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Least Squares Cubic Spline Approximation I - Fixed Knots

% %.
carl de Boor™ and John R. Rice ¥

1. Introduction. Spline functions, and, more generally, piecewise

polynomial functions are the most successful approximating functions
in use today. They combine ease of handling in a computer with great
flexibility, and are therefore particularly suited for the approximation
of experimental data or design curve measurements.
For a rather complete list of the recent literature on splines, the
reader i< referred to the bibliography of [8].
This paper pres;nts-an algorithm for the computation.of the teast-
squares approximation to a given function u By cubic splines with
a given fixed set of knots. But ;ince the successful use of splinex:
for purposes of "'smoothly'" approximating a given set of data depeads
strongly on the proper placement of the knots, the algorithm is written
s& as to facilitate experimentation with various knot sets in as eco-
nomical a fashion as possible. In [2], use is made of this in a pro-
gram which attempts to compute the Ieast-squares-apprbximatian to a
given function u by cublc splines with a fixed anumber of knots.
As a consequence, the algorithm is somewhat more complex than
seems warranted for the mere calculation of the Lz-approximation to

u bv a linear family of functions.

- er——
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*This work was initiated at the Genéral Motors Research Laboratories.
The final stages were partially supported by NSF grant GP-7163. We wish
to thank John [loff for assistance in preparing preliminary versions of
this algorithm,
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2. Mathematical backqround.

=bh be

Definiti f i . ca = <, <F
(a) efinition of splines. Let 1T:a ﬁo < E' < Fk+|

a partition of the interval! {a,bl. A (polynomial) spline function of

degree n on w is, by definition, any function s(x) EC(n~2)[a,b}_

which on each of the intervals (Ei, £.,), i=0,...,k, reduces to a

i+]
polynomial of degree < n. The points §, are called knots (or, ioints).

We denote by Sg the linear space of all such functions. Define
n
)" = J(x=E)

(2.1) {(x~€) { 0

Then it is easily shown that each s ¢ S: is uniquely represented by

two sets of parameters, :E: = {glj....gk} and A = [al.... }, where

3+l

J
’LJ’

“ k
= o = - n
(2,2)  s(x) = SOATLx) =y 8, 0B ) 5y 3, 0
Apparently, the boundary '"knots" %0.§k+‘, play no rote in this
representation. In fact, the right-hand side of {2.2) is well~defined
on the entire line. Hence, we may and wiil consider each s e S: o
be defined by (2.2) on the entire line. Nevertheless, we retain the

boundary ''knots'' for use in other representations,

(b} Representation of splines. The representation (2.2) is useful

for mathematical analysis, but is very ill-conditioned and cumbersome
to evaluate., In computations, the following representations are to be
preferred.

For purposes of evaluation, the following seems best:

——



3.

Repr. 1. The set {go,..., §k} and the set of polynomial coefficients

[cij[i =0,...,k; § = 0,...,n}, where

1

n .
-€_)J i =
-E,O cij (x gi) H for Eii xEEi_}_I' 1 0,...,'(.

2.3) s, ,x) p

It is clear that this representation is highly redundant, requiring

(n+1) (k+1) linear parameters. In particular, if o is odd, and
r={n+1)/2,

then cij' j =ry...,n, may be computed from c¢..,cC j=0,..., r=1, by

1j° i+1,5'
-r-l

' -1
% (08,) = %, Yj-r,s[ci+l,s{a‘gi)s - ;25 () e, (85,) 7,

(2.4%) | § = rheean: i=0,....k,

where

_ . PRRTS £ rel oty r=lee-j,
Agm = §m+| gl’l‘l‘ and Ylj ( I) tE_O (i) ( t"j )-'

This’ gives -

Repr. 11. The set {§ ,..., §k+l} and the set [cijil 0,...,k+i;
j=0,...,r-1},

where

(2.5) c, = s, 5 x)

This reﬁresantation is redundant, tco, requiring (k+2)(n+1)/2 linmear

parameters.
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In reducing Repr. I to Repr. Il, we only used the continuity of
S(A,ZE ,x) and its derivatives up to the (r-1)st. But since S(A,CE',x)
is in C(n-z)[a,b], a small subset of the cij is sufficient. -

Repr. IIT. The set {§_,...,E, .} and the set {cijl(j=0 and i=0,...,k+1)
or (j=1,...,r=1, and i=0,k+1)}.

To pass from Repr. III (and thence to other representations) is the
spline interpolation problem. Its solution consists in salviné a system
of k#(r-1) equations in the unknowns cij,i=l,...,k; j=1,...,v=1, whose
coefficdent matrix is block tridiagonal of block size =1, The per-

tinent equations are:

r=1 s=r=7 =1 ¢t t=r-j t=r-j
SEO Yjs[ci-l,s ("Agi_]) ‘ + s tES V(S)Cit{ (g i) I- (ag i‘]} P)‘}
] s=r=iq .
(2.6) | iep,s BE;) ] =0,

i=1,...,k; j=0,...,r2.

It is clear that this representation requires ntk+l linear parameters,
hence is not redundant. In particular, it makes sense to define the

spline of degree n interpolating f ¢ C(rhl)[a,b] on k as the unique

n . .
element s € Srr satisfying

s(5,) = F(E;), 1=0,..., k1,
(2.7)

5(j)(§i) = f(j)(gi), i=0,ktl; j=1,...,r=1.

The algorithm under discussion employs each of these representations

and the following



Repr. IV. The set {S(A,’- %) i=1,..0 N}, where X = (x;|i=1,...,n])
is a given (increasing) set of points (cf. below).
It should be pointed out [5; 9] that the set {S(A,ii} xi)l_i=l,...,N}

represents S(A,:E:,x) if and only if for some subset i of X with

» ;
X, € %<, ..<x one has

(2.8) X, < gi < xi+n+], i=1,...,k.

For completeness, we mention a further non-redundant representation
valid for asbitrary n, which makes use of the so called B-splines and

brings cut the "local* character of splines:

Repr. V. The set {E_n,..., €k+n+l} and the set {b-n""’bk}'
where
— § :
(2-9) S(A,L.:l lx) =- bi Bi(x)l
i=-n
and

Bi(x) = (Ei+n+]- Ei)gn(gir-'-) g

Py x), i =~-n,...,k,

g9, (six) = (s-x): :
with

- S A - IO SRR TP

Here, f(Ei,..L, gi+n+l) denotes the (n+1)st divided difference of the

function f(s) on the points Ei,.... §i+n+l'



It is not difficult to see that

Bi(x) > 0 with equality iff x ¢ (ii, §i+n+3)‘

r B.(X) = ], all X € [gov §k+|]q

This representation is particularly useful for the study and computational
handling of splines with repeated knots as the limit of splines with pair-

wise distinct knots defined above.

