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Abstract In this paper, we present a new and automatic

node projection algorithm to generate hexahedral meshes

in extrusion geometries. It is designed to preserve the shape

of the cap surfaces in the inner layers of a sweeping mesh.

The algorithm is based on least-squares approximation of

affine mappings. We report that the functionals that have

been traditionally used to compute the affine mapping

generate four undesired effects on the inner layers of nodes.

Namely, the flattening, skewing, offset scaling, and flipping

of the inner layer meshes. To overcome these drawbacks

we first analyze several properties of a new functional that

depends on two vector parameters. Second, we introduce

the concept of the pseudo-area and pseudo-normal vectors

defined by a loop of nodes. In addition, we prove several

geometrical properties of these vectors. Third, based on the

properties of the new functional and on the definition of the

pseudo-normal vector, we detail a new projection algo-

rithm that automatically selects the functional vector

parameters. The aim of this paper is to provide the

implementation details to developers, although we also

present the background of the algorithm. Finally, several

mesh examples are discussed to assess the properties of the

proposed algorithm.

Keywords Finite element method � Mesh generation �
Hexahedral elements � Sweep � Node projection �

Affine mapping

1 Introduction

Several fast and robust algorithms have been developed to

generate unstructured tetrahedral meshes [1, 2]. However,

fully automatic unstructured hexahedral mesh generation

algorithms are still not available. Therefore, special atten-

tion has been focused on existing algorithms that decompose

the entire geometry into several simpler pieces that can be

considered as union of one-to-one extrusion volumes.

Sweeping is one of the most robust and efficient algorithms

to mesh these simpler volumes with hexahedral elements.

Several algorithms have been devised to generate hexahe-

dral meshes by projecting the cap surfaces along the sweep

path [3–6]. In all of them the crucial step is the placement of

the inner nodes. From the computational point of view,

sweepmethods based on a least-squares approximation of an

affine mapping are the fastest alternative to compute these

projections [7]. Several functionals have been introduced to

perform the least-squares approximation, see Sect. 2. In

spite of their computational efficiency (both in terms of CPU

time and memory), these methods present several draw-

backs. For instance, the minimization of these functionals

may lead to a set of normal equations with a singular system

matrix for very usual geometrical configurations. In addi-

tion, the obtained mesh may present several undesired fea-

tures such as flattening and skewness, see [8] for details.

In order to overcome these shortcomings, in reference

[8] we introduced a new functional that depends on two

vector parameters that can be selected by the user. How-

ever, only a feasible selection of these parameters, based on
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our experience, was provided. In this paper we first prove

the relationship between the optimal solution of the clas-

sical functional and the optimal solution of the new func-

tional proposed in [8]. In addition, we propose a definition

of a measure of the normal vector to a given loop of nodes

that we denote by pseudo-normal. Based on the previous

relationship and the definition of the pseudo-normal, we

prove and detail a new algorithm that automatically selects

the functional parameters. These parameters are selected in

order to preserve the shape of the inner part of projected

meshes, i.e. offset data. It is important to point out that the

geometrical cases that lead to a set of normal equations

with a singular system matrix are identified from the sin-

gular value decomposition (SVD) of the optimal solution

of the classical functional. Moreover, to increase the

computational efficiency of the proposed algorithm, the

minimization of the new functional adequately reuses

the optimal solution of the classical functional. Finally, we

present two simple examples that show the robustness and

the reliability of the proposed algorithm.

2 Problem statement and functional definitions

Let X ¼ fxigi¼1;...;m � R
n be a set of source points, and

Y ¼ fyigi¼1;...;m � R
n a set of target points with m C n. In a

sweep application fxigi¼1;...;m are the nodes that belong to

the boundary of the projected layer (where the initial layer

is the source surface mesh). Similarly, fyigi¼1;...;m are the

nodes that belong to the boundary of the target layer. Our

goal is to find a mapping / : R
n ! R

n such that

yi ¼ /ðxiÞ; i ¼ 1; . . .;m: ð1Þ

We approximate / by an affine mapping u from R
n

to R
n;

uðxÞ ¼ Aðx� cXÞ þ cY ; ð2Þ

where

cX :¼
1

m

Xm

i¼1

xi and cY :¼
1

m

Xm

i¼1

yi

are the geometrical centers of the sets X and Y,

respectively. The affine mapping u is computed by

minimizing the functional

FðAÞ :¼
Xm

i¼1

yi � cY � Aðxi � cXÞ
�� ��2

¼
Xm

i¼1

�yi � A�xi
�� ��2; ð3Þ

where x ¼ x� cx and y ¼ y� cY ; see details in [5, 8]. The

minimization of functional F is equivalent to imposing the

following m constraints

A xi � cX
� �

¼ yi � cY ; i ¼ 1; . . .;m; ð4Þ

being the unknowns the coefficients of the n 9 n matrix

A ¼

a1;1 � � � a1;n

.

.

.
.
.
.

an;1 � � � an;n

0
B@

1
CA:

These constraints can be expressed in matrix form as

AX ¼ Y; ð5Þ

where

X :¼

x11 � cX1 . . . xm1 � cX1

.

.

.
.
.
.

x1n � cXn . . . xmn � cXn

0
B@

1
CA

and

Y :¼

y11 � cY1 . . . ym1 � cY1

.

.

.
.
.
.

y1n � cYn . . . ymn � cYn

0
B@

1
CA:

Therefore, the minimization of F is equivalent to

solving,

X
T
AT ¼ Y

T
: ð6Þ

However, meshes generated by minimizing functional

(3) may present three main problems that are illustrated in

Fig. 1:

– Flattening. Given a non-planar mesh the projection

algorithm generates a planar mesh in the following two

conditions:

– If a non-planar mesh with planar boundary, see

Fig. 1a, is projected to another loop of nodes

(planar or not), then the minimization of functional

(3) leads to a set of normal equations with singular

system matrix, see [8]. In practice, the singular

value decomposition is used to solve the set of

normal equations. In this case the inner part of the

projected mesh will be planar. Hence, the shape of

the source surface mesh will be lost.

– If a non-planar mesh is projected to an inner layer

with a planar boundary by minimizing (3), see

Fig. 1b, then the projected mesh will always be

planar, see [8].

