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Least Squares Conformal Maps
for Automatic Texture Atlas Generation

Bruno Lévy Sylvain Petitjean Nicolas Ray Jérome Maillot∗

ISA (Inria Lorraine and CNRS), France

Abstract

A Texture Atlas is an efficient color representation for 3D Paint Sys-
tems. The model to be textured is decomposed into charts home-
omorphic to discs, each chart is parameterized, and the unfolded
charts are packed in texture space. Existing texture atlas methods
for triangulated surfaces suffer from several limitations, requiring
them to generate a large number of small charts with simple bor-
ders. The discontinuities between the charts cause artifacts, and
make it difficult to paint large areas with regular patterns.

In this paper, our main contribution is a new quasi-conformal pa-
rameterization method, based on a least-squares approximation of
the Cauchy-Riemann equations. The so-defined objective function
minimizes angle deformations, and we prove the following proper-
ties: the minimum is unique, independent of a similarity in texture
space, independent of the resolution of the mesh and cannot gener-
ate triangle flips. The function is numerically well behaved and can
therefore be very efficiently minimized. Our approach is robust,
and can parameterize large charts with complex borders.

We also introduce segmentation methods to decompose the
model into charts with natural shapes, and a new packing algorithm
to gather them in texture space. We demonstrate our approach ap-
plied to paint both scanned and modeled data sets.

CR Categories: I.3.3 [Computer Graphics] Picture/Image Gen-
eration; I.3.5 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing and texture; I.4.3 [Image
processing]: Enhancement—Geometric Correction, Texture

Keywords: Texture Mapping, Paint Systems, Polygonal Modeling
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1 INTRODUCTION

A 3D paint system makes it possible to enhance the visual appear-
ance of a 3D model by interactively adding details to it (colors,
bump maps . . . ). If the discretization of the surface is fine enough,
it is possible to directly paint its vertices [1]. However, in most
cases, the desired precision for the colors is finer than the geomet-
ric details of the model. Assuming that the surface to be painted is
provided with a parameterization, it is possible to use texture map-
ping to store colors in parameter space [9]. Parametric surfaces
(such as NURBS) have a natural parameterization. For other repre-
sentations, such as polygonal surfaces, finding a parameterization
is non-trivial. To decorate polygonal models with regular patterns,
the lapped textures approach [26] can be applied: local overlapping
parameterizations are used to repeatedly map a small texture swatch
onto a model.

A texture atlas is a more general representation (see, e.g.,
[13, 20, 23]). The model to be textured is partitioned into a set
of parts homeomorphic to discs, referred to as charts, and each
of them is provided with a parameterization. A texture atlas can
be easily represented by standard file formats and displayed using
standard texture mapping hardware. When used in a 3D paint sys-
tem, a texture atlas should meet the following requirements:

• the chart boundaries should be chosen to minimize texture arti-
facts,

• the sampling of texture space should be as uniform as possible,

• the atlas should make an optimal use of texture space.

The generation of a texture atlas can be decomposed into the
following steps:

1. Segmentation: The model is partitioned into a set of charts.

2. Parameterization: Each chart is ‘unfolded’, i.e. put in corre-

spondence with a subset of R
2.

3. Packing: The charts are gathered in texture space.

The remainder of this section presents the existing methods for
these three steps, and their limitations with respect to the require-
ments mentioned above. We then introduce a new texture atlas gen-
eration method, meeting these requirements by creating charts with
natural shapes, thus reducing texture artifacts.



1.1 Previous Work

Segmentation into charts. In [14] and [23], the model is interac-
tively partitioned by the user. To perform automatic segmentation,
Maillot et al. [20] group the facets by their normals. Several multi-
resolution methods [7, 16] decompose the model into charts corre-
sponding to the simplices of the base complex. In [27], Sander et
al. use a region-growing approach to segmentation, merging charts
according to both planarity and compactness criteria. All these ap-
proaches are designed to produce charts that can be treated by ex-
isting parameterization methods, which are limited to charts with
convex borders. For this reason, a large number of charts is gen-
erated, which introduces many discontinuities when constructing a
texture atlas.

Chart parameterization. Discrete Harmonic Map, described by
Eck et al. [4], are the most widely used. They are approximations
of Continuous Harmonic Maps [5], minimizing a metric dispersion
criterion. Pinkal and Polthier [24] have shown the link between this
criterion and another one named conformality, and have expressed
both in terms of Dirichlet energy. Haker et al. [8] describe a similar
method in the specific case of a surface triangulation homeomor-
phic to a sphere.

The theory on graph embedding has been studied by Tutte [30],
where Barycentric Maps are introduced. The bijectivity of the so-
defined parameterization is mathematically guaranteed. Floater [6]
proposes specific weights improving the quality of the mapping, in
terms of area deformations and conformality. In [18], a method is
proposed to take additional constraints into account.

In all the methods mentioned above, since conformality is ex-
pressed as an indirect coupling between the parameters, boundary
conditions are required, i.e. boundary nodes need to be fixed on
a convex border in parameter space. Other expressions of confor-
mality, such as the non-linear MIPS method [10], make it possi-
ble to overcome this problem, and let the boundary nodes be free
to move. However, this latter method requires a time-consuming
non-linear optimization, and may get stuck in a local minima of
the non-linear function. In [12], Hurdal et al. propose a method
based on circle packings, which are certain configurations of cir-
cles with specified pattern of tangencies known to provide a way
to approximate a conformal mapping. Building circle packings is
however quite expensive. The approach proposed in [28] consists
in solving for the angles in parameter space. It results in a highly
constrained optimization problem. Other methods [17, 25, 31] can
also extrapolate the border, but do not guarantee the absence of tri-
angle flips and require interaction with the user. We introduce here
a conformal mapping method, offering more guarantees, efficiency
and robustness than those approaches.

