Purdue University

Purdue e-Pubs

1968

Least Squares Cubic Spline Approximation I - Fixed Knots

Carl de Boor
John R. Rice
Purdue University, jrr@cs.purdue.edu
\section*{Report Number:}
68-020

[^0]This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

```
Least Squares Cubic Spline Approximation I -
                                    Fixed Knots
    Carl de Boor and John R. Rice
        April }196
        CSD TR 20
```

Least Squares Cubic Spline Approximation I - Fixed Knots
Carl de Boor* and John R. Rice *+

1. Introduction. Spline functions, and, more generally, piecewise
polynomial functions are the most successful approximating functions
in use today. They combine ease of handling in a computer with great
flexibility, and are therefore particularly suited for the approximation
of experimental data or design curve measurements.
For a rather complete list of the recent literature on splines, the
reader is referred to the bibliography of [8].
This paper presents an algorithm for the computation of the least-
squares approximation to a given function u by cubic splines with
a given fixed set of knots. But since the successful use of splines.
for purposes of "smoothly" approximating a given set of data depends
strongly on the proper placement of the knots, the algorithm is written
50 as to facilitate experimentation with various knot sets in as eno
nomical a fashion as possible. In [2], use is made of this in a pro-
gram which attempts to compute the least-squares-approximation to a
given function u by cuble splines with a fixed number of knots.
As a consequence, the algorithm is somewhat more complex than
seens warranted for the mere calculation of the L_{2}-approximation to
u hy a linear family of functions.

[^1]2. Mathematical backqround.
(a) Definition of splines. Let $\pi: a=\xi_{0}<\xi_{q}<\ldots<\xi_{k+1}=b$ be a partition of the interval $[a, b]$. A (polyncmial) spline function of degree n on π is, by definition, any function $s(x) \in C^{\left(n^{-2)}\right.}[a, b]$. which on each of the intervals $\left(\xi_{i}, \bar{\zeta}_{i+1}\right)$. $i=0, \ldots, k$, reduces to a polynomial of degree $\leq n$. The points ξ_{i} are called knots (or, ioints). We denote by s_{π}^{n} the linear space of all such functions. Define
\[

(x-\xi)_{+}^{n}=\left\{$$
\begin{array}{cl}
(x-\xi)^{n}, & x \geq \xi \tag{2.1}\\
0, & x<\xi
\end{array}
$$\right.
\]

Then it is easily shown that each $s \in S_{\pi}^{n}$ is uniquely represented by two sets of parameters, $\underset{\sim}{\sim}=\left\{\xi_{1, \cdots}, \ldots 5_{k}\right\}$ and $A=\left\{a_{1}, \ldots, a_{k+n+1}\right\}$, where $(2,2) \quad 5(x)=5\left(A, E_{2}, x\right)=\sum_{i=1}^{k} a_{i}\left(x-\xi_{i}\right)_{+}^{n}+\sum_{j=0}^{n} a_{k-j+1} x^{j}$.

Apparently, the boundary "knots" ξ_{o}, ξ_{k+l}, play no roie in this representation. In fact, the right-hand side of (2,2) is well-defined on the entire line. Hence, we may and will consider each $s \in S_{\pi}^{k}$ ro be defined by (2.2) on the entire line. Nevertheless, we retain the boundary "knots" for use in other representations.
(b) Representation of solines. The representation (2.2) is useful for mathematical analysis, but is very ill-conditioned and cumbersone to evaluate. In computations, the following representations are to be preferred.

For purposes of evaluation, the following seems best:

Repr. I. The set $\left\{\xi_{0}, \ldots, \xi_{k}\right\}$ and the set of polynomial coefficients $\left\{c_{i j} \mid i=0, \ldots, k ; j=0, \ldots, n\right\}$, where
(2.3) $S\left(A, \sum_{\mathrm{C}}, x\right)=\sum_{j=0}^{n} c_{i j}\left(x-\xi_{i}\right)^{j}$, for $\xi_{i} \leq x \leq \xi_{i+1}, i=0, \ldots, k$.

It is clear that this representation is highly redundant, requiring $(n+1)(k+1)$ linear parameters. In particular, if n is odd, and

$$
r=(n+1) / 2
$$

then $c_{i j}, j=r, \ldots, n$, may be computed from $c_{i j}, c_{i+1, j}, j=0, \ldots, r-i$, by

$$
c_{i j}\left(\Delta \xi_{i}\right)^{j}={ }_{s=0}^{\sum_{5}^{-1}} r_{j-r, s}\left[c_{i+1, s}\left(\Delta \xi_{i}\right)^{s}-\sum_{t=5}^{r-1}\left({ }_{s}^{t}\right) c_{i s}\left(\Delta \xi_{i}\right)^{t}\right],
$$

$$
\begin{equation*}
j=r, \ldots, n ; i=0, \ldots, k \tag{2.4}
\end{equation*}
$$

where

$$
\Delta \xi_{m}=\xi_{m+1}-\xi_{m}, \text { and } \quad \gamma_{i j}=(-1)^{i+j} \sum_{i=0}^{r-1}\binom{t}{i}\binom{r-1+t-j}{t-j}
$$

This gives
Repr. II. The set $\left\{\xi_{0}, \ldots, \xi_{k+1}\right\}$ and the set $\left\{c_{i j}\right\} i=0, \ldots, k+1$;

$$
j=0, \ldots, r-1\},
$$

where
(2.5)

$$
c_{i j}=\left.\frac{1}{j!} \quad \frac{d^{j} s(A, E, x)}{d x^{j}}\right|_{x=\xi_{i}}
$$

This representation is redundant, tco, requiring $(k+2)(n+1) / 2$ linear parameters.

In reducing Repr. I to Repr. II, we only used the continuity of $S(A, N, x)$ and its derivatives up to the ($r-1$)st. But since $S(A, N, x)$ is in $c^{(n-2)}[a, b]$, a small subset of the $c_{i j}$ is sufficient.

Repr. III, The set $\left\{5_{0}, \ldots, E_{k+1}\right\}$ and the set $\left\{c_{i j} \mid(j=0\right.$ and $i=0, \ldots, k+1)$ or $(j=1, \ldots, r=1$, and $i=0, k+1)\}$.