– Flipping. If a loop of nodes is curved towards one

direction of the sweep path and it is projected to

another loop curved in the opposite direction, see

Fig. 1c, then the solution of the minimization of (3)

projects offset data inversely to the expected orienta-

tion. This may lead to tangled meshes or to distorted

hexahedral elements.



– Offset scaling. Figure 1d shows a curved loop that is

projected to another loop that is less curved in the same

direction. In this case offset data is proportionally

scaled. This increment in the scale of offset data may

also lead to distorted hexahedral meshes.

It is important to point out that these geometrical con-

figurations are extremely common in CAD models. We

will use the term hyperplanar to denote a linear variety of

dimension n - 1 (a plane for n = 3 and a straight line for

n = 2). In particular, given a hyperplanar set of points, X,

we define the homogeneous hyperplane of X as the sub-

space of vectors

H ¼ v 2 R
nj\nX; v[ ¼ 0

� �
; ð7Þ

where nX 2 R
n is a unitary normal vector to X.

To solve the previous drawbacks, Knupp introduced

another change of coordinates: x ¼ x� cX þ cY � cX and

y ¼ y� cX ; see [5, 8] for details. Moreover, using these

new coordinates the following functional was also defined

in [5]

GðAÞ :¼
Xm

i¼1

yi � cX � Aðxi � cX þ cY � cXÞ
�� ��2

¼
Xm

i¼1

y
i
� Ax

i
���

���
2

: ð8Þ

Therefore, we are looking for a linear mapping A such

that it approximately transforms, in the least-squares sense,

X ¼ fx
i
gi¼1;...;m to Y ¼ fy

i
gi¼1;...;m:

However, functional (8) also presents two important

shortcomings:

– If the set of source points, X, is hyperplanar and cY �

cX 2 H; then the minimization of functional G leads to

a set of normal equations with singular system matrix,

see [8].

– Skewing. If a non-planar surface mesh with planar

boundary is projected to an inner layer which is non-

parallel to the boundary of the source surface, see

Fig. 2, then the projected nodes do not preserve the

shape of the original surface mesh and a skewing effect

is introduced, see [8] for details.

There are two main strategies to project meshes using

the previous functionals. The first one always projects from

the cap surfaces mesh to inner layers. The second one

projects, starting from the cap surfaces, from one layer to

the next one in an advancing front manner. Note that the

previous flattening, flipping, offset scaling and skewing

effects do not depend on the strategy used to project

meshes. However, for particular geometrical configurations

some of them can be magnified if the first option is used.

(a)

(b)

(c)

(d)

Fig. 1 Graphical representation of the undesired effects. a A non-

planar mesh with planar boundary is projected to a loop. A planar

mesh is obtained; b a non-planar mesh is projected to a planar loop. A

planar mesh is also obtained; c a non-planar loop is projected to

another non-planar loop curved on the opposite direction. Offset data

direction is inverted; and d a non-planar loop is projected to another

non-planar loop. Offset data length is scaled



In order to overcome the drawbacks arising from the

minimization of functionals F and G, we introduced the

following functional, see [8]

HðA; uX; uYÞ :¼
Xm

i¼1

yi � cY � Aðxi � cXÞ
�� ��2

þ
Xm

i¼1

uY � AuX
�� ��2; ð9Þ

where u
X and u

Y belong to R
n: It is important to point out

that vectors uX and uY in (9) can be properly selected in

order to obtain several desired properties of functional H.

It has been proved that if the set of source points is

hyperplanar it is always possible to select a vector uX such

that the minimization of H leads to a set of normal equa-

tions with a full rank matrix, see [8]. However, given any

arbitrary geometry, no algorithm has already been estab-

lished to properly define vectors uX and uY in order to

preserve offset data of projected meshes. One of the goals

of the present paper is to determine how to select vectors

uX and uY to define an automatic and robust algorithm to

sweep meshes in a one-to-one volume.

3 Analysis of functional H

In this section, we present new properties of functional H

that are of major importance to deduce the general node

projection algorithm. First, we prove four lemmas that will

allow us relating the solutions of the minimization of

functionals F and H.

Lemma 1 If X is a hyperplanar set of points and uX 62 H;

then R
n ¼ spanðuXÞ �H:

Proof In this case, the homogeneous hyperplane defined

by X is a subspace of Rn with dimension equal to n - 1.

Since uX 62 H we have that span ðuXÞ \H ¼ f0g: Thus,

R
n ¼ spanðuXÞ �H: h

Lemma 2 Let X be a hyperplanar set of points. Assume

that uX 62 H; uY 2 R
n; and A 2 LðRnÞ are given. Then,

there exists a mapping H½A; uX ; uY � : Rn ! R
n such that:

(i) H A; uX ; uY½ � 2 LðRnÞ

(ii) H A; uX; uY½ �ðuXÞ ¼ uY

(iii) H A; uX ; uY½ �ðvHÞ ¼ AvH; 8vH 2 H:

Proof Given v 2 R
n; Lemma 1 states that R

n can be

represented as the direct sum of the subspaces span(uX) and

H: Therefore, for every v 2 R
n there exist vH 2 H and

k 2 R such that

v ¼ vH þ kuX: ð10Þ

Hence, we define the image of v 2 R
n by H A; uX; uY½ �

as

H A; uX ; uY
� �

ðvÞ :¼ AvH þ kuY : ð11Þ

It is straightforward to prove thatH A; uX; uY½ � defined in
such a way is linear, and that it verifies properties (ii) and

(iii). h

Lemma 2 is the first key issue of the proposed algo-

rithm. To illustrate its application in practical situations,

consider that the set of points X define a planar loop of

nodes, see Fig. 3. Moreover, assume that the shape of the

inner part is non-planar. Let A be a numerical solution of

the minimization of functional F. Since the loop of nodes X

is planar, then the linear mapping A will introduce the

flattening effect. Thus, it maps all vectors that do not

belong to plane H to the image of this plane by A.

Therefore, the shape of the inner part of the layer delimited

by the loop of nodes X is lost. Under these conditions,

Lemma 2 ensures that using the linear mapping H we are

able to preserve the shape of the inner layer (i.e. the offset

data). Note that property (ii) of Lemma 2 states that the

linear mapping H maps parallel vectors to uX (recall that

vector uX 62 H) into a prescribed direction (selected by

vector uY). In addition, property (iii) of Lemma 2 ensures

that any vector that belongs to the plane H is mapped

according to the linear mapping A. In practice, we will

determine this matrix A by minimizing functional F, as we

will see in Proposition 1.

