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LEAST-SQUARES A P P R O X I M A T I O N  O F  AN I M P R O P E R  
C O R R E L A T I O N  MATRIX BY A P R O P E R  O N E  
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An algorithm is presented for the best least-squares fitting correlation matrix approximating 
a given missing value or improper correlation matrix. The proposed algorithm is based upon a 
solution for Mosier's oblique Procrustes rotation problem offered by ten Berge and Nevels. A 
necessary and sufficient condition is given for a solution to yield the unique global minimum of 
the least-squares function. Empirical verification of the condition indicates that the occurrence of 
non-optimal solutions with the proposed algorithm is very unlikely. A possible drawback of the 
optimal solution is that it is a singular matrix of necessity. In cases where singularity is unde- 
sirable, one may impose the additional nonsingularity constraint that the smallest eigenvalue of 
the solution be 6, where 6 is an arbitrary small positive constant. Finally, it may be desirable to 
weight the squared errors of estimation differentially. A generalized solution is derived which 
satisfies the additional nonsingularity constraint and also allows for weighting. The generalized 
solution can readily be obtained from the standard "unweighted singular" solution by transform- 
ing the observed improper correlation matrix in a suitable way. 

Key words: missing value correlation, tetrachoric correlation, indefinite correlation matrix, con- 
strained least-squares approximation. 

When product-moment correlations of a set of n variables are computed by any of 
the missing value correlation methods described by Frane (1978), then it may happen that 
the resulting missing value correlation matrix is indefinite, and hence improper. This can 
be a serious problem in various multivariate data analysis techniques, for example, in 
regression and factor analysis. 

One possible approach to this problem consists of avoiding an (indefinite) improper 
correlation matrix entirely by estimating the missing data themselves. Missing data can be 
estimated by maximum likelihood estimation from incomplete data (Beale & Little, 1975; 
Dempster, Laird & Rubin, 1977; Orchard & Woodbury, 1972) and by pragmatic pro- 
cedures (Franc, 1976, 1978; Gleason & Staelin, 1975; Timm, 1970). 

Another possible approach to the problem is to render the improper correlation 
matrix nonnegative definite by some smoothing procedure (Devlin, Gnanadesikan & 
Kettenring, 1975, p. 543; Dong, 1985; Frane, 1978). 

The purpose of the present paper is to offer a least-squares smoothing procedure. 
That is, one may seek the best fitting (in the sense of least-squares) symmetric, unit- 
diagonal, nonnegative definite matrix G to the given improper correlation matrix R. 
Specifically, the function 

e(G) -- ½ tr (G - -  R) 2 (1) 
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can be minimized subject to the constraints G = G', Diag (G) = I n and G > 0. For  con- 
venience we write Y > 0 and Y > 0 to denote that a symmetric matrix Y is nonnegative 
definite and positive definite, respectively. 

The minimization problem (1) can be generalized in three ways. Firstly, the problem 
can be applied to any improper  correlation matrix, for example, an indefinite tetrachoric 
correlation matrix or a correlation matrix obtained by element-wise robust estimation 
(Devlin, Gnanadesikan,  & Kettenring, 1975, 1981; Gnanadesikan & Kettenring, 1972). 
Secondly, the problem can be generalized to handle indefinite matrices with fixed diago- 
nal elements not necessary equal to one. For  example, the scope of the problem can be 
extended to missing value covariance matrices with known variances or  to product- 
moment  correlation matrices with known communalities. Thirdly, it is possible to exclude 
those product-moment  correlations or covariances which are computed between complete 
variables (no missing values) from the minimization procedure. That  is, the excluded 
elements of R can be held constant in (1). Without loss of generality these elements can be 
collected in the n 1 x n 1 (0 < n I < n) submatrix Rl l  > 0 of R, where R is partitioned as 

R 

In order to incorporate these three generalizations, we shall address the generalized 
problem of minimizing (1) subject to the constraints 

and 

where G is partitioned as 

G = G', (2) 

G __. O, (3) 

G11 = R11 > 0 (4) 

Diag (G22) = Diag (R22) > 0, 

= [ 9 , ,  I 
G LG21 I a22_I 

(5) 

and G~I is of order n~ x nl. Note that the constraints (4) and (5) for the problems with 
n~ = 0 and n 1 = 1 are equivalent. In the next section a computat ional  solution will be 
offered for the generalized problem of minimizing (1) subject to the constraints (2) through 
(5). 

