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Abstract

We explore a doubly-greedy approach to the issue of community detection in feature-rich

networks. According to this approach, both the network and feature data are straightfor-

wardly recovered from the underlying unknown non-overlapping communities, supplied with

a center in the feature space and intensity weight(s) over the network each. Our least-

squares additive criterion allows us to search for communities one-by-one and to find each

community by adding entities one by one. A focus of this paper is that the feature-space

data part is converted into a similarity matrix format. The similarity/link values can be used in

either of two modes: (a) as measured in the same scale so that one may can meaningfully

compare and sum similarity values across the entire similarity matrix (summability mode),

and (b) similarity values in one column should not be compared with the values in other col-

umns (nonsummability mode). The two input matrices and two modes lead us to developing

four different Iterative Community Extraction from Similarity data (ICESi) algorithms, which

determine the number of communities automatically. Our experiments at real-world and

synthetic datasets show that these algorithms are valid and competitive.

1 Introduction: Background, previous work, our approach

1.1 Background

Community detection is a popular research subject. Originally, this concerned “pure” network

data. Then data of a set of features at the network nodes have been added to the between-node

link weights, to refer to such two-fold data structures as “feature-rich” networks [1] or “node-

attributed” graphs [2].

A community is a group of relatively densely inter-connected nodes that are similar in the

feature space too. In the past decade, a number of papers with various approaches to identify-

ing communities in feature-rich networks have been published. To classify them, we follow [3]

to divide community detection methods according to the stage of the process of finding com-

munities at which the two data types, network and features, are merged together. This may
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occur before the process begins (early fusion), within the process (simultaneous fusion), and

after the process (late fusion).

Obviously, early fusion and late fusion approaches must be purely heuristic because they

have nothing to do with modelling the observed data. The subject of our interest, methods

based on data modelling, therefore lie within the simultaneous fusion stage. Among the data

modelling approaches, we distinguish between theory-driven and data-driven approaches.

Theory-driven approaches involve a model of the world leading to a probabilistic distribution,

parameters of which can be recovered from the data. Data-driven approaches involve no

world models but rather focus on modelling the data as is. According to this approach, the

data is considered as an array of numbers to be recovered in the process of decoding a model

that “encodes” the data. This view has been formulated at earlier stages of the history of statisti-

cal thinking. Popular data analysis methods—K-means clustering and Principal Component

Analysis—naturally fall within this approach [4].

1.2 Previous work

Two data types, network and features, can be merged together in the process of finding com-

munities before the process begins (early fusion), within the process (simultaneous fusion),

and after the process (late fusion) [3]. Within the simultaneous fusion approach literature we

distinguish data-driven modelling approaches—the niche in which this paper belongs. Two

other approaches here are: theory-driven modelling and heuristics, which is the most

numerous.

Among heuristic approaches to community detection in feature-rich networks, several

adapt criteria of the classical clustering algorithms to the presence of two data sources. These

classical clustering methods are: normalized cut and related spectral clustering [5], as well as

the modularity-based method [6, 7] and Louvain algorithm [8] to detect communities by

locally maximizing the modularity score. Paper [9] modifies the normalized cut criterion by

adding the so-called unimodality compactness to reflect the homogeneity of attributes within a

community. A modified modularity criterion and corresponding method is developed in [10].

A modified Louvain method is proposed and tested in [11]. The so-called network embedding

(see [12–14]) is another popular heuristics development. In this, both the network and feature

data are approximated with a low-dimensional Euclidean vector space.

Methods in [15–17] are based on the co-called Graph-Neural Networks (GNNs). To be

more specific, in [15] an objective function is formulated as a continuous relaxation of the nor-

malized cut problem and then a GNN is trained to compute cluster assignments minimizing

this function. Paper [16] can be considered as a modified version of the popular Graph Convo-

lutional Networks (GCNs) [18] for the task of clustering in feature-rich networks using the

modularity criterion [6]. Paper [17] first combines the attribute and network data to apply

then an autoencoding scheme for clustering in the space of thus obtained latent variables.

The theory-driven approach involves both the maximum likelihood and Bayesian criteria

for fitting probabilistic models. A prominent concept here is stochastic block model (SBM),

also inherited from the analysis of conventional networks. In [19] network structures are mod-

eled with SBM while the continuous features are modeled with a Gaussian mixture model. The

Blockmodel Entropy Significance Test (BESTest) [20] for evaluation of how much a metadata

partition is relevant to the network structure. The BESTest works by first dividing network’s

nodes according to the feature labels and then by computing the entropy of that SBM which

best corresponds to the partition. In [21] a Cluster Representative SBMmodel is proposed,

such that, instead of measuring the distance between node attributes in feature space, the
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distance between each node attributes and clusters representative prototypes is measured and

then the SBM is modified correspondingly.

Methods in [22–24] are based on Bayesian inferences. In [25] the authors propose cluster-

ing criterion to statistically model interrelations between the network structure and node

attributes.

The data-driven modeling approach seems somewhat less developed at this stage. Some

authors propose the so-called non-negative matrix factorization (NNMF) to approximate the

data via factorization of them in the product of non-negative matrices of simpler structure. In

papers [26, 27] combined criteria for such an approximation and methods for suboptimally

solving them are proposed. The criteria are based on the least-squares approach like that by

ourselves. However, these criteria involve some derived data rather than the original ones. A

different tackle is undertaken in [2]. Here, the data are summarized as given; the quality, how-

ever is scored according to the principle of minimum description length (MDL) so that the

number of bits in coding of the summary is minimized. In [28] semidefinite programming

(SDP) method is utilized to detect the communities. And moreover, a sparse attribute self-

adjustment mechanism is introduced to determine the relative importance of each source of

information, i.e node attributes or network links.

This paper combines aspects of the two approaches above: a straightforward modeling of

the data as is, like in [2], and a least-squares criterion, like in [26, 27].

1.3 Our approach

We follow a conventional assumption that there is a hidden partition of the node set in non-

overlapping communities, which is supplied with hidden parameters encoding the average

link intensities in the network and similarity intensities in the similarities (i.e in the similarity

space, obtained from the feature space, as explained in forthcoming subsection 2.1). These are

used at the decoding stage so that the residuals of data recovery equations are minimized

according to the least squares criterion. Such an approach is referred to as the data recovery

approach in [4]; in neural network domain, that is referred to as auto-encoder [29].

The least squares criterion in this case leads to computationally hard problems which are

usually tackled with various heuristics. In particular, we follow a greedy-wise strategy of

sequentially extracting clusters one-by-one. This strategy has been applied earlier to either

only similarity/network data [30, 31] or to only attribute/feature data [32, 33]. These authors

applied this strategy to the case of combined feature and network data in a short note [34].

More precisely, we consider a network with features at the nodes, A = {P, Y}. Here P = (pij)

is an N × N matrix of mutual link scores between nodes i, j 2 I where I is an N-element set of

the network nodes; Y = (yiv) is a N × Vmatrix of feature values yiv at nodes i = 1, 2, . . ., N with

feature labels v = 1, 2, . . ., V. A flat network, at which inter-node links either exist or not, can

be equivalently represented by P with 1/0 entries, so that pij = 1 if there is a link between i and

j, and pij = 0, otherwise.

A community S� I is represented by its binary N × 1 indicator column-vector s = (si) so

that si = 1 if i 2 S, and si = 0, otherwise. To adjust this to the network link scoring, we assign S

with an intensity λ to be determined later. To express the idea that members of the commu-

nity, ideally, share the same feature values, we assign S with its standard V-dimensional point

c = (cv).

We assume that there is a partition S = {S1, S2, . . ., SK} of I in K non-overlapping communi-

ties, a.k.a. clusters, related to this dataset as described below [34].

Denote k-th N-dimensional binary cluster membership vector by sk = (sik); sik = 1 for i 2 I

being a member of the cluster, sik = 0, otherwise. The cluster is assigned with a V-dimensional
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center vector ck = (ckv). Also, there is a positive network intensity weight of k-th cluster denoted

by λk. Here k is an index, k = 1, 2, . . ., K.

Our model requires that the data can be recovered from these according to equations, for

network data,

pij ¼
X

K

k¼1

lksiksjk þ eij; i; j 2 I; ð1Þ

and for feature data,

yiv ¼
X

K

k¼1

ckvsik þ fiv; i 2 I; v 2 V: ð2Þ

where items eij and fiv are residuals to be made as small as possible according to the least-

squares criterion

Fðlk; sk; ckÞ ¼ r
X

K

k¼1

X

i;v

ðyiv � ckvsikÞ
2

þx
X

K

k¼1

X

i;j

ðpij � lksiksjkÞ
2

:

ð3Þ

which is to be minimized with respect to unknown membership vectors sk, community centers

ck and intensity weights λk.

The factors ρ and ξ in Eq (3) are expert-driven constants to balance the relative weights

between the two sources of data, network and features.

The operations of summation in criterion in Eq (3) are outside of the parentheses, whereas

the models (1) and (2) require them to be within the parentheses. However, the formulation in

(3) is consistent with the models in (1) and (2) because vectors sk (k = 1, 2, . . ., K) correspond

to a partition; thus, they are are mutually orthogonal. Therefore, for any specific i, sik is zero

for all k except one, so that each of the sums over k in Eqs (1) and (2) consists of just one item,

and the summation sign may be applied outside of the parentheses indeed.

The authors follow a doubly-greedy strategy for fitting the model in Eqs (1), (2), and (3)

[34]. This strategy is based on a greedily finding only one cluster T = Sk at a time by minimiz-

ing that part of criterion in (3) related to T = Sk only:

Fðl; t; cÞ ¼ r
X

i;v

ðyiv � cvtiÞ
2

þ x
X

i;j

ðpij � ltitjÞ
2

: ð4Þ

with respect to unknown community T 1/0 membership vector t = (ti), community center c =

(cv) and intensity weight λ.
The optimal community center c and intensity weight λ can be expressed through the data

and membership vector t by using the first-order optimality conditions. Conveniently, the

optimal c is the within-T mean of the vectors yi over i 2 T and the optimal λ is the average link

score within T. By putting these expressions for c and λ into criterion (4) and making elemen-

tary algebraic transformations, we can reformulate (4) as

F ¼ rTðYÞ þ xTðPÞ � GðtÞ ð5Þ

where T(Y) = ∑i,v yiv
2 is the quadratic feature data scatter, TðPÞ ¼

P

ijp
2

i;j, the quadratic
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network data scatter, and

GðtÞ ¼ rjTj
X

v

c2v þ xl
X

i;j

pijtitj ¼ rjTj
X

v

c2v þ xl
2jTj

2

: ð6Þ

Therefore, to minimize the criterion (4), one may maximize criterion (6). This is where the

other greedy part works in our approach. Specifically, we grow a suboptimal T from a singleton

by adding nodes one by one to maximize the increment of G(t) at each step. An exact formula-

tion of this algorithm, SEFNAC, will be given further on. Our experiments at real-world and

synthetic datasets have shown that this approach is valid and competitive against existing

state-of-the-art approaches [34].

