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Abstract: General versions of Kalman filtering and recursive least-squares algo-
rithms are derived as instances of the sum(mary)-product algorithm on Forney-style factor
graphs.

1 Introduction

Factor graphs [3][6] are a unifying framework for a wide variety of system models, and
the generic sum(mary)-product algorithm, which works by message passing in the factor
graph, subsumes a wide variety of algorithms in coding, signal processing, and artificial
intelligence [3]. It was pointed out in [3] that Kalman filtering can also be viewed as
an instance of the sum-product algorithm, but this was explicitly demonstrated only for
the scalar case; in the present paper, we discuss the vector case. We also demonstrate
the equivalence of Kalman filtering and general recursive least-squares algorithms in this
context. (For traditional state space models, this equivalence was shown in [4]).

In [2], Forney introduced a variation of factor graphs with a number of attractive
properties. We will use these Forney graphs rather than the original factor graphs of [3].

The main result of the present paper are Tables 1 and 2, which state the message
update rules for the building blocks of the classical linear state space models. Of course,
these rules are just reformulations of the well established equations of Kalman filtering
(e.g., [1]). Nevertheless, the whole paper is devoted to explain and to prove these tables.

The paper is structured as follows. Forney-style factor graphs are introduced in Sec-
tion 2. In Section 3 some pertinent properties of Gaussian distributions are reviewed and
the equivalence of the min-sum and the sum-product algorithm for Gaussian networks
is pointed out. Kalman filtering as an instance of the sum(mary)-product algorithm is
discussed in Section 4. The proofs of the message update rules of Tables 1 and 2, as well
as some comments on these rules, are given in Section 5. Some conclusions are offered in
Section 6. There is also an appendix with some background material in linear algebra,
especially on the pseudo-inverse and on nonnegative definite matrices.

The following notation will be used. If z is a complex number, then z is its conjugate

complex. If A is a matrix or a vector, then AT is its transpose, AH �
= AT , and A# is the

1



u
fA

w

x
fB

fC

z

y

Figure 1: A Forney-style factor graph (FFG).

Moore-Penrose pseudo-inverse (see the appendix). The symbol “∝” denotes equality of
functions up to a scale factor. All vectors all column vectors.

2 Forney Graphs

A Forney-style factor graph (FFG) or “normal graph” [2] represents a factorization of a
function of several variables. For example, assume that some function f(u, w, x, y, z) can
be factored as

f(u, w, x, y, z) = fA(u, w, x)fB(x, y, z)fC(z). (1)

This factorization is expressed by the graph of Fig. 1. In general, an FFG consists of
nodes, edges, and “half edges”, where “half edges” are connected to only one node. The
rules are as follows:

• There is a node for every factor.

• There is an edge (or half edge) for every variable.

• The node representing some factor g is connected with the edge (or half edge)
representing some variable x if and only if x is an argument of g.

Implicit in these rules is the assumption that no variable appears in more than two factors.
We will see below that this condition is far less restrictive than might appear at first sight.

The factors of the factorization expressed by the FFG are also called local functions;
the overall function (i.e., the product of all local functions) is called the global function.

We will now rephrase some basic facts about factor graphs for FFGs; for more details,
see [3] and [2]. We will first assume that all variables take values in finite sets; the
modifications for continuous variables are given at the end of this section.

In probability theory, factorizations of joint probability measures are expressions of
independence. E.g., let X, Y , and Z be discrete random variables with joint probability
mass function p(x, y, z). Then X, Y, Z form a Markov chain if and only if p(x, y, z) can
be factored as

p(x, y, z) = p(x)p(y|x)p(z|y). (2)
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Figure 2: FFG of a Markov chain.
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Figure 3: A block diagram.

This factorization is shown in Fig. 2. Upon removal of the edge y, the graph falls into
two disconnected components, with x and z in different components, which expresses the
conditional independence of X and Z given Y . It is easy to see that this generalizes to
any FFG of a joint probability mass function: conditioned on the variables in any cut set
of the graph, the variables in the two resulting components are independent.

A block diagram as in Fig. 3 may also be viewed as an FFG. A function block x =
g(u, v) in the block diagram is then interpreted as representing the factor δ(x − g(u, v)),
where δ is the Kronecker delta function. When viewed as an FFG, the block diagram of
Fig. 3 thus represents the function

δ
(
x − g(u, v)

)
δ
(
y − h(x, w)

)
=

{
1, if x = g(u, v) AND y = h(x, w)
0, else.