An Algorithm 

The constraints G = G' (2) and G > 0 (3) can equivalently be expressed by the con- 
straint 

G = A A ' ,  (6) 

for some n x m (n 1 < m < n) matrix A. Consider the partitioning 

[A,]  [A,, I A,21, 
A = --x-T2 = LA2, I A22J 
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where A~ is of order  n t x m, Alx is of order  n I x n~, and A l is fixed in advance  as 

A 1 = [R~/2 1 0 ] .  (7) 

This  choice of  A~ satisfies the constra int  Gxl = Rxl (4) and can be adopted  wi thout  
loss of  generality, because every matr ix  A satisfying (6) is determined up to an o r thogona l  
rotation.  U p o n  subst i tut ion of (6) and (7) for G in (1), the p rob lem of minimizing (1), 
subject to the constraints  (2) th rough  (5), can be reduced to the p rob lem of minimizing the 
function 

f(A2)__-= ½ tr (A 2 A~ --  R22) 2 -b tr (A1A" 2 -- Rlz) ' (AtA" 2 - -  R12), (8) 

subject to the constraint  Diag  (A2A~) = Diag  (R22). 
In order  to simplify the notat ion,  let for any  positive integer : the index set N ff be 

defined by the Cartes ian produc t  

~ = {1 . . . . .  :}  x {i . . . . .  :}, 

and let z be the symmetr ic  subset of  N~ defined by 

2 z.._~ {(i, j): i # j  & (i,j) ~ IM 2 -- l~,,}. 

Then the minimizat ion p rob lem (8) can be writ ten as minimizing 

1 
f (A2)  = ~ E E (a',aj -- rli)2, (9) 

( i , j ) ~  

subject to the constra ints  a'k ak ~ rk k (k = n 1 + 1 . . . . .  n), where R - I-r~i ] and a; is row i 
(i = I . . . . .  n) of  A. Fo r  each k (k = n 1 + 1 . . . . .  n), (9) can be writ ten as 

1 2 1 1 
f (A2)  = 2 Z (a;ak--rik) +~  E (a'kaj--rkj)2+~ ~,, Z (a;a~-r,j)  2 

( i , k ) ~  (k,j)er ( i , j )e t  
i , j~k  

= ~. (a;a k - r~k )  2 + L  k 
(t,k)et 

= ~ (a; a k - rtk) z + L k 

= (A~°~ak .(o)~,[A(o). r~ o~) 
- - " k  JV~k ~ k -  + Lk 

-=A(ak) + Lk, (10) 

where L,  is a constant  with respect to ak, A~k °) is the matr ix  A with row k replaced by 
zeroes, and r~k °~ is co lumn k of  [R -- Diag  (R)]. 

In the context  of  Mosier ' s  (1939) obl ique Procrus tes  problem,  ten Berge and  Nevels  
(1977) have given a solut ion for the global m i n i m u m  offk(ak) subject to the constraint  
a~ a k = 1. With some mino r  adjustments ,  their solut ion can be generalized to minimize 
fk(ak) subject to any arb i t ra ry  const ra in t  a'ka, = rk, > O. After taking a suitable initial 
choice for Az,  and row-wise minimizat ion  of  (10) for k = n 1 + 1 . . . . .  n with the adjusted 
ten Berge and  Nevels  solution, an a lgor i thm for solving (8) is obtained.  F o r  each k 
(k = n~ + 1 . . . . .  n), f (A2)  decreases with the row-wise minimizat ion,  affecting only ele- 
ments  of  row k and co lumn k of AA'.  The n 2 - n - n 1 minimizat ion  steps can be repeated 
until no significant decrease o f f ( A 2 )  between two succeeding i teration cycles occurs. 
Because f (A2)  decreases monoton ica l ly  and  f (A2)  is bounded  below, convergence of  the 
a lgor i thm is guaranteed.  In the next section we shall describe a necessary and  sufficient 
condi t ion for a global m i n i m u m  of f (A2).  
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A Necessary and Sufficient Condition for a Global Minimum 

After minimizingfk(ak) with the adjusted ten Berge and Nevels algorithm, there exists 
a Lagrange multiplier O k such that 