To pass from Repr. III (and thence to other representations) is the spline interpolation problem. Its solution consists in solving a system of $k \neq(r-1)$ equations in the unknowns $c_{i j}, i=1, \ldots, k ; j=1, \ldots, r-1$, whose coefficient matrix is block tridiagonal of block size $[-1$. The pertinent equations are:

$$
\sum_{s=0}^{r-1} \gamma_{j s}\left[c_{i-1, s}\left(-\Delta \xi_{i-1}\right)^{s-r-j}+\sum_{t=5}^{r-1}\left({ }_{s}^{t}\right) c_{i t^{(}}\left(\Delta \xi_{i}\right)^{t-r-j}-\left(\Delta \xi_{i-1}\right)^{t-r-j}\right\}
$$

$$
\begin{align*}
& \left.-c_{i+1, s}\left(\Delta S_{i}\right)^{s-r-j}\right]=0 \tag{2.6}\\
& \quad i=1, \ldots, k ; j=0, \ldots, r-2
\end{align*}
$$

It is clear that this representation requires $n+k+1$ linear parameters, hence is not redundant. In particular, it makes sense to define the spline of degree n interpolating $f \in c^{(r-1)}[a, b]$ on k as the unique element $s \in \mathbb{S}_{\pi}^{n}$ satisfying

$$
\begin{align*}
& 5\left(\xi_{i}\right)=f\left(\xi_{i}\right), i=0, \ldots, k+1, \tag{2.7}\\
& s^{(j)}\left(\xi_{i}\right)=f^{(j)}\left(\xi_{i}\right), i=0, k+1 ; j=1, \ldots, r-1 .
\end{align*}
$$

The algorithm under discussion employs each of these representations and the following

Repr. IV. The set $\left\{s\left(A, 马, x_{i}\right) \mid i=1, \ldots, N\right\}$, where $X=\left\{x_{i} \mid i=1, \ldots, N\right\}$ is a given (increasing) set of points (cf. below).

It should be pointed out $[5 ; 9]$ that the set $\{s(A, \underbrace{}_{2}, x_{i}) \mid, i=1, \ldots, N\}$ represents $S(A, \exists, X)$ if and only if for some subset \hat{X} of X with $\hat{x}_{1}<\hat{\dot{x}}_{2}<\ldots<\hat{x}_{n+k+1}$ one has

$$
\begin{equation*}
\hat{x}_{i}<F_{i}<\hat{x}_{i+n+1}, i=1, \ldots, k . \tag{2.8}
\end{equation*}
$$

For completeness, we mention a further non-redundant representation valid for arbitrary n, which makes use of the so called $\begin{aligned} & \text { ensplines and }\end{aligned}$ brings out the "local" character of splines:

Repr. v. The set $\left\{\varepsilon_{-n}, \ldots, \varepsilon_{k+n+1}\right\}$ and the set $\left\{b_{-n}, \ldots, b_{k}\right\}$, where

$$
\begin{equation*}
s\left(A,{ }^{-}, x\right)=\sum_{i=-n}^{k} b_{i} B_{i}(x), \tag{2.9}
\end{equation*}
$$

and

$$
\begin{aligned}
& B_{i}(x)=\left(\varepsilon_{i+n+1}-\varepsilon_{i}\right) g_{n}\left(\xi_{i}, \ldots, \xi_{i+n+1} ; x\right), i=-n, \ldots, k, \\
& g_{n}(s ; x)=(s-x)_{+}^{n} .
\end{aligned}
$$

with

$$
\xi_{-n} \leq \cdots \leq 5_{-1} \leq a, b \leq \xi_{k+2} \leq \cdots \leq \xi_{k+n+1}
$$

Here, $f\left(\xi_{i}, \ldots, \xi_{i+n+i}\right)$ denotes the $(n+1)$ st divided difference of the function $f(s)$ on the points $E_{i}, \ldots, \xi_{i+n+1}$.

It is not difficult to see that

$$
\begin{aligned}
& \theta_{i}(x) \geq 0 \text { with equality iff } x \&\left(\xi_{i}, \xi_{i+n+f}\right) \\
& \sum_{i=-n}^{k} B_{i}(x)=1, \text { all } x \in\left[\xi_{0}, \xi_{k+1}\right]
\end{aligned}
$$

This representation is particularly useful for the study and computational handing of splines with repeated knors as the limit of splines with pairwise distinct knots defined above.
(c) Least-squares approximation. Let M be a linear space with inner product $\langle f, g\rangle$ and associated norm

$$
\|f\|=(\langle f, f\rangle)^{\frac{1}{2}}
$$

Let S be a finite-dimensional subspace of M. Given $u \in M$, the error

$$
E(w)=\|u-w\|
$$

of approximating u by w is uniquely minimized over all $w \in S$ by the orthogonal projection $P_{S} u$ of u, i.e., $u^{*}=P_{S}{ }^{u}$ is determined b_{j} $u k \in S$, and, for all $w \in S$, $\langle u t, w\rangle=\langle u, w\rangle$.
u* is most advantageously computed with the aid of an orthonormal basis $\left\{Y_{i}\right\}_{i=1}^{m}$ of S, i.e., a generating set for S which satisfies

$$
\left\langle\Psi_{i}, \psi_{j}\right\rangle=\delta_{i j}, i, j=1, \ldots, m .
$$

For then,

$$
\begin{equation*}
P_{S} u=\sum_{i=1}^{m}\left\langle u, Y_{i}\right\rangle Y_{i} . \tag{2.10}
\end{equation*}
$$

Given a basis $\left\{\phi_{i}\right\}_{1}^{m}$ for S, an orthonormal basis. $\left\{\Psi_{i}\right\}$ for s may be constructed from it by a variety of techniques (e.g., [3], [6]).

The best-known of these is the Gram-Schmidt-orthonormalization procedure, in which each Ψ_{i} is computed as the normalized error of the best approximation to ϕ_{i} by elements in the span of $\left[\phi_{j}\right]_{j=1}^{i-1}$, i.e. by suceessively solving a least-squares approximation problem mol
times. In formulae,
(2.11)

$$
\left.\begin{array}{l}
\hat{\Psi}_{i}=\phi_{i}-\sum_{j=1}^{i-1}\left\langle\dot{\phi}_{i}, \Psi_{j}\right\rangle \Psi_{j} \\
\Psi_{i}=\hat{\Psi}_{i} /\left\|\hat{\Psi}_{i}\right\|,
\end{array}\right\} \quad i=1, \ldots, m \text {. }
$$

A slight reordering of the computations, resulting in the so-called modified Gram-Schmidt-process, has proven to be more stable in practice:

$$
\left.\begin{array}{l}
\phi_{i}^{(1)}=\phi_{i} \\
\phi_{i}^{(j+i)}=\phi_{i}^{(j)}-<\phi_{i}^{(j)}, \Psi_{j}>\Psi_{j}, j=1, \ldots, i-1 \tag{2.12}\\
\Psi_{i}=\phi_{i}^{(i)} /\left\|_{i}^{(i)}\right\|
\end{array}\right\} \quad i=1, \ldots, m .
$$

The reader should refer to [7] and [4] for some experimental results, and to [l] for a rigorous comparative analysis á la wilkinson of the two computational processes.