(3)

In other words, the global function evaluates to 1 if and only if the values of all variables
are consistent with the equations of the block diagram. Note that the arrows in the block
diagram have no influence on its interpretation as an FFG.

As illustrated by these examples, an FFG can be used to express the structure of
a “system” or “model”. In this context, the domain of the global function f is called
the configuration space. A configuration is an element of the configuration space, i.e., a
particular assignment of values to all variables. A configuration ω is valid if f(ω) �= 0.

In a block diagram, we usually find also branching points as in Fig. 4 (left). In an
FFG, such branching points must be treated as factor nodes on their own, as is illustrated
in Fig. 4 (right). In doing so, there arise new variables (x1 and x2 in Fig. 4) and a new
factor

f=(x, x1, x2)
�
= δ(x − x1) δ(x − x2). (4)

Note that, in every valid configuration, the new auxiliary variables have the same value as
the original variable. By this device of variable “cloning”, it is always possible to enforce
the condition that a variable may appear in at most two factors (local functions).
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Figure 4: Branching point (left) becomes a replication node (right).

The fact that ordinary block diagrams can be viewed as FFGs is one of the advantages
of FFGs over factor graphs as defined in [3]. With this comes also the advantage of a
clear distinction between external (“visible”) variables and internal (“latent” or “state”)
variables: the former are represented by half edges, the latter by normal edges. Moreover,
the operations of dividing a system into subsystems (“tearing”) and of “zooming” into the
interior of some subsystem — both central to Willems’ system theory [7] — are naturally
expressed in an FFG (cf. Figures 5 and 6).

Another attraction of FFGs is that the sum-product algorithm [3][6] takes on a partic-
ulary simple form. Two messages are transmitted along each edge, one in each direction.
(In practice, it often happens that only a subset of all these messages is actually needed.)
Each message is, or represents, a function of the variable associated with that edge. Con-
sider a node that represents some factor f(x1, . . . , xn). The message µf→xk

out of this
node along the edge xk is the function

µf→xk
(xk) =

∑

x1

. . .
∑

xk−1

∑

xk+1

. . .
∑

xn

f(x1, . . . , xn)µx1→f (x1) · . . .

· µxk−1→f (xx−1)µxk+1→f (xk+1) · . . . · µxn→f (xn), (5)

where µxj→f is the message incoming on edge xj. In words, the message µf→xk
is the

product of f and all messages towards f along all edges except xk, summed over all
variables except xk. In practice, the update rule (5) is often modified to include a scale
factor.

The messages in the graph are computed, or iteratively recomputed, according to some
schedule. As is well known, if the graph is cycle free, the (final) message out of some half
edge representing some variable x is the marginal function

µ(x)
�
=

∑

ω: x fixed

f(ω), (6)

where the sum goes over all configurations ω with fixed x; for details see [3].
In this paper, we will be primarily interested in real or complex variables, or variables

that are real or complex vectors. In this case, the Kronecker delta in equations such as (3)
and (4) should be replaced by the Dirac delta and the summation in (5) and (6) should
be replaced by integration.
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3 Gaussian Distributions and Quadratic Cost Func-

tions

In Kalman filtering, the factors and messages are of the form

f(x) = e−q(x) (7)

with

q(x)
�
= (x − mx)

HWx(x − mx) + cx (8)

= xHWxx − 2 Re
(
xHWxmx

)
+ mH

x Wxmx + cx, (9)

where x is a real or complex vector, where Wx is a nonnegative definite n×n matrix, and
where the constant cx ∈ R amounts to a scale factor in (7) which can often be ignored.
The case where all quantities in (8) are real-valued and q(.) is a function R

n → R will be
referred to as “the real case”; the case where q(.) is a function C

n → R will be referred
to as “the complex case”.

If Wx is positive definite, (7) may be viewed as a multi-dimensional Gaussian prob-
ability density with mean mx. In the real case, the corresponding covariance matrix is
1
2
W−1

x and the appropriate scale factor is e−cx =
√

det(Wx)/πn; in the complex case,
the covariance matrix is W−1

x and the scale factor is e−cx = det(Wx)/π
n. Note that the

integral
∫ ∞
−∞ e−q(x)+cx dx depends on Wx but neither on mx nor on cx.

