.s. and K2
ns log2(n) log2(s logn) log(p ∨ n) = o(nκ4/ϕ).

Then, for any m + s ≤ s logn, the restricted sparse eigenvalues of the empirical Gram matrix
obey the following bounds:

φ(m) ≤ 4ϕ, κ̃(m)2 ≥ κ2/4 and μ(m) ≤ 4
√

ϕ/κ,

with probability approaching 1 as n → ∞.

3. Results on Lasso as an estimator and model selector

The properties of the post-model selection estimators depend crucially on both the estimation
and model selection properties of Lasso. In this section we develop the estimation properties of
Lasso under the data-dependent penalty level, extending the results of [4], and also develop the
model selection properties of Lasso for nonparametric models, generalizing the results of [13] to
the nonparametric case.

3.1. Estimation properties of Lasso

The following theorem describes the main estimation properties of Lasso under the data-driven
choice of the penalty level.

Theorem 1 (Performance bounds for Lasso under data-driven penalty). Suppose that Con-
ditions M and RE(c̄) hold for c̄ = (c + 1)/(c − 1). If λ ≥ cn‖S‖∞, then

‖β̂ − β0‖2,n ≤
(

1 + 1

c

)
λ
√

s

nκ(c̄)
+ 2cs.

Moreover, suppose that Condition V holds. Under the data-driven choice (2.12), for c′ ≥ c/�, we
have λ ≥ cn‖S‖∞ with probability at least 1 − α − τ , so that with at least the same probability,

‖β̂ −β0‖2,n ≤ (c′ + c′/c)
√

s

nκ(c̄)
σu�(1 −α|X)+ 2cs, where �(1 −α|X) ≤√

2n log(p/α).

If in addition RE(2c̄) holds, then

‖β̂ − β0‖1 ≤
(

(1 + 2c̄)
√

s

κ(2c̄)
‖β̂ − β0‖2,n

)
∨
((

1 + 1

2c̄

)
2c

c − 1

n

λ
c2
s

)
.

This theorem extends the result of [4] by allowing for a data-driven penalty level and deriving
the rates in �1-norm. These results may be of independent interest and are necessary for the
subsequent results.
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Remark 3.1. Furthermore, a performance bound for the estimation of the regression function
follows from the relation ∣∣‖f̂ − f ‖Pn,2 − ‖β̂ − β0‖2,n

∣∣≤ cs, (3.1)

where f̂i = x′
i β̂ is the Lasso estimate of the regression function f evaluated at zi . It is interesting

to know some lower bounds on the rate, which follow from Karush–Kuhn–Tucker conditions for
Lasso (see equation (A.1) in the Appendix):

‖f̂ − f ‖Pn,2 ≥ (1 − 1/c)λ
√

|T̂ |
2n

√
φ(m̂)

,

where m̂ = |T̂ \ T |. We note that a similar lower bound was first derived by [15] with φ(p)

instead of φ(m̂).

The preceding theorem and discussion imply the following useful asymptotic bound on the
performance of the estimators.

Corollary 1 (Asymptotic bounds on performance of Lasso). Under the conditions of Theo-
rem 1, if

φ(m̂) � 1, κ(c̄) � 1, μ(m̂) � 1, log(1/α) � logp,
(3.2)

α = o(1), u/� � 1 and τ = o(1)

hold as n grows, then we have

‖f̂ − f ‖Pn,2 �P σ

√
s logp

n
+ cs.

Moreover, if |T̂ | �P s – in particular, if T ⊆ T̂ with probability going to 1 – then we have

‖f̂ − f ‖Pn,2 �P σ

√
s logp

n
.

In Lemma 1 we established fairly general sufficient conditions for the first three relations in
(3.2) to hold with high probability as n grows, when the design points z1, . . . , zn are generated
as a random sample. The remaining relations are mild conditions on the choice of α and the
estimation of σ that are used in the definition of the data-driven choice (2.12) of the penalty-
level λ.

It follows from the corollary that as long as κ(c̄) is bounded away from 0, Lasso with data-
driven penalty estimates the regression function at a near-oracle rate. The second part of the
corollary generalizes to the nonparametric case the lower bound obtained for Lasso by [15]. It
shows that the rate cannot be improved in general. We use the asymptotic rates of convergence
to compare the performance of Lasso and the post-model selection estimators.
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3.2. Model selection properties of Lasso

Our main results do not require that the first-step estimators like Lasso perfectly select the “true”
oracle model. In fact, we are specifically interested in the most common cases, where these esti-
mators do not perfectly select the true model. For these cases, we prove that post-model selection
estimators such as OLS post-Lasso achieve near-oracle rates like those of Lasso. However, in
some special cases where perfect model selection is possible, these estimators can achieve the
exact oracle rates, and thus can be even better than Lasso. In this section we describe these very
special cases in which perfect model selection is possible.

Theorem 2 (Some conditions for perfect model selection in nonparametric settings). Sup-
pose that Condition M holds.

(1) If the coefficients are well separated from 0, that is,

min
j∈T

|β0j | > ζ + t, for some t ≥ ζ := max
j=1,...,p

|β̂j − β0j |,

then the true model is a subset of the selected model, T := support(β0) ⊆ T̂ := support(β̂).