In the case of texture mapping, not only the bijectivity of the
parameterization should be ensured, but also its ability to make an
optimum use of texture memory, and to accurately represent a sig-
nal stored in texture space. Sander et. al. [27] describe an approach
to minimize both a texture stretch criterion, and texture deviation
between level of details. Since their approach is independent from
the initial parameterization method, it can be applied to optimize
the sampling of the parameterizations constructed by our method.

Charts packing in texture space. Finding the optimal packing
of the charts in texture space is known as the bin packing problem.
It has been studied by several authors, such as Milenkovic (see,
e.g., [21]), but the resulting algorithms take a huge amount of time
since the problem is NP-complete. To speed up these computa-
tions, several heuristics have been proposed in the computer graph-
ics community. In the case of individual triangles, such a method is
described by several authors (see, e.g., [3]). In the general case of
charts, Sander et al. [27] propose an approach to pack the minimal

area bounding rectangles of the charts. In our case, since the charts
can have arbitrarily shaped borders, the bounding rectangle can be
far away from the boundary of the charts. Therefore, a lot of texture
space can be wasted. For this reason, we propose a more accurate
packing algorithm that can handle the complex charts created by
our segmentation and parameterization methods.

1.2 Overview

The paper is organized as follows. Since it is our main contribu-
tion, we will start by introducing Least Squares Conformal Maps
(LSCMs), a new optimization-based parameterization method with
the following properties (see Section 2 and Figure 1):

• Our criterion minimizes angle deformations and non-uniform
scalings. It can be efficiently minimized by classical NA meth-
ods, and does not require a complex algorithm such as the ones
used in [12] and in [28].

• We prove the existence and uniqueness of the minimum of
this criterion. Therefore, the solver cannot get stuck in a local
minimum, in contrast with non-linear methods [10, 25, 27, 31]
where this property is not guaranteed.

• The borders of the charts do not need to be fixed, as with most
of the existing methods [4, 6, 18]. Therefore, large charts with
arbitrarily shaped borders can be parameterized.

• We prove that the orientation of the triangles is preserved, which
means that no triangle flip can occur. However, as in [28], over-
laps may appear, when the boundary of the surface self-intersects
in texture space. Such configurations are automatically detected,
and the concerned charts are subdivided. This problem was sel-
dom encountered in our experiments (note that as with classical
methods [4, 6], if all the border nodes are fixed on a convex poly-
gon, no overlap can occur).

• We prove that the result is independent of the resolution of the
mesh. This type of property may be usefull to reduce texture
deviation when parameterizing different level of details of the
same object.

In Section 3, we present a new segmentation method to decom-
pose the model into charts. Thanks to the additional flexibility of-
fered by LSCMs, it is possible to create large charts correspond-
ing to meaningful geometric entities, such as biological features of
characters and animals. The required number of charts is dramati-
cally reduced, together with the artifacts caused by the discontinu-
ities between the charts. Moreover, these large charts facilitate the
use of regular patterns in a 3D paint system.

Section 4 presents our method to pack the charts in texture space.
Since our segmentation method can create charts with complex bor-
ders, we pack the charts more accurately than with bounding rect-
angles, as in previous approaches. Our method is inspired by the
strategy used by a ‘Tetris’ player. The paper concludes with some
results, on both scanned and modeled meshes.

2 LEAST SQUARES CONFORMAL MAPS

In this section, we focus on the problem of parameterizing a chart
homeomorphic to a disc. It will then be shown how to decompose
the model into a set of charts, and how to pack these charts in texture
space.

2.1 Notations

• scalars are denoted by normal characters x, y, u, v,

• vectors are denoted by bold characters x = (x, y),

• complex numbers are denoted by capitals U = (u + iv),

• vectors of complex numbers are denoted by bold capitals U,

• maps and matrices are denoted by cursive fonts U , X .



Figure 1: The body of the scanned horse is a test case for the robustness of the method; it is a single very large chart of 72,438 triangles, with a complex border. A: Resulting

iso-parameter curves; B: The corresponding unfolded surface, where the border has been automatically extrapolated; C: These cuts make the surface equivalent to a disc; D: The

parameterization is robust, and not affected by the large triangles in the circled area (caused by shadow zones appearing during the scanning process).

2.2 Conformal Maps

In this section, we quickly introduce the notion of conformal map.
We will present further a new way to approximate the conformality
criterion and the mathematical properties of this approximation.

u

v

(u,v)

conformal

X(u,v)

N

iso−v

iso−u

Figure 2: In a conformal map, the tangent vectors to the iso-u and to the iso-v curves

are orthogonal and have the same length.

As shown in Figure 2, an application X mapping a (u, v) domain
to a surface is said to be conformal if for each (u, v), the tangent
vectors to the iso-u and iso-v curves passing through X (u, v) are
orthogonal and have the same norm, which can be written as:

N(u, v) × ∂X
∂u

(u, v) =
∂X
∂v

(u, v), (1)

where N(u, v) denotes the unit normal to the surface. In other
words, a conformal map is locally isotropic, i.e. maps an elemen-
tary circle of the (u, v) domain to an elementary circle of the sur-
face.