Lemma 3 Let X be a hyperplanar set of points, and

assume that uX 62 H and uY 2 R
n: Then,

F H A; uX ; uY
� �� �

¼ FðAÞ:

Proof Since X is hyperplanar, xi � cX 2 H; for i ¼
1; . . .;m: Therefore, by the third property of Lemma 2,

H A; uX ; uY½ �ðxi � cXÞ ¼ Aðxi � cXÞ; for i ¼ 1; . . .;m:

Finally, according to the definition of the functional F

Skewness
angle

Desired
projection

Fig. 2 A non-planar mesh is projected to a non-parallel loop. A

skewed mesh is obtained. The desired profile is depicted with a dotted

curve



F H A; uX; uY
� �� �

¼
Xm

i¼1

yi � cY �H A; uX ; uY
� �

ðxi � cXÞ
�� ��2

¼
Xm

i¼1

yi � cY � A xi � cX
� ��� ��2¼ FðAÞ:

h

Lemma 4 Let X be a hyperplanar set of points, and

assume that uX 62 H and uY 2 R
n: Then,

H H A; uX ; uY
� �

; uX; uY
� �

¼ F H A; uX; uY
� �� �

Proof This result follows from the definitions of

functionals F and H, and Lemma 2. h

Proposition 1 Let X be a hyperplanar set of points, and

assume that uX 62 H and uY 2 R
n: If AF 2 LðRnÞ and

AH 2 LðRnÞ are such that

FðAFÞ ¼ min
A2LðRnÞ

FðAÞ;

HðAH
; uX; uYÞ ¼ min

A2LðRnÞ
HðA; uX; uYÞ;

then H AF; uX; uY
� �

¼ AH :

Proof We have already proved, see details in [8], that the

minimization of functional H is equivalent to solving n

uncoupled overdetermined linear systems. Thus, the

minimization of functional H has one and only one solu-

tion. In addition, we define R A; uX; uYð Þ :¼ uY � AuX
�� ��2:

Hence,

H A; uX; uY
� �

¼ FðAÞ þ R A; uX; uY
� �

: ð12Þ

We consider the following sequence of equalities and

inequalities:

FðAFÞ�FðAHÞ AFminimizes F

�FðAHÞ þ RðAH
; uX; uYÞ RðA; uX; uYÞ� 0

¼ HðAH
; uX ; uYÞ by Eq. (12)

�H H AF; uX; uY
� �

; uX; uY
� �

AHminimizes H

¼ F H AF; uX ; uY
� �� �

by Lemma 4

¼ FðAFÞ by Lemma 3:

Note that the first and the last terms are the same.

Therefore, all the inequalities are in fact equalities. Hence,

from the previous sequence of equalities we prove that

H AF; uX; uY
� �

and AH minimize the functional H. Since

the minimization of H has a unique solution we have that

H AF; uX; uY
� �

¼ AH ; and the proposition holds. h

To summarize, based on the four previous lemmas,

Proposition 1 states a strong relationship between the

optimal solutions of functional F and H, namely A
F and

AH. This relationship is the keystone for the general

algorithm to minimize functional H. It states that when X is

a hyperplanar set of points we can obtain the unique

solution of the minimization of H by means of one of the

optimal solutions of the minimization of F. Specifically,

AH can be obtained as the linear transformation that maps

uX to uY, and any vector vH 2 H to AvH; see Fig. 3 for a

3D interpretation. Hence, the two remaining tasks are: (1)

to automatically select the two vector parameters uX and uY

according to the given geometry; and (2) to determine how

to compute the linear transformation H; see Sect. 5.

4 Preserving offset data

In this section, we introduce several definitions and results

in order to formalize some desirable properties of node

projection algorithms. The key issue is the definition of a

measure of the normal vector to a given loop of nodes.

Recall that in projection algorithms the inner layers are

described by a loop of nodes. That is, there is not an

underlying surface carrying any additional information.

Moreover, in a wide range of applications the loops of

nodes are not planar. Therefore the normal vector to this

kind of loops is not defined. However, given a loop of

nodes we will define a pseudo-normal vector and we will

relate it to the preservation of the shape of the inner part of

the projected mesh, the offset data.

Definition 1 (Loop) Given a set of m points X ¼
fxigi¼1;...;m � R

3; a loop is the closed poly-line constructed

by joining xi with xi?1 for i = 1, ..., m. We consider that

xm?1
: x1.

In several applications it is necessary to sweep a non-

simple connected surface along the extrusion path. These

Fig. 3 Transformation of a given vector v by mapping H when X is a

planar set



surfaces are defined by one outer boundary and as many

inner boundaries as holes they have. Therefore, we need to

consider sets of points composed by several loops. Spe-

cifically, one counter-clockwise oriented loop correspond-

ing to the outer boundary, and several clockwise oriented

loops corresponding to the inner holes.

Definition 2 (Multi-loop) A set of m points X ¼
fxigi¼1;...;m � R

3 is a multi-loop if it is organized in p loops

X1; . . .;Xp:

Definition 3 (Pseudo-area) Given a vector c 2 R
3; the

pseudo-area of a loop X ¼ fxigi¼1;...;m � R
3 is

aXpseudo :¼
1

2

Xm

i¼1

ðxi � cÞ � xiþ1 � c
� �

:

The pseudo-area of a multi-loop X ¼ X1 [ � � � [ Xp

organized in p loops is

aXpseudo :¼ aXpseudo;1 þ � � � þ aXpseudo;p;

where aXpseudo;1; . . .; a
X
pseudo;p are the pseudo-areas of loops

X1; . . .;Xp; respectively.
Note that ðxi � cÞ � ðxiþ1 � cÞ

�� �� is twice the area of the

triangle dxixiþ1c; see Fig. 4. Moreover, if X is a planar

multi-loop, then the pseudo-area, aXpseudo; is equal to the

area enclosed by X.

In order to prove that pseudo-area is well defined, the

next proposition states that the pseudo-area vector does not

depend on the selected c 2 R
3: Moreover, it is invariant

under translations, and its norm is also invariant under

orthogonal transformations.