Moreover, T can be perfectly selected by applying level t thresholding to β̂ , that is, T = T̂ (t).
(2) In particular, if λ ≥ cn‖S‖∞ and there is a constant U > 5c̄ such that the empirical Gram

matrix satisfies |En[x•j x•k]| ≤ 1/(Us) for all 1 ≤ j < k ≤ p, then

ζ ≤ λ

n
· U + c̄

U − 5c̄
+ σ√

n
∧ cs + 6c̄

U − 5c̄

cs√
s

+ 4c̄

U

n

λ

c2
s

s
.

These results substantively generalize the parametric results of [13] on model selection by
thresholded Lasso. These results cover the more general nonparametric case and may be of inde-
pendent interest. Also note that the stated conditions for perfect model selection require a strong
assumption on the separation of coefficients of the oracle from 0, along with near-perfect orthog-
onality of the empirical Gram matrix. This is the sense in which the perfect model selection is
a rather special, nongeneral phenomenon. Finally, we note that it is possible to perform perfect
selection of the oracle model by Lasso without applying any additional thresholding under ad-
ditional technical conditions and higher penalty levels [5,24,27]. In the supplement, we state the
nonparametric extension of the parametric result due to [24].

3.3. Sparsity properties of Lasso

Here we derive new sharp sparsity bounds for Lasso, which may be of independent interest.We
begin with a preliminary sparsity bound for Lasso.

Lemma 2 (Empirical presparsity for Lasso). Suppose that Conditions M and RE(c̄) hold and
that λ ≥ cn‖S‖∞, and let m̂ = |T̂ \ T |. For c̄ = (c + 1)/(c − 1), we have that

√
m̂ ≤ √

s
√

φ(m̂)2c̄/κ(c̄) + 3(c̄ + 1)
√

φ(m̂)ncs/λ.
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The foregoing lemma states that Lasso achieves the oracle sparsity up to a factor of φ(m̂).
Under the conditions (2.5) and κ(c̄) � 1, the lemma immediately yields the simple upper bound
on the sparsity of the form

m̂ �P sφ(n), (3.3)

as obtained for examples of [4] and [16]. Unfortunately, this bound is sharp only when φ(n)

is bounded. When φ(n) diverges – for example, when φ(n) �P

√
logp in the Gaussian design

with p ≥ 2n by lemma 6 of [1] – the bound is not sharp. However, for this case we can con-
struct a sharp sparsity bound by combining the preceding presparsity result with the following
sublinearity property of the restricted sparse eigenvalues.

Lemma 3 (Sublinearity of restricted sparse eigenvalues). For any integer k ≥ 0 and constant
� ≥ 1, we have φ(��k�) ≤ ���φ(k).

A version of this lemma for (unrestricted) sparse eigenvalues has been proven by [3]. The
combination of the preceding two lemmas gives the following sparsity theorem.

Theorem 3 (Sparsity bound for Lasso under data-driven penalty). Suppose that Conditions
M and RE(c̄) hold, and let m̂ := |T̂ \ T |. The event λ ≥ cn‖S‖∞ implies that

m̂ ≤ s ·
[

min
m∈M

φ(m ∧ n)
]
· Ln,

where M = {m ∈ N :m > sφ(m ∧ n) · 2Ln} and Ln = [2c̄/κ(c̄) + 3(c̄ + 1)ncs/(λ
√

s)]2.

The main implication of Theorem 3 is that under (2.5), if minm∈M φ(m ∧ n) � 1 and λ ≥
cn‖S‖∞ hold with high probability, which is valid by Lemma 1 for important designs and by the
choice of penalty level (2.12), then, with high probability,

m̂ � s. (3.4)

Consequently, for these designs and penalty levels,the sparsity of Lasso is of the same order
as that of the oracle, namely ŝ := |T̂ | ≤ s + m̂ � s, with high probability. This is because
minm∈M φ(m) � φ(n) for these designs, which allows us to sharpen the previous sparsity bound
(3.3) considered by [4] and [16]. Moreover, our new bound is comparable to the bounds of [26] in
terms of order of sharpness, but it requires a smaller penalty level λ, which also does not depend
on the unknown sparse eigenvalues (as in [26]).

4. Performance of post-model selection estimators with a
generic model selector

Here we present a general result on the performance of a post-model selection estimator with a
generic model selector.
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Theorem 4 (Performance of post-model selection estimator with a generic model selector).
Suppose that Condition M holds, and let β̂ be any first-step estimator acting as the model selector.
Denote by T̂ := support(β̂) the model that it selects, such that |T̂ | ≤ n. Let β̃ be the post-model
selection estimator defined by

β̃ ∈ arg min
β∈Rp

Q̂(β) :βj = 0 for each j ∈ T̂ c. (4.1)

Let Bn := Q̂(β̂)−Q̂(β0) and Cn := Q̂(β0T̂ )−Q̂(β0) and m̂ = |T̂ \T | be the number of incorrect
regressors selected. Then, if Condition RSE(m̂) holds, for any ε > 0, there is a constant Kε

independent of n such that with probability at least 1 − ε, for f̃i = x′
i β̃ , we have

‖f̃ − f ‖Pn,2 ≤ Kεσ

√
m̂ logp + (m̂ + s) log(eμ(m̂))

n
+ 3cs +√

(Bn)+ ∧ (Cn)+.

Furthermore, for any ε > 0, there is a constant Kε independent of n such that with probability at
least 1 − ε,

Bn ≤ ‖β̂ − β0‖2
2,n +

[
Kεσ

√
m̂ logp + (m̂ + s) log(eμ(m̂))

n
+ 2cs

]
‖β̂ − β0‖2,n,

Cn ≤ 1{T �⊆ T̂ }
(

‖β0T̂ c‖2
2,n +

[
Kεσ

√
log

(
s
k̂

)+ k̂ log(eμ(0))

n
+ 2cs

]
‖β0T̂ c‖2,n

)
.