It is possible to rewrite Equation 1 using differential operators,
such as Laplace-Beltrami, as done in [24] and in [8], which results
in the well known cotangent weighting coefficients (see e.g. [4]).
The (u, v) parameters are then found to be the solution of two sep-
arate linear systems, one for u and one for v. The relation between
u and v is indirectly taken into account by the right hand sides of
the two systems. For this reason, this type of method requires the
border to be fixed on a convex polygon. The MIPS method [10]
does not have this restriction, and expresses conformality as a re-
lation linking the coefficients of the metric tensor. However, the
resulting equations are non-linear. Another approach has been de-
scribed in [28], based on the remark that the criterion defining a
conformal mapping should be independent of a translation, rotation
and scaling in parameter space (i.e. a similarity). The unknowns
are the angles at the corners of the triangles. This requires a time-
consuming constrained optimization method.

Rather than discretizing the Laplace operator at the vertices of
the triangulation, we instead take the dual path of considering the
conformality condition on the triangles of the surface. Using the

fact that a similarity can be represented by the product of complex
numbers, we show how to turn the conformality problem into an
unconstrained quadratic minimization problem. The u and v pa-
rameters are linked by a single global equation. This direct cou-
pling of the u and v parameters makes it possible to efficiently pa-
rameterize large charts with complex borders, as shown in Figure
1. In this example, the cuts have been done manually (Figure 1-C),
to create a large test case for the robustness of the method. (It will
be shown in Section 3 how to automatically cut a model into charts
homeomorphic to discs.)

Riemann’s theorem states that for any surface S homeomorphic
to a disc, it is possible to find a parameterization of the surface sat-
isfying Equation 1. However, since we want to use the resulting
parameterization for texture mapping, we add the constraint that
the edges of the triangulation should be mapped to straight lines,
and the mapping should vary linearly in each triangle. With this
additional constraint, it is not always possible to satisfy the confor-
mality condition. For this reason, we will minimize the violation of
Riemann’s condition in the least squares sense.

2.3 Conformality in a Triangulation

Consider now a triangulation G = {[1 . . . n], T , (pj)16j6n},
where [1 . . . n], n > 3, corresponds to the vertices, where T is

a set of n′ triangles represented by triples of vertices, and where

pj ∈ R
3 denotes the geometric location at the vertex j. We sup-

pose that each triangle is provided with a local orthonormal basis,
where (x1, y1), (x2, y2), (x3, y3) are the coordinates of its vertices
in this basis (i.e., the normal is along the z-axis). The local bases
of two triangles sharing an edge are consistently oriented.

We now consider the restriction of X to a triangle T and apply
the conformality criterion to the inverse map U : (x, y) 7→ (u, v)
(i.e. the coordinates of the points are given and we want their pa-
rameterization). In the local frame of the triangle, Equation 1 be-
comes

∂X
∂u

− i
∂X
∂v

= 0,

where X has been written using complex numbers, i.e. X = x+iy.
By the theorem on the derivatives of inverse functions, this implies
that

∂U
∂x

+ i
∂U
∂y

= 0, (2)

where U = u + iv. (This is a concise formulation of the Cauchy-
Riemann equations.)



Since this equation cannot in general be strictly enforced, we
minimize the violation of the conformality condition in the least
squares sense, which defines the criterion C:

C(T ) =

∫

T

∣

∣

∣

∣

∂U
∂x

+ i
∂U
∂y

∣

∣

∣

∣

2

dA =

∣

∣

∣

∣

∂U
∂x

+ i
∂U
∂y

∣

∣

∣

∣

2

AT ,

where AT is the area of the triangle and the notation |z| stands for
the modulus of the complex number z.

Summing over the whole triangulation, the criterion to minimize
is then

C(T ) =
∑

T∈T

C(T ).

2.4 Gradient in a Triangle

Our goal is now to associate with each vertex j a complex num-
ber Uj such that the Cauchy-Riemann equation is satisfied (in the
least squares sense) in each triangle. To this aim, let us rewrite the
criterion C(T ), assuming the mapping U varies linearly in T .

We consider a triangle {(x1, y1), (x2, y2), (x3, y3)} of R
2, with

scalars u1, u2, u3 associated with its vertices. We have:

(

∂u/∂x

∂u/∂y

)

=
1

dT

(

y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

)

(

u1
u2
u3

)

,

where dT = (x1y2 − y1x2) + (x2y3 − y2x3) + (x3y1 − y3x1) is
twice the area of the triangle.

The two components of the gradient can be gathered in a com-
plex number:

∂u

∂x
+ i

∂u

∂y
=

i

dT

(W1 W2 W3) (u1 u2 u3)
⊤ ,

where
{

W1 = (x3 − x2) + i(y3 − y2),
W2 = (x1 − x3) + i(y1 − y3),
W3 = (x2 − x1) + i(y2 − y1).

The Cauchy-Riemann equation (Equation 2) can be rewritten as
follows:

∂U
∂x

+ i
∂U
∂y

=
i

dT

(W1 W2 W3) (U1 U2 U3)
⊤ = 0,

where Uj = uj + ivj .
The objective function thus reduces to

C(U = (U1, . . . , Un)⊤) =
∑

T∈T

C(T ), with

C(T ) =
1

dT

∣

∣

∣(Wj1,T Wj2,T Wj3,T ) (Uj1 Uj2 Uj3)
⊤
∣

∣

∣

2

,

where triangle T has vertices indexed by j1, j2, j3. (We have mul-
tiplied C(T ) by a factor of 2 to simplify the expression.)