The algorithm under discussion uses the trapezoidal sum approximation to

$$
\int_{x_{1}}^{x_{N}} f(x) g(x) w(x) d x
$$

as inner product, i.e.,

$$
\begin{equation*}
\langle f, g\rangle=\sum_{i=1}^{N}\left[f\left(x_{1-1}\right) g\left(x_{i-1}\right)+f\left(x_{i}\right) g\left(x_{i}\right)\right] W_{i} \tag{2.13}
\end{equation*}
$$

where $x=\left\{x_{i} \mid i=1, \ldots, N\right\}$ is a given finite point set and $w(x)$ is a non-negative function, both to be supplied by the user. Hence M may be taken as the set of all real functions on X. The set S consists of all functions of the form

$$
t(x)_{s}(x), \quad s(x) \in s_{\pi}^{3}
$$

where $\pi: \xi_{0}<\xi_{1}<\ldots<\xi_{k+1}$ is a fixed knot set and $t(x)$ a trend function to be supplied by the user. We will ignore the presence of $t(x)$ in the subsequent discussion.

It has been our experience that a careful choice of the initial basis $\left[\phi_{i}\right\}$ for s can greatly increase the reliability of the subsequent calculation of the L_{2} - approximation to u via the modified $G .-S$. process. A straightforward but costly approach would consist in reinforcement, i.e., in the repeated application of the modified G.-S. process until Repr. II or Repr. III of the basis elements becomes stationary. The algorithm under discussion permits this approach if desired (cf, eelow the case MODE = 2 in the algorithm NUBAS). Less costly would be the construction of a "nearly" orthogonal basis. Vague as this term is, the following process is based on this notion, and has proven quite successful: construct each ϕ_{i} so as to have at least one more extremum than Ψ_{i-1}.

It is also mandatory that computation of the inner products be made somewhat more accurately than the other computations. This may be accomplished by "double precision accumulation" of the products, or, as in this algorithm, complete double precision arithmetic in the inner froduct calmulutions.

3. The algorithm-

(a) General remarks. As stated earlier, the success of approximation by splines depends heavily on the correct choice of the knot set ${ }^{5}$. The algorithm FXDKNT is, therefore, designed to permit the experimentation with various choices of in as economical a fashion as possibie. This is done by using four modes of operation.

An initial call to FXDXNT, which must be in $M \Theta D E=0$, produces the L:-S. approximation to the given using a specified knot set $\underset{\sim}{ } \quad$. Subsequent calls may be used to modify repeatedly the current knot set. Thus more knots may be added while retaining all or at least the first $X N G T$ knots in (MEDE $=1,2$). MEDE $=3$ permits the efficient evaluation of the L.-S. error as a function of one additional knot to be inserted between two neighboring knots, thus making it possible to minimize the L.-S error with respect to one knot with relatively little work.
(b) Input - The input to FXDNT consists of:
(i) The integer $M B D E$ which is assumed to be one of $0,1,2,3: A$ call with $\operatorname{MGOE}=0$ will change MOUE to 1 ; a call with $\mathrm{MADE}=2$ may change MADE to 1.
(ii) $L X$ abscissa and ordinates, $X \check{x}(L), U(L), L=1, \ldots, L X$, of the function $u(x)$ to be approximated.

The numbers $X X(L)$ are assumed to be increasing with L, and should normaliy be strictly increasing. A quick look at the inner product (2.13) shows that repeated points

$$
x x(L-1)<x(L)=x(L+1)=\ldots=x(1)<x(4+1)
$$

are effectively ignored unless $U(L) \neq U(M)$ in which case u is treated as if it had a jump discontinuity at $X X(L)$ of size $U(M)$ $u(L)$.
(iii) (in $M \in D E=0,1,2$) the set of (additional) knots $A 00 \times I(i)$, $\mathrm{i}=1, \ldots, \mathrm{JADD}:$

If $M \Theta D E=0$, then $A O D X I(1)$ and $A D O X I(2)$ are taken as the left and right boundary knot, respectively. The only restriction on the remaining entries, if any, for on the entries in any subsequent call) is that each should fall within this interval and not be coincident with any knot already in use (an error message will result in the contrary case). In particular, the entries of ADDXI need not be ordered in any way. JADD may be zero (or even negative) to signify 'no additional knots"
(iv) (in $M \in D E=1,2$) the integer KNET.

This number is part of the information returned by FXDNNT; but if it is decreased between two calls to FXOXNT by an amount M, the M knots introduced last in prior calls will be removed from the current knot set,
(v) The number ARG:

ARG is taken to be a real number in $M \theta D E=3$, giving the current value of the one knot being varied. If $M A D E \neq 3$, ARG is taken to be an integer between 0 and 3, specifying various output options.
(c) The output. The output of (information returned from) FXOKNT consists of:
(i) The number $\operatorname{FXDXNT}=\|u-u *<\|^{2} /(X X(L X)-X X(1))$, giving the L.-S. error of the current best approximation to u;
(ii) The current knot set $X I L(i), i=1, \ldots$, KNOT.

The entries of XIL are increasing with i, XIL contains the boundary knots.
(iii) ($\operatorname{M\theta DE} \neq 3$) the values UERROR(L) of u - u^{Δ} at $X X(L), L=1, \ldots L X$, $u *$ being the b. a. to u by cubic splines on the current knot set.
(iv) (MODE $\{3$ and $A R G=1$) Repr. II, I, IV of $u k$ in VERDL, CEEFL, and FCTL, respectiveiy; and the integer LMAX, indicating that (u-u*)w attains its maximum at $X X$ (LMAX).
(v) In addition, fXOKNT has some printed output in case ARG >0, and MEDE $\neq 3$.
(d) The algorithm NUBAS. The heart of the FXDKNT algorithm is the repeated solution of the following problem:

Given an orthonormal basis $\left\{\mathrm{Y}_{\mathrm{i}}\right\}$ for the linear space 5 of all cubic splines on

$$
\pi: X I L(1)<\ldots<X I L \text { (KNET) }
$$

and the L.-S. approximation $U *$ to u by elements in S, find the L.-S. approximation \hat{u} re to u by elements in \hat{S}, where $\hat{S} \supset S$ is the linear space of all subic. splines on

$$
\hat{\pi}: \operatorname{XIL}(1)<\ldots<\operatorname{XIL}(\text { INSERT-1) }<\text { XKNET }<\operatorname{XIL}(\text { INSERT })<\ldots<\operatorname{XIL}(\text { KNET }) .
$$

This problem is solved in NUBAS.
Thus, initially, one has present, for each \mathcal{F}_{i}, Repr. II in V日RD(i,.,.), Repr. I in . XI(.), CEEF(...), and Repr. IV in FCT(.,i); further one has u - $u *$ in UERROR, and $\left\langle u, y_{i}\right\rangle$ in $B C(i\rangle$.