In this paper we build over the approach proposed in [34] by extending that in two direc-

tions: (i) Converting feature data to a similarity matrix format, (ii) Taking into account two

modes, summability and nonsummability, for using similarity data, as well as experimentally

validating emerging algorithmic options.

Direction (i), Converting features into a similarity matrix format, is rather popular in data

science, first of all, with regard to the so-called kernel functions. A kernel function K(x, y)

models inner product between images of vectors x and y under a not necessarily linear map-

ping w, w(x) and w(y), in the so-called straightening space in which K(x, y) =< w(x), w(y)>.

What is nice about it—in many cases, there is no need in using the transformation w(x) itself

—the kernel K(x, y) suffices. One popular example of kernel function is the so-called Gaussian

kernel defined as K(x, y) = exp(−d(x, y)/α) where d(x, y) =< x − y, x − y> is the squared

Euclidean distance and α > 0, a normalising constant. Application of kernel functions usually

is justified by the need to do intricate non-linear transformations of the feature space in situa-

tions at which the hidden interclass boundaries are curled and twisted. We limit ourselves with

a simplest kernel function F(x, y) =< x, y>, the inner product, because we do not expect com-

plicated shapes neither in the real world datasets under consideration, nor in the generated

“synthetic” datasets because of rather simple data generation models.

Another consideration which influenced our choice is the so-called curse of dimensionality

which is associated with the fact that the Euclidean distance in a high-dimensional feature

space gets less informative of the mutual location of objects in the feature space, whereas the

inner product perhaps is more steady of the angular information.

Therefore, we are going to consider N × Nmatrix R = YYT to represent the feature data

rather than the original N × Vmatrix Y.

Regarding direction (ii), Two modes of usage of similarity data, (a) Summability and (b)

Nonsummability, we mean the following. In the Summability mode, we consider all link scores

as measured in the same scale, so that it makes sense to sum them across the entire table or any

part of it. The Nonsummability mode relates to the case at which each node’s links are consid-

ered as scored in different scales. In this case, it makes sense to sum link scores only within a

row or column, but not across different rows.

The Nonsummability assumption may have sense, for example, in some psychological

experiments in which the entities are individuals or cognitive subsystems with different scales

of individual judgements. Another example: two sets of internet sites; one to provide classical

music education, the other to sell goods. These sets would much differ in the following: (a) the

numbers of visitors: they are massive at selling goods sites, and they are much more modest at

classical music education sites; (b) the time spent: that would be of the order of seconds at pur-

chasing goods and hours at listening music.

Each of the two modes can be considered at each of the similarity data matrices, P and R =

YYT, which generates four different cases. We apply the least squares approach to all the cases
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and conduct a comprehensive set of experiments to validate and to compare the performance

of the newly proposed algorithms.

Our experiments show that this approach is able to recover hidden clusters in feature-rich

networks using similarity data indeed. Moreover, it appears the conversion of feature data to

similarity data in some cases leads to more accurate cluster recovery results in comparison to

the use of the original Y dataset. Overall, our experiments show that the proposed methods are

competitive against other state-of-the-art approaches.

2 Methodology

2.1 Inner products as similarites

Our approach assumes a preliminary standardization of the data, both the network and feature

spaces. The features are standardized by subtracting the means gv = ∑i2I yiv/N from feature col-

umns v, v = 1, 2, . . ., V. To distinguish gv from within-cluster means, they frequently are

referred to as grand means. We accept the row-to-row inner product rij =< yi, yj > = ∑v2V yiv

yjv as the similarity index. Each feature v contributes the product yiv yjv to this, which much

depends on the mutual location of i and j nodes on the axis v with respect to the grand mean

gv.

The product is positive when both node location are either larger than gv = 0 or smaller

than gv = 0. It is negative when i and j are on different sides from gv = 0. Furthermore, the

closer yiv and yjv to zero the smaller the product and the farther they are from zero, the greater

the product.

Scoring the similarity by the inner product makes those entities in which features are fur-

ther away from the grand mean, more distinguishable. In contrast, those entities in which fea-

ture values are close to the grand mean are less distinguishable, therefore they might be

merged during the clustering process.

2.2 Data recovery models for a single community detection in a similarity
matrix

As explained above, we have two N × N data matrices, matrix R = (rij) of feature-based node-

to-node similarities and matrix P = (pij) of node-to-node link scoring. To unify our presenta-

tion, we are going to denote either of them as B = (bij) where bij stands for either a converted

feature-based similarity rij or a ‘native’ link weight pij (i, j 2 I).

To define our data-driven community model, let us specify the following notation.

A community, or cluster, T� I is represented by a binary N × 1 membership column vec-

tor, t = (ti) in which ti = 1 if i 2 T, and ti = 0, otherwise.

Assume that there may be two possible modes of using the similarity scores bij:

SM Summability Mode

In this mode, the similarities bij are comparable and summable across the entire matrix B.

In this case, there should an intensity value η to relate the similarity measurement scale to

T. Specifically, each within-community similarity bij i, j 2 T, should be approximately equal

to the intensity η for T.

NM Nonsummability Mode

In this mode, the similarities bij in any column j are assumed to be non-comparable to simi-

larities bij0 in any different column j0 6¼ j, i, j 2 I. Therefore, a specific intensity ηj is assumed

for each column j 2 I, so that, for any i 2 T the similarity value bij should approximate the

value ηj.
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The SMmode is typical in network analysis. NMmode points to not an uncommon data

type emerging in some psychological experiments in which the nodes are individuals or cogni-

tive subsystems with different scales of individual judgements. Similarly, between-industries

input-output tables in Economics may use different measurement scales for production of dif-

ferent industries, especially for raw materials such as electricity, coal, and oil. The similarity

data derived from the feature tables also may be considered as measured in NMmode some-

times, especially in potentially important situations at which some nodes jmay be considered

as more important than the other—then similarity to each of them could serve as that mea-

sured in a different scale.

To relate a community T to the similarity data B, we assume that a unified intensity η exists

in the SMmode or a set of intensity values ηj, j 2 I, in the NMmode, so that either of the two

following approximate equations holds:

bij ¼ Zsisj þ eij; i; j 2 I; ð7Þ

at the SM, or

bij ¼ Zjsi þ eij; i; j 2 I: ð8Þ

at the NM assumption.

Since there are two sources of data, namely, the feature-based similarity data and the net-

work data, and for each of them either of the two modes can be accepted, consequently, there

will be four possible combinations of modes and data sources. As a convention, we assume

that symbol “S” stands for the summability mode, and “N” stands for the nonsummability

mode, at each of the data sources, so that the first letter refers to the feature-based similarity

data, whereas the second letter refers to the network data. Consequently, combination SS refers

to the case at which both data sets are in the Summable mode; SN, to the case at which the fea-

ture-based similarity data are Summable and the network data are not; NS, to the case at which

the feature-based similarity data are Nonsummable and the network data are Summable; NN,

to the case at which both data sets are in the Nonsummable mode. To avoid repetitive deriva-

tions, we consider in detail only one of the four cases, say, SN.

By using the least-squares approach, we arrive at the problem of finding a hidden member-

ship matrix s = (sik), intensities for the similarity data μk and intensity weights λjk minimizing

the sum of squared residuals according to the SN mode:

at SN assumption:

FSNðsk; mk; ljkÞ ¼ r
X

K

k¼1

X

i;j

ðrij � mksiksjkÞ
2

þx
X

K

k¼1

X

i;j

ðpij � ljksikÞ
2

;

ð9Þ

The factors ρ and ξ in Eq (9) are expert-driven constants to balance the relative weights of

the two sources of data, network links and feature-based similarity values. In this paper, they

are taken to be equal to unity each.

Since vectors sk = (sik) (k = 1, 2, . . ., K) correspond to a partition, they are mutually orthogo-

nal. That means that for any specific i, sik is zero for all k’s except one: that one k for which Sk

contains i. As a result, each of the sums over k in the models relates to a single summand,

meaning that the operation of summation over kmay be applied outside of the parentheses in

Eq (9).
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2.3 The iterative community extraction with least-squares

Global optimization of the criterion (9) is computationally expensive and cannot be achieved

in a reasonable time. Therefore, there can be various heuristic strategies applied. We are going

to exploit a doubly greedy approach of sequential extraction [35]. This approach can be applied

here because the criteria to optimize are additive. According to this approach, parts Sk of the

partition S are sought not simultaneously, but one-by-one, sequentially, in a greedy manner.

That is, a subset of I to serve as Sk at k = 1 is found to minimize the part of the criterion related

to S1.

Specifically, for an individual community denoted by T� I, its membership by t = (ti), so

that ti = 1 if i 2 T and ti = 0, otherwise; its intensity similarity by μ; and the corresponding

intensity weight by λj (the index k has been removed), the extent of fit between the community

and the dataset, according to criterion (9), is

fSNðm; lj; tiÞ ¼ r
X

i;j

ðrij � mtitjÞ
2

þ

x
X

i;j

ðpij � ljtiÞ
2

ð10Þ

We take a subset Tminimizing, in some sense, the criterion (10) as the first part of partition

S we are to find, S1. Then this S1 is removed from I and the next part, S2, is sought in the same

way over the residual entity set I0 I − S1. This continues till a pre-specified stopping criterion

is reached such as, say, that the residual I0 gets empty.

Within this greedy strategy, at its k-th step (k = 1, 2, . . ., K), we use one more greedy proce-

dure for obtaining a (locally) optimal set T and its quantitative characteristics μ and λj, j 2 I.

The additive structure of the criterion (10) allows us to express them using contributions to

the data scatter.

Consider two partial criteria, the two individual items in the squared error criterion (10):

(a) The fit between the summable community model and the similarity data:

FRSðm; tÞ ¼
X

i;j

ðrij � mtitjÞ
2

ð11Þ

(b) The fit between the nonsummable community model and the network data:

FPNðl; tÞ ¼
X

i;j

ðpij � ljtiÞ
2

: ð12Þ

The total goodness of fit measure is fSN = ρFRS + ξFPN where ρ and ξ are user-defined

weights balancing two data sources, the feature-based similarities and the network links,

respectively.