2.5 Least Squares Conformal Maps

C(U) is quadratic in the complex numbers U1, . . . , Un, so can be
written down as

C(U) = U
∗CU, (3)

where C is a Hermitian symmetric n × n matrix and the notation
U∗ stands for the Hermitian (complex) conjugate of U. C is an
instance of a Hermitian Gram matrix, i.e. it can be written as

C = M∗M,

where M = (mij) is the sparse n′ × n matrix (rows are indexed
by triangles, columns are indexed by vertices) whose coefficient is

mij =

{

Wj,Ti√
dTi

if vertex j belongs to triangle Ti,

0 otherwise.

Figure 3: Our LSCM parameterization is insensitive to the resolution of the mesh.

The iso-parameter curves obtained on a coarse mesh (Figure A) and on a fine one

(Figure B) are identical, and remain stable when the resolution varies within a mesh

(circled zone in Figures C and D).

For the optimization problem to have a non-trivial solution, some
of the Ui’s must be set to a priori values. Let us decompose the vec-

tor U as (U⊤
f ,U⊤

p )⊤, where Uf is the vector of free coordinates of

U (the variables of the optimization problem) and Up is the vector
of pinned coordinates of U, of length p (p 6 n). Along the same
lines, M can be decomposed in block matrices as

M = (Mf Mp) ,

where Mf is a n′ × (n − p) matrix and Mp is a n′ × p matrix.
Now, Equation 3 can be rewritten as

C(U) = U
∗M∗MU = ‖MU‖2 = ‖MfUf + MpUp‖2,

where the notation ‖v‖2 stands for the inner product < v,v > (v
stands for the conjugate of v).

Rewriting the objective function with only real matrices and vec-
tors yields

C(x) = ‖Ax − b‖2 , (4)

with

A =

(

M1
f −M2

f

M2
f M1

f

)

, b = −
(

M1
p −M2

p

M2
p M1

p

)(

U1
p

U2
p

)

,

where the superscripts 1 and 2 stand respectively for the real and
imaginary part, ‖v‖ stands this time for the traditional L2-norm of

a vector with real coordinates and x = (U1
f

⊤
,U2

f

⊤
)⊤ is the vector

of unknowns.

Note that A is a 2n′×2(n−p) matrix, b is a vector of R
2n′

and

x is a vector of R
2(n−p) (the ui and vi coordinates of the vertices

in parameter space that are allowed to move freely).

2.6 Properties

The above minimization problem has several fundamental proper-
ties which are proved in the appendix:

• The matrix A has full rank when the number of pinned vertices,
i.e. p, is larger than or equal to 2.

• As a consequence, the minimization problem has a unique solu-

tion when p > 2, given by x = (A⊤A)−1A⊤b. The best value
for p is 2, since in this case the mapping U can be fully conformal
if the surface is developable (i.e. the minimum of the objective
function is zero). In our experiments, we have pinned the two
vertices maximizing the length of the shorted path between them
(i.e. the graph diameter).

• The solution to the minimization problem is invariant by a simi-
larity in texture space.

• The solution to the minimization problem is independent of the
resolution of the mesh. This property is illustrated in Figure 3.

• In texture space, all the triangles are consistently oriented if the
pinned vertices are chosen on the boundary of T . In other words,
triangle flips cannot occur.



Figure 4: A: Result of the features detection algorithm; B: The distance_to_seed function is not an optimal choice for driving our chart growing process; C: The

distance_to_features function shows iso-contours with more natural shapes; D: Result of our segmentation algorithm, driven by the distance_to_features function.

3 SEGMENTATION

The segmentation algorithm decomposes the model into a set of
charts. The design of the algorithm aims at meeting the following
two requirements:

1. charts boundaries should be positioned in such a way that most
of the discontinuities between the charts will be located in zones
where they will not cause texture artifacts,

2. charts must be homeomorphic to discs, and it must be possible to
parameterize them without introducing too much deformation.

For the first point, since the shading models depend on the nor-
mal, zones of high curvatures cause sharp variations of lighting. In
these zones, a texture artifact will not be noticeable, since it will
be negligible compared to the shading variation. Thus, to minimize
artifacts, we will design the segmentation algorithm in such a way
as to avoid chart boundaries in flat zones. In other words, it is suit-
able to generate large charts with most of their boundaries in high
curvature zones.

For the second point, we will present an automatic approach,
mimicking the way a user manually segments a model. Basically,
the user attempts to decompose the model into parts resembling
cylinders. To detect such cylinders, we will use an approach in-
spired by Morse theory, characterizing a function defined over the
surface (see, e.g., [29]).

The next two sections present a feature detection algorithm,
which finds curves corresponding to high curvature zones of the
model, and a chart growing algorithm making them meet at these
feature curves. Then, it will be shown how to validate the result,
and subdivide the charts if needed. In the remainder of this section,
we suppose that the surface is represented by a halfedge based data
structure (see, e.g., [19]).

3.1 Detect Features

The features detection phase can be outlined as follows:

1. Compute a sharpness criterion on the edges. We use here the
second order differences (SOD), i.e. the angle between the nor-
mals, as in [11]. It is also possible to use more elaborate criteria.

2. Choose a threshold τ so that a certain proportion of the edges is
filtered out. In our examples, we kept 5 percent of the detected
edges.