KNOT is increased by one, and the current knot set XIL is enbarged by the insertion of the additional knot XKNOT so that XIL contains the knots again in increasing order. Rear. II for the ${ }^{\psi}{ }_{i}{ }^{\prime} s$ is updated to include $Y_{i}(X K N \Theta T)$ and $\Psi_{i}^{!}(X K N Q T)$, while the other two representations remain unchanged.

Next, with ILAST $=$ KNOT +2 , an element $\phi_{\text {LAST }}$ of \dot{s} but not in 5 is constructed as that element of \hat{S} which interpolates a certain function f on the current knot set. The choice of f depends on MEDE.

If meow $=1$, then, with ILMI $=$ ILAST-1,

$$
f(x)=\left\{\begin{array}{c}
\Psi_{I L M I}(X), X \leq X K N \Theta T, \\
\cdot \\
-\Psi_{I L M I}(X), X>X K N \Theta T,
\end{array}\right.
$$

thus making it quite likely that $P_{\text {LAST }}$ has one more local extremum then $\Psi_{\text {ILMI }}$:

If the reinforcing mode $M A D E=2$ is used,

$$
f(x)=\Psi \text { LAST }
$$

is chosen provided that such a function was in fact constructed during an earlier call to FXDXNT. Otherwise, MADE is set to one, and the algorithm proceeds in that mode.

Rear. III for $\phi_{\text {LAST }}$ is computed from f and stored in VERDL and is then augmented to Repr. II in the subroutine INTER P, using equations (2.6). Subroutine EVAL then supplies Repr. I using (2.4), storing it in COEFL, and, from it, Rear. IV, storing it in FCTL.

The modified Gram-Schmidt-process is then applied. Specifically, the components $\operatorname{TEMP}(i)=\left\langle\oint_{\text {ILAST }}, \Psi_{i}\right\rangle$ of $\oint_{\text {ILAST }}$ with respect to the orthonomal basic $\left\{\Psi_{i} \mid i=1, \ldots, I L M I\right\}$ of S are computed by $\left.\begin{array}{l}\operatorname{TEMP}(i) \leftarrow<\text { FCTL, } \operatorname{FCT}(i)\rangle \\ \operatorname{FCTL}-\operatorname{FCTL}-\operatorname{TEMP}(i) * F C T(i)\end{array}\right\} \quad i=1, \ldots, \operatorname{ILM1}$, the inner product $\left\langle\phi_{\text {ILAST }}^{(i)}, \Psi_{i}>\right.$ being computed in subroutine $D \Theta T$ using Repr. IV of the functions involved.

Hence, after the calculation

$$
\text { VARDL - VARDL }-\sum_{i=1}^{I L M 1} \operatorname{TEMP}(i) \text { సVERD(i), }
$$

Verdi contains Repr. II of a cubic spline in \hat{S} orthogonal to S.
Another call to EVAL derives from this Repr. I and IV. Finally, Repr. I, II, IV of the Ψ ILAST is stored via
$C-\sqrt{\angle F C T L, F C T D}$
COEF - CSEFL/C
VORD (ILAST) \leftarrow VEROL/C
FCT(ILAST) - FCTL/C

Also, the component $B C$ (ILAST) of u with respect to YLAST is conr
puter as

$$
B C(I L A S T)-<U E R R O R, F C T L / C
$$

Except in $M A D E=3$, a call to NUBAS is followed by
UERROR - UERROR - BC(ILAST) \& FCT (IUAST),
so that UERROR contains u U'U.

For $M E D E=0$ and $M E D E=3$, therc are minor modifications in NUBAS. In case $M A D E=0$, one of the first four Ψ_{i} is computed 50 that, in the above, 'with one additional knot': has to be replacad by "of one degree higher". Explicitly, for $i=1,2,3,4, \phi_{i}$, and hence Ψ_{i}, is a polynomial of degree $i-1$.

If $M Q D E=3$, XKNOT is not taken as an additional knot but rather as a new value for the knot introduced last. Accordingly, the current knot set is changed (at that knot) but not increased, and $\phi_{\text {ILAST }}$ is then defined as in $M S D E=2$.
(e) The algorithm FXDKNT. FXDKNT uses NUBAS in the following way. MADE $=0.0$ is put into UERROR, trend and weight are evaluated at the $X X^{\prime} s$, the quantities W_{i} (see (2.13)) are computed and stored in TRPZWI. The initial knot set'is set up to consist of just the two boundary knots which are taken to be $A D D K I(1), A D O X I(2)$. Four calls to NUBAS produce the orthonormal basis $\Psi_{1} M_{4} \Psi_{4}$ for the set of cubic polynomials as described above, their various representations and the L.-S. approximation to u by cubic polynomials. UERROR is saved in CUBERR for possible use later on in a $M E D E=1,2$ call. MEDE is
set to 1. If $J A D D-2>0$, the program proceeds, after
$J A D D-J A D O-2, A D D X I(i)-A D D X I(i+2), i=1, \ldots, J A D D$,
as for $M \theta D E=1$. Otherwise, the L.-S. error of the current L.-S.
approximation to u is computed as

$$
\text { FXOKNT }-<U E R R O R, U E R R O R>/(X X(U X)-X X(1))
$$

and FXDKNT is terminated.

MODE $=1,2:$ If KNOT $\geq K N \Theta T S V$ ，KNOT is set equal to KNOTSV，and JADD successive cafls to NUBAS produce the L．- S．approximation to u by cubic splines having the knots introduced earlier and additional knots $\operatorname{ADDXI}(i), i=1, \ldots, J A D D$.