Proposition 2 (Invariance of pseudo-area) Let X ¼
fxigi¼1;...;m � R

3 be a set of points. The pseudo-area vector

verifies

(i) Given c 2 R
3 then

aXpseudo ¼
1

2

Xm

i¼1

ðxi � cÞ � ðxiþ1 � cÞ ¼
1

2

Xm

i¼1

xi � xiþ1:

(ii) Given t 2 R
3 the pseudo-area of X is equal to the

pseudo-area of X þ t ¼ fxi þ tgi¼1;...;m:

(iii) Given an orthogonal transformation N, then the

pseudo-area of NX ¼ fNxigi¼1;...;m is NaXpseudo:

Proof Given c 2 R
3; and taking into account that X is a

loop, i.e. xmþ1 	 x1; then

aXpseudo ¼
1

2

Xm

i¼1

ðxi � cÞ � ðxiþ1 � cÞ

¼
1

2

Xm

i¼1

xi � xiþ1 þ
Xm

i¼1

c� ðxi � xiþ1Þ þ
Xm

i¼1

c� c

" #

¼
1

2

Xm

i¼1

xi � xiþ1;

and property (i) holds. Given t 2 R
3; property (ii) is a

direct consequence of property (i) applied to c = -t.

By property (i) and taking into account that N is

orthogonal we have that

aNXpseudo ¼
1

2

Xm

i¼1

Nxi � Nxiþ1 ¼ NaXpseudo:

h

Thus, given a loop X, we have proved that the norm of

the pseudo-area vector is a geometrical invariant associated

to the loop. Furthermore, it only depends on the ordering

and the relative geometrical location of the points.

Proposition 3 (Projected area) If a multi-loop X is pro-

jected on an orthogonal plane to its pseudo-area vector,

aXpseudo; then the obtained polygon has area equal to

kaXpseudok:

Proof By definition of pseudo-area of a multi-loop, it

suffices to prove the result for a single loop. Given a loop

X, the projection of the points fxigi¼1;...;m on the orthogonal

plane to aXpseudo are the points xi
a?

:¼ xi � xia; where

xia :¼
hxi; aXpseudoi

haXpseudo; a
X
pseudoi

aXpseudo:

Hence, we have that xi ¼ xia þ xi
a?

for i ¼ 1; . . .;m: The
pseudo-area of X is

aXpseudo ¼
1

2

Xm

i¼1

xi � xiþ1

¼
1

2

Xm

i¼1

xia þ xia?
� �

� xiþ1
a þ xiþ1

a?

� �

¼
1

2

Xm

i¼1

xia � xiþ1
a?

þ xia? � xiþ1
a þ xia? � xiþ1

a?

Note that xia � xiþ1
a?

and xi
a?

� xiþ1
a are orthogonal to

aXpseudo: Thus, their sum is also orthogonal to aXpseudo:Fig. 4 Geometrical interpretation of the pseudo-area vector



Furthermore, xi
a?

� xiþ1
a?

is parallel to aXpseudo: Therefore, the

term xia � xiþ1
a?

þ xi
a?

� xiþ1
a cannot contribute to the

parallel component to aXpseudo and it has to be null. Hence,

we have that

aXpseudo ¼
1

2

Xm

i¼1

xia? � xiþ1
a?

;

which is the area of the polygon obtained from the pro-

jection of the loop X on the plane orthogonal to aXpseudo: h

Hence, the view of the loop from the direction of the

pseudo-area has an area equal to the norm of the pseudo-

area of X. Therefore, we can interpret the direction of the

pseudo-area as a vector normal to the loop. Moreover,

according to Proposition 4 (see below) the pseudo-area

vector is the direction that provides the view of the loop

with maximum area.

Definition 4 (Pseudo-normal) The pseudo-normal of a

multi-loop X is the unitary vector

nXpseudo :¼ aXpseudo=ka
X
pseudok;

where aXpseudo is the pseudo-area of X.

Lemma 5 Let v 2 R
3 be a given vector with kvk ¼ 1: Let

x 2 R
3 and y 2 R

3 be two arbitrary vectors. We decom-

pose these vectors as x ¼ xv þ xv? and y ¼ yv þ yv? ;

where xv :¼ hx; viv; xv? :¼ x� xv; yv :¼ hy; viv; and yv? :

¼ y� yv: Then,

hx� y; vi ¼ hxv? � yv? ; vi:

Proof Taking into account the proposed decomposition of

vectors x and y, and that h�; �i is bilinear we have that

hx� y; vi ¼hxv � yv; vi þ hxv � yv? ; vi

þ hxv? � yv; vi þ hxv? � yv? ; vi
:

Therefore, since xv � yv; xv � yv? and xv? � yv are

orthogonal to v, we have that hx� y; vi ¼ hxv? � yv? ; vi:

Proposition 4 (Maximum projected area) Let v 2 R
3

with kvk ¼ 1 be an arbitrary unitary vector. Consider the

signed area enclosed by the projection of a multi-loop X to

the orthogonal plane to v. Then, this area is maximized

when v ¼ nXpseudo: Moreover, the value of the enclosed area

is kaXpseudok:

Proof The value of the signed area of the projection of X

onto a plane orthogonal to v is

aXv? :¼
1

2

Xm

i¼1

hxiv? � xiþ1
v?

; vi:

Taking into account Lemma 5 and that h�; �i is bilinear
we have that

aXv? ¼
1

2

Xm

i¼1

xi � xiþ1; v

* +
:

By means of Proposition 2 we have that

aXv? ¼ aXpseudo; v
D E

:

Then,

max
v2R3

jjvjj¼1

1

2

Xm

i¼1

xiv? � xiþ1
v?

; v
� 	

¼ max
v2R3

jjvjj¼1

aXpseudo; v
D E

: ð13Þ

To finalize, the maximization problem (13) is solved for

v ¼
aXpseudo

kaXpseudok
¼ nXpseudo;

and the maximum value is

aXpseudo; n
X
pseudo

D E
¼ aXpseudo;

aXpseudo

kaXpseudok

* +
¼ kaXpseudok:

Note that if X is a planar loop, the pseudo-normal nXpseudo
is equal to the unitary normal nX to X. Note that if X is a

planar loop, the pseudo-normal nXpseudo is equal to the

unitary normal nX to X. The pseudo-normal provides a kind

of normal when there is not an underlying surface, and only

the loop of points is available. All the information along

the direction of the pseudo-normal is understood as offset

data. We claim that in order to avoid flattening, flipping,

offset scaling and skewing effects we have to obtain affine

mappings that preserve the length, direction and orientation

of offset data.