At a given T� I, to minimize the criterion (10) with respect to the quantitative characteris-

tics μ and λj, one should apply the first-order optimality conditions. The derivatives of fSN over

μ and λj are:

@FRS

@m
¼ 2r

X

i;j

ðrij � mtitjÞð�titjÞ: ð13Þ
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and

@FPN

@mj

¼ 2x
X

i;j

ðrij � ljtiÞð�tiÞ: ð14Þ

Equating them to zero yields:
X

i;j

rijtitj ¼ m
X

i

t2i
X

j

t2j ; ð15Þ

and
X

i

pijti ¼ lj

X

i

t2i : ð16Þ

Since ti is 1/0 binary, equality t2i ¼ ti holds. Thus,
P

it
2

i ¼
P

jt
2

j ¼
P

iti ¼ jTj. Therefore,

these equations can be equivalently reformulated as follows:

m ¼

P

i;jrijtitj

jTj
2
¼

P

i;j2Trij

jTj
2

; ð17Þ

and

lj ¼

P

ipijti
jTj

¼

P

i2Tpij

jTj
: ð18Þ

In other words, the optimal μ and λj must be central in T: they are within-cluster means of

the corresponding similarity and link scoring values.

Let us now reformulate the partial criteria (11) and (12) by opening the parentheses and

putting there the found optimal values of μ and λj:

Criterion (11) yields:

FRSðm; tÞ ¼
X

i;j

ðrij � mtitjÞ
2

¼
X

i;j

r2ij � 2m
X

i;j

rijtitj þ m2

X

i;j

titj:

Let us denote the square R matrix scatter by QðRÞ ¼
P

i;jr
2

ij and take into account that ∑i,j rij

ti tj = μ ∑i,j ti tj. Then the equation above can be rewritten as

FRSðm; tÞ ¼ QðRÞ � m2jTj
2 ð19Þ

Similarly, criterion (12) yields:

FPNðlj; tÞ ¼
X

i;j

ðpij � ljtiÞ
2

¼
X

i;j

p2

ij � 2

X

i;j

pijtilj þ
X

j

l
2

j

X

i

ti:

Let us take into account that ∑i pij ti = λj ∑i ti. Then the equation above can be rewritten as

FPNðl; tÞ ¼ QðPÞ �
X

j

l
2

j jTj: ð20Þ

where QðPÞ ¼
P

i;jp
2

ij is the data P scatter.

Therefore, with the optimal values for μ, and λj, the criterion (10) can be equivalently refor-

mulated as:

f ðm;l; tÞ ¼ rQðRÞ þ xQðPÞ � G ð21Þ
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where

GðTÞ ¼ GSN ¼ rm
X

ij

rijtitj þ xjTj
X

j

l
2

j ¼ rjTj
2

m2 þ xjTj
X

j

l
2

j ð22Þ

where m ¼

P

i;j
rijtitj

P

i;j
titj

and lj ¼

P

i2T
pij

jTj
.

Maximizing criterion G(T) in the Eq (22) is equivalent to minimizing the corresponding

one-cluster least-squares criteria Eq (10). Therefore, it makes sense to take a look whether G

(T) has any meaning of its own.

First of all, we can rewrite the Eq (21) as a Pythagorean decomposition of the combined

data scatter Q(R, P) = ρQ(R) + ξQ(P):

QðR; PÞ ¼ rQðRÞ þ xQðPÞ ¼ Gþ f ð23Þ

in two parts, the minimized squared residuals f (10) and the complementary part G. The

decomposition gives a statistical meaning to the value of G. This is contribution of the commu-

nity T to the combined data scatter Q(R, P).

A more intuitive meaning of the criterion one can see in the formula (22): it requires maxi-

mizing the size |T| of the community to be found and, simultaneously, maximizing the average

within-community similarity and the squared distance from the vector (λj) to 0.

Assuming that the data matrices are pre-processed so that the origin is transferred to the

center of gravity, or grand mean, the point whose components are the averages of the corre-

sponding similarity/network values, we may conclude that the cluster T should be both

numerous and anomalous.

We refer to our local search algorithm for maximizing criterion (22) as to the Least-Squares

Community Extraction from Similarity data, LS CESi or just CESi when the least-squares

framework is assumed undoubtedly. We add to this an ending, sn, to indicate in the modified

abbreviation, CESisn, that the summability mode is accepted for the feature-based similarity,

and the nonsummability mode is accepted for the network links, s for SM and n for NM, in

the case under consideration. The other three combinations will be referred to as CESiss,

CESins, and CESinn, to mean combinations SM and SM, NM and SM, and NM and NM,

respectively.

The algorithm finds a cluster T and its intensities μ and λj by locally maximizing G in the

system of neighborhoods defined by the the condition that T’s neighborhood consists of sub-

sets differing from T by just adding a single entity.

The CESi algorithm starts from a random i 2 I. This i serves as the seed forming a starting

singleton cluster T = {i}. This triggers execution of the base CESi module. At any current T,

this module computes increment Δ(j) = G(T + j) − G(T) for every element j 2 I − T and selects

that j� at which Δ(j) is maximum. If this maximum is positive, then j� is added to T, and the

module runs again from thus updated T. If, in contrast, Δ(j�)< 0, the algorithm halts and out-

puts T and its intensities μ and λj, as well as its contribution to the combined data scatter G.

Then the last check is performed: Seed Relevance Check: If the removal of the seed increases

the cluster contribution; this seed is extracted from the cluster.

The algorithm CESi serves as the core subroutine in our Iterative community detection

algorithm ICESi.

The algorithm ICESi starts by standardizing the square N × N matrices R and P—this will

be described later. Then we set k = 1 and Ik = I. At a given k, we apply CESi to R and P data

matrices restricted to the set Ik. The resulting cluster T forms next cluster Sk+1 along with its

intensities μk+1 and λj,k+1, as well as the relative contribution to the combined data scatter
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qk+1 = G/Q(R, P). Now we redefine Ik+1 = Ik − Sk+1 and test a pre-specified stop-condition. The

stop-condition is a predicate that may involve several clauses. One of them is testing whether

Ik+1 = ; or not. Two other clauses usually are limits to the current and cumulative contribu-

tions. To stop, the former should be less than, say, 5% of the Q(R, P), whereas the latter should

be 50% of that or greater. If the stop condition is satisfied, we define K = k + 1 and output the

found clusters Sk together with their numerical characteristics (k = 1, 2, . . ., K). Otherwise, we

update k by adding 1, k k + 1 and execute the next iteration of extracting clusters.

Algorithms ICESiss, ICESins, ICESinn corresponding to other combinations of summabil-

ity modes also use the decomposition (21) to maximize the contribution G, that is expressed

either as

GðTÞ ¼ GSS ¼ rm
X

ij

rijtitj þ xl
X

ij

pijtitj ð24Þ

at the combination SM and SM, or as

GðTÞ ¼ GNS ¼ rjTj
X

j

m2

j þ xl
X

ij

pijtitj ð25Þ

at the combination NM and SM, or as

GðTÞ ¼ GNN ¼ jTjðr
X

j

m2

j þ x
X

j

l
2

j Þ ð26Þ

at the combination NM and NM.

At the assumption NN, where μ, μj, λ, and λj are the corresponding within-T means. The

algorithm ICESi works with them similarly, up to obvious modifications of the increment Δ(j).
A Python source code of thus defined ICESi can be found at https://github.com/Sorooshi/

ICESi.

3 Setting of experiments for validation and comparison of the
proposedmethods

To set a computational experiment, one should specify its constituents:

1. A set of algorithms under comparison.

2. A set of datasets at which the algorithms are evaluated and/or compared.

3. A set of pre-processing methods which are applied to standardize or to normalize the

datasets.

4. A set of criteria for assessment of the experimental results.

We address these, in sequence, in separate sections.

3.1 Algorithms under comparison

We take for comparison two algorithms of the model-based approach, CESNA [25], SIAN [24]

which have been extensively tested in computational experiments. Besides, author-made codes

of the algorithms are publicly available. We add to this our method SEFNAC [34] extracting

communities from the data without converting them to the similarity format. We also tested

the algorithm PAICAN from [23] in our experiments. The results of this algorithm, unfortu-

nately, were always less than satisfactory; therefore, we excluded the algorithm PAICAN from

this paper.
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Here are brief descriptions of the three competitors.

3.1.1. CESNA [25] overview. Given an undirected graph G(V, E) with binary node attri-

bute matrix X, where V is the set of vertices and E is the set of edges, the aim of CESNA is to

detect C communities regarding the graph structure and node attributes. The authors define

two generative models, one for the graph and the other for attributes, and combine them

together. For graph structure they use Eq (27) to model the probability of an edge between two

nodes u and v as follows:

Puv ¼ 1� expð�
X

C

c¼1

FucFvcÞ

Auv � BernoulliðPuvÞ

ð27Þ

where A 2 {0, 1}N×N denotes the graph adjacency matrix. Unknown function Fuc represents

the membership of node u to community c, so that the probability is a logistic function of the

inner product of Fuc and Fvc. The presence or absence of an edge uv is governed by a Bernoulli

distribution, so that it holds with probability Puv or does not, with probability 1 − Puv.

A similar model (28) is defined for any binary attribute at nodes:

Quk ¼
1

1þ expð�
P

cWkc:FucÞ

Xuk � BernoulliðQukÞ

ð28Þ

Here Wkc is a real-valued parameter of the logistic model for community c to the k-th node

attribute.

With the two models above, the problem is to infer values of latent variables F and W by

maximizing the likelihood l(F, W) = logP(G, X|F, W) of the observed data G, X. Here F = (Fuc)

is the node-to-community membership matrix and W = (Wkc) is the real-valued logistic model

parameter for attributes.

Assuming that these two sources of data are conditionally independent, the loglikelihood

can be defined as log P(G, X|F, W) = LG + LX where LG = log P(G|F) and LX = log P(X|F,W).

To find F and Wmaximizing LG and LX, which can be computed using the Eqs (27) and (28),

the authors adopt projected gradient ascent approach with backtracking line search [36].

An author-supplied code for CESNA algorithm can be found at [37].

3.1.2 SIAN [24] overview. Consider a set of features x = {xu} at nodes u = 1, 2, . . ., n and a

set of node degrees d = {du}. Assume, first, that each node u belongs to community s with the

probability depending on xu. and denote all possible combinations of features and communi-

ties by Γ = (γsx). Then the full prior probability of community assignment is P(s|Γ, x). At the
next stage, edges between nodes are formed independently at random, with the probability of

an edge between nodes u and v being puv ¼ dudvysusv
. Here θst is a hyper-parameter.