The sum of terms of the form (8) is again of that form (cf. the appendix), and thus the
product of terms of the form (7) is also of the form (7). Moreover, integrating a function
of the form (7) over some of the variables also preserves this form. Indeed, if q(x, y) is
the quadratic form

q(x, y)
�
=

(
(x − mx)

H, (y − my)
H

) (
W1,1 W1,2

W2,1 W2,2

) (
x − mx

y − my

)
, (10)

then, considered as a function of x with parameter y, q(x, y) is of the form (9) with
Wx = W1,1 and with both mx and cx = minx q(x) depending on y. Assuming that W1,1 is
positive definite, we then have

∫ ∞

−∞
e−q(x,y)dx = e−cx(y)

∫ ∞

−∞
e−

(
q(x,y)−cx(y)

)
dx (11)

∝ e−cx(y) (12)

= e−minx q(x,y) (13)

because the integral on the right-hand side of (11) does not depend on y.
It is often convenient to view Dirac delta functions as limits of Gaussian distributions:

in the real case as

δ(x) = lim
β→∞

√
β

(2π)n/2
e−

β
2
‖x‖2

(14)
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and in the complex case as

δ(x) = lim
β→∞

β

πn
e−β‖x‖2

. (15)

If all factors in some FFG are of the form (7), then both (5) and (6) (with summation
replaced by integration) are of the form (13) and yield results of the form (7). In this
case, all computations, and indeed the FFG itself, may be interpreted in the logarithmic
domain. The FFG then represents a “global” quadratic cost function ϕ(ω) = − log f(ω) of
the form (8) as the sum of “local” quadratic cost functions of the same form, the messages
are also quadratic cost functions of this form, and the sum-product rule (5) becomes the
min-sum rule

qf→xk
(xk) = min

x1

. . . min
xk−1

min
xk+1

. . . min
xn

(
ϕ(x1, . . . , xn) + qx1→f (x1) + . . .

+ qxk−1→f (xx−1) + qxk+1→f (xk+1) + . . . + qxn→f (xn)
)

+ c, (16)

with ϕ(x1, . . . , xn)
�
= − log f(x1, . . . , xn), qf→xk

(.)
�
= − log µf→xk

(.), qxj→f (.)
�
= − log µxj→f (.),

and where c ∈ R is a normalizing constant that corresponds to a scale factor in (5) and
may be chosen freely. The sum-product algorithm thus becomes the min-sum algorithm
[3]; if the graph has no cycles, the final message q(x) out of some half edge x is

q(x) = min
ω: x fixed

ϕ(ω) + const. (17)

In other words, the marginalization (6) is equivalent to the least-squares problem (17)
and the sum-product algorithm becomes the min-sum algorithm, which, in this case, is a
general least-squares algorithm.

If the graph has cycles, the min-sum algorithm may fail to converge; however, if it
converges, Weiss and Freeman [5] have shown that the mean vector of the message q(x) is
correct, i.e., it agrees with the mean vector of the quadratic form on the right-hand side
of (17).

4 Least Squares and Kalman-Filtering on an FFG

Kalman filtering may be viewed as the sum-product algorithm applied to the state space
model of Fig. 5 with composite nodes as in Fig. 6:

x[k] = Ax[k − 1] + Bu[k] (18)

y[k] = Cx[k] + w[k], (19)

where for k ∈ Z, u[k], w[k], x[k], and y[k] are real or complex vectors and where A, B,
and C are real or complex matrices of appropriate dimensions.

In the traditional setup, it is assumed that y[.] is observed and that both u[.] and w[.]
are white Gaussian noise. In its most narrow sense, Kalman filtering is then only the
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Figure 7: Use of composite-block update rules of Table 2.
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1

δ(x − y)δ(x − z)

=x
�

z
�

y �

mz =
(
Wx + Wy

)#
(Wxmx + Wymy)

Wz = Wx + Wy

Vz = Vx

(
Vx + Vy

)#
Vy

2

δ(x + y + z = 0)

+�
x

� �
z

�

�y �

mz = −mx − my

Vz = Vx + Vy

Wz = Wx

(
Wx + Wy

)#
Wy

3

δ(y − Ax)

A�
x

� �
y

�

my = Amx

Vy = AVxA
H

Problem with Wy if A has not full row rank!