A(O),,~(o)_ _ Ok ak ~(0),..(0) (1 1) k rxk Uk ~ ~ k  / k  

(Mulaik, 1972, p. 505). The Lagrange multiplier O k can be evaluated directly from (11), (12) 
and (13) in ten Berge and Nevels (1977, p. 595) for their Cases 1, 2 and 3 respectively. 
Rewriting (I 1) yields 

~,~(o),A~o) + ak a,k)ak ~.~(o~,,.(o) 
- -  ~ k  "k + a krkk ) - 0  k a  k = O ,  

and hence 

A ' A a k  - A 'rk  -- Ok ak = 0, (12) 

where r k is column k of R. It should be noted that during the iteration process, (12) holds 
for the index k only immediately after the minimization of row k - nt of A 2 . However, 
after convergence of the proposed algorithm, (12) holds simultaneously for all k 
(k = n~ + 1 . . . . .  n). Denote for convenience a solution of the proposed algorithm by A. 
Then the n 2 equations (12) can be collected in the matrix eqUation 

A ' A A ' 2  --  A'R'2 --  A'2 ®22 = O, (13) 

where R 2 ~ [R21 1 R22"] and 022 ~ Diag (Ont+ t . . . . .  0,). 
It should be noted that the first-order necessary condition (13) for a minimum of (8) 

has been obtained from standard partial differentiation of a constrained function (Luen- 
berger, 1984, chap. 10). Additional results can be obtained from a reformulation of the 
problem in terms of a semi-infinite convex program (Shapiro, 1985). Details of this have 
been given by Knol and ten Berge (1987). The most important results can be summarized 
in two lemmas. 

L e m m a  1. If R~x > 0, then a necessary and sufficient condition for a solution 
G* = A A '  to yield the global minimum of (1) subject to the constraints (2) through (5) is 
that 

B22 ~ ,42 A~ --  R22 --  0 2 2  > 0. 

Proof .  See Knol and ten Berge (1987). 

It should be noted that, after convergence of the proposed algorithm, 022 can be 
evaluated hence the condition B22 > 0 can be verified. Moreover, Knol and ten Berge 
(t987) proved that the global minimum is unique. 

In the case of singular R 11, Alexander Shapiro (personal communication, August 11, 
1986) has shown that the problem of minimizing (1) subject to the constraints (2) through 
(5) can be transformed to a problem of (lower) dimensionality [rank (Rtt) + n2"l, with a 
(transformed) fixed submatrix R* 1 > 0. For  details see Knol and ten Berge (1987). 

In order to verify the necessary and sufficient condition B22 > 0 for a solution 
G* = A A '  to yield the (unique) global minimum of e(G) subject to the constraints (2) 
through (5), a computer program yielding the solution of the minimization problem with 
the proposed algorithm and evaluating the smallest eigenvalue of B22 has been imple- 
mented. The computer program was run on 100 symmetric unit-diagonal indefinite 
matrices, where n ranged from 5 to 25, nl ranged from 0 to min (10, n -  2) and the 
column order m of A was set equal to n. With changes in each (free) element of G between 
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TABLE 1 
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De Leeuw's target matrix R of polychoriQ correlations 
with the fifth and sixth variable interchanged 

R 

va t  1 2 3 4 5 6 

1 1.000 

2 .477 1.000 

3 .644 .516 

4 .478 .233 

5 .651 .682 

6 .826 .750 

1.000 

.599 1.000 

.581 .741 1.000 

.742 .800 .798 1.000 

two succeeding iteration cycles less than 10 -4 as convergence criterion, the algorithm 
never took more than 10 iteration cycles until convergence. Computat ion time never 
exceeded 1 minute C P U  time on a VAX8650 computer. In all cases, the obtained solution 
satisfied the condition B2_ 2 > 0 within accuracy limits. From these results, it can be 
concluded that the proposed algorithm tends to produce the (unique) globally optimal 
solution. 

In the following lemma, another  important  property of the solution is stated. 

Lemma 2. The rank of G* equals n if and only if R > 0. 

Proof. See Knol and ten Berge (1987). 