3. For each of the remaining edges, grow a feature curve by apply-
ing Algorithm 1.

Algorithm 1 attempts to anticipate the best paths, and filters out
the small features caused by noise. Tagging the neighborhoods of
the detected features avoids generating a large number of features
in zones of high curvature. In our examples, the parameters are set

expand_feature_curve(halfedge start)

vector<halfedge> detected_feature

for halfedge h ∈ { start, opposite(start) }

halfedge h′← h

do

use depth-first search to find the string S of halfedges

starting with h′ and such that:

• two consecutive halfedges of S share a vertex

• the length of S is 6 than max_string_length

• sharpness(S)←
∑

e∈S sharpness(e) is maximum

• no halfedge of S goes backward (relative to h′)

• no halfedge of S is tagged as a feature neighbor

h′← second item of S

append h′ to detected_feature

while(sharpness(S) > max_string_length× τ )

end // for

if (length(detected_feature) > min_feature_length) then

tag the elements of detected_feature as features

tag the halfedges in the neighborhood of detected_feature

as feature neighbors

end // if

end // expand_feature_curve

Algorithm 1: Features growing

as follows: max_string_length = 5, which controls the size of
the discontinuities to be filled, and min_feature_length = 15.

3.2 Expand Charts

Once the sharp features have been detected, the charts can be cre-
ated. Our method is a greedy algorithm, expanding all the charts
simultaneously from a set of seeds. It is similar to the s-source
Dijkstra algorithm used in [4] and to the region-growing paradigm
used in computer vision. Since we want chart boundaries to meet at
the level of features, the s-source algorithm is modified as follows:

• To select the set of seeds, the intuitive idea is to ‘reverse engi-
neer’ the expected result. More precisely, we use the follow-
ing method: a front is propagated from the borders and the fea-
ture curves detected by the previous algorithm, to compute a
distance_to_features function at each facet. Then, the seeds
are found to be the local maxima of this distance_to_features
function.

• For closed surfaces without any detected feature, propagation is
initialized from the two extremities of a diameter of the facets
graph, as done in [15].

• Our s-source propagation uses −distance_to_features as the
priority function, rather than distance_to_seeds. The advan-
tage of this approach is shown in Figure 4.



Figure 5: A: Our segmentation algorithm detects cylindrical shapes; B: An addi-

tional cut is added to ‘sock-shaped’ extremal cylinders.

expand_charts

priority_queue<halfedge> Heap sorted by dist(facet(halfedge))

set<edge> chart_boundaries initialized with all the edges of the surface

// Initialize Heap

foreach facet F where dist(F ) is a local maximum

create a new chart with seed F

add the halfedges of F to Heap

end // foreach

// Charts-growing phase

while(Heap is not empty)

halfedge h← e ∈ Heap such that dist(e) is maximum

remove h from Heap

facet F ← facet(h)

facet Fopp← the opposite facet of F relative to h

if ( chart(Fopp) is undefined ) then

add Fopp to chart(F )

remove E from chart_boundaries

remove non-extremal edges from chart_boundaries,

// (i.e. edges that do not link two other chart boundary edges)

add the halfedges of Fopp belonging to

chart_boundaries to Heap

elseif ( chart(Fopp) 6= chart(F ) and

max_dist(chart(F )) - dist(F ) < ε and

max_dist(chart(Fopp)) - dist(F ) < ε ) then

merge chart(F ) and chart(Fopp)

end // if

end // while

end // expand_charts

Algorithm 2: Charts growing.

• Charts are merged if they meet at a small distance
d < ε from their seed. In our experiments, ε =
maxdist/4, where maxdist denotes the global maximum of
distance_to_features.

Our charts growing algorithm (Algorithm 2) uses the following
data:

• distance_to_feature is stored in each facet F , and denoted
dist(F );

• for each chart C, the scalar max_dist(C) denotes the maximum
distance to features for all the facets of C;

• The set of edges chart_boundaries represents the borders of
all charts. It makes it possible for a patch to be its own neighbor
while remaining a topological disc.

As shown in Figure 5, our algorithm can detect cylindrical
shapes, as the approach proposed in [15]. In our case, two con-
figurations can be distinguished:

• The cylinder corresponds to an extremity, such as the ‘fingers’
of the dinosaur’s wings (Figure 5-B). The corresponding charts
have the shape of a sock. This configuration is detected by com-

Figure 6: A: The dinosaur’s head made of a single chart; B: Despite the absence of

triangle flips, overlaps may occur, caused by self-intersections of the border; C: They

can be removed by subdividing the chart.

puting the area/perimeter ratio. In this case, to facilitate the pa-
rameterization phase, a cut is added by starting from the seed and
cutting the edges along the steepest-descent path.

• The cylinder is non-extremal, and therefore non-capped. Algo-
rithm 2 generates suitable boundaries, without requiring any spe-
cial treatment (the resulting chart is ‘rolled’ around the cylinder).

3.3 Validate Charts

The so-constructed charts are then parameterized using the method
presented in Section 2. After that, the following two criteria are
tested:

• As mentioned in Section 2, no triangle flip can occur, and the
border can be extrapolated. However, since the border can be
non-convex, a new class of overlaps can be encountered. They
are caused by a self-intersection of the border, as in [28]. Such
configurations can be efficiently detected by the hardware, by
drawing the parameter space in stencil mode. The stencil pixels
drawn more than once correspond to overlaps. If such overlaps
are detected, the corresponding chart is subdivided, by cutting it
along the edges on the border of the overlapped zone, as shown
in Figure 6. Note that our segmentation algorithm would not
generate a single chart for the dinosaur’s head (see Figure 5). In
practice, the overlap problem has seldom appeared in our exper-
iments, and was caused by tiny loops formed by the border.

• Our criterion respects angles very well, as shown in the results
section. As far as areas are concerned, large charts with zones of
high curvature may result in large area variations. To detect these
problems, the minimum and maximum model area/texture area
ratio is measured over the facets. If the max/min ratio is greater
than a certain threshold, the concerned chart is split, by growing
two charts from the facets corresponding to the minimum and the
maximum. In the examples shown here, the threshold has been
set to 2.