4

δ(x − Ay)

A�
x

� �
y

�

my =
(
AHWxA

)#
AHWxmx

Wy = AHWxA

If A has full row rank:

my = AH
(
AAH

)−1
mx

Table 1: Update rules for messages consisting of mean vector m and covariance matrix V
or W = V −1.
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5

=x
�

z
�

�
w �

A

�y �

mz = mx + VxA
HG (my − Amx)

Vz = Vx − VxA
HGAVx

with G
�
=

(
Vy + AVxA

H
)−1

6

+�
x

� �
z

�

�w �

A

�
y �

mz = −mx − Amy

Wz = Wx − WxAHAHWx

with H
�
=

(
Wy + AHWxA

)−1

Table 2: Update rules for composite blocks.

forward sum-product recursion though the graph of Fig. 5 (cf. Fig. 7 left) and yields the a
posteriori probability distribution of the state x[k] given the observation sequence y[.] up
to time k. By computing also the backwards messages (cf. Fig. 7 right), the a posteriori
probability of all quantities given the whole observation sequence y[.] may be obtained.

More generally, Kalman filtering amounts to the sum-product algorithm on any FFG
(or part of an FFG) that consists of the linear building blocks listed in Table 1. As
discussed in Section 3, any message along some edge x represents a quadratic cost function
of the form (8) or, equivalently, a function of the form (7); for the actual computation,
each such message consists of a mean vector mx and a nonnegative definite “cost” matrix
Wx or its inverse Vx = W−1

x . As pointed out in Section 3, Kalman filtering may thus be
viewed as, and is equivalent to, a general least-squares algorithm.

The rules for the computation of such messages are given in Table 1. As only one of
the two messages along any edge, say x, is considered, the corresponding mean vectors
and matrices are simple denoted mx, Wx, etc.. The derivation of these rules from the
min-sum update rule (16) is given in the next section.

In general, we allow the matrices W or V to be nonnegative definite, which allows to
express certainty in V and complete ignorance in W . However, whenever the inversion
of such a matrix is required, it had better be positive definite; in practice, this may be
achieved by the innocent device of adding a small multiple of an identity matrix.

The direct application of the update rules in Table 1 may lead to frequent matrix
inversions. A key observation in Kalman filtering is that the inversion of large matrices
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can often be avoided. In the FFG, such simplifications may be achieved by using the
update rules for the composite blocks given in Table 2. E.g., the vectors u[k] and z[k]
in Fig. 5 have usually much smaller dimensions than the state vector x[.]; in fact, they
are often scalars. By working with composite blocks as in Fig. 7, the forward recursion
(left in Fig. 7) using the covariance matrix V = W−1 then requires no inversion of a large
matrix and the backward recursion (right in Fig. 7) using the cost matrix W requires only
one such inversion for each discrete time index.

5 Derivation of Update Rules

We now derive the update rules of Tables 1 and 2 from the min-sum rule (16). As only
one of the two messages along any edge, say x, is considered, the corresponding quadratic
cost function will be denoted simply by qx(x) = (x−mx)

HWx(x−mx). Frequent use will
be made of facts stated in the appendix.

5.1 Equality Constraint

Rule 1 of Table 1 is proved as follows. Assume that both Wx and Wy are nonnegative
definite. According to the min-sum rule (16), we have for β → ∞

qz(z) = min
x

min
y

(
qx(x) + qy(y) + β

(
‖x − y‖2 + ‖x − z‖2

) )
(20)

= qx(z) + qy(z) (21)

= (z − mx)
HWx(z − mx) + (z − my)

HWy(z − my). (22)

This is of the form (95) with x = z, A = Wx, B = Wy, a = mx, and b = my. Thus

qz(z) = (z − mz)
HWz(z − mz) + const (23)

with

Wz = Wx + Wy (24)

mz = (Wx + Wy)
# (Wxmx + Wymy). (25)

5.2 Sum Constraint

Rule 2 of Table 1 is proved as follows. The rule Vz = Vx + Vy for the covariance matrices
follows directly from elementary probability theory. An alternative derivation from the
min-sum rule goes as follows. Assume that both Wx and Wy are nonnegative definite.
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According to the min-sum rule (16), we have for β → ∞

qz(z) = min
x

min
y

(
qx(x) + qy(y) + β‖x + y + z‖2

)
(26)