The task is to fit the model to the observed data by using the maximum likelihood principle.

To this end, a binary adjacency matrix A = (auv), is generated according to the following

model:

PðAjY;G;xÞ ¼
X

s

PðAjY; sÞ:PðsjG;xÞ

¼
X

s

Y

u<v

pauv
uv ð1� puvÞ

1�auv
Y

u

gsu ;xu

ð29Þ
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Here Θ is a k × kmatrix of elements θst, and the sum is over all admissible node-to-commu-

nity assignments. To maximise the function in (29) the authors use the Expectation-Maximisa-

tion (EM) algorithm.

An author-supplied code for SIAN algorithm can be found at [38].

3.1.3. SEFNAC [34] overview. Given an N × V entity-to-feature matrix Y = (yiv), and an

N × N adjacency matrix P = (pij), the task is to cluster nodes sharing similar feature values

while being densely connected according to P. This task in [34] is formulated as of minimiza-

tion of the criterion

Fðlk; sk; ckÞ ¼ r
X

K

k¼1

X

iv

ðyiv � ckvsikÞ
2

þx
X

K

k¼1

X

ij

ðpij � lksiksjkÞ
2

ð30Þ

where ck represents the centroid vector of k-th community, λk its link intensity, and sik is a

binary 1/0 value representing the membership of the i-th node to the k-th community.

By applying the optimality conditions, SEFNAC is a method for one-by-one extracting

communities similar to the method ICESi; more detail can be found in [34].

An author-supplied code for SEFNAC algorithm is available at [39].

3.2 Datasets

We use both real world datasets and synthetic datasets. We describe them in the following

subsections.

3.2.1 Real world datasets. Two of the algorithms under comparison, unlike SEFNAC and

ICESi, restrict the features to be categorical. Therefore, whenever a data set contains a quanti-

tative feature we convert that feature to a categorical version. A brief overview of the five real-

world data sets under consideration can be found in Table 1.

Here are brief descriptions of them.

3.2.1.1 Malaria data set. This data set is introduced in [40]. The nodes are amino acid

sequences containing six highly variable regions (HVR) each. The edges are drawn between

sequences with similar HVRs 6. In this data set, there are two nominal attributes of nodes:

1. Cys labels derived from of a highly variable region HVR6 sequence

2. Cys-PoLV labels derived from the sequences adjacent to regions HVR 5 and 6

The Cys Labels is considered as the ground truth.

Table 1. Real world datasets under consideration.

Name Nodes Edges Features Ground Truth

Malaria HVR6 307 6526 6 Cys Labels

Lawyers 71 339 18 Derived out of office and status features

World Trade 80 1000 16 Structural world system in 1980 features

Parliament 451 11646 108 Political parties

COSN 46 552 16 Region

Symbols N, E, and F stand for the number of nodes, the number of edges, and the number of node features, respectively.

https://doi.org/10.1371/journal.pone.0254377.t001
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3.2.1.2 Lawyers dataset. The Lawyers dataset comes from a network study of corporate law

partnership carried out in a Northeastern US corporate law firm, referred to as SG & R, 1988-

1991, in New England. It was introduced in [41] and it is available for downloading at [42].

There is a friendship network between lawyers in the study. The features in this dataset are:

1. Status (partner, associate),

2. Gender (man, woman),

3. Office location (Boston, Hartford, Providence),

4. Years with the firm,

5. Age,

6. Practice (litigation, corporate),

7. Law school (Harvard or Yale, UCon., Other)

Most features are nominal. Two features, “Years with the firm” and “Age”, are quantitative.

We use the nominal format by authors of the previous studies. The categories of “Years with

the firm” are x<= 10, 10< x < 20, and x >= 20; the categories of “Age” are x <= 40, 40<

x< 50, and x>= 50.

The combination of Office location and Status is considered as the ground truth. (see

Table 2).

3.2.1.3 World-Trade dataset. The World-Trade dataset contains data on trade between 80

countries in 1994 (see [43]). The link scores represent total imports by row-countries from col-

umn-countries, in $ 1,000, for the class of commodities designated as ‘miscellaneous manufac-

tures of metal’ to represent high technology products or heavy manufacture. The scores for

imports with values less than 1% of the country’s total imports are zeroed.

The node attributes are:

1. Continent (Africa, Asia, Europe, North America, Oceania, South America)

2. Structural World System Position (Core, Semi-Periphery, Periphery),

3. Gross Domestic Product per capita in $ (GDP p/c)

4. Structural World System Position in 1980 according to Smith andWhite (Core, Semi-

Periphery, Periphery, N.A.I)

N.A.I: stands for Not Available information which represent countries in which due to War

to dictatorships etc their ecumenical information were not available.

Table 2. Features in the Lawyers dataset.

No. Feature Type Categories N E F

1 Status Nominal Partner, Associate

2 Gender Nominal Male, Female

3 Office Nominal Boston, Hartford, Providence

4 Years with Firm Categorised x <= 10, 10< x < 20, x >= 20 71 399 18

5 Age Categorised x <= 40, 40< x < 50, x >= 50

6 Practice Nominal Litigation, Corporate

7 Law School Nominal Harvard, Yale, UCon.

Symbols N, E, and F denote the number of nodes, the number of edges, and the number of node features, respectively.

https://doi.org/10.1371/journal.pone.0254377.t002
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The Structural World System Position in 1980 according to Smith andWhite is considered

as the ground truth.

The GDP p/c feature is converted into a three-category nominal feature manually, accord-

ing to the minima at its histogram. The categories are defined as follows: ‘Poor’ category is for

the GDP less than $4406:9; ‘Mid-Range’ category is for the GDP greater than than $4406:9 but

not greater than $21574:5; and ‘Wealthy’ category corresponds to the GDP greater than

$21574:5.

These features are reviewed in Table 3. Before applying SEFNAC, all attribute categories are

converted into 0/1 dummy variables which are considered quantitative.

3.2.1.4 Parliament dataset. In the Parliament data set, introduced in [23], nodes correspond

to members of the French Parliament. An edge is drawn if the corresponding MPs have signed

a bill together. The features are the constituency of MPs and their political party, as it is

described by the authors. The latter is considered the ground truth (see Table 4).

3.2.1.5 Consulting Organisational Social Network (COSN) dataset. The Consulting Organi-

sational Social Network (COSN) dataset is introduced in [44]. Nodes in this network corre-

spond to employees in a consulting company. The (asymmetric) edges are formed in

accordance with their replies to this question: “Please indicate how often you have turned to

this person for information or advice on work-related topics in the past three months”. The

answers are coded by 0 (I Do Not Know This Person), 1 (Never), 2 (Seldom), 3 (Sometimes), 4

(Often), and 5 (Very Often). Either of these 6 numerals is the weight of all the corresponding

edges.

Nodes in this network have the following attributes:

1. Organisational level (Research Assistant, Junior Consultant, Senior Consultant, Managing

Consultant, Partner),

2. Gender (Male, Female),

3. Region (Europe, USA),

4. Location (Boston, London, Paris, Rome, Madrid, Oslo, Copenhagen).

The Region feature is considered as the ground truth. A description of the data is in

Table 5.

Table 3. Features inWorld Trade data set.

No. Feature Type Categories N E F

1 Continent Nominal Africa, Asia, Europe, North America, Oceania, South America

2 SWSP in 1994 Nominal Core, Semi-periphery, Periphery 80 1000 16

3 GDP categories Nominal Poor, Mid-Range, Wealthy

4 SWSP in 1980 according Smith and White Nominal Core, Semi-periphery, Periphery, N.I.A

SWSP stands for Structural World System Position; GDP, for Gross Domestic Product per capita. Symbols N, E, and F show the number of nodes, the number of edges,

and the number of node features, respectively.

https://doi.org/10.1371/journal.pone.0254377.t003

Table 4. The Parliament data set.

No. Feature Type Categories N E F

1 Constituency Nominal MPs constituency 451 11464 108

Symbols N, E, and F show the number of nodes, the number of edges, and the number of node features, respectively.

https://doi.org/10.1371/journal.pone.0254377.t004
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3.2.2 Generating synthetic datasets. In this section, we describe how we generate syn-

thetic datasets with an innate cluster structure by separately generating:

• network;

• categorical features;

• quantitative features.

Each of these is put in a separate subsection.

3.2.2.1 Generating network. First, the number of nodes, N, and the number of communities

K are specified. Then cardinalities/sizes of communities are defined randomly, up to a con-

straint that no community has less than a pre-specified number of nodes (in our experiments,

this is set to 30, so that probabilistic approaches are applicable), and the total number of nodes

in all the communities sums to N. We consider two settings for N: (a) N = 200, at a small size

network, and (b) N = 1000, for a medium-size network. We postpone analysis of larger net-

works for another paper.

Given the community sizes, we populate them with nodes, that are specified just by indices.

Then we specify two probability values, p and q.

Every within-community edge is drawn with the probability p, independently of other

edges. Similarly, any between- community edge is drawn independently with the probability q.

Fig 1 illustrates similarity matrices for generated networks at p = 0.7, 0.9 and q = 0.4, 0.6. The

upper pane in the Figure visualizes a network with 200 nodes and five communities, whereas

the lower pane presents 15 communities at 1000 nodes.

3.2.2.2 Generating quantitative features. To model quantitative features, we use conven-

tional Gaussian distributions as within-cluster density functions. We apply design proposed in

[45]. Each cluster is generated from a Gaussian distribution whose covariance matrix is diago-

nal with diagonal values uniformly random in the range [0.05, 0.1]—they specify the cluster’s

spread. Each component of the cluster center is generated uniformly random from the range α
[−1, +1], where α 2 A controls the cluster intermix. Indeed, the smaller the α, the greater the
chance that points from a cluster fall within the spreads of other clusters. Fig 2 illustrates exam-

ples of the generated data sets for α = 0.7 and α = 0.9. The upper pane in the Figure visualizes a

feature-rich network with 200 nodes and five communities, whereas the lower pane presents a

synthetic dataset with 15 communities at 1000 nodes.

In addition to cluster intermix, the possibility of presence of noise in data also is taken into

account. Uniformly random noise features from an interval defined by the maximum and

minimum values are generated. In this way, 50% of the original data with noise features are

replicated.

3.2.2.3 Generating categorical features. To model categorical features, the number of subcat-

egories for each category is randomly chosen from the set {2, 3, . . ., L} where L = 10 for small-

size networks and L = 15 for medium-size networks. Then, given the number of communities,

Table 5. The Consulting Organisational Social Network data set.