(c) Least-squares approximation. Let M. be a linear space with

inner product <f,g> and associated norm

[

el = &f,0)2.
let S be a finite=dimensional ﬁuﬁspace of M. Given u ¢ M, the error
E(w) = [lu-w]|
of approximating u by w is uniquely minimized over all we S by

the orthogenal projection Psu of u, i,e,, u¥ = Psu is determined by

ut ¢ S, and, for all we S, <u¥,w> =<u,ws.
u* is most advantageously computed with the aid of an orthonormal
m ) ' - - .
basis [Yi}i=| of 5, i.e., a generating set for S which satisfies
<Yiﬁ5> =6ij' i,j=t,...,m.

for then,

EF

(2.10) P.u =

S <u,’i’i>-‘vi .

i=]

m
Given a basis [¢i}1 for S, an orthonormal basis . [Yi} for §

. ’ .
may be constructed from it by a variety of techniques (e.g., [3]. (D).



The best-known of these is the Gram-Schmidt-orthonomalization pro-

cedure, in which each Yi is computed as the normalized error of the

i-1

best spproximation to ¢i by elements in the span of [bj]j—l'

i.e.
by successively solving a least-squares approximation problem m~1]

times. In formulae,

- i-1 ‘
Yo b <t ;1

I

J
‘[ i=1,...,m.
—ji,i/HYi“ s '

A slight reordering of the computations, resulting in the so-called

(2.11)

g
I

modified Gram~Schmidt=process, has proven te be more stable in practice:

pgl) =9

(G+1)
i

(2.12) {J =¢i(j)— <tbi(j),'{rj> '{rj, i=l, e, i=1 i=1,...

v = 010

The reader should refer to [7] and [4] for some experimental results,
and to {1] for a rigorous comparative analysis & la Wilkinson of the
two computational processes.

The algorithm under discussion uses the trapezoidal sum approximation

to X

N
{] £(x) g{x) wix)dx

36 inner product, i.e.,
N
<f,g = T [FQ Dalx )+ Flx)alg)]v;,

i=1
(2.13)



where X = [Xi|1=|,...,N} is a given finite point set and w(x) is a
non-negative function, both to be supplied by thé user. Hence M may
be taken as thé set of all real functions on X. The set S consists

of all functions of the form

) s(x), s(x) € 53

T’
where 'n:§D < gl <...< §k+l is @ fixed knot set and t(x) atrend function
to be supplied by the user. We will ignore the presence of t(x) in

the subseauent discussicn.

It has been our experience that a careful choice of the initial basis
[¢i} for § can greatly increase the ;eliability of the subsequent
calculation of the L,- approximation to u via the modified G.-S.
process, A straightforward but costly approach would consist in rein-
forcement, i.e., in the repeated application of the modified G.-S. pro-
cess until Repr. II or Repr. III of the basis elements becomes stationary.
The algorithm under discussion permits this approach if desired (cf, te-
low the case MODE = 2 in the algorithm NUBAS}. Less costly would be the
construction of a "nearly' orthogonal basis., Vague as this term is,
the following process is based on this notion, and has proven quite
successful: construct each ti 50 as to have at least one more ex~

tremum than Y-

It is also mandatory that computation of the inner products be made
somewhat more accurately than the other computations. This may be ac-
complished by "“'double precision accumulation'' of the products, or, as
in this algorithm, complete double precision arithmetic in the inner

product calaulsticns.

—



3. The algorithm.

(a) General remarks. As stated earlier, the success of approximation

by splines depends heavily on the correct choice of the knot set :E:.
The algorithm FXDKNT is, therefore, designed to permit the exper-
imentation with variocus choices of:zz in as economical a fashion as
possibia. This is done by using four modes of operation.

An initial call to FADKNT, which must be in MBDE = §, produces the
L:-S. approximation to the given u using a ;pecified knot set :E: .
Subsequent caitls may be used to modify repeatedly-the current knot set.
Thus more knots may be added while retaining all or at least the first
KNOT knots in ‘3 {MBDE = 1,2). MODE = 3 permits the efficient eval-
uation of the L.~S. error as a éunction of one additional knrot to be
inserted between two neighboring knots, thus making it possible to
minimize the L.-S, error with respect to ane knot with relatively little
work.

(b) Input. The input to FXDKNT consists of:

(i} The integer M8DE which is assumed to be one of 0,1,2,3: A
call with MGDE = O will change MGUE to 1; a call with M8DE = 2 may
change MBDE to I.

(ii) X abscissa and ordinates, XX(L),U(L),L=1,...,LX,of the
function u(x) to be approximated.

The numbers XX{L) are assumed to be increasing with L, and should

normally be strictly increasing. A quick look at the inner product

(2.13) shows that repeated points

XX(L=1) < X (L) = x(L+1) = ... = X (M) <x{(4+1)
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are effectively ignored unless U(L) # U(M) in which case u is
treated as if it had a jump discontinuity at XX(L) of size U(M) -
u(L),

(iii) (in MEDE = 0,1,2) the set of (additional) knots ADOXI (i),
i=l,...,JADD:

If HODE = 0, then ADDXI(1) and ADOXI(2) are taken as the left
and right boundary knot, respectively. The only restriction on the
remaining entrigs, if any, {or on the entries in any subsequent call)
is that each should fall within this interval and not be coincident with
any knot already in use (an error message will result in the contrary
case). In particular, the entries of ADDXI need not be ordered in
any way. JADD may be zero (or even negative) to signify 'no additional
knots*'.

(iv) (in MBDE = },2) the integer KN&T.

This number is part of the information returned by FXDRNT; but if
it-is decreased between two calls to FXDKNT by an amount M, the M
knots introduced last in prior catls will be removed from the current
knot set,

(v) The number ARG:

ARG is taken to be 3 real number in MBDE = 3, giving the current
vaiue of the one knot being varied. If MBDE # 3, ARG is taken tov
be an integer between 0 and 3, specifying various cutput optiocns.

(¢) The output., The output of (information rersrned from) FXOKNT
consists of: |

(i} The number FXDKNT = ||u-U*||2/(XX(LX)‘XX(])). giving the L.-S.

arror of the current best approxination to u;




Py
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(ii) The current knot set XIL{i), i =1,...,KNeT.

The entries of XIL are Increasing with i, XIL contains the boundary
knots,

(iii) (MBDE # 3) the values UERROR(L) of u-u* act XX(L), L = 1, ...,
u* being the b. a. to u by cubic splines on the current knat set.

(iv) (HedE £ 3 and ARG = 1) Repr. II, I, IV of u% in VERDL, COEFL,
and FCTL, respectively; and the integer LMAX, indicating that {(u=u%*)w
attains its maximum at XX {LMAX}. .