5 Algorithm implementation

In this section, we detail the algorithm that we have

developed in order to properly select the parameters uX

and u
Y and obtain the affine projection. The basic idea is

that we can efficiently use the minimization of functional

F to minimize H. The key issue is to realize that AH ¼

H AF; uX; uY
� �

when X is hyperplanar, see Proposition 1.

Therefore, the optimal solution of functional H can be

computed from the optimal solution of functional F if a

proper criterion to select the vectors u
X and u

Y is

defined.

The general algorithm, for hyperplanar and non-hyper-

planar set of points X, consists of four steps. First, the

optimal solution AF is computed. Second, we find the

singular value decomposition of AF. Third, we define a

criterion to select the vectors uX and uY taking into account

the singular value decomposition of AF. In addition, if the



set of points X and/or Y are hyperplanar (a planar source

and/or target surfaces in 3D applications) a geometrical

interpretation of the chosen vectors uX and uY is also pre-

sented. Finally, in the fourth step we compute the affine

mapping by first computing its linear part. Table 1 sum-

marizes the proposed algorithm.

5.1 First step: computation of the optimal solution A
F

In order to minimize functional F we compute the mini-

mum norm solution of Eq. (5). To this end, we use the

singular value decomposition of the system matrix

X
T
¼ U W V

T
; ð14Þ

where U is an m 9 n matrix with orthogonal columns,W is

a n 9 n diagonal matrix with positive or zero elements (the

singular values)

W :¼

w1

.
.

.

wn

0
B@

1
CA;

such that w1 �w2 � � � � �wn�1 �wn � 0; and V is an

n 9 n orthogonal matrix. We denote by vi 2 R
n; for i ¼

1; . . .; n; the columns of matrix V:

We minimize functional F by computing the minimum

norm solution of Eq. (5). To this end, we use the singular

value decomposition of matrix X
T
presented in (14). Spe-

cifically, we compute A
F as

AF ¼ Y U W
þ
V

T
; ð15Þ

where

W
þ
:¼

w þ
1

.
.

.

w þ
n

0
B@

1
CA;

and

w þ
i ¼

0 if wi ¼ 0
1
wi

if wi 6¼ 0



for i ¼ 1; . . .; n:

5.2 Second step: singular value decomposition of AF

Once we have computed the optimal solution A
F according

to (15), we compute its singular value decomposition

AF ¼ UWVT ; ð16Þ

where U and V are two n 9 n orthogonal matrices, and W

is a n 9 n diagonal matrix with positive or zero elements

(the singular values)

W :¼

w1

.
.

.

wn

0
B@

1
CA;

such that w1 �w2 � � � � �wn�1 �wn � 0: We denote by

ui 2 R
n and vi 2 R

n; for i ¼ 1; . . .; n; the columns of

matrices U and V, respectively.

Remark 1 Let M be an m 9 n matrix, such that its sin-

gular value decomposition is M ¼ UMWMV
T
M : On one

hand, the columns of the orthogonal matrix VM with an

associated singular value equal to zero span Ker M. On the

other hand, the columns of the orthogonal matrix UM with

an associated positive singular value span Range M, see

Refs. [9, 10].

5.3 Third step: selection of vectors uX and uY

and geometrical interpretation

From Eq. (14) we realize that when the set of points X is

hyperplanar the diagonal matrix W has a null singular

value: wn ¼ 0: In this case, the singular value decompo-

sition of the optimal solution AF will also have a null

singular value: wn = 0. Therefore, to properly choose uX

and u
Y we have to analyze the Ker AF and the Range A

F.

Table 1 Algorithm to obtain

the affine projection



Lemma 6 If dim Ker AF ¼ 1; then Ker AF ¼ spanðvnÞ:

Proof Since dim Ker AF ¼ 1 and w1 �w2 � � � � �

wn�1 �wn � 0 we have that wi[ 0 for i ¼ 1; . . .; n� 1

and wn = 0. To finalize, by Remark 1 we know that

Ker AF ¼ spanðvnÞ: h

Lemma 7 If dim Ker AF ¼ 1; then ðRange AFÞ? ¼

spanðunÞ; where
? denotes the orthogonal space.

Proof Since dim Ker ðAFÞ ¼ 1 and w1 �w2 � � � � �
wn�1 �wn � 0 we have that wi[ 0 for i ¼ 1; . . .; n� 1;

and wn = 0. Taking into account Remark 1, we know that

Range AF ¼ spanðu1; . . .; un�1Þ: To finalize, since U is

orthogonal we have that hun; uii ¼ 0; for i ¼ 1; . . .; n� 1:

Therefore ðRange AFÞ? ¼ spanðunÞ: h

Lemmas 6 and 7 define the desired criterion to select

vectors uX and uY. That is, to obtain the optimal solution

AH, we first find the optimal solution AF, and based on

its singular value decomposition we select the vectors uX

and uY.

It is important to point out that if dim Ker AF
= 1 then

the vectors un and vn have a geometrical interpretation.

Therefore, we will prove two additional results that provide

a geometrical interpretation to the obtained selection of

vectors uX and uY in our algorithm. Specifically, Lemma 9

states that if X is a hyperplanar set of points, then vn and nX

generate Ker AF (i.e. they are two parallel vectors).

Moreover, Lemma 10 states that if Y is a hyperplanar set of

points, then un and nY generate ðRange AFÞ? (i.e. they are

also two parallel vectors).