= min
x,y: x+y+z=0

(
qx(x) + qy(y)

)
(27)

= min
x,y: x+y+z=0

(
(x − mx)

HWx(x − mx) + (y − my)
HWy(y − my)

)

(28)

Substituting x + y = −z and x − y = s, i.e., 2x = s − z and 2y = −(s + z) yields

qz(z) = min
x,y: x+y+z=0

1

4

(
(2x − 2mx)

HWx(2x − 2mx) +

(2y − 2my)
HWy(2y − 2my)

)
(29)

= min
s

1

4

(
(s − z − 2mx)

HWx(s − z − 2mx) +

(s + z + 2my)
HWy(s + z + 2my)

)
(30)

This is of the form (95) with x = s, A = Wx, B = Wy, a = z + 2mx, and b = −(z + 2my).
The minimum of (95) over x is c as in (107). With a− b = 2z + 2mx + 2my, we thus have

qz(z) = (z + mx + my)
HWx(Wx + Wy)

#Wy(z + mx + my). (31)

If both Wx and Wy are invertible, then Wx + Wy is invertible and (87) implies Wx(Wx +
Wy)

−1Wy = (W−1
x + W−1

y )−1.

5.3 Matrix Multiplication: Forward Message

Rule 3 of Table 1 is proved as follows. The rule Vy = AVxA
H for the covariance matrices

follows directly from elementary probability theory. An alternative derivation from the
min-sum rule goes as follows. Assume that Wx is nonnegative definite. According to the
min-sum rule (16), we have for β → ∞

qy(y) = min
x

(
qx(x) + β‖y − Ax‖2

)
(32)

Clearly, if A does not have full row rank (i.e., if the rank of A is less than the number
of rows), any vector y that is not in span(A) should be assigned infinite cost; the term
β‖y − Ax‖2 cannot be made to vanish in this case. Noting that (I − AA#)y is the
projection of y onto span(A)⊥, this case can be handled in practice by including in Wy a
penalty term β(I − AA#)H(I − AA#) where β is some large positive real number.

Having settled that, we now consider the computation of qy(y) for those y that are in
span(A). With this restriction in mind, we have

qy(y) = min
x: Ax=y

qx(x) (33)

= min
x: Ax=y

(x − mx)
HWx(x − mx) (34)
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In general, this minimization is not easily handled. We therefore focus on two important
special cases.
Case 1: If A is invertible, (34) becomes

qx(A
−1y) = (A−1y − mx)

HWx(A
−1y − mx) (35)

= (y − Amx)
H(A−1)HWxA

−1(y − Amx). (36)

Case 2: If Wx is invertible, it is positive definite, and so is its inverse Vx = W−1
x . We

then can write Vx = BBH for some matrix B that is itself invertible. Thus

qx(x) = (x − mx)
HWx(x − mx) (37)

= (x − mx)
H(B−1)HB−1(x − mx) (38)

= (B−1x − B−1mx)
H(B−1x − B−1mx). (39)

With w
�
= B−1x − B−1mx, we obtain

min
x: Ax=y

qx(x) = min
w: A(Bw+mx)=y

‖w‖2 (40)

= min
w: ABw=y−Amx

‖w‖2 (41)

= ‖(AB)#(y − Amx)‖2 (42)

=
(
(AB)#(y − Amx)

)H
(AB)# (y − Amx) (43)

= (y − Amx)
H

(
(AB)#

)H
(AB)# (y − Amx) (44)

= (y − Amx)
H(ABBHAH)# (y − Amx) (45)

= (y − Amx)
H(AW−1AH)# (y − Amx), (46)

where the step to (45) uses (81).

5.4 Matrix Multiplication: Backward Message

Rule 4 of Table 1 is proved as follows. Assume that Wx is nonnegative definite. According
to the min-sum rule (16), we have for β → ∞

qy(y) = min
x

(
qx(x) + β‖x − Ay‖2

)
(47)

= qx(Ay) (48)

= (Ay − mx)
HWx(Ay − mx) (49)

= (Ay)HWxAy − 2 Re(yHAHWxmx) + mH
x Wmx (50)

= yHAHWxAy − 2 Re
(
yH(AHWxA)(AHWxA)#AHWxmx

)
+

mH
x Wxmx (51)

where the equality AHWx = (AHWxA)(AHWxA)#AHWx used in the last step follows
from (76) and Property 9 of nonnegative definite matrices.
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If the rank of A equals the number of rows, then AA# = I and

AHWx = AHWxAA# (52)

=
(
AHWxA

)
AH

(
AAH

)−1
. (53)

5.5 Composite Blocks: Rule 5

Rule 5 of Table 2 is the combination of rules 1 and 4 of Table 1. We assume that both
Vx and Vy (and thus Wx and Wy) are positive definite.