No. Feature Type Categories N E F

1 Organisational Level Nominal Assistant, Junior, Consultant, Senior Consultant, Managing Consultant, Partner 46 552 16

2 Gender Nominal Male, Female

3 Region Nominal Europe, USA,

4 Location Nominal Boston, London, Paris, Rome, Madrid, Oslo, Copenhagen

N, E, and F show the number of nodes, the number of edges, and the number of node features, respectively.

https://doi.org/10.1371/journal.pone.0254377.t005
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K, and the numbers of entities, Nk for (k = 1, . . ., K); the cluster centers are generated randomly

so that no two centers may coincide at more than 50% of features.

Once a center of k-th cluster, ck = (ckv), is specified, Nk entities of this cluster are generated

as follows. Given a pre-specified threshold of intermix, � between 0 and 1, for every pair (i, v),

Fig 1. Samples of synthetically generated network matrices (white pixels represent unities, and dark ones, zeros). The number of nodes is N and the number of
communities is K. Values p, q are the probabilities of drawing edges within-community and between communities, respectively. Specifically, p = 0.7, q = 0.4,N = 200, K = 5
at (a), p = 0.9, q = 0.6, N = 200, K = 5 at (b), p = 0.7, q = 0.4,N = 1000, K = 15 at (c), and p = 0.9, q = 0.6,N = 1000, K = 15 at (d).

https://doi.org/10.1371/journal.pone.0254377.g001
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i = 1: Nk; v = 1: V, a uniformly random real number r between 0 and 1 is generated. If r > �,

the entry xiv is set to be equal to ckv; otherwise, xiv is taken randomly from the set of subcatego-

ries specified for feature v.

Consequently, all entities in cluster k-th coincide with its center, up to rare errors if � is

large enough. The smaller the epsilon, the more diverse, and thus intermixed, would be the

generated entities.

To generate a feature-rich network combining categorical and quantitative features, we

divide the number of features in two approximately equal parts, one to consist of quantitative

features, the other, of categorical features. Each part is filled in independently, according to the

schemes described above.

3.3 Data pre-processing

The results of ICESi and SEFNAC methods depend on how the data are standardized. Unfor-

tunately, no theoretical foundations have been developed so far for the issues of data

Fig 2. Samples of synthetically generated clusters at quantitative features; N is the number of nodes, K is the number of communities, and α is the parameter of
cluster intermix. The parameter values are: α = 0.9, N = 200, K = 5 at (a); α = 0.7, N = 200, K = 5 at (b); α = 0.9, N = 1000, K = 15 at (c); and α = 0.7,N = 1000, K = 15 at (d).

https://doi.org/10.1371/journal.pone.0254377.g002
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standardization. We describe here two popular methods of standardization for feature data

and two standardization methods for network data.

Noteworthy to add that to convert feature data to similarity data, preprocessing them with a

standardization is a must. And this is the reason to consider feature standardization methods

here.

For features, the two following standardization methods are taken into consideration:

1. Z-scoring: each of the features is centered by subtraction of its mean from all its values, and

then normalized by dividing over its standard deviation.

2. Range standardization: each of the features is centered by subtraction of its mean from all

its values, and then normalized by dividing over its range, that is, the difference between its

maximum and minimum.

For the networks, consider the two following normalization methods:

1. Modularity: Given an N × N similarity matrix P = (pij), compute summary values

piþ ¼
PN

j¼1 pij, pþj ¼
PN

i¼1 pij, pþþ ¼
PN

i;j¼1 pij and random interaction scores tij = pi+ p+j/p+

+. Clean link scores from random interactions by changing pij for pij − tij.

2. Uniform shift: Compute the mean link score p ¼
PN

i;j¼1 pij=N
2; change all pij for pij − π.

3.4 Evaluation criterion

To compare results found by clustering algorithms, we use most popular metrics of similarity

between partitions: 1) The Adjusted Rand Index (ARI) [46], and 2) the Normalised Mutual

Information (NMI) [47, 48]. However, in this paper, we report only the ARI values for the sake

of convenience because these two measures lead to similar conclusions. Therefore, we define

here ARI only.

Let us recall the concept of contingency table from statistics. Given two partitions of the

node set I, S = {S1, S2, . . ., SK} and T = {T1, T2, . . ., TL}, the contingency table is a two-way

table, whose rows correspond to parts Sk (k = 1, 2, . . ., K) of S, and columns, to parts l = 1, 2,

. . ., L of T, so that its (k, l)-th entry is nkl = |Sk \ Tl|, the frequency of (k, l) co-occurrences. The

so-called marginal row and marginal column are defined as ak ¼
PL

l¼1 nkl ¼ jSkj and

bl ¼
PK

k¼1 nkl ¼ jTlj.

The Adjusted Rand Index is defined as:

ARIðS;TÞ ¼

P

k;l

nkl

2

� �

�
P

k

ak

2

� �

P

l

bl

2

� �� �
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þ
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ð31Þ

The closer the value of ARI to unity, the better the match between the two partitions;

ARI = 1.0 shows that S = T. If one of the partitions consists of just one part, the set I itself, then

ARI = 0. Cases at which ARI is negative may occur too; but these authors have observed them

only at specially defined, ‘dual’, pairs of partitions (see in [45]).

To make ARI values more operational, we consider a model confusion example from [4],

p. 246. This example operates with two partitions, {S1, S2} and {T1, T2} dividing I in two equal-

sized parts each, so that the contingency table of the co-occurrence relative frequencies looks

like Table 6.
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Here the δ value expresses the share of errors at predicting part Tk from part Sk, k = 1, 2, so

that the total error rate is 2δ.
To analytically express ARI in this example, we need to reformulate the ARI formula (31) in

terms of ordered pairs. The ARI in (31) is based on accounting the numbers of pairs of ele-

ments either belonging to the same part in a partition or not. For any subset of m elements, the

binomial values m
2

� �

in (31) count the number of unordered pairs in the subset, whereas the

number of ordered pairs is equal to m2. Therefore, we are going to change the binomials in

(31), m
2

� �

for their equivalent counterparts m2. Let pkl, sk, tl denote the proportions of I entities

in Sk \ Tl, Sk, Tl, respectively (k, l = 1, 2). Then

ARIðS;TÞ ¼
C � A � B

ðAþ BÞ=2� A � B
ð32Þ

where A ¼
P

ks
2

k , B ¼
P

lt
2

l , C ¼
P

k;lp
2

kl.

In our example, obviously A = B = 1/2. The C value is equal to C = 2 � [δ2 + (1/2 − δ)2] = 1/2

− 2δ + 4δ2. Then the numerator in (32) is equal to C − A � B = 1/4 − 2δ + 4δ2 = (1/2 − 2δ)2.
Taking into account that the denominator is equal to 1/4, we arrive at equation ARI(S, T) = (1

− 4δ)2. This allows us to calibrate ARI values using error rates in our model confusion example

(see Table 7).

It should be mentioned that there exist different approaches to evaluation of results of com-

munity detection methods, involving both internal aspects (such as the proportion of immedi-

ate neighbours of a community member belonging to the same community) and external

aspects (such as similarity between community size distributions). An interested reader is

referred to papers [49–51] at which they can find necessary details.

Table 7. A calibration table relating the error rate in the model confusion example with the corresponding ARI
values.

δ, per cent Error rate per cent ARI value

1 2 0.92

2.5 5 0.81

5 10 0.64

7.5 15 0.49

10 20 0.36

15 30 0.16

20 40 0.04

25 50 0

https://doi.org/10.1371/journal.pone.0254377.t007

Table 6. Model confusion data for ARI.

Parts T1 T2 Total

S1 1/2 − δ δ 1/2

S2 δ 1/2 − δ 1/2

Total 1/2 1/2 1

https://doi.org/10.1371/journal.pone.0254377.t006
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4 Experimental comparison of the methods under consideration

4.1 Comparison of methods over real-world datasets

In this section we compare the performance ICESi methods with that of SEFNAC, SIAN and

CESNA at the five real-world datasets described above in subsection 3.2. All the algorithms are

run starting from random configurations ten times at each of the datasets.

Those pre-processing methods that lead, on average, to the larger ARI values, have been

chosen for the least-squares methods, as presented in Table 8.

The Table 9 presents the results of comparison of all the algorithms under consideration

over real-world datasets.

As one can see, SIAN is the winner for Parliament dataset; also it takes the second place for

COSN dataset. SEFNAC wins the competition on Lawyer dataset. The proposed methods ICE-

Siss, ICESins, and ICESisn, win the competition on HRV6 dataset. Moreover, two of these,

ICESiss and ICESisn, also win the competition onWorld Trade dataset. The ICESins wins the

competition on COSN dataset.

These results show that converting feature data to similarity data, over real-world data sets,

may lead to more accurate cluster recovery results indeed. However, we cannot say at this

stage, what characteristics of the datasets may lead to a successful application of this or that

method.

4.2 Comparison of methods over synthetic datasets with categorical
features

Tables 10 and 11 report of the experimental results of comparison of all of the algorithms

under consideration over networks with categorical features at small-sizes and medium sizes,

respectively.

Table 8. Standardization options chosen for the least-squares community extraction methods at the real world
datasets.

Dataset SEFNAC ICESiss ICESisn ICESins ICESinn

Y P R P R P R P R P

Malaria HVR6 Zs Us Zs Us Zs Mo Rs Mo Zs Us

Lawyers Rs Us Rs Us Zs Mo Rs Mo Rs Us

World Trade Rs Rs Rs Rs Rs Us Zs Zs Zs Zs

Parliament Zs Mo Zs Mo Rs Us Rs Us Zs Mo

COSN Zs Zs Us Zs Mo Zs Us Rs Us

Symbols Zs, Us, Mo, and Us stand for the Z-scoring, Range standardization, Modularity and Uniform shift,

respectively.

https://doi.org/10.1371/journal.pone.0254377.t008

Table 9. The comparison of CESNA, SIAN, SEFNAC and ICESi methods at Real-world data sets; average values of ARI are presented over 10 random initialization.

Dataset CESNA SIAN SEFNAC ICESiss ICESins ICESinn ICESisn

HRV6 0.20(0.00) 0.39(0.29) 0.49(0.11) 0.62(0.00) 0.62(0.00) 0.59(0.01) 0.62(0.00)

Lawyers 0.28(0.00) 0.59(0.04) 0.60(0.09) 0.420(0.07) 0.51(0.01) 0.51(0.01) 0.35(0.11)

World Trade 0.13(0.00) 0.10(0.01)) 0.29(0.09) 0.47(0.13) 0.37(0.02) 0.36(0.02) 0.47(0.15)

Parliament 0.25(0.00) 0.79(0.12) 0.28(0.01) 0.00(0.00) 0.00(0.00) 0.34(0.03) 0.00(0.00)

COSN 0.44(0.00) 0.75(0.00) 0.72(0.02) 0.63(0.13) 0.83(0.00) 0.50(0.01) 0.76(0.03)

The best results are highlighted in bold-face and second ones are under-lined.

https://doi.org/10.1371/journal.pone.0254377.t009
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By comparing the two tables one can see how the performances of model-based CESNA

and SIAN algorithms deteriorate when one moves from the small-size to the medium-size.