4 PACKING

Once the model is decomposed into a set of parameterized charts, it
is possible to create a texture atlas by merging all the (u, v) domains
of the charts. Usually, only a limited amount of texture memory is
available. It is then suitable to minimize the unused space. In other
words, given a set of possibly non-convex polygons, we want to
find a non-overlapping placement of the polygons in such a way
that the enclosing rectangle is of minimum area. The so-obtained
texture coordinates are then re-scaled to fit the size of the texture.

The packing problem is known to be NP-complete (see, e.g., [21]
and [22]). Approaches based on computational geometry show
good performances in terms of minimization of lost area, but are
not efficient enough for large and complex data sets. For this rea-
son, several heuristics have been proposed in computer graphics.
For instance, in the method proposed by Sander et al. [27], the
bounding rectangles of the charts are packed. In our case, since



A B

Figure 7: A: Our packing algorithm inserts the charts one by one, and maintains the

‘horizon’ (in blue) during the process. Each chart (in green) is inserted at the position

minimizing the ’wasted space’ (in black) between its bottom horizon (in pink) and the

current horizon. The top horizon (in red) of the current chart is then used to update the

horizon. B: Result on the dinosaur data set.

the border may have an arbitrary shape, the bounding rectangle is
not an accurate approximation.

For this reason, we propose a different algorithm, that packs the
charts directly rather than their bounding rectangles. As in [2], our
algorithm is inspired by how a ‘Tetris’ player would operate, but
without approximating the charts by their bounding boxes:

1. Each chart is rescaled to make its area in (u, v) space equal to
its area in (x, y, z) space.

2. The maximum diameter of the charts are oriented vertically and
sorted in decreasing order.

3. As shown in Figure 7, for each chart C, the top horizon h⊤
C (in

red) and bottom horizon h⊥
C (in pink) is computed. Rather than

being represented by their bounding rectangles, the charts are

approximated by the area between the two curves h⊤
C and h⊥

C .
As in classical approaches, in order to avoid unwanted blends
caused by mip-mapping, an additional margin is added to the
horizons.

4. The charts are inserted one by one, using the method described
below.

As shown in Figure 7-A, the piecewise linear function h(u) rep-
resenting the ‘horizon’ is maintained by the algorithm. For each
chart C, the uC coordinate at the lower left corner of C is cho-
sen in such a way that the lost space (in black) between the bottom

horizon h⊥
C of C (in pink) and the current horizon h (in blue) is

minimized (see Figure 7-A). Then, the horizon h is updated using

the top horizon h⊤
C of the current chart (in red). Since the parame-

ter space is discretized into texels, it seems natural to represent the
horizons by arrays of discretized values, with texture resolution.
This makes the algorithm much simpler than using piecewise linear
functions. For a chart C, all discrete values for uC are tested. The
algorithm performs well, and takes less than one second to process
all the data sets we have tested.

5 RESULTS

We have applied our method to different data sets, comprising
meshes created with a 3D modeler (using subdivision surfaces) and
scanned meshes. The results are equivalent to those obtained with
MIPS [10], but with mathematical guarantees, and can be more ef-
ficiently computed. As shown in Table 1, the stretch (see [27])
measured on the result is of the same order as when using stan-
dard methods (e.g. [4, 6]). To optimize the mapping, it is easy to
post-process the result of our method by the algorithm proposed in
[27]. Since the border nodes are naturally positionned (rather than
arbitrarily fixed on a convex polygon), the result can be better (see
Table 1).

Figure 8 shows some texture atlases. Note the presence of small
charts, most of them corresponding to geometric details of the mod-
els (teeth, hoofs . . . ). This is not a problem for most paint systems,

Harmonic Maps LSCM
stretch (before optim.) 3.2 3.5
stretch (after optim.) 1.65 1.52

Table 1: Stretch optimization of the ’cow head’ data set

Figure 8: Data sets and associated texture space constructed by our method.

dinosaur skull bunny horse
♯ vertices 14,669 16,949 34,834 48,485
♯ facets 14,384 15,124 69,451 96,968
♯ charts 43 40 23 44
segmentation time (s) 8 17 30 43
parameterization time (s) 10 23 95 190
packing ratio (rectangles) 0.48 0.51 0.43 0.37
packing ratio (our algo.) 0.55 0.55 0.6 0.58
stretch (before optim.) 2.9 2.5 1.16 1.14
stretch (after optim.) 1.26 1.55 1.14 1.12

Table 2: Statistics and timings.



Figure 10: Hand-painted 3D models. Our LSCM method facilitates the use of procedural textures and complex patterns.
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Figure 9: Angle and area deformations histograms (‘Horse’ data set).

that can treat them properly. Some examples of textured models
are shown in Figure 10. Table 2 shows the sizes of the data sets,
the number of created charts, and the following statistics, obtained
on a 1.3 GHz Pentium III (note that the timings for the packing
algorithm are not included, since they are negligible):

• time to segment the model into charts;
• time to parameterize the charts. Our LSCM criterion (Equation

4) is minimized using the CG (Conjugate Gradient) algorithm.
The independence to resolution suggests that a multi-grid ap-
proach would be even more efficient;

• packing ratio obtained using an enclosing rectangle packing ap-
proach [27] and our algorithm.

• stretch measured before and after applying Sander et. al.’s opti-
mization method as a post-processing (see [27]).