Three implications of Theorem 4 are worth noting. First, the bounds on the prediction norm
stated in Theorem 4 apply to the OLS estimator on the components selected by any first-step
estimator β̂ , provided that we can bound both ‖β̂−β0‖2,n, the rate of convergence of the first-step
estimator, and m̂, the number of incorrect regressors selected by the model selector. Second, note
that if the selected model contains the true model, T ⊆ T̂ , then we have (Bn)+∧(Cn)+ = Cn = 0.
In that case, Bn has no affect on the rate, and the performance of the second-step estimator is
determined by the sparsity m̂ of the first-step estimator, which controls the magnitude of the
empirical errors. Otherwise, if the selected model fails to contain the true model (i.e., T �⊆ T̂ ),
then the performance of the second-step estimator is determined by both the sparsity m̂ and the
minimum between Bn and Cn. The quantity Bn measures the in-sample loss of fit induced by the
first-step estimator relative to the “true” parameter value β0, and Cn measures the in-sample loss
of fit induced by truncating the “true” parameter β0 outside the selected model T̂ .

The proof of Theorem 4 relies on the sparsity-based control of the empirical error provided by
the following lemma.

Lemma 4 (Sparsity-based control of empirical error). Suppose that Condition M holds.
(1) For any ε > 0, there is a constant Kε independent of n such that with probability at least

1 − ε,

∣∣Q̂(β0 + δ) − Q̂(β0) − ‖δ‖2
2,n

∣∣≤ Kεσ

√
m logp + (m + s) log(eμ(m))

n
‖δ‖2,n + 2cs‖δ‖2,n,
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uniformly for all δ ∈ R
p such that ‖δT c‖0 ≤ m, and uniformly over m ≤ n.

(2) Furthermore, with at least the same probability,

∣∣Q̂(β0T̃ ) − Q̂(β0) − ‖β0T̃ c‖2
2,n

∣∣≤ Kεσ

√
log

(
s
k

)+ k log(eμ(0))

n
‖β0T̃ c‖2,n + 2cs‖β0T̃ c‖2,n,

uniformly for all T̃ ⊂ T such that |T \ T̃ | = k, and uniformly over k ≤ s.

The proof of this lemma in turn relies on the following maximal inequality, the proof of which
involves the use of a Samorodnitsky–Talagrand type of inequality.

Lemma 5 (Maximal inequality for a collection of empirical processes). Let εi ∼ N(0, σ 2) be
independent for i = 1, . . . , n, and for m = 1, . . . , n, define

en(m,η) := σ2
√

2

(√
log

(
p

m

)
+√

(m + s) log(Dμ(m)) +√
(m + s) log(1/η)

)

for any η ∈ (0,1) and some universal constant D. Then,

sup
‖δT c‖0≤m,‖δ‖2,n>0

∣∣∣∣Gn

(
εix

′
iδ

‖δ‖2,n

)∣∣∣∣≤ en(m,η) for all m ≤ n,

with probability at least 1 − ηe−s/(1 − 1/e).

5. Performance of least squares after Lasso-based model
selection

In this section we apply our results on post-model selection estimators to the case where Lasso is
the first-step estimator. Our previous generic results allow us to use the sparsity bounds and rate
of convergence of Lasso to derive the rate of convergence of post-model selection estimators in
the parametric and nonparametric models.

5.1. Performance of OLS post-Lasso

Here we show that the OLS post-Lasso estimator has good theoretical performance despite (gen-
erally) imperfect selection of the model by Lasso.

Theorem 5 (Performance of OLS post-Lasso). Suppose that Conditions M, RE(c̄), and
RSE(m̂) hold, where c̄ = (c + 1)/(c − 1) and m̂ = |T̂ \ T |. If λ ≥ cn‖S‖∞ occurs with prob-
ability at least 1 − α, then for any ε > 0, there is a constant Kε independent of n such that with
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probability at least 1 − α − ε, for f̃i = x′
i β̃ , we have

‖f̃ − f ‖Pn,2 ≤ Kεσ

√
m̂ logp + (m̂ + s) log(eμ(m̂))

n

+ 3cs + 1{T �⊆ T̂ }
√

λ
√

s

nκ(1)

(
(1 + c)λ

√
s

cnκ(1)
+ 2cs

)
.

In particular, under Condition V and the data-driven choice of λ specified in (2.12) with
log(1/α) � logp, u/� � 1, for any ε > 0 there is a constant K ′

ε,α such that

‖f̃ − f ‖Pn,2 ≤ 3cs + K ′
ε,ασ

[√
m̂ log(peμ(m̂))

n
+
√

s log(eμ(m̂))

n

]
(5.1)

+ 1{T �⊆ T̂ }
[
K ′

ε,ασ

√
s logp

n

1

κ(1)
+ cs

]

with probability at least 1 − α − ε − τ .

This theorem provides a performance bound for OLS post-Lasso as a function of Lasso’s
sparsity (characterized by m̂), rate of convergence, and model selection ability. For common
designs, this bound implies that OLS post-Lasso performs at least as well as Lasso and can be
strictly better in some cases, and has a smaller regularization bias. We provide further theoretical
comparisons in what follows, and give computational examples supporting these comparisons
in the supplemental article [2]. It is also worth repeating here that performance bounds in other
norms of interest follow immediately by the triangle inequality and by the definition of κ̃ , as
discussed in Remark 3.1.