(v) In addition, FXDKNT has some printed'output in case ARG > 0,
and M8DE # 3. -

{d) The algorithm NUBAS. The heart of the FXDKNT algorithm is the

repeated solution of the following problem:
Given an orthonorma} basis [Yi} for the linear space S of all
cubic splines on |
m: XILQ)) <...< XIL(KNBT)
and the L.~S. approximation u* to u by elements in S, find the
L.-S. approximation G* to u by a!em?nts in g. where g‘D S is

the linear space of all cubic splines on

72 XIE(1) <...< XIL(INSERT-1) < XKNOT < XIL(INSERT) <...< XLL(KNOT).
This problem is solved in NUBAS.
Thus, initially, one has present, for each Y., Repr. II in VBRD(i,.,.),
Repr. I in X1(.), c0EF(.,.), and Repr. IV in FCT(.,i); further

one has u-w* in UERROR, and <u,Y > in BC(i}.
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KNST is .increased by one, and the current knot set XIL is en-
larged by the insertion of the additional knot XKN®T so that XIL
contains the knots again in increasing order. Repr. II for the Yi's
is updated to include wi(xxner) and Y;(XKNBT), while the other two
representations remain unchanged.

Next, with ILAST = KNOT + 2, an element of S but not in

_ Driast
S 1is constructed as that element of 3 which interpolates a certain
function f on the current knot set. The choice of f depends on
MEDE.
If HBOE = 1, then, with ItMV = ILAST-1,

YILMI(X)’ X < XKNET,

fx) =
=¥ 1 X)) X > XKNET,

thus making it quite likely that bILAST has one more lacal extremum
than YILMI’
If the reinforcing mode MODE = 2 is used,
f(x) =Y ILAST
is chosen provided that such a function was in fact constructed duriag
an earlier call to FXDXNT. Otherwise, MBDE is set to one, and the at-
gorithm proceeds in that mode,

Repr. 111 fof b is computed from f and stored in VEROL

ILAST
and is then augmented to Repr. II in the_subroutine INTERP, using
equations (2.6). Subroutine EVAL then supplies Repr. 1 using (2.4),

storing it in CBEFL, and, f rom it, Repr. IV, storing it in FCTL.
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The modified Gram~Schmidt-process is then applied. Specifically,

the components TEMP(i) = <¢1LAST’ Yi> of bILAST with respect to

the orthonormal basic [?i|i=l,...,1LMl} of S are computed by
TEMP(i) « <FCTL,FCT(i)>
i=1,,..,I1tMl,
FCTL « FCTL = TEMP(i)*FCT(i)

fizST’ Y.;> being computed In subhroutine DOT

using Repr, IV of the functions involved.

the inner product «<¢

Hence, after the calculation
IMl
VBRDL — VBROL - T  TEMP{i)*veRrD(i),
i=1
VBRDL contains Repr., II of a cubic spline in § orthogonal to &.

Another call to EVAL derives from this Repr. I and IV. Finally,

Repr. I, 11, IV of the YILAST is stored via

¢ ~ J<FCTL,FETEL>
COEF « CSEFL/C
VARD (ILAST) +« VeRDL/C

FCT{ILAST) ~ FCTL/C

Also, the component BC{ILAST) of u with respect to Yyiast IS com
puted as

BC{ILAST}) ~ <UERROR,FCTL>/C.
Except in MBDE = 3, a call to NUBAS 1is followed by
UERRCR =~ UERROR - BC(ILAST) #* FCT{ILAST),

so that UERROR contains u-u*.
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For MBDE = 0 and HBDE = 3, there are minor modifications in
NUBAS. In case MODE = 0, one of the first four Yi is computed so
that, in the above, ''with one additional knot'' has to be replacad by
''of one degree higher'. Explicitly, for i=1,2,3.4, ¢i' and hence Y, 1s
a polynomial of degree i-1,

If MeDE = 3, XKNOT is not taken as an additional knot but rather
as a new value for the knot introduced last. Accordingly, the current
knot set is changed (at that knot) but not increased, and ¢ILAST is

then defined as in M8DE = 2.

(e) The algorithm FADKNT..- FXDKNT uses NUBAS in the following way.

MBDE = 0. U is put into UERROR, trend and weight are evaluated
at the XX's, the quantities W; (see (2.13)) are computed and stored
in TRPZWY. The initial knot set is set up to consist of just the two
boundary knots which are taken to be ADDXI(1)}, ADDXI(2). Four calls
to NUBAS produce the orthonormal basis 'Tl,.,?4 for'the set of cubic
poelynomials as described above, their various representations and the
L.-S. approximation to u by cubic polynomials. UERROR 1is saved in
CUBERR for possible use later on in a MODE = 1,2 call. MBDE is
set to 1. If JADD-2 > 0, the program proceeds, after

JADD ~ JADD-2, ADDXI{i) =~ ADDXI(i+2), i=1,...,JADD,
as for MBDE = 1, Otherwise, the L.-S. error of the current L.-$,

approximation to u is computed as

FXDKNT ~ <UERROR,UYERRQR>/ (XX {{X)-XxX{1))

and FXDKNT is terminated.
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f MODE = 1,2: If KXNBT > KNBTSV, KNOT is set equal to KN8TSV, and
JADD successive calls to NUBAS produce the [.=S. apprOximatioﬂ to u
by cubic splines having the knots introduced earlier and additional knots
ADDXI(i), i=1,...,JADD.

If KNBT < KN8TSV, this action is preceded by the follawing:
The (KNOTSV-KNET) knots introduced last into the current knot set by a
preceding call or calls are removed from it. The various arrays such
as UERROR are restored to the stage where we had just computed the
L.=S. approximation to u using just the first KNGT knots.

In either case, the program returns the square of the L.-S. error,
FXDKNT, of the current b. approximation to u computed as in MODE = 0.

MBDE = 3. If the previcus call to FXDKNT was in a mode other than

3 (MODE3=FALSE)Y, ARG is taken as the value of an additional knot.

c—

The current value of FXDKNT is saved in ERBUTI, and a call to NUBAS
in MODE = 2 with XKNOT ~ ARG produces, as described earlier, an

increased knot set, an additional ¥ , and BC(ILAST) ~ <UERROR.¢ILAST>.

ILAST

But the component BC(ILAST)* ¥ ... of u (or, UERROR), with

respect to Y 4s not taken out of UERROR. Rather, FXDKNT is

ILAST
computed as

FXDKNT ~ ERBUT! - (Bc(;LAST)**z)/(xx(Lx)-xx(l)).

ILAST
using the well known fact that if ux =2 BC(i)Yi, then
i=
2

12 ILA

ST
| [umux|{ - B (6c()

I
<

ERBUT] - (BC(ILAST))Z.