If KNOT＜KN日TSV，this action is preceded by the following：
The（KN日TSV－KN日T）knots introduced last into the current knot set by a preceding call or calls are removed from it．The various arrays such as UERROR are restored to the stage where we had just computed the L．－S．approximation to u using just the first kNeT knots．

In either case，the program returns the square of the L．－S．error， FXQKNT，of the current b．approximation to u computed as in $M A D E=0$ ．
$M G D E=3$ ．If the previous call to FXDKNT was in a mode other than 3 （M90\＆3mFALSE），ARG is taken as the value of an additional knot． The current value of FXDKNT is saved in ERBUTI，and a call to NUBAS in $M \Theta D E=2$ with XKNOT $-A R G$ produces，as described earlier，an increased knot set，an additional $\Psi^{\text {ILAST＇，and }} \mathrm{BC}(\mathrm{ILAST}) *<U E R R O R, \Psi_{\text {ILAST }}{ }^{>}$．

But the component $B C(I L A S T) \neq \Psi$ ILAST of u（or，UERROR），with respect to $\Psi_{\text {ILAST }}$ is not taken out of UERROR．Rather，FXDKNT is computed as

$$
\text { FXOKNT }- \text { ERBUT } 1-(B C(I L A S T) \div \nless 2) /(X X(L X)-X X(1))
$$

using the well known fact that if $u^{*}=\sum_{i=1}^{\text {ILAST }} B C(i) \Psi_{i}$ ，then

$$
\|u-u *\|=\|u\|^{2}-\sum_{i=1}^{I \operatorname{LAST}}(B C(i))^{2}
$$

$=$ ERBUT $1-(B C(I L A S T))^{2}$.
If the previous call to FXDKNT was in $M \theta D E=3$（MODE3mTRUE）．ARG is taken as a new value for the additional knot introduced in the first in a sequenca oi such call：Menre，a ca！l to nUBAS in MADE $=3$ produces，

4. Variables in this program

Global with calling program:

ADOXI (26)	$L X$
COEFL (27.4)	MEDE
FCTL (100)	$U(100)$
INTERV	UERRER (100)
JADD	V®ROL $(28,2)$
KNET	$X I L(28)$
LMAX	$X X(100)$

Global in FXDKNT

$\operatorname{BC}(30)$	$\operatorname{TREND}(100)$
$\operatorname{FCT}(100,30)$	$\operatorname{TRPZWT}(100)$
ILAST	VERD $(30,28,2)$
INSIRT (30)	XKNET.
I $\operatorname{GRDER}(28)$.

Local in FXEXINT
ARG $=$ IPRINT $=$ CHANGE \quad KNETSV
CUBERR (100) MBDE3
ERBUT: PRINT(100)
ERRLI WEIGHT(100)
ERRL2 XSCALE
ERRL99

Local in NUBAS
c

$\operatorname{CBEF}(381,4)$
INSERT
ICLEST
6. Example: The set of data used here has three distinct features:
(i) It is actual data, expressing a thermal property of titaniumi (ii)

It is difficult to approximate by classical approximating functions;
(iii) There is a significant amount of noise in the data.
18.

TITANIUM HEAT DATA

x	$u(x)$	u* (x)	$(4-4 \times) \times 10^{2}$	x	$\mathrm{u}(\mathrm{x})$	ute (x)	$(4-4 \%) \times 10^{2}$
595	. 644	. 624	2.03	845	. 812	. 965	-15.28
605	. 622	. 636	-1.37	855	. 907	1.103	-19.64
615	. 638	. 643	- . 47	865	1.044	1.248	-20.44
625	. 649	. 646	. 29	875	1.336	1.386	- 5.00
635	. 652	. 647	. 52	885	1.881	1.502	37.89
645	. 639	. 646	- . 71	895	2.169	1.583	58.60
655	. 646	. 645	. 08	905	2.075	1.615	46.03
665	. 657	. 645	1.17	915	1.598	1.583	1.46
675	. 652	. 647	. 46	925	1.211	1.481	-27.01
685	. 655	. 652	. 26	935	. 916	1.323	-40.67
695	. 664	. 659	. 45	945	. 746	1.129	-38.33
705	. 663	. 667	-. 44	955	. 672	. 922	-24.98
715	. 663	. 675	-1.21	965	. 627	. 721	- 9.4 .1
725	. 668	.681	-1.33	975	. 615	. 548	6.70
735	. 676	. 685	-. 89	985	. 607	. 424	18.34
745	. 676	. 685	-. 87	995	. 606	. 369	23.73
755	. 686	. 679	. 66	1005	. 609	. 395	21.37
765	. 679	. 669	1.00	1015	. 603	. 480	12.33
775	. 678	. 658	2.05	1025	. 601	. 589	1.17
785	. 683	. 650	3.31	1035	$.603{ }^{\circ}$. 691	- 8.84
795	. 694	. 651	4.29	1045	. 601	. 753	-15.24
805	. 699	. 666	3.26	1055	. 611	. 743	-13.16
815	. 710	. 701	. 93	1065	.601	. 626	- 2.54
825	. 730	. 759	-2.90	1075	. 608	. 372	23.58
835	. 763	. 846	-8.34				

The (rounded) values of the Least-squares approximation ut to u and the error are given alongside the given data. For this approximation, the knot set π was chosen to be uniformly spaced, with 5 interior knots. Apparently, this is a poor choice for the location of the knots, as may seen by comparing u* with the approximation to u listed in [2].

Other output, as produced by a run of a FORTRAN version of the algorithm on an IBM 7094, includes Repr. I for un, and the L_{1}, L_{2}, and L_{∞} norm of the error, as follows:

595

Coefficients
.623718
835
. 846403
$($

References

[1] A. Björk, Solving linear least-squares problems by Gram-Schmidt orthogonalization, Bit 7 (1967) 1-2I.
[2] C.de Boor and J.R. Rice, Least-squares cubic spline approximation II - Variable Knots.
[3] G. Golub, Numerical methods for solving linear least+squares problems, Numer. Math. 7 (1965) 206-216.
[4] T.L. Jordan, Experiments on error growth associated with some linear least-squares procedures, Los Alamos Scientiric. Laboratory Report LA-3717 (1967).
[5] S.J. Karlin and W.J. Studden, Tohebycheff systems: With applications in analysis and statistics, Interscience, 1966.
[6] M.O. Peach, Simplified technique for constructing orthonormal functions, Bull. Amer. Math. Soc. 50 (1944) 556-641.
[7] J.R. Rice, Experiments on Gram-Schmidt orthogonalization, Math. Comp. 20 (1966) 325-328.
[8] J.R. Rice, The approximation of functions, Vol. II, Chapter 10 , Addison-Wesley, 1968.
[9] I.J. Schoenberg and A. Whitney, On Pólya frequency functions III, Transactions Amer: Math. Soc., 74 (1953) 246-259.