The left histogram in Figure 9 shows the distribution of the an-
gles in degrees between u and v gradient vectors. The mapping is
nearly conformal in each triangle (the differences of lengthes be-
tween the u and v gradients we have measured are very near to
zero). The right histogram shows the area deformations obtained
with the ‘Horse’ data set, before stretch optimization. This his-
togram, showing texture area/model area ratios has been normal-
ized, i.e. scaled in such a way that the mean value is mapped to
1. Note that since the mapping is nearly isotropic in each triangle,

the L2 and L∞ stretch histogram (not shown here) have exactly
the same appearance as the area histogram. As can be seen, even
though our LSCM criterion is not designed to punish area defor-
mations, few facets are distorted, and can easily be fixed by post-
processing using Sander et. al.’s method. The resulting texture at-
lases combine the advantages of LSCM (few chart discontinuities)
and stretch-optimized parameterization (uniform sampling).

CONCLUSION

In this paper, we have presented a new automatic texture atlas gen-
eration method for polygonal models. Overall, we have proposed a
complete and mathematically valid solution to the parameterization
of complex models which proved to be more efficient and robust
than existing methods and available tools in real production envi-
ronments. Our segmentation algorithm, driven by detected features
and inspired by Morse theory, decomposes the model into charts
with natural shapes, corresponding to meaningful geometric enti-
ties. These two algorithms may have applications in other domains,
such as re-meshing and data compression. We have successfully
applied our technique to both scanned and synthetic data sets, mak-
ing it possible to use existing 3D paint systems with them (Deep-
Paint3D, Painter). In future works, to parameterize huge models,
we will consider out-of-core algorithm, and analyze different nu-
merical methods to minimize the LSCM criterion, including multi-
grid approaches and pre-conditioned CG. Including the stretch cri-
terion directly into the LSCM criterion is also another possible fu-
ture direction of research.
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A PROPERTIES OF LSCMS

The minimization problem of Section 2 has several interesting
properties when the number p of pinned vertices in parameter space
is sufficient. In what follows, T is assumed to be homeomorphic to
a disc.

A.1 Full Rank

We first show that the matrices Mf and A have full rank when
p > 2 (p denotes the number of pinned vertices).

For this, recall that a triangulation that is topologically a disc
can be incrementally constructed with only two operations (cf. Fig-
ure 11): the glue operation creates one new vertex and one new
face, and the join operation creates one new face. Thus, incremen-
tal construction creates at most as much vertices as faces. Since the
simplest triangulation (one triangle) has one face and three vertices,
we have that n′

> n − 2 (where n denotes the number of vertices,
and n′ the number of triangles, as in the rest of the paper).



Figure 11: Incremental construction of a triangulation that is topologically a disc.

Left: glue two triangles along an edge. Right: join two existing vertices, creating a

new triangle.

We first show that the rank of Mf is n − p when p > 2. First

note that since n′
> n − 2, min (n′, n − p) = n − p if p >

2 and the rank of Mf is at most n − p. We assume that T is
incrementally constructed with glue and join operations and prove
the result by induction on the size of Mf . We also assume, without
loss of generality, that the p pinned vertices are concentrated in
the initial triangulation. Let n′

i, ni − p be the dimensions of the

matrix M(i)
f at step i. Observe that since T is a non-degenerate

triangulation, none of the coefficients Wj,Ti is zero.

At step 0, the triangulation has n0 − p = 1 vertices and n′
0 >

1 triangles. M(0)
f has a single column and, since T is a proper

triangulation, some of its coefficients are non-zero and it has rank
1 = n0 − p.

Assume that the property holds after step i. If step i+1 is a join,

then the number of rows of M(i)
f grows by 1 while the number of

columns is unchanged, so the rank is ni+1 − p = ni − p. If step
i + 1 is a glue, a new vertex vi+1 and a new triangle T are added.

Let v1 and v2 be the other vertices of T . The new matrix M(i+1)
f

is as follows:












M(i)
f

0
...
0

W1,T√
dT

W2,T√
dT

0 · · · 0
Wi+1,T√

dT













.

It is now easy to see that its columns are linearly independent. In-
deed, assume there are complex numbers λj such that

ni+1
∑

j=1

λjm
(i+1)
j = 0, (5)

where the m
(i+1)
j are the column vectors of M(i+1)

f . If we

look at the first n′
i coordinates of the column vectors, then Equa-

tion 5 reduces to
∑ni

j=1 λjm
(i)
j = 0, which implies that λj =

0, j = 1, . . . , ni, since M(i)
f has full rank. Now the equa-

tion linking the last coordinate of the vectors m
(i+1)
j reduces to

λni+1
Wi+1,T /

√
dT = 0, implying that λni+1

= 0. Thus the

columns of M(i+1)
f are linearly independent and the matrix has

full rank. The result is proved.

Since Mf has rank n − p, both M1
f and M2

f have rank n − p
when p > 2. In turn, this implies that A has rank 2(n − p) when
p > 2.

A.2 Single Minimum

We now show that, when p > 2, C(U) has a unique minimum.
First, notice that

∂C

∂x
= 2(A⊤Ax −A⊤

b).

Now, since the rank of the Gram matrix of A (i.e. A⊤A) is the

same as the rank of A, A⊤A has rank 2(n− p) when p > 2. Since

A⊤A is a square 2(n − p) × 2(n − p) matrix, it is thus invertible
and the minimization problem has a unique solution (when p > 2)

x = (A⊤A)−1A⊤
b.