If the previous call to FXDKNT was in MBDE = 3 (MBDE3~=TRUE), ARG is
taken as a new valuc for the additional knot introduced in the first in

a sequence oFf such calli:. Henre, a3 ¢all ro NUBAS in MODE = 3 prcduces,
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4. Variables in this program

Global with calling program:

ADDXI (26) LX
COEFL(27,4) MODE
FCcTL(100) v (100)
INTERY UERR8R (100}
JADD VOROL (28,2)
KNOT X10(28)
LMAX XX (100)
Global in FXDKNT
BC (30) TREND (100)
FCT(100,30) TRPZWT(100) {
ILAST V8RD (30,28,2)
INSIRT(30) XKNOT
IORDER (28)
Local in FXEIKNT
ARG = I PRINT = CHANGE KNOTSY
CUBERR (100) MBDE3
ERBUT PRINT (100}
ERRL1 WEIGHT(100)
ERRL2 XSCALE
ERRL39
Local in NUBAS

(

c
CeeF (381,4)

ICLAsY

ALMl = BLAST-1
INSERT

LL(231)
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&. Example:

(i)

The set of data used here has three distinct features-
It is actual data, expressing a thermal property of titanium; (ii)
It is difficult to approximate by classical approximating functions;

(iii) There is a significant amount of noise in the data.



u{x)

622
.638
.649
.652
.639
.bL6
.657
.652
.B55
.664

1,663

.663
.668

676

676
.686
.679
.678
.683

.69

.699
.710
.730
763

TITANIUM HEAT DATA

w(x)  (eu)x10 x ulx)
624 2.03 8us .Biz
.636 -1.37 855 -907
.643 - .47 865  1.044
646 .29 875  1.336
647 .52 885  1.881
646 - .71 895 2.169
645 .08 905 2;075
.6hs 1.17 915  1.598
647 146 925  1.211
.652 .26 935 .916
.659 45 945 746
667 - b4 955 .672
.675 ~1.21 965 .627
.681 -1.33 975 .615
.685 - .89 985 .607
.685 - .87 395 .606
.679 .66 1005 .609
.669 1.00 1015 .603
.658 2.05 1025 .601
.650 3.31 1035 .603°
.651 k.29 1045 .601
.666 3.26 1055 611
.701 .93 1065 .601
.759 -2.90 1075 .608
.86 ;8.34

]
1
|
i
|
!
l
|
i

1.

!

utr{x)
.965
.103
.248
.386
.502
.583
615
.583
481
.323
129
.922
.721
.548
A2k
.369
-395
A480

589

691
753

743

.626
.372

18,

(u-u‘«’-‘)xlo2
-15.28
-19.64
-20.4
- 5.00
37.89
58.60
46 .03
i.46

. =27.01

-40.67
~-38.33
-24 .98
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The {rounded) valués of the Least-squares approximation u* to
u and the error are given alongside the given data. For this ap-
proximation, the knot set T was chosen to be uniformly spaced, with
5 interior knots. Apparently, this is a poor choice for the location
of the knots, as may seen by comparing u* with the approximation to
u listed in [2].

Other output, as produced by a run of a FORTRAN version of the

algorithm on an IBM 7094, includes Repr, I for u*, and the LWL,

and L, norm of the error, as follows:
Knots Coefficients Knots Coefficients
595 .623718 835 .846403 |
. 147983x10"2 : .103636x10” "
- .303437x107" _ 170647x1073
194334x 10”8 ~.231281x10"°
675 657403 915 .153343x10
.356044x10”3 - 674063x1072
L 162946x10" " -.384L50x10 >
- 1967431100 .348626x10 2
755 679440 935 .368658
-.814283x10 3 - . 131654x10"2
- .309237x10 452251x10”3
.839879x10™° ' - 5uko5ix1075
835 | 1075 |
Average error = .108380, Least Square error = .177236, Maximum error

.586038.



in

(2]

(32

(4]

{5]

(6]

7

(8]

(9]
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FUMCTIO ! FXDAT (ARE)
C THT FUCCTICE RET ¢S THF SOUARE OF THE L2-FROR
DOUBLE PRECISION TRPpZV'T,5UM
LOGICAL ~ODE3
OTHMEMSION HEIGRT(100),CUBERR(1GQ)
CO “ON / =ASST /7 TREND(IV.)sTRPZ T(12U), PHRIMT{230)
CCrutON/ZIAPUT/LX s XX (100 ) U L0OV) »JADD - 0UX]1(26) sMODE
U(L) = FCT TO FE APPR AT XX(L)s L=1sLXe :
XX(L) IS ASSUNMED TQO RE MOMDECREASIMNG “ITH L
ACDOXI(I) = I~-TH <MOT TO BE ITROOUCED, I=1,JADD
MODE = 05915253 » SEC COMMEMNTS BELOYW ( AMD IM MURAS)
CCim0M/ QUTPUT JUERTTD(19.) sFCTLILCU Y s XIL(28) ,COEFLI(2T 34
* VORDL(28:2) s KMOToLMAX» IRTERV
LDERJAJR(L) = ERIR2D OF 202 A TG Uy L=1sLX
KXOT = CURRENT MC. OF XNOTS {INCL 8DRY KNOTS)
INTERY = XMOT - 1 = CURRENT MMQO. OF INTERVALS (PCL.FPIECES)
XILIK) s4X=1sKXNOT, CURRENMNT (ORDFREDY SET CF KNOTS
THD SAXT "U Y E2900 CCCURS AT XM (L#AAY)

IF ‘RG=1, FCTL(L) CONTAINS TH: CURBRENT H.AS TC U AT XX(L)
COEFLIT,.) CTUTYIRSTHE FOLLCATF. 2% I-TH IMTERVAL FOR ".A.
VORDOL{I».) CONTAINS VALUE AND DERIVe OF Ten. AT ZILII)

CO ~ON/ CASTS /FCT(1S :30C) sVORDI(30 12842) sBCEAMY » TLAST
FCT (L.iA) = BASIS FCT M AT XX{(L)
VO 3 UK s) COHTATI'S THE ORLCS (L=l) AND SLOLPES (L=2) OF FCT i%
AT THE KMNOT IMTRCODUCED A5 h=THe CORFSLATIC. TO CRDERING OF
X OTS PY ST12Z% I8 OMF VIS [0%552, 1.5.9 SRO ANY SLIAC T
XIL{KY ARE IN 02D (' 4 IORCFR(KYal)s
AaC(I) = COORDIMATE CF U {ARD OF ..A. TO U “MRTC I-TH uor SECT
ILAST = ZURRENT MO. OF BASIS FCTeS
CO- 3y LASTS ICROTT{28) 3 INSIRTI32) . XX OF
THE FCT ILAST {TC ) INTRODUCED LAST HAS ADDITIOMAL XNOT
XKNOT» THE KMOT JUST INTRO-
NUCEN HAS INDEX [MSERT IM XIL>IMSERT IS SAVED IN INSIRTCILAST
FOR POSSIGLE REPLACEMENT OF XMNOTS LATSR UM (SEE rJ038=243),
##2LOCAL VARIAALFS
XSCALE = XX{LUX) = XX(1)s USCD TO £ .ALIZE [~NER PAGDUCT
LENGTH CF THE INTERVAL OF IMTEGRATIOM
KOoc OF KNCTS USED 1IN -OST RECEMT CALL TG FXDKHT
S0. .OF L2-ZRRCOR OF APFR USING ALL EUT THE ONE
.,y . KNOT 82Z1NG VARIZD { USED IN MODE = 3)
CUBERR = ‘URRROR “CF .sA. -BY CUBIC POL-S (NEEDED FOR rQDE = 2}
FONER = TRUL,OR FALSE CFP, OV UHETHSR SRFV. CALL ~AS IV
MODE=3 '0f -MOT :
FQUIVALENCF {IPRINT 4 CHANGE)

NNANONONO aNaNaNe

NAOMNNMNNC

Lo

K+OTSV
EREUT1-

NN

ANANNNAAANNAAN

S ARG IS EITHER-FIXEE POINT (.OD;:NEoBl TO PICK PRIMT-OUT OPTIOr
o G el s OIS FLDATI“G n: I"T-( ©0JE=3) TO. GIVE NE** VALUE OF aXxCT VARIEL
Ft;Q,J——CHANGE ARG f27 mTwiooLn - .