The following corollary summarizes the performance of OLS post-Lasso under commonly
used designs.

Corollary 2 (Asymptotic performance of OLS post-Lasso). Under the conditions of Theo-
rem 5, (2.5), and (3.2), as n grows, we have that

‖f̃ − f ‖Pn,2 �P

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ

√
s logp

n
+ cs, in general,

σ

√
o(s) logp

n
+ σ

√
s

n
+ cs, if m̂ = oP (s) and T ⊆ T̂ wp → 1,

σ
√

s/n + cs, if T = T̂ wp → 1.

Remark 5.1 (Comparison of the performance of OLS post-Lasso and Lasso). We now compare
the upper bounds on the rates of convergence of Lasso and OLS post-Lasso under conditions
of the corollary. In general, the rates coincide. Of note, this occurs despite the fact that Lasso
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generally may fail to correctly select the oracle model T as a subset, that is, T �⊆ T̂ . However, if
the oracle model has well-separated coefficients and conditions and the approximation error does
not dominate the estimation error, then the OLS post-Lasso rate improves on the rate of Lasso.
Specifically, this occurs if condition (2.5) holds and m̂ = oP (s) and T ⊆ T̂ wp → 1, as under the
conditions of Theorem 2 Part 1 or, in the case of perfect model selection, when T = T̂ wp → 1,
as under the conditions specified by [24]. In such cases, we know from Corollary 1 that the rates
for Lasso are sharp and cannot be faster than σ

√
s logp/n. Thus the faster rate of convergence

of OLS post-Lasso over Lasso is strict in such cases.

5.2. Performance of OLS post-fit Lasso

In what follows we provide performance bounds for OLS post-fit Lasso β̃ defined in equation
(4.1) with threshold (2.9) for the case where the first-step estimator β̂ is Lasso. We let T̃ denote
the model selected.

Theorem 6 (Performance of OLS post-fit Lasso). Suppose that Conditions M, RE(c̄), and
RSE(m̃) hold, where c̄ = (c + 1)/(c − 1) and m̃ = |T̃ \ T |. If λ ≥ cn‖S‖∞ occurs with proba-
bility at least 1 − α, then for any ε > 0, there is a constant Kε independent of n such that with
probability at least 1 − α − ε, for f̃i = x′

i β̃ , we have

‖f̃ − f ‖Pn,2 ≤ Kεσ

√
m̃ logp + (m̃ + s) log(eμ(m̃))

n

+ 3cs + 1{T �⊆ T̃ }
√

λ
√

s

nκ(1)

(
(1 + c)λ

√
s

cnκ(1)
+ 2cs

)
.

Under Condition V and the data-driven choice of λ specified in (2.12) with log(1/α) � logp,
u/� � 1, for any ε > 0 there is a constant K ′

ε,α such that

‖f̃ − f ‖Pn,2 ≤ 3cs + K ′
ε,ασ

[√
m̃ log(peμ(m̃))

n
+
√

s log(eμ(m̃))

n

]
(5.2)

+ 1{T �⊆ T̃ }
[
K ′

ε,ασ

√
s logp

n

1

κ(1)
+ cs

]
,

with probability at least 1 − α − ε − τ .

This theorem provides a performance bound for OLS post-fit Lasso as a function of its spar-
sity (characterized by m̃), Lasso’s rate of convergence, and the model selection ability of the
thresholding scheme. Generally, this bound is as good as the bound for OLS post-Lasso, because
the OLS post-fitness-thresholded Lasso thresholds as much as possible subject to maintaining a
certain goodness of fit. Another appealing feature is that this estimator determines the threshold-
ing level in a completely data-driven fashion. Moreover, by construction, the estimated model is
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sparser than the OLS post-Lasso model, which leads to an improved performance of OLS post-
fitness-thresholded Lasso over OLS post-Lasso in some cases. We provide further theoretical
comparisons below and computational examples in the supplemental article [2].

The following corollary summarizes the performance of OLS post-fit Lasso under commonly
used designs.

Corollary 3 (Asymptotic performance of OLS post-fit Lasso). Under the conditions of The-
orem 6, if conditions in (2.5) and (3.2) hold, then as n grows, the OLS post-fitness-thresholded
Lasso satisfies

‖f̃ − f ‖Pn,2 �P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ

√
s logp

n
+ cs, in general,

σ

√
o(s) logp

n
+ σ

√
s

n
+ cs, if m̃ = oP (s) and T ⊆ T̃ wp → 1,

σ

√
s

n
+ cs, if T = T̃ wp → 1.

Remark 5.2 (Comparison of the performance of OLS post-fit Lasso, Lasso, and OLS post-
Lasso). Under the conditions of the corollary, the OLS post-fitness-thresholded Lasso matches
the near-oracle rate of convergence of Lasso and OLS post-Lasso: σ

√
s logp/n + cs . If

m̃ = oP (s) and T ⊆ T̃ wp → 1 and (2.5) hold, then OLS post-fit Lasso strictly improves on
Lasso’s rate. That is, if the oracle model has coefficients well separated from 0 and the approxi-
mation error is not dominant, then the improvement is strict. An interesting question is whether
OLS post-fit Lasso can outperform OLS post-Lasso in terms of the rates. We cannot rank these
estimators in terms of rates in general; however, this necessarily occurs when the Lasso does
not achieve the sufficient sparsity but the model selection works well, namely when m̃ = oP (m̂)

and T ⊆ T̃ wp → 1. Finally, under conditions ensuring perfect model selection – namely, the
condition of Theorem 2 holding for t = tγ – OLS post-fit Lasso achieves the oracle performance,
σ
√

s/n + cs .