Lemma 8 If X is a hyperplanar set of points and nX is an

unitary normal vector to X, then

Ker X
T
¼ spanðvnÞ ¼ spanðnXÞ:

Proof Since X is hyperplanar then Rank X
T
¼ n� 1; see

[8]. That is, dim Ker X
T
¼ 1: Therefore, Ker X

T
¼

spanðvnÞ; see Remark 1. Since nX is a unitary normal

vector we have that X
T
nX ¼ 0; see Eq. (7). Hence, nX 2

Ker X
T
: Thus, spanðnXÞ ¼ Ker X

T
¼ spanðvnÞ: h

Lemma 9 Let X be a hyperplanar set of points and AF

the optimal solution of functional F computed according to

Eq. (15). If nX is an unitary normal vector to X and dim

Ker AF
= 1, then

Ker AF ¼ Ker X
T
¼ span ðvnÞ ¼ span ðvnÞ ¼ span ðnXÞ:

Proof Since V is an orthogonal matrix we have that

V
T
vn ¼ ð0 � � � 0 1ÞT : Moreover, since X is hyperplanar and

w1 �w2 � � � � �wn�1 �wn � 0; we have that wn ¼ 0:

Therefore, W
þ
V

T
vn ¼ W

þ
ð0 � � � 0 1ÞT ¼ 0: Hence

AFvn ¼ YUW
þ
V

T
vn ¼ 0:

That is, vn 2 Ker AF: Since dim Ker AF
= 1 we have

that Ker AF ¼ spanðvnÞ: To finalize, we only have to apply

Lemmas 6 and 8. h

Lemma 10 If Y is a hyperplanar set of points, dim Ker

AF
= 1, and nY is an unitary normal vector to Y, then

ðRank AFÞ? ¼ spanðunÞ ¼ spanðnYÞ:

Proof First, since Y is hyperplanar then Y
T
nY ¼ 0; or

equivalently

ðnYÞTY ¼ 0T : ð17Þ

Next, we will prove that ðnYÞTUWVT ¼ 0T

ðnYÞTUWVT ¼ ðnYÞTAF by Eq. (16)

¼ ðnYÞTYUW
þ
V

T
by Eq. (15)

¼ 0T by Eq. (17):

Since V is orthogonal it is invertible. Thus

ðnYÞTUW ¼ 0T ;

which is equivalent to the following set of conditions

ðnYÞTu1w1 ¼ 0

.

.

.

ðnYÞTun�1wn�1 ¼ 0

ðnYÞTunwn ¼ 0:

Since dim Ker AF
= 1, then wi[ 0, for i ¼ 1; . . .; n�

1; and wn = 0. Therefore, nY is orthogonal to u1; . . .; un�1

(the first n - 1 columns of matrix U). To finalize, using

Lemma 7, we have that spanðunÞ ¼ ðRange AFÞ? ¼

spanðnYÞ: h

On one hand, in our algorithm we select uX = vn. That

is, we choose uX as the vector that generates Ker AF

when dim Ker AF
= 1. On the other hand, we also pro-

pose to select uY = un. In other words, we select uY as the

vector that generates the orthogonal space to Range AF

when dim Ker AF
= 1. Therefore, Lemma 9 states that if

X is a hyperplanar set of points, then our algorithm selects

uX as the unitary normal vector to X : uX ¼ nX; which is

in fact the natural choice. Moreover, Lemma 10 states

that if Y is a hyperplanar set of points, then our algorithm

selects uY as the unitary normal vector to Y : uY ¼ nY ;
which is also the obvious choice. Table 2 presents the

geometrical interpretation of the proposed selection of

vectors uX and uY.

Note that, according to Table 2, when both loops of

nodes X and Y are non-hyperplanar we select uX and uY

as nXpseudo and nYpseudo; respectively. That is, we select uX

and uY as a measure of the normal directions to the loops X



and Y. In this case, and according to property (iii) of

Proposition 2, we are mapping the component in the

direction of the pseudo-normal of loop X to the pseudo-

normal of loop Y.

5.4 Fourth step: computation of the affine mapping

Once we have selected vectors uX and uY, for any centered

vector x 2 R
n we compute the linear part of the affine

projection as

A xÞ :¼ AFðx� hx; uXiuX
� �

þ hx; uXiuY :

In the case that X is a hyperplanar set we can decompose,

by Lemma 2, x as xH þ kuX: Therefore, the obtained linear

transformation maps xH into AFxH and kuX to kuY. Hence,

by Proposition 1 we know that this linear mapping is the

optimal solution of the minimization of functional H,

obtained by means of minimizing F.

Finally, we compute the desired affine mapping

according to Eq. (2)

uðxÞ ¼ AðxÞ þ cY ¼ Aðx� cXÞ þ cY :

That is, to obtain the optimal solution AH, we first find

the optimal solution AF, and based on its singular value

decomposition we select the vectors uX and uY.

6 Examples and discussion

In this section six examples are presented to assess the

capabilities and advantages of the proposed algorithm. To

highlight the analyzed capabilities in the first four exam-

ples we have selected four simple geometries and we have

discretized them with a coarse mesh, as suggested in [11].

The last two examples illustrate that the developed algo-

rithm, coupled with volume decomposition, can be suc-

cessfully used to mesh industrial CAD models. In all

examples we first project the source surface onto the target

surface [12]. Second, we obtain a structured mesh on the

linking sides using a transfinite interpolation algorithm

(TFI) [1]. Third, we compute the inner node location

starting from each cap surface and computing the position

of the new layer from the previous one in an advancing

front manner. Finally, we compute the final inner node

position by weighting the position obtained from both cap

surfaces [3, 5, 8]. Note that in these examples neither the

boundary error correction proposed in [3, 7, 13] nor any

smoothing procedure is applied to the generated meshes. In

the first four examples we analyze the capability of the

projection algorithm to reproduce the shape of the inner

part of the projected mesh. That is, we test the flattening,

flipping, offset scaling, and skewing effects. Other issues

such as the application to skewed and twisted sweep paths,

layers defined by non-affine or non-convex boundaries

have been already addressed, see [8, 12] for details. It is

important to point out that in the first four examples all the

boundary loops are affine. That is, given two boundary

loops an affine mapping exists than exactly maps one into

the other. Therefore, functionals F and G become null in

each projection (see [8] for details) and the boundary error

correction will not improve the initial mesh since there is

not error in the projection of the boundaries. In these four

examples the inner layers are numbered starting at the inner

level next to the bottom cap surface. In order to measure

the quality of the hexahedral mesh we use the hexahedron

shape metric, fshape, defined in [14]. Note that fshape is a

normalized measure. Therefore, it always lays in the range

[0, 1].