CESNA is a leader, on par with SEFNAC, at small-size datasets, to move out of the winning

places, with a few real poor results at less tight structures, at medium-size datasets. SIAN

moves from a mediocre performance at small-sizes to really poor results at the medium-sizes.

This might have happened because of the assumption made about the sparsity of networks.

The convergence issues can be another reason of the poor performance.

The SEFNAC algorithm is a leader at the small-size data and is the undisputed leader at the

medium-size data. It is quite impressive, how well the SEFNAC faces up the challenges of loose

structures at larger values of q and smaller values of α. Nevertheless, ICESiss and ICESisn rise

to the challenge at medium-sized data, at which they manage to win in two out of eight set-

tings. However, they are less steady at the worst combination, q = 0.6 and α = 0.7.

4.3 Complexity issues for ICESi methods

ICESi methods are computationally intensive: they compute and compare values of the crite-

rion G while finding a node to be added to a current community. In the current implementa-

tion, the part of criterion G for the nonsummable mode is computed in a vectorized form,

whereas the part corresponding to the summable mode requires a nested “for” loop, which

Table 10. The comparison of CESNA, SIAN, SEFNAC and ICESi methods at small-size synthetic data sets with categorical attributes: The average ARI index and its
standard deviation over 10 different data sets.

p, q, � CESNA SIAN SEFNAC ICESiss ICESins ICESinn ICESisn

0.9, 0.3, 0.9 1.00(0.00) 0.554(0.285) 0.994(0.008) 0.932(0.035) 0.886(0.069) 0.833(0.113) 0.931(0.032)

0.9, 0.3, 0.7 0.948(0.105) 0.479(0.289) 0.974(0.024) 0.623(0.104) 0.529(0.135) 0.504(0.144) 0.581(0.102)

0.9, 0.6, 0.9 0.934(0.075) 0.320(0.255) 0.965(0.013) 0.903(0.056) 0.887(0.050) 0.836(0.095) 0.918(0.029)

0.9, 0.6, 0.7 0.902(0.063) 0.110(0.138) 0.750(0.117) 0.582(0.104) 0.521(0.067) 0.478(0.081) 0.554(0.103)

0.7, 0.3, 0.9 0.965(0.078) 0.553(0.157) 0.975(0.018) 0.917(0.047) 0.858(0.141) 0.835(0.098) 0.905(0.046)

0.7, 0.3, 0.7 0.890(0.138) 0.508(0.211) 0.870(0.067) 0.520(0.113) 0.493(0.095) 0.452(0.097) 0.517(0.098)

0.7, 0.6, 0.9 0.506(0.101) 0.047(0.087) 0.896(0.067) 0.917(0.030) 0.863(0.063) 0.803(0.102) 0.890(0.065)

0.7, 0.6, 0.7 0.202(0.081) 0.030(0.040) 0.605(0.091) 0.591(0.097) 0.589(0.118) 0.507(0.170) 0.597(0.113)

The best results are highlighted in bold-face and second ones are under-lined.

https://doi.org/10.1371/journal.pone.0254377.t010

Table 11. The comparison of CESNA, SIAN, SEFNAC and ICESi methods at medium-size synthetic data sets with categorical attributes: The average ARI index and
its standard deviation over 10 different data sets.

p, q, α CESNA SIAN SEFNAC ICESiss ICESins ICESinn ICESisn

0.9, 0.3, 0.9 0.894(0.053) 0.000(0.000) 1.000(0.000) 0.996(0.005) 0.965(0.038) 0.976(0.035) 0.995(0.005)

0.9, 0.3, 0.7 0.849(0.076) 0.000(0.000) 0.996(0.005) 0.895(0.045) 0.800(0.045) 0.772(0.059) 0.904(0.033)

0.9, 0.6, 0.9 0.632(0.058) 0.000(0.000) 0.998(0.002) 0.998(0.002) 0.976(0.022) 0.981(0.018) 0.998(0.002)

0.9, 0.6, 0.7 0.474(0.089) 0.000(0.000) 0.959(0.032) 0.858(0.060) 0.800(0.045) 0.798(0.051) 0.874(0.047)

0.7, 0.3, 0.9 0.764(0.068) 0.026(0.077) 1.000(0.001) 0.990(0.013) 0.981(0.020) 0.975(0.028) 0.990(0.013)

0.7, 0.3, 0.7 0.715(0.128) 0.000(0.000) 0.993(0.002) 0.903(0.023) 0.822(0.070) 0.800(0.077) 0.901(0.029)

0.7, 0.6, 0.9 0.060(0.024) 0.000(0.000) 0.998(0.001) 0.999(0.001) 0.978(0.027) 0.971(0.028) 0.999(0.001)

0.7, 0.6, 0.7 0.016(0.008) 0.000(0.000) 0.909(0.035) 0.875(0.039) 0.727(0.072) 0.753(0.088) 0.861(0.047)

The best results are highlighted in bold-face and second ones are under-lined.

https://doi.org/10.1371/journal.pone.0254377.t011
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takes a longer time, by the order of N. Then the total time for execution of CESinn is propor-

tional to N2 and it is proportional to N3, for execution of CESiss. Indeed, to find a community,

CESi adds a number of nodes proportional to N, and selecting a node to be added at a step,

requires a number of tries proportional to N too. We do not take into account the number of

communities found, because it is limited by a constant.

To check whether the execution times go in line with those by the other algorithms under

consideration, we took a common ground, synthetic networks with categorical features only,

and ran all the algorithms at both small-sized synthetic datasets and medium-sized synthetic

datasets. The computing time should not much depend on the parameter setting; thus, we

selected two out of our standard eight settings: (a) (p, q, �) = (0.9, 0.3, 0.9) at which the commu-

nity structure is maximally sharp; and (b) (p, q, �) = (0.7, 0.6, 0.7) at which the community

structure is maximally blurred.

In practice, the computation time depends on the computing system, so that only relative

comparisons can be meaningful. The times reported in the following Table 12 have been

observed at a desktop computer Intel(R) (Core(TM) i9-9900K CPU /@ 3.60GHz, RAM: 64

GB, HD: 1TB SSD) under Ubuntu 18.0 Operation System.

The table shows that CESNA is the fastest method and SIAN the slowest method out of the

methods under consideration: their timings differ by two orders of magnitude. All the ICESi

methods fall within the boundaries set by CESNA and SIAN. Rather expectedly, ICESInn is

the fastest and ICESIss the slowest among them. Note that ICESinn approaches the speed of

CESNA, whereas the speed of ICESiss is closer to that of SIAN.

5 Experimental validation of ICESi methods

5.1 Experimental results for ICESi methods at various feature scales

5.1.1 Chosen data standardization options. Considering data standardization options

defined in Section 3.3, we chose those leading to best data recovery results at the correspond-

ing data formats. Based on a thorough computational experiment, our choices can be

described as follows: the combination of Range standardization and Uniform methods is the

combination of data pre-processing techniques for all the ICESi methods (with ss or sn or ns

or nn ending) at almost all synthetic data generated, except for the following cases. The combi-

nation of Z-scoring and Modularity should be applied for ICESiss at networks with quantita-

tive or mixed-scale features, as well as for ICESinn at networks with categorical or mixed-scale

features. The combination of Z-scoring and Uniform methods should be applied for ICESins

at networks with categorical features.

5.1.2 ICESi at synthetic datasets with quantitative features. Table 13 shows the perfor-

mance of ICESi methods by applying the selected pre-processing techniques at small-size net-

works with quantitative features.

Table 14 represents the results on small-size networks with quantitative features at the

nodes with 50% noise features.

Table 12. The execution time of methods under consideration at synthetic networks with categorical features at the nodes. The average of 10 different data sets of the
same setting is reported in seconds.

CESNA SIAN SEFNAC ICESiss ICESins ICESinn ICESisn

p, q, � small medium small medium small medium small medium small medium small medium small medium

0.9, 0.3, 0.9 0.442 38.265 95.949 856.785 4.647 492.006 8.224 1038.619 3.390 326.141 1.816 78.142 3.272 339.563

0.7, 0.6, 0.7 0.699 83.961 335.198 2674.541 3.652 476.251 7.822 1186.691 3.306 580.418 1.827 92.482 3.097 407.207

https://doi.org/10.1371/journal.pone.0254377.t012
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The Tables 13 and 14 show rather similar patterns, although indeed the ARI values in the

latter table are slightly smaller than in the former: the noise inserted has not destroyed the

structures recovered. Moreover, the noise made the supremacy of ICESisn somewhat more

pronounced, as the corresponding columns in the tables clearly demonstrate. However, the

ICESisn fails at the difficult network link setting with p = 0.7 and q = 0.6 (see the two last lines

in the tables). This can be attributed to the fact that the method finds by far more clusters than

there have been generated, about 10, with a large variance. The other three methods obtain

much less clusters at this setting, bringing them to decent recovery results. Overall, one may

find method ICESinn bringing rather robust recovery results. One should not miss the fact

that both the methods mentioned are based on the nonsummable link usage.

Tables 15 and 16 present results obtained with the four methods over the medium-size net-

works with quantitative features; the latter table refers to the case of 50% noise features

inserted.