DO $11 \mathrm{~L}=1, \mathrm{LX}$
$\operatorname{UERRER}(L)=\operatorname{J(L)}$
TREND(L) $=T(X X(L))$
11 HEIGHT(L) $=\because(X X(L))$
DO 12 L=2gLX

c
XIL(1) = ADDXI(1)
XIL(2) $=$ ADDXI(2)
$\operatorname{IODRFR}(1)=1$
JORDER(2) = 2
K
INTERV = 1
DO $19 \mathrm{I}=\mathrm{I}, 4$
ILAST = I
CALL NUABAS
DO $19 \mathrm{~L}=1, \mathrm{LX}$
19 UERGCR(L) = UFRROR(L) - BC(I)*FCTIL,I)
c
:ODE $=1$
DO 2 ($\mathrm{L}=1, \mathrm{LX}$
$20 \operatorname{CUCERR}(L)=\operatorname{UERROR}(L)$
IF (JADN.LE. 2), ONLY BoAE RY CURICS IS COMPUTFD
OTMERUISE, ADCXIII, I GGTe2, CONTAINS ADDITIOMAL KMOTS JA'JD $=$ JADD - 2
IF (JADDULF,U)
GO TO 60
DO $211=1, \mathrm{JADD}$
21 ADDXI(I) $=$ ADDXI(I+2)

GO TO 51
29
GO TO (40,40,30),1:ODE


```
    KNOTSV = KNOT
    A:ODE = 3
    GO TO 36
    35 CALL NUIZAS
    36 FXDKAT = ERBUT1 - PC(ILNST)/XSCALE*OC(ILAST)
                                    RFTURN
    C-------N--
RETAIM THE FIRST KNOT KNOTS INTRODUCED EARLIER
                                    (HEMCE THEIR CORRESP FCTNS) EUT REPLACE FURTHER
                                    FCTNS (IF ANY) FIY FCTNS HAVING ADDITIONNL
                                    KNOTS ACDOXI(I),I=1,JADD) HENCE
                                    IF KNOT & LT &KNOT SV{=N!O.OF XN!OTS USED IN PREV CNI ..
            40 THPOUGH 49 RESTORES ARRAYS IOROER,XIL, UCRROR TO THE STATE OL
            ILAST = KAOT + 2, IMVERTING THE ACTIONOF DO 11 eoo TO 14 IN N
    4O IF (KNOT.LT,KNOTSV) GO TO 42
        KNOT = KNOTSV
        IF (.NOT&i:ODE3) GO TO 50
        CO 41 L=1,LX
    41 UERROR(L) = UEP{OR(L) - BC(ILAST)*FCT(L,ILAST)
    GO TO 49
    4 2 ~ D O ~ 4 3 ~ L = 1 , L X ~
    4う UERROR(L) = CUPERR(L)
        IF (KNOT.LE.2) GO TO 48
        IDUM = KN:DT + 1
        DO 45 1O=IDUA,KNOTSV
        INSERT = IMSIRT(ILAST)
        IL:43 = ILAST - 3
        DO 44 K= INSF?T, ILM马
        IORDER(K)=IORDER(K+1)
    44 XIL(K) = XIL(K+1)
    4 5 ~ 1 L A S T ~ = ~ I L A S T - I ~
        DO 47 l=5,ILAS\
        DO 47 L=1,LX
    4 7 \text { UERROR(L) = LEPRROR(L) - EC(I)*FCT(L,I)}
    4% XIL(2) = XIL(ILAST-2)
        IORDER(2)=2
        KMOT = 2
    4% IF {JADU,GT.O} GO TO 51
        ILAST = KOOT + 2
        INTERV = KNOT - 1
    GO TO 60
n\capn@n@n
    SU IF (JA.):).LF.OO)
    51 DO 52 10=1,J&O?
        XKMOT = ADDXI(IO)
        CALL NUBAS
```

DO $52 \mathrm{~L}=1, \mathrm{LX}$
52 UERROR(L) = UERFOR(L) - BC(ILAST)*FCT(L,ILAST)
c
S FXDKNT= DOT(31,2)/XSCALE
KNOTSV = KMOT
$61: 1 O D E 3=$ FALSE.
IF (IPOINT,FOEO) RETURN
VARIOUS PRINTING IS DCNE DEP ON THE ARE = IPRINT
GO TO $(70,80,90), I P R I N T$

70 URITE(6,610)
DO 72 I $=1$, KNOT
ILOC = IORDER(I)
no $72 \mathrm{~L}=1,2$
SU.: $=0.00$
DO $71 \mathrm{~J}=1$ ILLAST
71 SU: =5UM + RC(J)*VORD(J,ILCC,L)
72 VORDL (I,L) = SUÁt
CALL EVAL
DO 73 I=1.INTERV
WRITE(6,620) I, XILII)
73 URITF $(5,630)(J, C O F F L(I \quad, J), J=1,4)$
WRITF (6,620) KNDT, XIL(KNCT)
610 FORNAT(42X,5HKNOTS, $22 x, 13 H C U B I C$ COCFFICIFMTS//)
620 FOPMAT $(35 \mathrm{X}, 3 \mathrm{HXI}(2 \mathrm{I} 2,3 \mathrm{H})=$, F12.6)
63u FORUAT $(67 \mathrm{X}, 2 \mathrm{HC}(, \mathrm{I} 1,3 \mathrm{H})=, \mathrm{El} 6.6$)
c
C **COMPUTF L2, L1, IAX EPRORS AND PRINT
80 ERRL2 $=\operatorname{SCRT}\left(F \times D X{ }^{\prime} T\right)$
FRPL 9 S $=0$
DO $82 L=1, L X$
DIF = ASS(UFRROR(L)*UEIGHT(L))
IF(5RRL99.nT, DIF) GO TO 81
LiN^X $=L$
ERRL99 = DIF
81 ERRLI = ERPLI+ DTF
82 COMTINUE

25.