Flattening test. The goal of the first example is to

illustrate that the flattening effect introduced by the mini-

mization of functional F can be avoided using the proposed

algorithm. In this example the extrusion volume is defined

by a straight sweep path and two non-planar surfaces that

have the inner part curved in the same orientation, see

Fig. 5a and b. A constant element size is prescribed and 12

inner layers are generated along the extrusion path, see

Fig. 5c.

Figure 6a and b shows the central cross-section and the

mesh quality of the obtained meshes minimizing func-

tionals F and using the proposed algorithm, respectively.

The boundary loops of the cap surfaces are such that while

the sweeping process advances from one layer to the next

one, the boundary loops become flatter and flatter until a

planar boundary loop is reached at one quarter of the sweep

path, see Fig. 5c. Therefore, the flattening and offset

scaling effects produced by the minimization of functional

F appear, being the flattening effect the most important.

That is, in each projection the inner shape of the projected

mesh becomes more planar. When the planar loop at one

quarter of the extrusion path is reached, see Fig. 6a, a

planar projected mesh is obtained and the offset data of the

cap surfaces is completely lost. Nevertheless, the proposed

algorithm also imposes that the optimal solution has to map

uX into uY. According to our selection of these vectors, we

Table 2 Selection of vectors uX and u
Y according to the sets X and Y

Y hyperplanar Y non-hyperplanar

X hyperplanar dim Ker AF ¼ 1

uX ¼ nX ¼ nXpseudo

uY ¼ nY ¼ nYpseudo

dim Ker AF ¼ 1

uX ¼ nX ¼ nXpseudo

uY ¼ un

X non-hyperplanar dim Ker AF ¼ 1

uX ¼ vn

uY ¼ nY ¼ nYpseudo

dim Ker AF ¼ 0

uX ¼ nXpseudo

uY ¼ nYpseudo



take into account the offset data of the surface meshes, and

in each projection, the location of the inner nodes of the

new layer resemble the shape of the cap meshes, see

Fig. 6b.

Figure 7a and b shows the histograms of the distribution

of the elements according to the shape quality measure for

the generated meshes. Note that using the proposed algo-

rithm we are able to increase the minimum quality value,

min(fshape). However, the minimization of F generates

elements with a higher value of max(fshape). The general

behavior, which we have also observed in other examples,

is that the proposed algorithm tends to increase the mini-

mum quality value and to concentrate the quality of the

elements around the mean value. Figure 7c details the

statistical values of the quality of the mesh obtained min-

imizing both functionals.

For each inner layer of the generated meshes we com-

pute the minimum and the maximum distance between two

consecutive nodes in the extrusion direction. Note that the

node at which these distances are reached may be different

for each pair of two consecutive inner layers. We denote by

middle node the mesh node located at the center of the cap

surfaces, marked with a • in Fig. 6. In addition, we com-

pute the distance between the middle node locations for

each two consecutive layers. Figure 8a and b plots the

obtained values. Note that the minimization of functional F

generates inner layers with a wide range of variation for

these distances. On the contrary, the proposed algorithm

maintains these three distances almost constant in all lay-

ers. Figure 8c presents for each layer the angle defined

between the two mesh edges adjacent to the middle node

and contained in the cutting plane presented in Fig. 6. The

bottom cap surface corresponds to the first level and the top

cap surface corresponds to the twelfth level. Note that for

the mesh obtained by the minimization of functional F the

value of this angle first increases from 160� to 180� where a

planar inner layer is generated. Then, it decreases again to
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Fig. 5 Flattening test.

a Perspective view of the

wire-frame model; b front

view of the wire-frame model;

and c surface mesh

0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00

(a) (b)

Fig. 6 Central cross-section and shape quality values of the obtained

meshes (a) minimizing functional F; and (b) using the proposed

algorithm
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Fig. 7 Distribution of the elements according to the shape quality

measure: a histogram for functional F; b histogram for functional H;

and c statistical values for both functionals



160�. On the contrary, for the mesh obtained by the pro-

posed algorithm the value of the angle monotonically

decreases from 160� to 155�.

Flipping test. In the second example we illustrate the

ability of the proposed algorithm to avoid the flipping effect

introduced by the minimization of functional F. In this

example we discretize an extrusion volume defined by two

non-planar cap surfaces and a straight sweep path, see

Fig. 9a and b. Due to the shape of the boundary loops of the

cap surfaces, the loops of nodes that define the boundary of

the inner layers are curved towards the top surface except the

first one which is curved towards the bottom surface, see

Fig. 9c. Therefore, the minimization of functional F

introduces the flipping effect. Figure 10a shows that all inner

layers ranging from the second to the eighth layer are curved

towards the bottom cap surface, whereas their boundary

loops are curved towards the top cap surface. However,

according to the proposed algorithmwe are able to detect the

proper direction of vectors uX and uY. Hence, the shape of the

cap surfaces is properly reproduced in the inner layers of

nodes and a high quality mesh is generated, see Fig. 10b.

Figure 11 presents the distribution of the elements

according to their shape quality. Note that the proposed

algorithm increases the minimum quality value, min(fshape),

of the shape quality measure and generates a mesh with a

better quality distribution. Moreover, the distribution of the

elements is reduced to the interval fshape 2 ½0:91; 0:99�:

Similar to the first example we mark the middle node with

a • in Fig. 10. Figure 12 presents, for each layer, the angle

defined between the two mesh edges adjacent at the middle

node and contained in the cross-section presented in

Fig. 10. It clearly shows that the flipping effect appears

when functional F is minimized since the angle increases

from 170� in the first inner layer to 190� in the sixth inner

layer, and then decreases to 170� in the eleventh inner

layer. On the contrary, for the mesh obtained by the pro-

posed algorithm the value of the angle monotonically

decreases from 169� to 164�.