These tables do show both similarities with and differences from those at small-size data-

sets. The ICESisn is superior again, with the superiority getting more pronounced in the latter

table, at the presence of noise features, although the respective ARI values are somewhat

smaller here. Once again, ICESins fails at the two last lines corresponding to the lousy struc-

ture at p = 0.7, q = 0.6. This time, however, only one of the three other methods holds on:

Table 13. The performance of ICESi methods at small-size networks with quantitative features at the nodes; with selected data pre-processing for each algorithm:
The average ARI index and its standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.869(0.140) 4.900(1.044) 0.994(0.014) 5.100(0.300) 0.953(0.073) 4.700(0.458) 1.000(0.000) 5.000(0.000)

0.9, 0.3, 0.7 0.774(0.138) 4.600(1.114) 0.998(0.004) 5.000(0.000) 0.950(0.109) 4.700(0.640) 1.000(0.000) 5.000(0.000)

0.9, 0.6, 0.9 0.732(0.177) 4.500(1.565) 0.765(0.233) 3.800(1.166) 0.729(0.208) 3.600(1.020) 0.858(0.181) 4.300(0.900)

0.9, 0.6, 0.7 0.783(0.153) 5.100(1.221) 0.873(0.137) 4.400(0.663) 0.822(0.122) 4.300(0.640) 0.840(0.100) 4.800(0.600)

0.7, 0.3, 0.9 0.698(0.093) 4.100(0.943) 0.939(0.074) 4.700(0.458) 0.870(0.124) 4.300(0.640) 0.928(0.074) 4.600(0.490)

0.7, 0.3, 0.7 0.833(0.133) 5.500(1.285) 0.954(0.075) 4.800(0.400) 0.960(0.075) 4.800(0.400) 0.947(0.073) 4.700(0.458)

0.7, 0.6, 0.9 0.771(0.144) 4.800(1.077) 0.694(0.134) 4.700(2.571) 0.696(0.126) 5.100(2.625) 0.146(0.176) 10.100(2.468)

0.7, 0.6, 0.7 0.707(0.127) 5.200(0.600) 0.659(0.188) 4.700(1.269) 0.647(0.163) 6.000(1.265) 0.060(0.096) 11.100(1.640)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t013

Table 14. The performance of ICESi methods at small-size networks with quantitative features at the nodes with 50% noise features replicated; with selected data
pre-processing for each algorithm: The average ARI index and its standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.688(0.157) 6.500(1.910) 0.731(0.147) 5.000(1.265) 0.948(0.081) 4.700(0.458) 1.000(0.000) 5.000(0.000)

0.9, 0.3, 0.7 0.531(0.115) 6.200(0.872) 0.639(0.180) 4.800(1.536) 0.962(0.078) 4.800(0.400) 0.999(0.003) 5.000(0.000)

0.9, 0.6, 0.9 0.700(0.112) 6.200(1.077) 0.667(0.175) 4.700(1.616) 0.701(0.217) 3.700(1.100) 0.796(0.199) 4.100(0.943)

0.9, 0.6, 0.7 0.566(0.105) 7.000(1.789) 0.700(0.105) 5.300(0.781) 0.824(0.140) 4.300(0.900) 0.804(0.145) 4.400(1.020)

0.7, 0.3, 0.9 0.738(0.107) 5.500(1.285) 0.682(0.114) 4.800(1.400) 0.841(0.143) 4.200(0.748) 0.944(0.066) 4.700(0.458)

0.7, 0.3, 0.7 0.517(0.133) 6.200(1.536) 0.671(0.110) 5.000(1.183) 0.934(0.099) 4.700(0.458) 0.946(0.080) 4.700(0.458)

0.7, 0.6, 0.9 0.678(0.120) 5.600(1.114) 0.628(0.168) 4.300(1.792) 0.654(0.107) 5.300(2.238) 0.196(0.186) 9.700(2.759)

0.7, 0.6, 0.7 0.566(0.108) 6.900(0.943) 0.645(0.190) 4.800(0.872) 0.622(0.148) 6.400(1.356) 0.129(0.133) 10.400(1.960)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t014
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ICESiss, at the data with no noise, and ICESins at noise present. It ought to be mentioned that

these are the only cases at which the presence of noise is not that destructive.

5.1.3 ICESi at synthetic datasets with categorical features. Tables 17 and 18 show the

performance of the four methods under consideration over networks with categorical features,

the small-size and medium size, respectively.

At these tables, ICESiss is the obvious winner. Its superiority gets overwhelming at the

medium-size datasets. Indeed, one can clearly distinguish the influence of a smaller threshold

� = 0.7 at the small-size datasets. The performance of ICESiss falls down to ARI = 0.5 at this �

value. Of course the other three methods are not immune to the effect either: ARI falls even to

smaller values in these cases. However, at medium-sized networks this effect does not hold any

more, so that the ARI values in most cases approach a unity here for ICESiss. Perhaps such an

improvement happens due to the increase in the number of samples making the clusters more

homogeneous. A close follower is ICESisn, that takes over the leadership in many cases at the

medium-sized data. It should be noticed that the other two methods show similar, rather high,

ARI patterns in the Table 18 related to the medium-size data.

5.1.4 ICESi at synthetic datasets combining quantitative and categorical features.

Table 19 presents results of comparison of the four methods on small-size networks combining

quantitative and categorical features at the nodes.

Table 15. The performance of ICESi methods at medium-size networks with quantitative features at the nodes; with selected data pre-processing for each algorithm:
The average ARI index and its standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.666(0.102) 8.700(1.005) 0.968(0.046) 14.200(0.980) 0.747(0.102) 10.300(0.900) 0.931(0.071) 13.400(1.625)

0.9, 0.3, 0.7 0.604(0.086) 8.800(1.600) 0.907(0.105) 13.300(1.616) 0.718(0.131) 10.000(2.098) 0.868(0.164) 12.200(3.092)

0.9, 0.6, 0.9 0.623(0.120) 8.800(1.536) 0.587(0.149) 9.300(1.552) 0.559(0.132) 8.500(1.803) 0.623(0.075) 9.700(1.269)

0.9, 0.6, 0.7 0.531(0.113) 8.800(1.720) 0.609(0.188) 9.300(1.676) 0.520(0.155) 8.400(1.428) 0.627(0.080) 10.400(2.010)

0.7, 0.3, 0.9 0.610(0.105) 8.700(1.100) 0.715(0.133) 10.100(1.221) 0.589(0.168) 9.100(1.446) 0.765(0.123) 10.300(1.552)

0.7, 0.3, 0.7 0.493(0.190) 57.800(146.743) 0.702(0.178) 10.800(1.990) 0.577(0.135) 8.800(1.536) 0.750(0.121) 10.800(2.040)

0.7, 0.6, 0.9 0.625(0.136) 8.900(1.300) 0.544(0.089) 7.900(0.943) 0.523(0.083) 7.900(0.943) 0.195(0.204) 13.100(3.300)

0.7, 0.6, 0.7 0.602(0.103) 9.200(1.536) 0.475(0.096) 8.300(1.005) 0.457(0.095) 9.000(1.612) 0.040(0.111) 15.700(2.759)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t015

Table 16. The performance of ICESi methods at medium-size networks with quantitative features at the nodes with 50% noise features replicated; with selected data
pre-processing for each algorithm: The average ARI index and its standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.267(0.210) 17.100(3.300) 0.474(0.093) 7.800(0.980) 0.693(0.107) 9.900(1.446) 0.948(0.052) 13.700(1.005)

0.9, 0.3, 0.7 0.369(0.239) 17.200(4.556) 0.503(0.081) 8.900(1.136) 0.703(0.134) 10.400(1.908) 0.829(0.199) 11.900(3.270)

0.9, 0.6, 0.9 0.118(0.134) 14.900(4.011) 0.447(0.120) 8.000(2.098) 0.427(0.097) 9.300(1.418) 0.549(0.129) 9.100(2.119)

0.9, 0.6, 0.7 0.048(0.092) 17.500(1.857) 0.427(0.075) 9.000(1.414) 0.292(0.095) 10.100(1.446) 0.615(0.127) 10.500(1.432)

0.7, 0.3, 0.9 0.447(0.170) 13.200(3.429) 0.440(0.122) 8.200(1.720) 0.480(0.147) 9.000(1.342) 0.722(0.130) 9.800(1.778)

0.7, 0.3, 0.7 0.452(0.163) 12.800(3.124) 0.462(0.115) 8.100(1.700) 0.459(0.094) 9.400(1.200) 0.751(0.116) 10.700(1.792)

0.7, 0.6, 0.9 0.272(0.127) 12.600(1.960) 0.571(0.122) 8.200(0.872) 0.363(0.111) 9.600(1.281) 0.210(0.184) 12.900(2.809)

0.7, 0.6, 0.7 0.135(0.135) 13.300(2.532) 0.483(0.094) 8.900(1.446) 0.245(0.136) 10.400(0.663) 0.086(0.093) 14.700(2.283)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t016
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Table 18. The performance of ICESi methods at medium-size networks with categorical features at the nodes; with selected data pre-processing for each algorithm:
The average ARI index and its standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.996(0.005) 14.900(0.300) 0.965(0.038) 14.400(0.663) 0.976(0.035) 16.500(1.204) 0.995(0.005) 14.900(0.300)

0.9, 0.3, 0.7 0.895(0.045) 18.600(1.685) 0.800(0.045) 17.200(1.249) 0.772(0.059) 14.200(0.980) 0.904(0.033) 18.600(2.200)

0.9, 0.6, 0.9 0.998(0.002) 15.000(0.000) 0.976(0.022) 14.300(0.781) 0.981(0.018) 16.700(1.345) 0.998(0.002) 15.000(0.000)

0.9, 0.6, 0.7 0.858(0.060) 17.800(1.077) 0.800(0.045) 17.200(1.249) 0.798(0.051) 14.600(0.490) 0.874(0.047) 17.700(1.100)

0.7, 0.3, 0.9 0.990(0.013) 14.800(0.400) 0.981(0.020) 14.600(0.490) 0.975(0.028) 14.500(0.806) 0.990(0.013) 14.800(0.400)

0.7, 0.3, 0.7 0.903(0.023) 18.600(1.497) 0.822(0.070) 17.300(1.269) 0.800(0.077) 17.000(1.789) 0.901(0.029) 18.800(1.327)

0.7, 0.6, 0.9 0.999(0.001) 15.000(0.000) 0.978(0.027) 14.500(0.922) 0.971(0.028) 14.200(0.980) 0.999(0.001) 15.000(0.000)

0.7, 0.6, 0.7 0.875(0.039) 18.400(0.663) 0.727(0.072) 16.300(1.100) 0.753(0.088) 16.900(1.868) 0.861(0.047) 18.800(1.400)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t018

Table 17. The performance of ICESi methods at small-size networks with categorical features at the nodes; with selected data pre-processing for each algorithm:
The average ARI index and its standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.930(0.026) 6.100(0.700) 0.886(0.069) 6.200(0.748) 0.833(0.113) 5.900(0.831) 0.931(0.032) 6.400(0.490)

0.9, 0.3, 0.7 0.599(0.117) 8.300(0.781) 0.529(0.135) 8.100(0.539) 0.504(0.144) 8.000(1.095) 0.581(0.102) 8.100(0.700)

0.9, 0.6, 0.9 0.904(0.061) 6.400(0.800) 0.887(0.050) 6.500(1.204) 0.836(0.095) 6.000(0.775) 0.918(0.029) 6.300(0.900)