5.3. Performance of the OLS post-thresholded Lasso

We next consider the traditional thresholding scheme, which truncates to 0 all components below
a set threshold, t . This is arguably the most widely used thresholding scheme in the literature. To
state the result, recall that β̂tj = β̂j 1{|β̂j | > t}, m̃ := |T̃ \T |, mt := |T̂ \ T̃ | and γt := ‖β̂t − β̂‖2,n,
where β̂ is the Lasso estimator.

Theorem 7 (Performance of OLS post-t Lasso). Suppose that Conditions M, RE(c̄), and
RSE(m̃) hold, where c̄ = (c + 1)/(c − 1) and m̃ = |T̃ \ T |. If λ ≥ cn‖S‖∞ occurs with prob-
ability at least 1 − α, then for any ε > 0, there is a constant Kε independent of n such that with
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probability at least 1 − α − ε, for f̃i = x′
i β̃ , we have

‖f̃ − f ‖Pn,2 ≤ Kεσ

√
m̃ logp + (m̃ + s) log(eμ(m̃))

n
+ 3cs

+ 1{T �⊆ T̃ }
(

γt + 1 + c

c

λ
√

s

nκ(c̄)
+ 2cs

)
+ 1{T �⊆ T̃ }

×
√√√√[

Kεσ

√
m̃ logp + (m̃ + s) log(eμ(m̃))

n
+ 2cs

](
γt + 1 + c

c

λ
√

s

nκ(c̄)
+ 2cs

)
,

where γt ≤ t
√

φ(mt )mt . Under Condition V and the data-driven choice of λ specified in (2.12)
for log(1/α) � logp, u/� � 1, for any ε > 0, there is a constant K ′

ε,α such that with probability
at least 1 − α − ε − τ ,

‖f̃ − f ‖Pn,2 ≤ 3cs + K ′
ε,α

[
σ

√
m̃ log(peμ(m̃))

n
+ σ

√
s log(eμ(m̃))

n

]

+ 1{T �⊆ T̃ }
[
γt + K ′

ε,ασ

√
s logp

n

1

κ(c̄)
+ 4cs

]
.

This theorem provides a performance bound for OLS post-thresholded Lasso as a function of
(1) its sparsity, characterized by m̃, and improvements in sparsity over Lasso, characterized by
mt ; (2) Lasso’s rate of convergence; (3) the thresholding level t and resulting goodness-of-fit
loss, γt , relative to Lasso induced by thresholding; and (4) the model selection ability of the
thresholding scheme. Generally, this bound may be worse than the bound for Lasso, because the
OLS post-thresholded Lasso potentially uses too much thresholding, resulting in large goodness-
of-fit losses, γt . We provide further theoretical comparisons below and computational examples
in Section 4 of the supplemental article [2].

Remark 5.3 (Comparison of the performance of OLS post-thresholded Lasso, Lasso, and OLS
post-Lasso). In this work, we also assume conditions in (2.5) and (3.2) presented in the foregoing
formal comparisons. Under these conditions, OLS post-thresholded Lasso obeys the bound

‖f̃ − f ‖Pn,2 �P σ

√
m̃ logp

n
+ σ

√
s

n
+ cs + 1{T �⊆ T̃ }

(
γt ∨ σ

√
s logp

n

)
. (5.3)

In this case, we have m̃ ∨ mt ≤ s + m̂ �P s by Theorem 3. In general, the foregoing rate cannot
improve on Lasso’s rate of convergence given in Lemma 1.

As expected, the choice of t , which controls γt via the bound γt ≤ t
√

φ(mt )mt , can have a
significant effect on the performance bounds. If

t � σ

√
logp

n
then ‖f̃ − f ‖Pn,2 �P σ

√
s logp

n
+ cs. (5.4)
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The choice (5.4), suggested by [13] and Theorem 3, is theoretically sound, because it guarantees
that OLS post-thresholded Lasso achieves the near-oracle rate of Lasso. Note that to implement
the choice (5.4) in practice, we suggest setting t = λ/n, given that the separation of the coeffi-
cients from 0 is unknown in practice. Note that using a much larger t can lead to inferior rates of
convergence.

Furthermore, there is a special class of models – a neighborhood of parametric models with
well-separated coefficients – for which improvements in the rate of convergence of Lasso are pos-
sible. Specifically, if m̃ = oP (s) and T ⊆ T̃ wp → 1, then OLS post-thresholded Lasso strictly
improves on the Lasso’s rate. Furthermore, if m̃ = oP (m̂) and T ⊆ T̃ wp → 1, then OLS post-
thresholded Lasso also outperforms OLS post-Lasso:

‖f̃ − f ‖Pn,2 �P σ

√
o(m̂) logp

n
+ σ

√
s

n
+ cs.

Finally, with the conditions of Theorem 2 holding for given t , OLS post-thresholded Lasso
achieves oracle performance, ‖f̃ − f ‖Pn,2 �P σ

√
s/n + cs .

Appendix: Proofs

A.1. Proofs for Section 3

Proof of Theorem 1. The bound in ‖ · ‖2,n norm follows by the same steps specified by [4], and
thus we defer the derivation to the supplement.