Wz = Wx + Ww (54)

= Wx + AHWyA (55)

With the matrix inversion lemma (89), we obtain

Vz = W−1
z (56)

= Vx − VxA
H

(
Vy + AVxA

H
)−1

AVx. (57)

According to the rules 1 and 4, we further have

mz = (Wx + Ww)−1 (Wxmx + Wwmw) (58)

= Vz

(
Wxmx + AHWyA

(
AHWyA

)#
AHWymy

)
(59)

= Vz

(
V −1

x mx + AHV −1
y my

)
. (60)

Inserting (57) yields

mz =
(
I − VxA

H
(
Vy + AVxA

H
)−1

A
) (

mx + VxA
HV −1

y my

)
(61)

= mx + VxA
HV −1

y my −
VxA

H
(
Vy + AVxA

H
)−1

A
(
mx + VxA

HV −1
y my

)
(62)

= mx + VxA
H

(
Vy + AVxA

H
)−1

(63)

·
((

Vy + AVxA
H

)
V −1

y my −
(
Amx + AVxA

HV −1
y my

))
(64)

= mx + VxA
H

(
Vy + AVxA

H
)−1

(my − Amx). (65)

5.6 Composite Blocks: Rule 6

Rule 6 of Table 2 is the combination of rules 2 and 3 of Table 1. We assume that both
Wx and Wy are positive definite.

Vz = Vx + Vw (66)

= Vx + AVyA
H (67)
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With the matrix inversion lemma (89), we obtain

Wz = V −1
z (68)

= Wx − WxA
(
Wy + AHWxA

)−1
AHWx. (69)

According to the rules 2 and 3, we further have

mz = −mx − mw (70)

= −mx − Amy. (71)

6 Conclusions

Forney-style factor graphs (“normal graphs”) are a natural extension of block diagrams
that allows for both probabilistic and behavioral modelling. Kalman filtering and recur-
sive least-squares algorithms may both be viewed as message passing in the graph that
represents the underlying state space model. In this paper, we have discussed the corre-
sponding message update rules for the building blocks of such models. In particular, we
have shown in detail how these rules can be derived from the update rules of the general
min-sum or sum-product algorithm.

Recursive least squares and Kalman-filtering are important tools in problems like
combined decoding, equalization, channel estimation, etc. The open-system spirit of
Forney-style factor graphs makes it easy to use these tools for suitable subtasks of an
overall iterative algorithm to solve such problems.

In 1967, Dave Forney introduced trellis diagrams, which have long since become deeply
ingrained in the mind of every communications engineer. This writer finds Forney-style
factor graphs equally helpful and wishes them an equally happy future.
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Appendix

A Singular Value Decomposition and Pseudo-Inverse

A square complex matrix A is unitary if AAH = I, i.e., A−1 = AH . Any matrix A (not
necessarily square) can be written as

A = USV H , (72)

where U and V are unitary matrices, and where the matrix S (not necessarily square) is
real and diagonal with positive entries only:

S =

(
S† 0
0 0

)
(73)

with S† �
= diag(σ1, . . . , σ�), σk > 0, k = 1 . . . �. The decomposition (72) is called the

singular value decomposition of A.
The Moore-Penrose generalized inverse or pseudo-inverse of a complex matrix A (not

necessarily square) with singular value decomposition (72) is the matrix

A# �
= V S#UH (74)

with

S# �
=

(
diag(σ−1

1 , . . . , σ−1
� ) 0

0 0

)
. (75)

Note that S# has the same dimensions as SH and A# has the same dimensions as AH . It
is easy to see that

AA#A = A. (76)

and

A#AA# = A#. (77)

Proof: AA#A = USV HV S#UHUSV H = USS#SV H = USV H = A.
A#AA# = V S#UHUSV HV S#UH = V S#SS#UH = V S#UH = A#. �

It is also easy to see that

A#x = 0 ⇐⇒ xHA = 0. (78)

Proof: xHA = 0 ⇔ xHUS = 0 ⇔ S#UHx = 0 ⇔ A#x = 0. �
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It follows from (76) and (78) that AA# is the projection onto span(A), the space
spanned by the columns of A.