FRPL1＝E？NLI／FLOAT（LX）
！KITE（6，623）ERRL2，ERFL1；ETRRL9），XX（L．：AX）
C＊＊THE FCLLONING CARD JS TEMPCOARY （GO TO（90，96，95），IPRINT
C
C F SCALE ERROR CURVF ANO PRINT
90 IE $=$ U
$\therefore C A L F=10$
IF \｛ERRL99。GE．LC．1 GO TO 92
no 91 1：$=1,9$
SCALF $=$ SCELF＊10．
IF（ERPL99＊SCALE，GE』IG：GO TO 92
シ1 COMTIMUE
92 DO $93 \mathrm{~L}=1, \mathrm{~L} . \mathrm{X}$
Q3．PRINT（L）＝UERIRGR（L）＊SCALE
60 TO（94，05，95），IPPIPT

GO TO 96
55 以RITF $(6,622)$ IE，（L，XY（L），PRINTIL），L＝1，LX）
96 RETURN
621 FOSNAT：1H／／45X，3OHAPOROXIMATION AND SCALED ERROR CURVE／38X，

E22 FOR：AAT（lit／／5ZX， 11 HERRGR CURVE／3EX，IOHDATA POLMT， $23 x$ ，

623 FORMAT（IH／／／4OX2OHLFAST SQUARE EPROR $=, F 20.6 /$
$140 \times 20 \mathrm{AAVERAE}-$ ERROR $\quad=, F 20.61$

END
C

C
SU？ROUTIME INTFRP

```
C CONIPUTE THF. SLOPES VORDLII,2I,I=2,KNOT-I AT INTERIOR
C CONIPUTE THF SLOPFS VORDLII,2I, I=2,KNOT-I AT INTSRIOR 
C AT ALL THE KMOTS AMO GIVEN SOUNDARY DERIVATIVES
    DI|FNSIO:# D(28), CIAG(28)
    CO: \becauseON/ OUTPUT /UERROP(1CO),FCTL(100),XIL(28),COFFL(27,4),
    * VORDL(2@,2),KNOT,L:HX,INTERV
        DATA DIAG(l),O(1)/lo,O./
        OO 1C M=2,YNOT
        D(%)=XIL(4)-XIL(N:-1)
```



```
        DO 2C M=2,1NTERV
```



```
    20 UIAG{t-i)=20*()(A)}+D(1!+1))
        OO 3: !!=2,TNTE रV
        r= -D(:1+1)/D1AC(M-1)
        NIAC(i, (i) = DING(M) +GHC(IN-1)
    30 VORDL(:,2)= VOROL(n!,2) + G*VORNL(::-1,2)
        MJ=K`OT
```

```
                                    26.
            SO 40 :1=2,INTERV
            \becauseJ= N!J - l
    4! VORDL(@J,2) = (VORDL(IJ,2) - D{i心J)*VORDL(NJ+1,2)\/DIAr(NJ)
                                    RETURN
            END
C
C
FU:CTTION DOT (I:GINDEX)
e CO:PUTE INNER PRODUCT OF FCT M MITH FCT ILAST {INOEX=I) OR
C UERROR (INDEX=2)
    DUUSLE PRECISION DDOT,C,TRPZWT
    CO.!ON / GANDT / TREMD(10ミ),TRPZ:T(10U):G(100)
    COG;OM!ISPUT/LX:次(100),U(1CU),JADD,ADDXI(26),:OODE
    CO:MO:1/ OUTPUT /UERSOD(IOC),FCTL(100),XIL(23),COEFL(27,4),
        * VORDL(25,2),KNOT,Li!AX=INTEPV
            CO:-1ON, PASIS /FCT(10n,30),VORD(30,28,2),PC(30),ILAST
                                    GO TO (10,30), IHOEX
    1\IF (#0EW=ILAST)
                                    GO TO 20
            DO 11 L=1,LX
    11G(L)= FCT(L,1)*FCTL(L)
    2. DO 21 L=1,LX
    21r(L)=FCTL(L)*FCTL(L)
    IF (9050-317
        DO (1)L=1,1x
        j) E(L)=FCTL(L)*UERROR(L)
        4i.CO 41 L=1,LX
    41G(L)= UERROR(L)*UEREON(L)
    80 DDOT = 5.000
        DO 81 L=2.LX
    E.1 DDOT = UOOT + (G(L-1) +G(L))*TRPZ:IT(L)
C
        DOT = DDOT
        FND
C
```



```
C
    SUFROUTINE EVAL
C . COMPUTE POL. COEFF COEFLII,KJ OF FCT ILAST FROH, VORDL,
C THEN CCOPOUE FCTLIL)= (FCT ILASTIKTREND AT XX(LI,L=I,LX.
C
    NOUPLE PRECISION E,TRPZITT
    CO. MON / UANDT / TREAD(IOC),TRPZWT(1RO),G(IOO)
```



```
    CO*,ON/ OUTPUT /UENROR(10G),FCTL{10G},XIL(2G),COSFL(27,4),
    H
    DO 10 I=1,IMTERV
        COEFL(I,1)= VOKCL(I,1)
        COFFL(I, ) = VOR!L(I,2)
        rx = XII.(1+1)- <1!:1)
```

DUM1 $=(\operatorname{VORDL}(1+1,1)-\operatorname{VCRDL}(I, 1)) / D X$ DUN2 $=$ VORDL（I，2）＋VORDL $(1+1,2)-2$. ＊DUMi COEFL（I，3）$=($ OUMI－DUM2－VOROL $(I, 2)) / D X$
10 COEFL $(1,4)=$ DUMZ $/ D X / D X$
C
$J=1$
IS：！TCH $=1$
00 2C $L=1, L X$
1］IF（JoFOOINTEQV）
GO TO（11，13），I $\because \cdots T C H$
If $(X X(L) \circ L T \cdot X I L(J+1))$
GO TO 1 ？
$J=J+1$
GO TO 13
GO TO 11
12 ISNTCH $=2$
$13 \mathrm{DX}=\mathrm{XX}(\mathrm{L})-X$ LL（J）
$2 \cup$ FCTL $\{L)=(\operatorname{COEFL}(J, 1)+D X *(\operatorname{COEFL}(J, 2)+D X *(\operatorname{COEFL}(J, 3)$
RETURA
END
C