- IF (MODF-GTo on PR -~ . .. GO0 TO 29 o

c ___________ ‘ - oo - .
C %% MODE=u® COSPUTE:SASIS FCT 1 THROUAH. 4 AMN “JAL IO RTQ - THE S
C THEN SET HODE = 1 ANC PUT URRROR INTO U . I

XSCALE = XX(LX) ~ X¥[(])
DO 10 [=5430 '
Yu INSIRT(I) = 2



M

NN N OO NOONONNANNN

11

12

20

22,

DO 11 L=1sLX {
UERRCR(L) = U(L) )
TREND(L) = T(XX(L))

YEIGHT (L) = “r(XX{L))

DO 12 L=2sLX

TRPZWTIL) = (XX{LI=XX({L=13})/G . %(: CIGHTIL~=1)+-ZICGKTI(L))

XIeely
X1 (2]
[0BNFY
JORDER
KNOT =
INTERV 1

DO 19 I=1-4

ILAST = [

CALL NUGAS

DO 19 L=1l,LX o
UERRCR (L) = UFRROR(L) - BC(TI#FCT(L,I?

ADDXY(1)
ADDXI(2)
) =1
) = 2

——
N N—=

LODE = 1
DO 2G L = 1,LX
CUSERR(L) = UERROR(L) )
IF (JARPLEF,2)s ONLY BoA. Ry CURICS 1S5 COMPUTED

OTHERWISE,s ADDPXI(I)s [oGTe2, CONTAINS ADDITIOMAL KMOTS
JADD = JAPD - 2 C y
IF (JADDJLF .U} ' GO TO 60

DO 21 1=1,0ADD
ADDXI(T) = ADDXI{I+2)
GO TO 51

30

GO TO (40s40530) 5i0D%

#%% MODE=3 *%¥ HERELY REPLACE THE LAST KNOT INTROOUCED By
CHANGE AND RECO.'PUTE L2 ERROR. CHANGE ENTERS
VIA THE ARGUMENT JPRINT = CHANGE.
THIS *»ODE SHOULD UE USED FOR
MINIMIZING THE L2-ERRCR WRTO THE KNOT
INTRODUCED LAST AS IT MINIMIZES THE COi+P wWORK
IF. MODE3 = TRUF (I.E., THE PRECEDING CALL TO FXDKMT
WAS IM MODE=3),THE PROGR WILL ASSU+'F THAT CHANGE
HAS THE SAME ORDER REL TO THE OTHER KNOTS AS THE
PREV INTRODUCED VALUE FOR KNOT. OTHERWISE
IF MODE3=FALSE(THE PRECEDING CALL WAS IN S50#E OTHER ~ODE
» A FCT IS ADDED “WITH CHANGE AS THF ADD. KNOT.
UERRCR |S ASSUMED TO COMTAIM ERROR NOF £.,A., TO U 4RI
ALL PREV FCTNS. #**NOTE®#* [Ff THE MEXT CALL TO FXDKM1
IS IN A »ODE OTHER THAM 3, THE CHANGF PRCPOSED
NOW WILL BE MAUE PERMAMEMT.
XKNOT = CHANGE oo - C
IF (MODE3) : © "GO TO 35 ' '
MODE3 = o TRUE. (-
ERBUTL = FXDKNT
“ODE = 2
CALL NUBAS
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KNQTSY = KNOT
MODE = 3
GO TO 36
35 CALL NUBAS
36 FXDKMT = ERBUTL = SC(ILAST)/XSCALE*BC(ILAST)

RETURN

#¥##MO0E=1, 2%##% RETAIM THE FIRST KNOT KHOTS INTRODUCED EARLIER
(HEMCE THEIR CORRESP FCTNS) BUT REPLACE FURTHER
FCTNS (IF ANY) FY FCTNS HAVING ADDITIONAL
KMOTS ACDXI(I)-1=1,JA00) HENCE
IF KNOT:LT.KMNOTSV{(=MO.0OF KMOTS USED IN PREy (AL _.
40 THROUGH 49 RESTORES ARRAYS IORDER,XIL, USRROR TO THE STATE Ot
ILAST = KMOT + 2 IMVERTING THE ACTION OF DO 11 coo TO 14 IN N
40 IF (KNOT.LT-KNOTSEVI GO TO 42
KMOT = KNOTSV
IF {oNOT.i:CDE3) GO TO 50
CO &1 L=1,LX
41 UERROR(L) = UERROR(L) — BC({ILASTI*FCT(L,ILAST)
GO TO 49

42 DO 43 L=1,sLX
43 UERROR(L) = CURERR(L)
I[F (KMOTsLE-2) GO 70 48
IDUM = KNOT + 1
DO 45 I0=IDUM,KNOTSV
IMSERT = IMSIRT(ILAST)
IL*3 = [LAST - 3
PO 44 K=INSFRT,ILM3
IORNFR(K) = ICRDER{K+1}
44 xXIL(K) = XIL(K+1)
45 1LAST = ILAST-1
DO 47 1=531LASY
DO 47 L=1,LX
47 UERROR(L) = UEPROR(L} = SC(II*FCT(L,I)

o GO TO 49
48 XIL{2) = XIL(ILAST-2)
[ORDER(2) = 2
KMOT = 2
4y [F {JADD-GY - 0) ’ . GO TC 51
ILAST = K¥QT + 2
INTERV = KMOT - 1
G0 TO 60

HEHMODE =1y 2423 ADD JAND 28518 FCTNS, [sF.ys FOR 10=14JA0D,
COMSTRUCT FCT ILAST ITH OME mCRF KMOT, VIZ-
XKNOT=ADDXI(LO}s THAN THS PREVIOUS LAST FCT»
ORTHCNORMALIZE IT OVER ALL PREVIOUS FCTHS, THEWM
COMPUTE THE COORDIMATE ClILASTY OF U “RTC IT,
SUBRTRACT OQUT ITS CO«PUNEMT FRG. UERACH.
SO IF {JADDLLF.0) o GO TO 61
51 DO 52 10=1,0407 ‘
XKMOT = ADDXIC(IO)
CALL NUJAS
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DO 52 L=1,LX . {
52 UERROR(L) = USRROR(L) -~ BC(ILAST}*FCT(L,ILAST}