If the rank of A equals the number of rows, then AA# = I and

A# = AH(AAH)−1; (79)

if the rank of A equals the number of columns, then A#A = I and

A# = (AHA)−1AH . (80)

Proof: We prove only (79); the proof of (80) is analogous. Under the stated assump-
tions, we have
AH(AAH)−1 = V SHUH(USV HV SHUH)−1 = V SHUH(USSHUH)−1 = V SHUHU(SSH)−1UH =
V SH(SSH)−1UH = V S#UH = A#. �

Another useful formula is

(AAH)# = (A#)HA#, (81)

which follows from
(AAH)# = (USV (USV )H)# = (USV V HSHUH)# = (USSHUH)# = U(SSH)#UH =
U(S#)HS#UH = U(S#)HV HV S#UH = (A#)HA#.

B Nonnegative Definite Matrices

A square complex matrix A is Hermitian if AH = A. If A is Hermitian, then xHAx =
(xHAx)H = xHAx is real for any vector x. A Hermitian matrix A is positive definite
(nonnegative definite) if xHAx > 0 (xHAx ≥ 0) for all complex vectors x �= 0. Some basic
facts:

1. If A is positive definite (nonnegative definite), then so is aA for any real number
a > 0.

2. If A and B are nonnegative definite matrices of the same dimensions, the A + B is
also nonnegative definite. If, in addition, A (or B) is positive definite, then A + B
is positive definite.

3. If A is positive definite, then A is invertible and A−1 is also positive definite. (See
also Property 10.)

4. The unit matrix I (of any dimension) is positive definite.

5. If B is nonnegative definite, then so is ABAH for any matrix A (of suitable dimen-
sions, not necessarily square). In particular, AAH is nonnegative definite.
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6. If A is nonnegative definite, then it has a singular value decomposition A = USUH

with unitary U and S = diag(σ1, . . . , σn). A = USUH is positive definite if and
only if all singular values σk, k = 1 . . . n, are nonzero (i.e., positive).

7. If A is nonnegative definite, then xHAx = 0 implies Ax = 0.

8. If A and B are nonnegative definite matrices of the same dimensions, then we have
span(A+B) = span(A, B). (Here span(W ) denotes the linear space spanned by the
columns of W ; span(A, B) is the space spanned by the columns of A and B.)

9. If B is nonnegative definite, then for any matrix A (of suitable dimensions, not
necessarily square), span(AHBA) = span(AHB).

10. If A is nonnegative definite, then so is its pseudo-inverse A#. Moreover, AA# =
A#A.

Proof:

1. xH(aA)x = a(xHAx).

2. xH(A + B)x = xHAx + xHBx.

3. Let A be positive definite. Clearly, A is invertible if and only if Ax = 0 implies x = 0.
But Ax = 0 implies xHAx = 0, which in turn implies x = 0; thus A is invertible.
It remains to show that A−1 is also positive definite. Assume xHA−1x = 0. With

y
�
= A−1x, we then have xHA−1x = yHAy = 0. Thus y = 0, which implies x = 0.

4. xHIx = xHx = ‖x‖2.

5. xH(ABAH)x = (AHx)HB(AHx) ≥ 0.

7. Let A = USUH be the singular value decomposition of A according to Property 6

and let y
�
= UHx. Then xHAx = (UHx)HS(UHx) = yHSy =

∑n
k=1 σk|yk|2. Now

assume xHAx = 0. Since all σk are real and nonnegative, this implies σkyk = 0,
k = 1 . . . n, and thus Sy = 0. We therefore have Ax = USUHx = USy = 0.

8. Clearly, we always have span(A + B) ⊆ span(A, B). We prove equality by showing
that the orthogonal complements of these spaces are equal. Some vector x is orthog-
onal to span(A + B) if and only if xH(A + B) = 0, and orthogonal to span(A, B)
if and only if xHA = xHB = 0. But with Property 7, we have xH(A + B) = 0
⇐⇒ xH(A + B)x = 0 ⇐⇒ xHAx + xHBx = 0 ⇐⇒ xHAx = xHBx = 0 ⇐⇒
xHA = xHB = 0.