Under the data-driven choice (2.12) of λ and Condition V, we have c′σ̂ ≥ cσ with prob-
ability at least 1 − τ , because c′ ≥ c/�. Moreover, with the same probability, we also have
λ ≤ c′uσ�(1 − α|X). The result follows by invoking the ‖ · ‖2,n bound.

The bound in ‖ · ‖1 is proven as follows. First, assume that ‖δT c‖1 ≤ 2c̄‖δT ‖1. In this
case, by the definition of the restricted eigenvalue, we have ‖δ‖1 ≤ (1 + 2c̄)‖δT ‖1 ≤ (1 +
2c̄)

√
s‖δ‖2,n/κ(2c̄), and the result follows by applying the first bound to ‖δ‖2,n because c̄ > 1.

On the other hand, consider the case where ‖δT c‖1 > 2c̄‖δT ‖1. Here the relation

− λ

cn
(‖δT ‖1 + ‖δT c‖1) + ‖δ‖2

2,n − 2cs‖δ‖2,n ≤ λ

n
(‖δT ‖1 − ‖δT c‖1),

which is established in (2.3) in the supplemental article [2], implies that ‖δ‖2,n ≤ 2cs and also

‖δT c‖1 ≤ c̄‖δT ‖1 + c

c − 1

n

λ
‖δ‖2,n(2cs −‖δ‖2,n) ≤ ‖δT ‖1 + c

c − 1

n

λ
c2
s ≤ 1

2
‖δT c‖1 + c

c − 1

n

λ
c2
s .

Thus,

‖δ‖1 ≤
(

1 + 1

2c̄

)
‖δT c‖1 ≤

(
1 + 1

2c̄

)
2c

c − 1

n

λ
c2
s .
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The result follows by taking the maximum of the bounds on each case and invoking the bound
on ‖δ‖2,n. �

Proof of Theorem 2. Part (1) follows immediately from the assumptions. To show part (2), let
δ := β̂ − β0, and proceed in two steps:

Step 1. By the first-order optimality conditions of β̂ and the assumption on λ,

‖En[x•x′•δ]‖∞ ≤ ‖En[x•(y• − x′•β̂)]‖∞ + ‖S/2‖∞ + ‖En[x•r•]‖∞

≤ λ

2n
+ λ

2cn
+ min

{
σ√
n
, cs

}
,

because ‖En[x•r•]‖∞ ≤ min{ σ√
n
, cs} by step 2 below.

Next, let ej denote the j th canonical direction. Thus, for every j = 1, . . . , p, we have

|En[e′
j x•x′•δ] − δj | = |En[e′

j (x•x′• − I )δ]|
≤ max

1≤j,k≤p
|(En[x•x′• − I ])jk|‖δ‖1

≤ ‖δ‖1/[Us].
Then, combining the two bounds above and using the triangle inequality, we have

‖δ‖∞ ≤ ‖En[x•x′•δ]‖∞ + ‖En[x•x′•δ] − δ‖∞ ≤
(

1 + 1

c

)
λ

2n
+ min

{
σ√
n
, cs

}
+ ‖δ‖1

Us
.

The result follows by Theorem 1 to bound ‖δ‖1 and the arguments of [4] and [13] to show that
the bound on the correlations imply that for any C > 0,

κ(C) ≥√
1 − s(1 + 2C)‖En[x•x′• − I ]‖∞,

so that κ(c̄) ≥ √
1 − [(1 + 2c̄)/U ] and κ(2c̄) ≥ √

1 − [(1 + 4c̄)/U ] under this particular design.
Step 2. In this step, we show that ‖En[x•r•]‖∞ ≤ min{ σ√

n
, cs}. First, note that for every j =

1, . . . , p, we have |En[x•j r•]| ≤
√

En[x2•j ]En[r2• ] = cs . Next, by the definition of β0 in (2.2), for

j ∈ T , we have En[x•j (f• −x′•β0)] = En[x•j r•] = 0, because β0 is a minimizer over the support
of β0. For j ∈ T c , we have that for any t ∈ R,

En[(f• − x′•β0)
2] + σ 2 s

n
≤ En[(f• − x′•β0 − tx•j )2] + σ 2 s + 1

n
.

Therefore, for any t ∈ R, we have

−σ 2/n ≤ En[(f• − x′•β0 − tx•j )2] − En[(f• − x′•β0)
2] = −2tEn[x•j (f• − x′•β0)] + t2

En[x2•j ].

Taking the minimum over t on the right-hand side at t∗ = En[x•j (f• − x′•β0)], we obtain
−σ 2/n ≤ −(En[x•j (f• − x′•β0)])2 or, equivalently, |En[x•j (f• − x′•β0)]| ≤ σ/

√
n. �
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Proof of Lemma 2. Let T̂ = support(β̂) and m̂ = |T̂ \ T |. From the optimality conditions, we
have that |2En[x•j (y• − x′•β̂)]| = λ/n for all j ∈ T̂ . Therefore, for R = (r1, . . . , rn)

′, we have√
|T̂ |λ ≤ 2

∥∥(X′(Y − Xβ̂)
)
T̂

∥∥
≤ 2

∥∥(X′(Y − R − Xβ0)
)
T̂

∥∥+ 2
∥∥(X′(R + Xβ0 − Xβ̂)

)
T̂

∥∥
≤
√

|T̂ | · n‖S‖∞ + 2n
√

φ(m̂)
(
En[(x′•β̂ − f•)2])1/2

,

using the definition of φ(m̂) and the Holder inequality,∥∥(X′(R + Xβ0 − Xβ̂)
)
T̂

∥∥ ≤ sup
‖αT c‖0≤m̂,‖α‖≤1

|α′X′(R + Xβ0 − Xβ̂)|

≤ sup
‖αT c‖0≤m̂,‖α‖≤1

‖α′X′‖‖R + Xβ0 − Xβ̂‖

= sup
‖αT c‖0≤m̂,‖α‖≤1

√|α′X′Xα|‖R + Xβ0 − Xβ̂‖

= n
√

φ(m̂)
(
En[(x′•β̂ − f•)2])1/2

.