Offset scaling test. The goal of the third example is to

illustrate how the proposed algorithm reduces the offset

scaling effect. Figure 13 presents two views of the wire-

frame model of the geometry corresponding to this exam-

ple. It is defined by two non-planar cap surfaces and a
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Fig. 8 Measures of the shape

of the inner layers: a distances

between two consecutive

layers for the minimization

of functional F; b distances

between two consecutive

layers for the minimization

of functional H; and c angle

between two adjacent edges

at the middle node
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Fig. 9 Flipping test.

a Perspective view of the

wire-frame model; b front

view of the wire-frame model;

and c surface mesh
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Fig. 10 Central cross-section and shape quality values of the

obtained meshes (a) minimizing functional F; and (b) using the

proposed algorithm



straight extrusion path. Since the thickness of the top

boundary is higher than the thickness of the bottom

boundary, see Fig. 13b, the offset scaling effect will appear

when the mesh is obtained minimizing functional F. Fig-

ure 14a shows the cross-section and the quality of the

obtained mesh when functional F is minimized. Note that

the inner layers of elements are more curved at the bottom

of the extrusion path leading to highly distorted hexahedral

elements at the top of the sweep path. On the contrary,

Fig. 14b presents the cross-section and the quality of the

generated mesh when the new algorithm is used. Note that

in this case a more graded distribution of the element size

is obtained along the sweep path, and the inner layers of

elements reproduce the shape of the cap surfaces.

Figure 15a and b shows the element distribution

according to the shape quality of the element for the

meshes obtained by means of functional F and H, respec-

tively. Fig. 15c details the statistical values of the quality

for both meshes. Note that using the proposed algorithm

the minimum value of the quality measure is more than two

times higher than the minimum value obtained minimizing

functional F.

For each one of the generated meshes, Fig. 16a and b

plots the maximum and the minimum distance between two

consecutive nodes in the extrusion direction. In addition,

they also plot the distance between the middle node loca-

tions in two consecutive layers. Similar to the first exam-

ple, the proposed algorithm maintains these three distances

almost constant in all layers.

Skewing test. In the fourth example we illustrate the

ability of the proposed algorithm to avoid the skewing

effect introduced by the minimization of functional G. In

this example a non-planar surface with a planar boundary is

swept along a circular extrusion path. Figure 17 presents a

wire-frame model of the geometry. Since the boundary

loop of the cap surfaces is planar we know that the mini-

mization of functional F will generate planar inner layers.

Therefore, we do not present the meshes obtained by

minimizing F. The minimization of functional G generates

non-planar inner layers, see Fig. 18a. Since the planar loop
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Fig. 11 Distribution of the elements according to the shape quality

measure: a histogram for functional F; b histogram for functional H;

and c statistical values for both functionals
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Fig. 13 Wire-frame model of the geometry used for the offset scaling

test: a perspective view; and b front view
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Fig. 14 Central cross-section and shape quality values of the

obtained meshes (a) minimizing functional F; and (b) using the

proposed algorithm



of nodes that define each layer are non-parallel and the

vector cY � cX is a fixed vector of the optimal solution of

the minimization of G (see [8] for details), the skewing

effect appears on the generated mesh. Figure 18a presents a

cross-section and the quality of the obtained mesh mini-

mizing functional G. Note that the shape of the inner layers

is skewed towards the center of the extrusion path. More-

over, distorted hexahedra are generated in the layers

located at one half of the extrusion path. On the contrary,

Fig. 18b shows a cross-section and the quality of the mesh
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Fig. 15 Distribution of the elements according to the shape quality

measure: a histogram for functional F; b histogram for functional H;

and c statistical values for both functionals
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Fig. 16 Minimum, maximum and middle node distances from one

level to next one: a for the minimization of functional F; and b for the

minimization of functional H
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Fig. 17 Wire-frame model of the geometry used for the skewing test:

a perspective view; and b front view
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Fig. 18 Central cross-section and shape quality values of the

obtained meshes (a) minimizing functional G; and (b) using the

proposed algorithm
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Functional G H

Minimum 0.6621 0.7648

Maximum 0.9828 0.9920

Mean 0.8792 0.8973

Standard deviation 0.0595 0.0629

(c)

Fig. 19 Distribution of the elements according to the shape quality

measure: a histogram for functional G; b histogram for functional H;

and c statistical values for both functionals

1 3 5 7 9 11 13 15 17 19 21
0.5

1

1.5

2

Level

D
is

ta
n

c
e

(a)

1 3 5 7 9 11 13 15 17 19 21
0.5

1

1.5

2

Level

D
is

ta
n

c
e

(b)

Middle node
Minimum
Maximum

Middle node
Minimum
Maximum

Fig. 20 Minimum, maximum and middle node distances from one

level to next one: a for the minimization of functional G; and b for the

minimization of functional H



generated using the proposed algorithm. In this case, the

inner layers are not skewed and reproduce the shape of the

cap surfaces.

Figure 19a and b presents the distribution of the ele-

ments according to the shape quality measure for the

meshes generated minimizing functional G and using the

proposed algorithm. Note that the minimum value of

the shape quality is increased if the proposed algorithm is

used. Figure 19c details the statistical values of the quality

of the mesh obtained minimizing both functionals.

Figure 20 shows the minimum, maximum and middle

node distances for each pair of two consecutive inner layers

corresponding to the meshes generated by means of func-

tionals G and H. Note that both functionals generate

meshes with the same values for the minimum and the

maximum distances. However, the distance between two

consecutive locations of the middle point reach a minimum

value at the middle of the extrusion path whereas the

proposed algorithm maintains almost constant this

distance.

Finally, the last two examples present two applications

of the developed algorithm to extrusion geometries com-

posed by several sweep volumes. Figure 21a shows the

mesh generated for a crank shaft model. A conformal mesh

is generated over the shared surfaces that define this model.

Figure 21b presents the mesh generated for a heat sink.

Note that in this example the extrusion path is decomposed

in three parts. The first and the last parts are straight

whereas the second one has a circular sweep path. In both

cases hexahedral elements of high quality are obtained.

7 Conclusions

In this paper we have proposed and detailed a node pro-

jection algorithm to obtain hexahedral meshes in one-to-

one sweep geometries. Note that one-to-one projection

procedures belong to the core of many-to-many sweep

algorithms. We show that this algorithm, in conjunction

with the boundary error procedure, is of major importance

to preserve non-planar shape of the cap surfaces in the

inner layers of the hexahedral mesh. Moreover, we claim

that the presented algorithm has two additional advantages.

First, it provides better node location than the minimization

of functionals F and G. Second, since it takes into account

the offset data of the cap surfaces (via the vectors uX and

uY), it triggers the boundary correction procedure when the

boundary loops of the layers are affine. To summarize,

using this algorithm we are able to overcome flattening,

skewness, offset scaling, and flipping effects introduced by

the minimization of the traditional functionals.
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