C .
62 FXDKNT= DOT(31,2)/XSCALE
KNOTSV = XMOT
61 HODE3 = <FALSE.
IF (TPRINT,F0.0) RETURN
C VARIOUS PRINTING IS DCNE DEP ON THE ARG = IPRINT
GO TO (70,80,:90) s IPRINT
C » -
c CO/MPUTE COEFFICIENTS OF Be.Ao AND PRINT
C REY 3EST APPROXIMATION PRINTOUT 333t
C FORMAT 1s
C KMOTS XI1{J) CuBIC COEFFICIENTS Pi(l,J) IN
C INTERVAL (XI(J)s XI{J+1))
C ERROR CURVE (SCALED)
C
C THE FOLLOWING FORTRAM CCDE FIMJUS VALUES AT X OF THE
C APPROXIMATION ‘FROM THIS OUTPUT~---
C I=LXI
C 1 AsX=XI(1)
C IF(&} 234 +4
q ;o I=1-1
C [FIT) 3431
C 2 I=1 (*}
C G V=P(1,1)+A%(P(2,11+A%(P(3,1)1+A%P(4,])))
C

70 WRITE(65610)
DO 72 I=1,KNOT
ILOC = IORDER(!)
N0 72 L=1,2
SU- = 0.DO
PO 71 J=1,ILAST
71 SU4=5UM + BC(JI*VORD(J,ILCC,L)
72 VORDL({I,L}) = sum
CALL EVAL
NO 73 I=1»INTERV
WRITE(6+629) 1,XIL(I)
73 WRITE (5:630) (JsCOEFL(I sJ)ad=1,4)
WRITE (6£+620) KNOT,XTL(KNCT)
610 FORMAT (42X ,54HKNMNOTS 22X+ 18HCUBIC COSFFICIENTSZ /)
620 FORMAT (35X, 3HXI(., 2, 3H) =, F1l2.6)}
63L FORMAT(6TX22HC(sT1332H) =+EL6.6)

C
S C #&COMPUTF L2, L1, “AX EPRORS AND PRINT
80 ERRL2 = SQRT(FXDKMT)

" FRPL99= Co

D0 82 L=1l.LX
DIF = ARS{UERROR(L)I®MEIGHT(LY) |
IF{ERRLIZ.AT.OIF) GO TO 81 <‘
LiAAX = L
ERRLYS = DIF
81 ERRL]1 = ERPLLl+ DIF
82 COMTINULE

-
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C
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Q0

55
926
521
€22

623

25.
FRPL1 = E"L1I/FLOATI{LX) |

RITE(6-,623) ERRL2, ERRLL, ERRALIYyXX(L.IAX)

% THE FCLLOWING CARD IS TIMPCRARY
GO TO (Y0596598)aIPRINT

®r  SCALE SERROR CURVYF AND PRINMT

[E = u
"-'CALF = 1las
[IF {FRRLYY ,GE.iCu) GO TO @2

Nnoe 91 1::=1,9
SCALF = SCELF*10a
IFF (ERRPLY9%SCALE.CEL1S.) GO TO 22
COATINYE
DO 93 L=1s1.% .
PRINT (L)} = UERRGCR(L)#SCALE
GO TO (9449R S5 PRPIMT
“RITE (85821) [T+ (Lo (L)FCTLILYZPRIMT(L)sL=1sLX)
GO TO 958
WRITF (656221 TEs{LaxX¥(L),PRINT(L),L=1,LX)
RETURN
FORAAT(1H //745%,36HAPODROXIMATION AND SCALUD ERROR CURVE/38Xs

#1O0HDATA PGINT,7X,13HAPPROYIMATICH »3X s 16HDEVIATION X 1Q0E+,11/
*(_31x914’F1619’F'1600DFI?QF‘) )

FORMAT(1A //58X» 11HFRRGR CURVE/3EX, 1JHDATA PCIMT, 23X,

116HDEVIATION X 1CE+511/7(31Xs144F1l6a%,18XsF170610)

FORMAT (1H 7//7649X20HLFAST SQUARE ERROR =,F20,6/
LOX2UHAVERACT ERROR =2F20.6/ :
4OX256HMAX MU ERROR =4C20:693H AT4F12.677/; .
END

Cr et B e B R S 300 2 2 00 L e S B 5 R SRR R W IR R T H TR L LRI ***%E-}*******-ﬂ-*-} =

SUAROUTINMNE [MTFRP

COMPUTE THE SLOPES VORDL(Is2)s [=2.KNOT-1 AT INTERIOR
K49TS OF CUIIC SPLIME FOR GIVEN VALUES VORDL(I.1)»[=1,KNOT,
AT ALL THE XMOTS ANMD GIVEM KOUNDARY DERIVATIVES

DIAENSIO D(28)y DIAG(28)

CQ: “ON/ OUTPUT /UERROQ(1ICO)»FCTLILOC)Y sXIL(28) sCOFFL(27 541}

* VORDL{22+,2) s KNOTHyLiAs X s INTERY

CDATA DIAGIL) sD(L1}/ 1000/

1¢

2¢

30

NO 1C “=2,KMOT

Niv) = xIL(4A) = XIL(¥-1)

DIAGIM) = {(VORDLINis 1Y -YCRLL(I'~151})/70(")
DO 2C M=2,INTERV

VORDL (352) = 3.%#{O( M) #CTAG(4+1) + D(i4+1)#DIAG(i))
DIAG{I)Y = 2.%(X(M}+D(N+1))

00 35 M=2,4INTERV

oz =D(MELYI/INIAC(HA-])

NIeGsy = DIAGIMY) + Gwb(1'-1)

VORDL(¥42) = VORDL(M,2] + GH*VORDL (:1=1,2)
NJ = KMOT ‘



26, |
50 4C 4=2,INTERV
MJ o= Mg =1

1) VORDLINJIS2) = (VORDL(MJ»2) ~ DIKJI¥VORDLINI+1,2}1}/D[ar(KJ)