9. Clearly, we always have span(AHBA) ⊆ span(AHB). As above, we prove equality
by showing that the orthogonal complements of these spaces are equal. This is
established by the following chain of equivalent conditions, where Property 7 is used
twice: x ∈ span(AHB)⊥ ⇐⇒ xHAHB = 0 ⇐⇒ (Ax)HB = 0 ⇐⇒ (Ax)HB(Ax) = 0
⇐⇒ xH(AHBA)x = 0 ⇐⇒ xHAHBA = 0 ⇐⇒ x ∈ span(AHBA)⊥.
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10. Let A = USUH be the singular value decomposition of A according to Property 6.
Then A# = US#UH and xHA#x = xHUS#UHx = (UHx)HS#(UHx) ≥ 0. More-
over, AA# = USUHUS#UH = USS#UH = US#SUH = A#A.

�

If A and B are nonnegative definite matrices of the same dimensions, we also have

(A + B)(A + B)#A = A (82)

= A(A + B)#(A + B) (83)

Proof: The two equalities are obtained from each other by Hermitian transposition;
it thus suffices to prove one of them. Now (76) implies (A + B)(A + B)#x = x for any
vector x ∈ span(A+B). But according to property 8 above, span(A+B) = span(A, B) ⊇
span(A). Thus (A + B)(A + B)#x = x holds for any vector x ∈ span(A), which implies
(82). �

From (83) follows A(A + B)#A + A(A + B)#B = A and thus

A(A + B)#B = A − A(A + B)#A; (84)

from (82) follows A(A + B)#A + B(A + B)#A = A and thus

B(A + B)#A = A − A(A + B)#A. (85)

In particular, A(A + B)#B = B(A + B)#A =
(
A(A + B)#B

)H
.

If both A and B are invertible, then (A + B) is invertible and

A(A + B)−1B =
(
B−1(A + B)A−1

)−1
(86)

=
(
A−1 + B−1

)−1
. (87)

Finally, we have the

Matrix Inversion Lemma. Let B and D be positive definite matrices. If, for some
matrices A and C, we have

A = B−1 + CD−1CH , (88)

then

A−1 = B − BC(D + CHBC)−1CHB. (89)
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Proof:

(
B−1 + CD−1CH

) (
B − BC

(
D + CHBC

)−1
CHB

)
(90)

= I + CD−1CHB −
(
B−1 + CD−1CH

)
BC

(
D + CHBC

)−1
CHB

(91)

= I + CD−1CHB −
(
C + CD−1CHBC

) (
D + CHBC

)−1
CHB

(92)

= I + CD−1CHB − CD−1
(
D + CHBC

) (
D + CHBC

)−1
CHB

(93)

= I. (94)

�

C Sum of Quadratic Forms

Let both A and B be nonnegative definite matrices (which implies that they are Hermi-
tian). Using (82) in the step to (98), we have

(x − a)HA(x − a) + (x − b)HB(x − b) (95)

= xHAx − 2 Re(xHAa) + aHAa + xHBx − 2 Re(xHBb) + bHBb

(96)

= xH(A + B)x − 2 Re
(
xH(Aa + Bb)

)
+ aHAa + bHBb (97)

= xH(A + B)x − 2 Re
(
xH(A + B)(A + B)#(Aa + Bb)

)
+

aHAa + bHBb (98)

= xHWx − 2 Re(xHWm) + mHWm + c (99)

with

W = A + B (100)

m = (A + B)#(Aa + Bb) (101)
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and the scalar

c = aHAa + bHBb − mHWm (102)

= aHAa + bHBb − (Aa + Bb)H(A + B)#(A + B)(A + B)#(Aa + Bb)

(103)

= aHAa + bHBb − (aHA + bHB)(A + B)#(Aa + Bb) (104)

= aH
(
A − A(A + B)#A

)
a − aHA(A + B)#Bb +

bH
(
B − B(A + B)#B

)
b − bHB(A + B)#Aa (105)

= aHA(A + B)#Ba − aHA(A + B)#Bb +

bHB(A + B)#Ab − bHB(A + B)#Aa (106)

= (a − b)HA(A + B)#B(a − b), (107)

where the step to (106) follows from (84).
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