The minimum of C(U) is zero when Ax = b, i.e. when A is
invertible. Since it has full rank, this happens exactly when A is
square, i.e. when n′ = n − p. Using the fact that n′

> n − 2,
this implies that p = 2. We conclude that the mapping U is fully
conformal (barring self-intersections) exactly when p = 2 and the
triangulation T is built only with glue operations.

A.3 Invariance by Similarity

We now prove that if U is a solution to the minimization prob-
lem, then zU + T is also a solution, for all z ∈ C and T =
(z′, . . . , z′), z′ ∈ C. In other words, the problem is invariant by
a similarity transformation.

First note that the vector H = (1, . . . , 1)⊤ is trivially in the
kernel of M, since W1 + W2 + W3 = 0 in each triangle. Assume
U is a solution of the problem. We get:

C(zU + T) = zz C(U) + 2zT∗CU,

= zz C(U) + 2z(MT)∗MU = zz C(U),

because T = z′H is in the kernel of M. If C(U) = 0, then
C(zU + T) = 0.

A.4 Independence to Resolution

We now show that if a given mesh is ‘densified’, then the solution to
the augmented optimization problem restricted to the vertices of the
initial mesh is the same. We prove this result when a single triangle
T is split into three triangles, but the proof generalizes easily to
a more general setting. So let v be the new vertex introduced in
triangle T , i.e. as a linear combination of vertices v1,v2,v3:

v =

3
∑

i=1

αivi,

3
∑

i=1

αi = 1, αi > 0.

Assume also for the sake of simplicity that none of v,v1,v2,v3

is pinned. Call Ti (i = 1, . . . , 3) the triangle created that does not
have vi as vertex. Then it is easy to see that dTi = αidT .

Mf is an n′ × (n − p) matrix. After insertion of v, the new

matrix M+
f is (n′ +2)× (n+1− p). Indeed, one vertex is added,

augmenting the number of columns by one, and three new triangles
replace an old one, augmenting the number of rows by two. The
structure of these matrices is as follows:

Mf =







Nf

F 0 · · · 0






, M+

f =













Nf

0
...
0

L 0 P













.

where Nf is an (n′−1)×(n−p) matrix, F is 1×3, L is 3×3 and P
is 3 × 1. If the coefficients of F are denoted by fj = Wj,T /

√
dT ,

then it is easy to observe that the coefficients of L = (lij) and
P = (pi) satisfy

lij =
1√
αi

(

αifj − αjfi

)

, pi =
1√
αi

fi. (6)

The (n − p) × 1 solution to the initial problem is:

Uf = (M∗
fMf )(−1)M∗

fMpUp.



Consider the (n + 1 − p) × 1 solution to the augmented problem:

U
+
f = (M+

f

∗M+
f )(−1)M+

f

∗M+
p U

+
p . (7)

Using the relations of Equation 6 and the fact that f1+f2+f3 = 0,

it suffices then to observe that U+
f = (U⊤

f , Uv)⊤ is the (unique)

solution to 7, where

Uv = α1U1 + α2U2 + α3U3.

In other words, the least squares conformal parameterization is un-
changed at the old vertices and is the barycenter of the parameteri-
zations of v1,v2 and v3 at the new vertex v.

A.5 Preserving Orientations

We now sketch the proof that least squares conformal maps preserve
orientations, i.e. there are no triangle flips.

2
U

3
U

V
2

V
1

V
3

V

T T’ V UV’

U
1

u

v

LSCM

Figure 12: LSCMs preserve orientations.

As a preliminary, note first that if complex numbers Wi are as-
sociated to vertices of a triangle as in Section 2.4, with vertices
ordered counterclockwise, then

ζT = i
(

W2W1 − W1W2

)

(8)

is positive (and equal to 2dT ).
We again assume that the triangulation T is incrementally con-

structed with the glue and join operations. Denote the current tri-
angulation by Ti. For the join operation, the result is trivial. We
now prove the result when the current step is a glue. We use the
notations of Figure 12. Let V and V ′ be the images of T and T ′

in parameter space. Let also Wj (resp. W ′
j ) be complex numbers

attached to T (resp. T ′) and Xj (resp. X ′
j) be complex numbers

attached to V (resp. V ′). Since the local bases of two triangles of
T sharing an edge are consistently oriented, both ζT – as defined in
Equation 8 – and

ζT ′ = i
(

W ′
1W

′
2 − W ′

2W
′
1

)

are positive. If we assume that the unfolding of Ti has no triangle
flips, then we also have that ζV > 0, where ζV is defined as in
Equation 8, replacing Wj by Xj .

Now, writing down the equations defining U+
f = (U⊤

f , Uv)⊤ as

in the previous section, we find that

W ′
1U1 + W ′

2U2 + W ′
v
Uv = 0, (9)

where U1, U2, Uv are the parameterizations of vertices v1,v2,v
(U1, U2 being unchanged by addition of v). Using the fact that
W ′

1 + W ′
2 + W ′

3 = 0, X ′
1 = U2 − Uv and X ′

2 = Uv − U1,
Equation 9 rewrites as

W ′
2X

′
1 − W ′

1X
′
2 = 0. (10)

Using Equation 10 and the definition in Equation 8, we have:

ζV ′ = i
(

X ′
1X

′
2 − X ′

2X
′
1

)

,

=
X ′

1X
′
1

W ′
1W

′
1

i
(

W ′
1W

′
2 − W ′

2W
′
1

)

=
X ′

1X
′
1

W ′
1W

′
1

ζT ′ > 0.

Thus, V ′ is consistently oriented and the glue operation does not
produce a triangle flip, proving the result.
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