RETURH
END
c .
A de b4 B TE R 2 e AR e S N R R S B N TS N A TR R R S R R R R TEIE R RN N A A% St e
C
FUMCTION DOT (s INDEX) ~
< CO#PUTE INNER PRODUCT OF FCT M WITH FCT ILAST {(INDEX=1) OR
C UERROR ( IMDEX=2)
DOUSLE PRECISION ODOT,CH TRPZWT
CO-0M / WAMNDT /7 TREMD(103),TRPZUT(1QU)G{100)
COMAOM/7INPUT/LX « XX{102)5UC1CU) » JADDADDXI(26) 5:Y0DE
CC MO, QUTPUT ZUERIADE (1001 .FCTL{100) o XL 128) 2 COEFL{27+4)
* VORDL(28-2) KNOTLIAX s INTERY
CO -IONy/ BASIS /FCTL10N:30),VORD(30,2852),8C(20),ILAS
GO TO (10.301,I7DEX
10 IF (MeEW<ILAST) GO 'TO 20
DO 11 L=1stX . ’
11 G(L)Y = FCT(L s A)¥FCTL(L)
. GO TO 40
2t DO 21 L=1,LX '
21 ALY = FCTLILY#*FCTL LY .
- 60 7O 80
30 IF (Me.FQ.31) GO TO & ( )
DO 31 L=1sLX .
31 G(L)Y = FCTL{L)I=USRNCR(LY
GO TO 80
4C DO 61 L=1,LX
41 G(L) = UERRCR(LIMUERRENO({L)
80 DOOT = v.00
DO 81 L=2+LX
€1 BDOT = DOOT + (GLL=-1}) + GIL))Y#TRPZIT(L)
C ) .
DOT = DDOT
RETURIY
FND
C .
c**%%%%*%%*****%%*%***ﬁﬁ****%*ﬁﬁ*********ﬁ%*ﬁﬁ*%*ﬁ******ﬁ*******ﬁ****%*ﬁ
C
SUSROUTINE EVAL
C . COMPUTE POL. COCFF COEFL(ISK) OF FCT ILAST FROM VORDL»
C THEN CONMPUTE FCTLIL) = (FCT ILASTI®*TREND AT XX(L)sL=1.LX
C

NOQUALE PRECISION GsTRPZWT

CO- “MON / YANDT / TRTMD(10C)»TRPZ2WT(11D),G(190)

CO:T1ON/IMPUT ZLX s XX (207 ) yUL 10U 5 JADD, H20X T 126) %008

COuW ON/ OUTPUT /UERRNR(10L) 9FCTLIL0G) >XIL(268) »COZFL (270410

it VORDL ({28 2 2) oK"fOT WLAAX s LAITERY .
PO 1U I=1,IMTERV : (
COEFL(I»Y) = VOROL(I,11 : ,
COEFL(1s2) = VORDL(I42) I
BX = XILUI+1) - RIL{1)

lIIlIIllIIlIIIlIIIlllllIlIIlllIlIIIllIIIlIIIllIIlIlIlIlIIllIIlIlIIllIIlllllllllllllllllll..;|



n

DUM1 (VORDL(1+1,1)-vCRDL(I,1))/DX

DUM2 VORDL{ T2 )+VORDL{ [+1,2) =2, *DUML

COEFL(I»2) = (DUM1-DymM2-VvOROL(I,211/DX
10 COEFL(Is4) = DUM2/DX/DX

1

C
J =1
[SYTCH = 1
B0 2C L=1sLX
GO TO (11413)4I8+TCH
11 IF {(JoFN.IMTFQVY) GO TO 12
IF (XX{LYoLTaXIL{J+1)) GO TO 13
J=J+1
GO TO 11
12 ISWTCH = 2
13 DX = xx{(L) =~ XIL{J)
20 FCTL(L)Y = (COEFL(Js1)+DX*(COEFL{J52)+DX*(COEFL{J+3)
® . +DX*COEFL(Jy&) )1 }ETREMD(L}
RETURM
END
C : |
C**%#***#*******%****#*é**%*ﬁ**ﬁ*%**%**#%*%*%%%i****ﬁ***%********%*******
c )
SUBROUTINE NUEAS
(' ) DOUBLE PRECISION SUM
CO:MONZENPUT /LX s XX (109) Ui 1Gv) , JADD,ADDXI(26) »IODE
CO#MON/ OUTPUT /JUERROR{10C),FCTL(100})»XIL{28) sCOEFL{27+41} s
* VORDL (2842} s KNOT sLMAX s INTERV
CO.440ONys BASIS ZFCT(100,30) 4vORD({30:28:2).8C(30),I1LAST
COMMON/ LASTR /IORDER([28),INSIRT(30) sXKMOT
C COEF(ICso) CONTAINS THE POL COEFFICIENTS OF FCT M FOR INTEQ—
C VAL TO THE RIGHT OF X1(1C}s IC=ICH,[CH+ia=3,
C dITH [Cid = M¥(M=7)/2 + 10 (YITH 08VIOUS MODS FOR i1.. Ee4)
C THE FCT ILAST (TO BE) INTRODUCED LAST. BAS ITS VALUES AT THE
C THE POINTS XXI{L) IN FCTLI(L), HAS FIRST INDFX [CLASL:
C 1IN COEF AND XI, HAS ADDITIONAL KMOT XKNCTs THE KMOT XMOTS
C FOR IT ARE COMTAINED, IN INCREASING ORDER, IN XIL,»ITS COR-
C RESPOMDING ORDS AND SLOPES ARE IN VOROL, THE KNOT JUST INTRO-
C DUCED HAS INDEX INSERT IN XIL,IWNSERT IS SAVED IN INSIRT(ILAS]
C FOR POSSIBLE REPLACERENT OF KiHOTS LATER ON (SEE MOCE=243)a
DIMENSION TEHP(30)+X1(381),COFF(381,4)
IF (MODE<GTs0) A GO TO 8
Cmmmm=mm et # ¥ COMSTRUCT FCT TLAST FOR ILASToLEG
XI{ILAST) = XIL()Y}
ICLAST = ILAST
ILA1 = ILAST-1 : ‘
IF (TLAST.GT.2) _ GO TO 7
IF (ILAST.EQ.2) GO TO 6
C FIRST BASIS FCT IS & CONMSTANT
(‘ VORDEL(141) = 1. ‘
VORDL(2,1) = 1,
VORDOL(1:2) = 2.
VORDL(242) = Qa

G0 TO 47

lllIIlIllIIlIlIIIlIlIIIlIIlIIlIllIIlIlIIIlIIIIIlIlIIIIIllIIIIIIIIIIIIIIIIIIIIIII-L



[e})

11

12

13

14

18

17

18

13

28.
SECOMD AASTIS FCT [S & STRAIZHT LINE {
VORDL(2,2) = \JRDL{ls1)/{XIL(2) ~ XIL(Ll))*%2,
VORDBL(1s2) =VIRNL(2,2)

vORDL{2+1)
VORDL(2,2)

- VORPL(2,1)
- VORCL{2,2}

nu

GO TO 59

— T — —— —

GO TO (10,510516),150DE

-------- #¥#%5ET UP CONSTAMTS DEP.ON TLAST. INSERT NEv KMOT INTO XIL

AND UPDATE VORN €OR FCT MyM=1,TLAST~1
KNOT = KNOT + 1
TILAST = KMOT + 2
ICLAST = TLASTH#(ILAST-7)}/2 + 10
JL:41 = ILAST=-]
INTERY = KNOT - 1
50 11 JHSERT=2,IMTERV