A Numerical Example 

As an illustration and for reasons of possible checks, an indefinite 6 x 6 matrix R of 
polychoric correlations (smallest eigenvalue - .063)  published by de Leeuw (1983, p. 121) 
has been analyzed with various values of n I (RI~ > 0 for n~ < 4). In order to have 
R ~  > 0 for nl = 5 too, the fifth and sixth variable have been interchanged. The matrix R 
is given in Table 1. Table 2 gives the residual matrices (G* -- R) for various values of nl, 
together with the values of e(G*). Because the constraints (2) through (5) for the problems 
with n I = 0 and nl = 1 are equivalent, the solutions are equal. In all cases, the solution 
satisfies the condition B22 > 0 within accuracy limits. It  can be verified that the value of 
e(G*) increases as n 1 increases, as is to be expected. 

A Generalized Solution 

It is clear from Lemma 2 that the best fitting proper correlation matrix G* is 
singular. Also, it is clear from (1) that e(G) weights the errors of estimation equally for all 
variables. In the present section a generalization of the previous solution is derived by 
introducing the nonsingularity constraint that the smallest eigenvalue of the approxi- 
mating symmetric matrix P be at least c~, where 6 is an arbitrarily (small) positive scalar. 
For convenience, this will be denoted as P >_ 61. Additionally, the elements of the matrix 
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TABLE 2 

The values of e(G*) and the lower-triangular parts of the 
residual matrices (G* - R) using De Leeuw's target matrix, 

for various values of n I (structural zeroes omitted) 

( G *  - R) 

n I e(G*) var 1 2 3 4 5 

0,1 .002760 

2 . 0 0 2 8 8 4  

3 . 0 0 2 8 8 8  

4 .003515 

2 .011 

3 -.001 -.001 

4 .012 .017 --.002 

5 -.006 -.009 .001 -.010 

6 --.018 -.025 .002 --.029 

3 -.001 -.002 

4 .013 .018 -.002 

5 -.007 -.009 .001 -.010 

6 --.019 - . 026  .003 --.030 

4 .013 .018 --.002 
5 - . 0 0 7  - . 0 0 9  .001 --.011 
6 --.019 - . 026  .003 - . 0 3 0  

S --.008 -.012 .002 --.013 

6 -.022 --.031 .004 -.036 

5 .004062 6 --.024 --.035 .006 --.040 

014 

015 

.015 

.018  

.025 

P = [Po] may be weighted differentially per variable with positive weights w k (k = 1 . . . . .  
n~Le t  the matrix P be part i t ioned as 

[P** I P*2t ,  
P = LP2* I P22d 

where P i t  is of  order  n 1 x n I and P22 is of  order  n u x n z. T h r o u g h o u t  this section, all 
symmetric  matrices of  order  n will be part i t ioned similarly. Then, with Dw -- [Diag  (w,. 
. . . .  w.)] 1/2 > 0, the generalized problem can be stated formally as mini~-i~ing the function 

h(P)  - -  -~ ~ w,  wl (p ,  J - -  ru) 2 
i=1 j= l  

= ½ tr [ D i P  - -  g)Dw] 2, (14) 

subject to the constraints 

P = P' ,  (15) 

e _> ~I, (16) 

P l l  = R** (17) 
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and 

Diag (P22) = Diag (R22). (18) 

In order to apply the algorithm derived above to the generalized minimization 
problem (14) subject to the constraints (15) through (18), the problem will be rewritten 
using the identity 

Dw(P --  R)Dw = Dw(P - M ) D w  - -  D~(R  - -  M ) D w .  (19) 

Firstly, with (19) the function (14) can be written as 

h(P) = 2 x tr [Dw(P - -  6 I )D w --  D w ( g  --  6I)Dw] 2. (20) 

Secondly, the constraint (15) is equivalent to 

Dw(P - -  3 l )Dw = [Dw(P --  M)Dw]' .  (21) 

Thirdly, the constraint (16) is equivalent to 

(P - 61) _> 0, 

and hence, since Dw > 0, equivalent to 

Dw(P --  M)Dw >_ O. (22) 

Fourthly, it is clear that the constraints (17) and (18) can be written as 

[D~(P  - 61)Dw] 11 = [Dw(R - 6l)Dw] 11 (23) 

and 

Diag [Dw(P --  61)Dw]22 = Diag [Dw(R - 6 I )D~]22 ,  (24) 

respectively. 
If we define G =- D~(P  --  6I)Dw and e+(G) =_ h(P), then the problem of minimizing 

(20) subject to the constraints (21) through (24) is equivalent to the problem of minimizing 
the function 

e+(G) = ½ tr [G - Dw(g  - 6I )D~] 2 (25) 

subject to the constraints 

and 

G = G', (26) 