Because λ/c ≥ n‖S‖∞, we have

(1 − 1/c)

√
|T̂ |λ ≤ 2n

√
φ(m̂)

(
En[(x′•β̂ − f•)2])1/2

. (A.1)

Moreover, because m̂ ≤ |T̂ |, and by Theorem 1 and Remark 3.1, (En[(x′•β̂ − f•)2])1/2 ≤ ‖β̂ −
β0‖2,n + cs ≤ (1 + 1

c
)

λ
√

s
nκ(c̄)

+ 3cs , we have

(1 − 1/c)
√

m̂ ≤ 2
√

φ(m̂)(1 + 1/c)
√

s/κ(c̄) + 6
√

φ(m̂)ncs/λ.

The result follows by noting that (1 − 1/c) = 2/(c̄ + 1) by definition of c̄. �

Proof of Theorem 3. By Lemma 2,
√

m̂ ≤ √
φ(m̂) · 2c̄

√
s/κ(c̄) + 3(c̄ + 1)

√
φ(m̂) · ncs/λ,

which, by letting Ln = ( 2c̄
κ(c̄)

+ 3(c̄ + 1) ncs

λ
√

s
)2, can be rewritten as

m̂ ≤ s · φ(m̂)Ln. (A.2)

Note that m̂ ≤ n by optimality conditions. Consider any M ∈ M, and suppose that m̂ > M .
Therefore, by Lemma 3 on the sublinearity of restricted sparse eigenvalues,

m̂ ≤ s ·
⌈

m̂

M

⌉
φ(M)Ln.

Thus, because �k� < 2k for any k ≥ 1, we have M < s ·2φ(M)Ln, which violates the condition of
M ∈ M. Therefore, we must have m̂ ≤ M . In turn, applying (A.2) once more with m̂ ≤ (M ∧n),
we obtain m̂ ≤ s · φ(M ∧ n)Ln. The result follows by minimizing the bound over M ∈ M. �
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A.2. Proofs for Section 4

Proof of Theorem 4. Let δ̃ := β̃ − β0. By the definition of the second-step estimator, it follows
that Q̂(β̃) ≤ Q̂(β̂) and Q̂(β̃) ≤ Q̂(β0T̂ ). Thus,

Q̂(β̃) − Q̂(β0) ≤ (
Q̂(β̂) − Q̂(β0)

)∧ (
Q̂(β0T̂ ) − Q̂(β0)

)≤ Bn ∧ Cn.

By Lemma 4 part (1), for any ε > 0 there exists a constant Kε such that with probability at least
1 − ε, |Q̂(β̃) − Q̂(β0) − ‖̃δ‖2

2,n| ≤ Aε,n‖̃δ‖2,n + 2cs ‖̃δ‖2,n, where

Aε,n := Kεσ

√(
m̂ logp + (m̂ + s) log(eμ(m̂))

)
/n.

Combining these relations, we obtain the inequality ‖̃δ‖2
2,n −Aε,n‖̃δ‖2,n −2cs ‖̃δ‖2,n ≤ Bn ∧Cn.

Solving this, we obtain the stated inequality, ‖̃δ‖2,n ≤ Aε,n + 2cs + √
(Bn)+ ∧ (Cn)+. Finally,

the bound on Bn follows from Lemma 4 part (1). The bound on Cn follows from Lemma 4
part (2). �

Proof of Lemma 4. The proof of part (1) follows from the relation∣∣Q̂(β0 + δ) − Q̂(β0) − ‖δ‖2
2,n

∣∣= |2En[ε•x′•δ] + 2En[r•x′•δ]|,
and then bounding |2En[r•x′•δ]| by 2cs‖δ‖2,n using the Cauchy–Schwarz inequality, applying
Lemma 5 on sparse control of noise to |2En[ε•x′•δ]|, where we bound

(
p
m

)
by pm and set Kε =

6
√

2 log1/2 max{e,D,1/(esε[1 − 1/e])}. The proof part (2) also follows from Lemma 5, but
applying it with s = 0, p = s (because only the components in T are modified), m = k, and
noting that we can take μ(m) with m = 0. �

Proof of Lemma 5. We divide the proof into steps.
Step 0. Note that we can restrict the supremum over ‖δ‖ = 1 because the function is homoge-

nous of degree 0.
Step 1. For each nonnegative integer m ≤ n and each set T̃ ⊂ {1, . . . , p}, with |T̃ \ T | ≤ m,

define the class of functions

GT̃ = {εix
′
iδ/‖δ‖2,n : support(δ) ⊆ T̃ ,‖δ‖ = 1}. (A.3)

Also define Fm = {GT̃ : T̃ ⊂ {1, . . . , p} : |T̃ \ T | ≤ m}. It follows that

P
(

sup
f ∈Fm

|Gn(f )| ≥ en(m,η)
)

≤
(

p

m

)
max

|T̃ \T |≤m

P
(

sup
f ∈GT̃

|Gn(f )| ≥ en(m,η)
)
. (A.4)