0.9, 0.6, 0.7 0.569(0.085) 7.800(0.980) 0.521(0.067) 8.200(1.536) 0.478(0.081) 7.700(0.640) 0.554(0.103) 8.300(1.100)

0.7, 0.3, 0.9 0.925(0.029) 6.500(0.500) 0.858(0.141) 6.400(0.490) 0.835(0.098) 6.200(0.600) 0.905(0.046) 6.200(0.400)

0.7, 0.3, 0.7 0.520(0.115) 8.000(1.095) 0.493(0.095) 8.000(0.632) 0.452(0.097) 7.400(0.800) 0.517(0.098) 8.200(0.980)

0.7, 0.6, 0.9 0.921(0.031) 6.600(0.663) 0.863(0.063) 6.300(0.640) 0.803(0.102) 6.100(0.943) 0.890(0.065) 6.600(0.663)

0.7, 0.6, 0.7 0.605(0.109) 8.600(1.020) 0.589(0.118) 8.500(0.806) 0.507(0.170) 7.700(1.005) 0.597(0.113) 8.300(0.640)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t017

Table 19. The performance of ICESi methods at small-size networks combining quantitative and categorical features at the nodes: The average ARI index and its
standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α|� ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.814(0.157) 5.800(1.249) 0.732(0.169) 5.900(0.831) 0.774(0.126) 5.400(0.800) 0.716(0.167) 5.100(0.831)

0.9, 0.3, 0.7 0.573(0.112) 6.300(1.676) 0.542(0.103) 6.300(1.487) 0.654(0.213) 5.900(0.539) 0.529(0.098) 5.500(1.025)

0.9, 0.6, 0.9 0.769(0.090) 6.000(1.483) 0.733(0.083) 5.800(0.872) 0.656(0.121) 6.000(0.632) 0.755(0.082) 5.500(0.671)

0.9, 0.6, 0.7 0.576(0.117) 6.200(1.470) 0.573(0.087) 5.800(0.872) 0.469(0.160) 5.900(1.044) 0.551(0.094) 5.500(0.806)

0.7, 0.3, 0.9 0.768(0.108) 5.500(0.922) 0.664(0.109) 4.400(0.917) 0.717(0.192) 5.600(0.917) 0.780(0.124) 4.900(0.700)

0.7, 0.3, 0.7 0.601(0.089) 5.900(0.831) 0.583(0.087) 5.400(0.663) 0.510(0.200) 5.800(1.600) 0.537(0.056) 5.400(0.917)

0.7, 0.6, 0.9 0.713(0.134) 6.000(1.612) 0.656(0.123) 5.200(0.980) 0.568(0.123) 5.500(1.025) 0.739(0.120) 5.700(1.552)

0.7, 0.6, 0.7 0.571(0.129) 6.000(1.265) 0.547(0.121) 5.600(0.800) 0.320(0.116) 6.100(1.700) 0.550(0.078) 6.200(1.400)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t019
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ICESiss dominates in this table, with occasional interventions by the methods with the non-

summable mode for network data, ICESisn and ICESinn. Method ICESns trails behind,

although with rather decent ARI values. Similar results are obtained at the case at which 50%

noise features are added.

Table 20 compares the performance of the proposed methods at medium-size networks

combining quantitative and categorical features.

Although ICESiss dominates the scene, except for the first two settings, at p = 0.9 and

q = 0.3, at which ICESisn is the winner, the results look real mediocre, with ARI values some-

where between 0.4 and 0.5, corresponding to 15-20% error rates in the model confusion exam-

ple in Table 7. Similar results, not shown, are obtained with 50% noise features replicated.

Overall, the performance of ICESi methods at synthetic networks with mixed scale features

are not that bad, yet in this setting, ICESi results are inferior to those by SEFNAC, as reported

in [34].

6 Conclusion and future work

This paper continues the line of research started by the authors in [34]. We explore whether

the doubly-greedy least-squares approach proposed in [34] can be successfully applied to fea-

ture-rich networks at which the feature-related part is converted to a similarity matrix format.

Usually, similarity data are considered as measured in the same scale so that one can meaning-

fully compare and sum similarity values across the entire similarity matrix (summability

mode). However, there can be situations in which similarity values in one column (or row)

should not be compared with the values in another column (or row)—nonsummable mode.

By applying this to the two similarity matrices, that feature-generated and that native, with

link scores, we come to four different summability patterns denoted in the paper by ss, ns, sn,

and nn, and, accordingly to four different Iterative Community Extraction from Similarity

data (ICESi) algorithms.

One of the theoretical advantages of ICESi is a Pythagorean decomposition of the data scat-

ter in the sum of the least-squares criterion and individual cluster contributions—this allows

to score the contribution of various elements of found solutions to the data scatter, which can

be useful for interpretation [4]. Among practical advantages is competitiveness of the doubly-

greedy approach regarding its capacity for the cluster recovery against other computational

procedures (see, for example, experimental results in [32–34, 52]).

Table 20. The performance of ICESi methods at medium-size networks combining quantitative and categorical features at the nodes: The average ARI index and its
standard deviation over 10 different data sets.

ICESiss ICESins ICESinn ICESisn

Setting p, q, α|� ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std) ARI mean(std) K mean(std)

0.9, 0.3, 0.9 0.564(0.066) 11.200(0.872) 0.473(0.077) 9.700(1.005) 0.492(0.052) 9.500(0.806) 0.744(0.081) 12.200(2.441)

0.9, 0.3, 0.7 0.415(0.078) 11.100(0.943) 0.370(0.107) 9.800(1.077) 0.348(0.087) 9.900(1.136) 0.533(0.187) 10.700(1.676)

0.9, 0.6, 0.9 0.476(0.115) 10.100(1.640) 0.453(0.094) 9.500(1.803) 0.457(0.093) 9.700(1.900) 0.479(0.056) 11.300(1.345)

0.9, 0.6, 0.7 0.391(0.069) 10.300(1.552) 0.361(0.064) 10.100(1.446) 0.379(0.066) 10.500(1.285) 0.261(0.056) 12.500(1.432)

0.7, 0.3, 0.9 0.571(0.080) 11.700(1.676) 0.473(0.074) 9.800(1.166) 0.483(0.089) 9.800(1.400) 0.527(0.049) 12.000(1.732)

0.7, 0.3, 0.7 0.448(0.059) 11.200(1.661) 0.364(0.053) 10.300(2.002) 0.353(0.052) 10.300(1.487) 0.338(0.049) 12.200(1.327)

0.7, 0.6, 0.9 0.544(0.060) 10.900(1.972) 0.467(0.092) 9.800(1.166) 0.445(0.083) 9.200(0.980) 0.326(0.095) 10.700(1.676)

0.7, 0.6, 0.7 0.387(0.051) 11.500(2.247) 0.334(0.067) 10.300(1.345) 0.301(0.084) 9.800(1.166) 0.113(0.066) 11.400(2.200)

The best results are highlighted in bold-face.

https://doi.org/10.1371/journal.pone.0254377.t020
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Let us take a look at general properties of the least squares model under consideration:

(i) It models the observed data rather than the way they are generated;

(ii) It is a weighted sum of two summary squared differences between the data and models

with regard to the two data sources, network and features;

(iii) It involves cluster structure represented by a set of non-overlapping clusters, their inten-

sity weights, and centers in the feature space;

(iv) It involves a hard optimization problem.

Each of these items brings forth some properties, part of them to advantage, part to

disadvantage.

Let us comment, first of all, on item (i). An advantage of our model is that one can straight-

forwardly go for what matters most, node memberships in communities, along with quantita-

tive evaluations of within-community link intensities and central points in the feature space.

The formulation naturally involves possibilities for various feature scales as well as link scales.

A disadvantage is a heuristic nature of the criterion. One may think of theoretically modeling a

community as probabilistically emerging from similar activities of its members, underlied by

similarity in some individual features and external circumstances. Such a model can naturally

be extended to model, for example, community evolution—an aspect that so far cannot be

properly captured in the data modeling format. It would be nice to develop such a model, espe-

cially if that model would involve a criterion akin to the least squares one.

Item (ii), formulation of the criterion as a weighted sum of two squared errors, is a heuris-

tic admission: the linear format assumes a direct interpretation of the weights as importance

scores of the two data sources. Hardly one can expect this interpretation to have any opera-

tional meaning, leading to uncertainty in choosing their values. That may be considered a

serious limitation of the model. Indeed, there is no reasoning regarding the data source

weights except that they should balance the relative importance of the data sources. However,

there could be a potential development oriented at automatic determination of the weights.

Indeed, one can imagine that the least squares principle applies to the sum of the data models

simultaneously rather than to each of them individually. Then the two weights can be found

in an iterative process akin to that developed in [4] to determine relative feature weights for

clustering.

With respect to item (iii), cluster structures, the model can be extended to overlapping clus-

ters, but this may involve additional constraints, as pointed out in [53]. However, the possibil-

ity of extending this to hierarchical cluster structures is yet an unexplored terrain.

Last, not least, let us turn to the issue (iv) of computational complexity of the criterion. We

pursue here a local search double-greedy strategy, which brings us obvious drawbacks: one

cannot warrant achieving the global minimum nor even can claim any estimate of the depth of

the local minimum found. Yet, there is an unexpected advantage, too: the number of commu-

nities is determined automatically in the process, not defined priorly.

What is said above leads us to list some properties which distinguish our approach from

many others.

Desirable properties: a) both quantitative and categorical features are admitted; b) no

restriction on the network data type; c) determining the number of clusters/communities auto-

matically; d) a Pythagorean decomposition of the combined data scatter in the sum of contri-

butions of individual clusters and the minimized criterion.

Less desirable properties: e) the data standardization is a necessary part of the method, both

for network data and for feature/similarity data; f) slow computations; g) no advice regarding
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the constants balancing the relative contributions of two data sources, the network and

features.

It appears that ICESi methods can be competitive indeed. On our real-world dataset collec-

tion, they win in the majority cases over state-of-the-art methods, including in the nonsumm-

ability mode. At the networks with categorical features, they show rather good performance by

very closely following the winner, SEFNAC [34], and even outperforming that at some data

configurations (in ss and sn modes). At synthetic networks with quantitative features ICESisn

obtains best results, with occasional interventions of ICESiss.

The discussion above suggests a number of directions for future work. First of all, we should

concentrate on (a) accelerating the computational speed of the method and (b) scrutinizing

the balance between the network data and the feature data, so that changing the currently

equal values of the balancing constants may become needed indeed.
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