IF (XKMOT-LToXILIINSERT)) 0 TOQ 12
CONTIMUE '
GO TO G5
IF (XKMOTLLE.XIL{INSERT~1)} GO TO 95
10 = KMOT
DO 13 L=INSERT,INTERY
10 =10 ~1
XIL(IO+1} = XILIIOY .o :
IORDER{10+1) = IORDER({ |0} (
IORDFR(INSERT) = XMOT

XTL{INSERTY = XKNOT

DX = XXNMOT - XIL()

NG 15 1=1.4
VOQD(IQKN0791]=COEF(Iyl)+DX*(COEF(Ig2)+DX*(C0£F(Ia3l

#* . ¥DX®COEF(Is4) )}

VORD( I ,KHNOY s 2)=COEF (T ,2)+0X#{2.#COLF (1,3 )+0xX*3. ¥COCF (1 ,4))
1D = &4

IEQUND = 4

D0 19 [=5s[LM1

ID =10+ 1 -4

IBCUMD = TROUND + [ -~ 2

IF (ID.Z20Q.1830UND) GC TO 12

I (XKMDToLT) T(ID+1)) GO TO 18

ID = 1p + 1 ‘

GO T0 17

DX = XK4OT -~ XIC(CID)

VORD(TI ¢ XNUT» 1]‘C0tF(1011]+DX*(CGtF(10 2140CX#(COEF(ID+3)
¥*® +DY¥CAFF{IDs4) )}
VORD(I.K\OT»Zl—COEF(10,2|+Dx*(COLF(ID,3I*Z +NX#I , RCOEF(1D+4) )

——— .

-------- NIEFIRE LAST FASES FUNCTIQN (

GO TO {30,4C»50) +J-0DE
#2x ODE=1 #%% ADD ILAST-TH PAGIS FUNCTICV. COMSTRUCT FRG™ 77T
[LAST-1 BY REFLECTING THE PART OF THE LATTEAL O
THE 16T OF XKi'OT ACROSS THE X-AXIS, THEY 1HTC
BA ATING, THIS SHOULD INDUCE OvE “ort OSCILLATI
ao (M SOT [LAST THAM e FCT ILAST-1
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29.

29 ¥ODE = 1
30 YORDL{1,2) = VORD(ILH1,1,2)
DO 31 K=1,INSERT
ILOC = IORDER(X)
31 VORDL(Ky1) = VORD(ILM1,ILOC,s1)
DO 32 K=INSERT,INTERV
ILOC = IORPDER(K+1)}
32 VORDLI{K+151) ==VORD(IL>1,1L0C,1)
VORDL {KNOT 42} =—VORD(IL!i152,+2)
GO TO 55

#3#% M0DE=2 #*#%¥ REPLACE FCT [LAST 2y INTERPOLATINMG IT AT THE
CURRENT SET OF KNOTS. IF FCT ILAST HAS NOT BEEN
PREVIOUSLY DEF (INSIRT(ILAST)=0)(SEE 9 AROVE,
4LSC MAIN AT 10)) SET MODFE=1,PROCERD IM THAT HODE

46 IF (INSIRT(ILAST).RQ.G) GO TO 29
VORDL(151)=VORD(TILAST-151)
VORDL(1,2)=VORD(ILAST,1:2)
1D = ICLAST
IBOUND = ICLAST + PFLAST - 4
DO 43 K=2sINTERV

41 IF {ID.EQ.IBOUND) GO TO 42
IF (XIL{K)LToXI(ID+1)) GQ TO 42

ID = ID +1
GO TO 41

42 DX = XIL(Ky~ XICID)
43 VORDL(K»>1) = COEF (ID,1}+DX*(COEF(I1D,2)+DX*(COEF(ID,3)
# +DOX*COEF(ID141))
VORDL{KMOT,»1)=VORD{ILAST»2,1)
VORNDL (K0T 2 )=VORD( JLAST$252)

GO TO 55
##% “ODE=3 ##% CHANGE FCT ILAST BY CHANGIMG JUST THE KNOT INTRO
PUCED LASTY - .
50 ID = ICLAST + INSERT - 1
DX = XKNOT = XI{1ID)
XI¢(ID}Y = XKMNMOT -
IF (DXeBEeNa) GO YO 51
ID = IO -1

DX = XKNOT = XICID)
51 VORDL(INSERT,1} = COEF(IDsl) +DX*{COEF(1D,2)+Dx#*{COEF(ID,3)
# +DX#COEF(ID»4) 1)

#x¥ INTERPOLATE
55 CALL INTERP
GO TO (57+57359) »MODE
5T ID = ICLAST -1
DO 56 10=1,INTERV
ID = ID + 1) ' :
56 XI(ID) = XIL(IO) i
INSIRT(ILAST) = INSERT



30.

G .

Cammo—m——m x2% GRTHGUYIRSALIZE TCT ILAST OVER PREVIOUS (URTHOMOR-AL) SET{
C THEN COUPUTE THC CO#POIMEMT #C(ILAST! OF UERROR WRTY IT '
C FINALLY,STCRE T:1iF VARIOUS RFPRESEZHTATIOMS OF FCT ILAST

C

50 CALL EVAL
O AD [=1.1L.41
TREI'P(Iy = = 207({f-1)
., D0 69 L=1sLX
FCTL(L} = FCTL(L} + TFIP{I)*FCT(L,I}
DO 61 K=1,XMOT
ILOC = IORDER(X?
DO 61 L=1,2

[e ]}
of

cym = 0.DO
DO 68 [=1,1L1
58 SUI = SUM + TEIP(I)#VORDI|,ILOC,L)

41 VO?DL(K,L) = VORDL(K,L) + Su*
67 CALL EVAL
C = SQRT(DOTIILASTS1))
*C{TLAST) = DOT!IILAST,2) / C
DO 62 K=1,XMOT '
ILOC = IORDERI(K?
N0 62 L=1s2 _ :
VORDLIKsL) = VORDLIK,L}/C
62 VORD{ILAST,ILOCsL) = VORDL({X.L) - {j »
10 = ICLAST - 1 . \
DO 63 [0=1,1MTERV
IL = ID + 1
DO 63 L=1,4
53 COFF(IDsL) = COEFL{IQ,L)/C
PO 64 L=1-LX

G4 FCTIL,ILAST)Y = FCTL(L)/C
Cmmmwrnom
RETURH
C
C #¥%#:  THIS OUTPUT INDICATES A FATILURE CONDITION #i#=
95 WRITE (6495C) XKNOT,1LAST
950 FORMAY (15H x## NEW KNOT4E2d.8513H FOR FUMCTIOMs13,5CH OUuT OF 30
#{NDS OR COINCIDENT wITH A PREVIOUS KMCT./36H % EXECUTION CANNG
¥T AE CONTIMUED)
STO2
C
END
C-
CrteratrnaaT I oND AND WEIGHT FU”CT1ONS*********#*;******a****fﬁ**fﬂ*****
C
FUNCTION TI(2Z)
T = 1. X .
RETURM o (
END ‘ :
C
FUNCTION wH{2) ‘ (_
WMoz ],
RETURN
£
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