G _~ O, (27) 

G11 = [Dw(R --  6 l )Dw] 1 l, (28) 

Diag (G22) = Diag [Dw(R - 6I)D~,]22. (29) 

Hence we have shown that the problem of minimizing (14) subject to the constraints 
(15) through (18) are equivalent to the problem of minimizing (25) subject to the con- 
straints (26) through (29). The latter problem can be solved directly by the algorithm 
derived above, where the target matrix is now Dw(R - -  6 l )Dw instead of R. If we denote 
the solution by G*, then the solution to problem (14) subject to the constraints (15) 
through (18) is given by P* = (D£  I G * D £  1 + 61), with smallest eigenvalue 3. 

It should be noted that by the nature of the algorithm, restrictions on the choice of 
the smallest eigenvalue 6 of the desired approximating matrix P have to be observed. In 
order to make the problem solvable the conditions (R11 - 6 I , ~ ) >  0 (see (23)) and Diag 
(R22 -- 6In2) > 0 (see (24)) have to be satisfied. In most ap'-plications, 6 will be chosen as 
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TABLE 3 

The values of the unweighted h(P*) with ~ = .05 and the 
lower-triangular parts of the residual matrices (P* - R) 
using De Leeuw's target matrix, for various values of n 1 

(structural zeroes omitted) 

(P* - R) 

n I h(P*) var 1 2 3 4 5 

0,1 .009065 

2 .009462 

2 .019 
3 - . 001  - . 0 0 2  
4 .022 .030 - . 0 0 2  
5 - . 0 1 0  - . 0 1 4  .001 - . 0 1 6  
6 - . 0 3 4  - . 0 4 6  .003 - . 0 5 4  

3 -.002 -.002 

4 .024 .032 --.002 

5 -.011 -.014 .001 - - .016 

6 - . 036  - . 048  .004 - . 0 5 5  

4 .024 .032 --.003 
5 --.011 --.014 .001 --.016 
6 --.036 - . 048  .004 --.055 

3 .009469 

4 .011439 5 --.014 --.019 .003 --.022 
6 --.042 --.057 .008 --.066 

5 ,013502 6 - , 041  - . 0 6 2  .015 - . 0 7 2  

.024 

.025 

.025 

.031 

.052 

the smallest positive scalar that  avoids i l l -condit ionedness of the matr ix  P* with respect to 
inversion. 

Clearly, if we set Dw = I then we obta in  an unweighted best-fitting solut ion with 6 as 
smallest eigenvalue. If we set f = 0 then we ob ta in  a weighted s ingular  solution. If bo th  
D w = I and  6 = 0 then the previously derived solut ion is recovered. 

Fo r  the purpose of i l lustration,  the unweighted solut ion with 6 = .05 ob ta ined  for the 
data  of Table  1 is given in Table  3. It can be seen that  the residual elements of Table  3 
closely resemble those of Table  2. In  fact all signs are equal. For  each value of n I we have 
h(P*) > e(G*) as is to be expected because h is more  heavily constrained.  Specifically, 
h(P*) seems to be abou t  three times as high as e(G*), in this example. Nevertheless, even 
these values of h(P*) do not  seem to be excessively high, for 6 = .05. If smaller residuals 
are needed, then a smaller value of 6 must  be chosen. 

Discussion 

Above, a mono tone ly  convergent  a lgor i thm has been constructed for the best least- 

squares proper  approx imat ion  of an improper  correlat ion or covariance matrix,  preserv- 
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ing the d iagonal  elements. Also, a verifiable necessary and  sufficient condi t ion  for a 

solut ion to yield the (unique) global m i n i m u m  of the least-squares funct ion has been 
given. Pract ical  experience indicates that  this condi t ion  tends to be satisfied. This makes it 
possible not  only to detect but,  in fact, to avoid local minima.  

In  addit ion,  the method  is highly flexible, for three reasons:  It  can handle  fixed 
covariances or correlations for specific variables, it can handle  weighted loss functions, 
and  it can be adjusted to satisfy a nons ingular i ty  constraint ,  at the cost of some loss of fit. 

In  view of these properties, it seems that  an  attractive al ternat ive to existing smooth-  
ing procedures for improper  correlat ion and  covariance matrices has been obtained.  
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