We apply the Samorodnitsky–Talagrand inequality (Proposition A.2.7 of van der Vaart and
Wellner [23]) to bound the right-hand side of (A.4). Let

ρ(f,g) :=
√

E[Gn(f ) − Gn(g)]2 =
√

EEn[(f − g)2]
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for f,g ∈ GT̃ . By step 2 below, the covering number of GT̃ with respect to ρ obeys

N(ε, GT̃ , ρ) ≤ (
6σμ(m)/ε

)m+s
for each 0 < ε ≤ σ, (A.5)

and σ 2(GT̃ ) := maxf ∈GT̃
E[Gn(f )]2 = σ 2. Then, by the Samorodnitsky–Talagrand inequality,

P
(

sup
f ∈GT̃

|Gn(f )| ≥ en(m,η)
)

≤
(

Dσμ(m)en(m,η)√
m + sσ 2

)m+s

�̄
(
en(m,η)/σ

)
(A.6)

for some universal constant D ≥ 1, where �̄ = 1 − � and � is the cumulative probability distri-
bution function for a standardized Gaussian random variable. For en(m,η) defined in the state-
ment of the theorem, it follows that P(supf ∈GT̃

|Gn(f )| ≥ en(m,η)) ≤ ηe−m−s/
(
p
m

)
by simple

substitution into (A.6).Then,

P
(

sup
f ∈Fm

|Gn(f )| > en(m,η),∃m ≤ n
)

≤
n∑

m=0

P
(

sup
f ∈Fm

|Gn(f )| > en(m,η)
)

≤
n∑

m=0

ηe−m−s ≤ ηe−s/(1 − 1/e),

which proves the claim.
Step 2. This step establishes (A.5). For t ∈ R

p and t̃ ∈ R
p , consider any two functions

εi

(x′
i t)

‖t‖2,n

and εi

(x′
i t̃ )

‖̃t‖2,n

in GT̃ , for a given T̃ ⊂ {1, . . . , p} : |T̃ \ T | ≤ m.

We have that√
EEn

[
ε2•
(

(x′•t)
‖t‖2,n

− (x′•̃t)
‖̃t‖2,n

)2]
≤
√

EEn

[
ε2•

(x′•(t − t̃ ))2

‖t‖2
2,n

]
+
√

EEn

[
ε2•
(

(x′•̃t)
‖t‖2,n

− (x′•̃t)
‖̃t‖2,n

)2]
.

By definition of GT̃ in (A.3), support(t) ⊆ T̃ and support(̃t) ⊆ T̃ , so that support(t − t̃ ) ⊆ T̃ ,
|T̃ \ T | ≤ m, and ‖t‖ = 1 by (A.3). Thus, by the definition of RSE(m),

EEn

[
ε2•

(x′•(t − t̃ ))2

‖t‖2
2,n

]
≤ σ 2φ(m)‖t − t̃‖2/̃κ(m)2, and

EEn

[
ε2•
(

(x′•̃t)
‖t‖2,n

− (x′•̃t)
‖̃t‖2,n

)2]
= EEn

[
ε2•

(x′•̃t)2

‖̃t‖2
2,n

( ‖̃t‖2,n − ‖t‖2,n

‖t‖2,n

)2]

= σ 2
( ‖̃t‖2,n − ‖t‖2,n

‖t‖2,n

)2

≤ σ 2‖̃t − t‖2
2,n/‖t‖2

2,n ≤ σ 2φ(m)‖̃t − t‖2/̃κ(m)2,
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so that √
EEn

[
ε2•
(

(x′•t)
‖t‖2,n

− (x′•̃t)
‖̃t‖2,n

)2]
≤ 2σ‖t − t̃‖√φ(m)/̃κ(m) = 2σμ(m)‖t − t̃‖.

Then the bound (A.5) follows from the bound of [23], page 94, N(ε, GT̃ , ρ) ≤ N(ε/R,B(0,1),

‖ · ‖) ≤ (3R/ε)m+s , with R = 2σμ(m) for any ε ≤ σ . �

A.3. Proofs for Section 5

Proof of Theorem 5. First, note that if T ⊆ T̂ , we then have Cn = 0, so that Bn ∧ Cn ≤ 1{T �⊆
T̂ }Bn.

Next, we bound Bn. Note that by the optimality of β̂ in the Lasso problem, and letting δ̂ =
β̂ − β0,

Bn := Q̂(β̂) − Q̂(β0) ≤ λ

n
(‖β0‖1 − ‖β̂‖1) ≤ λ

n
(‖̂δT ‖1 − ‖̂δT c‖1). (A.7)

If ‖̂δT c‖1 > ‖̂δT ‖1, then we have Q̂(β̂) − Q̂(β0) ≤ 0. Otherwise, if ‖̂δT c‖1 ≤ ‖̂δT ‖1, then, by
RE(1), we have

Bn := Q̂(β̂) − Q̂(β0) ≤ λ

n
‖̂δT ‖1 ≤ λ

n

√
s‖̂δ‖2,n

κ(1)
. (A.8)

The result follows by applying Theorem 1 to bound ‖̂δ‖2,n, under the condition that RE(1) holds,
along with Theorem 4.

The second claim follows from the first by using λ �
√

n logp under Condition V, the speci-
fied conditions on the penalty level. The final bound follows by applying the relation that for any
nonnegative numbers a, b, we have

√
ab ≤ (a + b)/2. �
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