c
SURROUTINE NUEAS
DOURLE PRECISION SUM
CO そ\％ON／INPUT／LX，XX（100），U（1GU），JADD，ADDXI（26），MODE
CO：A！MN／OUTPUT JUERROR（10Q），FCTL（100），XIL（28），COEFL（27，4），
＊VORDL 28,21, KNOT，L．MAX，INTERV
CO．MiON／BASIS／FCT $(100,30)$ ，VORD $(30,28,2), B C(30)$ ，ILAST
CO！MPN／LASTB／IORDFP（28），INSIRT（30），XKNOT
C COEF（IC，O）CONTAINS THE POL COEFFICIENTS OF FCT MI FOR INTER－
C VAL TO THE RIGHT OF XI（IC），IC＝ICM，ICF＋M－3， $\because I T H\left[C i=N_{1}(M-7) / 2+10\right.$（EITH OBVIOUS MODS FOR in．．LE．4） THE FCT ILAST（TO BE）INTRODUCED LAST，HAS ITS VALJES AT THE THE POINTS XX（L）IN FCTLIL），HAS FIRST INDFX ICLAS： IN COEF AND XI，HAS ADDITIONAL KNOT XKYOT．THE KNOT XNOTS FOR IT ARE COMTAINED，IN INCREASING ORDER，IN XIL，ITS COR－ RESPONDING ORDS AND SLOPES ARE IN VORDL，THE KMOT JUST INTRO－ DUCED HAS INDEX INSERT IN XIL，INSERT IS SAVED IN INSIRTIILAST FOR POSSIBLE REPLACEVENT OF KHOTS LATER ON（SEE MONE＝2．31．
DIGENSION TEHP（3C），XI（381），COEF（381，4）
IF（KODEOGTOO）GO TO 8
C－ーーーーーーーH＊＊COMSTRUCT FCT ILAST FOR ILAST•LEa4
$X I([L \Lambda S T)=X I L(1)$
ICLAST $=$ ILAST
$I L: A I=I L A S T-1$
IF \｛ILAST•GT－2）GO TO 7
IF（ILAST。EQ。2）GO TO 6
FIRST RASIS FCT IS A CONSTANT
$\operatorname{VORDL}(1,1)=1$ 。
$\operatorname{VORDL}(2,1)=1$.
$\operatorname{VOROL}(1,2)=ก$.
$\operatorname{VORDL}(2,2)=0 a$

C SECOVD RASIS FCT IS \therefore STRAIGHT LIME
 VORDL（2，2）＝（SROL（1，1）／iXIL（2）－XIL（1））＊2。 $\operatorname{VORDL}(1,2)=-6) \operatorname{FDL}(2,2)$
c
$7 \operatorname{VORDL}(2,1)=-\operatorname{VORDL}(?, 1)$
$\operatorname{VORDL}(2,2)=-\operatorname{VORDL}(2,2)$

C－－－－－－－－－

8
GO TO（10，10，14），HODE

C A．VD UPDATE VORn COR SCT A，H＝1，ILAST－1
10 KNOT $=$ KNOT +1
ILAST $=$ K！OT +2
ICLAST $=$ ILAST＊（ILAST－7）／2＋10
IL：A1＝ILAST－1
I！STERV＝KNOT－I
「O 11 IASERT＝2，IMTERV

11 COVTMME
12 IF（XKMOT•LE．XIL\｛INSERT－I）
GO TO 95
GO TO 95
$10=$ KMIT
DO 13 L＝I：ISERT，IMTERY
$10=10-1$
XIL（IO＋1）$=X I L(I O)$
13 IORDER（10＋1）＝IORDER（10）
IORDFR（IMSERT）$=$ XiOT
c
14 XIL（INSERT）$=X$ XNOT
nX＝XKッOT－XIL（1）
no $15 \mathrm{I}=1,4$
YOQn（I，KMOT， 1$)=\operatorname{COEF}(I, 1)+D X *(\operatorname{COEF}(1,2)+3 X *(\operatorname{COEF}(I, 3)$
＊＋DX＊COEF（I，4）11
$15 \operatorname{VORD}(1, \operatorname{KiNO}, 2)=\operatorname{COEF}(1,2)+\mathrm{Cl}^{*}(20 * \operatorname{COEF}(1,3)+\operatorname{CX} * 3 * \operatorname{COEF}(1,4))$
ID $=4$
1 EOUND $=4$
DO 19 I＝5，ILM1
$10=10+1-4$
IBCUA！D＝IROUND＋I－ 3
17 IF（ID．EO． 9 GOURO）GO TO 18
IF（XKNOTuLTJ）（I（ID＋1））GO TO 18
$I D=10+1$ ．
GO 1017
$18 \mathrm{CX}=\mathrm{XK}$ IOT－XI（ID）
$\operatorname{VORD}(I, K N U T, 1)=\operatorname{COEF}(1 D, 1)+D X *(\operatorname{CCEF}(1!), 2)+\operatorname{CX} *(\operatorname{COEF}(I D, 3)$
＊＋DK＊COFF\｛ID，411）

C－－－－－－－－

GO TO $130,40.501, \ldots .0 D E$

C ILAST－1 RY REFLECTING THF PART OF THE LATTER O


```
29.
C 29 NODE = 1
    30 VORDL (1,2) = VORD(IL:H1,1,2)
    DO 31 K=1,INSERT
    ILOC = IORDER(X)
    31 VORDL(K,1) = VORO(ILAII,ILOC,1)
    DO 32 K=INSERT,INTERV
    ILOC = IORDER(K+1)
    32 VORDL(K+1,1)=-VORD(IL``I,ILOC,1)
    VORDL{K!!OT,2)=-VORD(ILill,2,2)
                GO TO 55
    C
    40 IF (INSIRT(ILAST).FQ.C) GO TO 29
    VORDL (1,1)=VORD(ILAST,1,1)
    VORDL(1,2)=VORD(ILAST,1,2)
    ID = ICLAST
    IBOUND = ICLAST + FLAST - 4
    DO 43 K=2,INTERV
    4 2 ~ I F ~ ( I D . E Q . I B O U N D ) ~ G O ~ T O ~ 4 2 ,
    IF (XIL(K)。LTOXI(ID+1)) GO TO 42
    ID=ID +1
                                GO TO 41
    4i DX = XIL(K)- XI(ID)
    4 3 \operatorname { V O R D L } ( K , I ) = \operatorname { C O E F } ( I D , 1 ) + D X * ( C O E F ( I D , 2 ) + D X * ( C O E F ( I D , 3 )
        * +0X*COEF(ID,4))
            VORDL(KNOT,1)=VORD(ILAST,2,1)
            VORDL(K\OT,2)=VORD(ILAST,2,2)
                                    GO TO 55
C **K i=ODE=3 **** CHANGE FCT ILAST BY CHANGIMG JUST THE KNOT INTRO
                                    DUCED LAST
    5U ID = ICLAST + INSERT - I
    DX = XKNOT - XI(ID)
    XI(ID) = XKNOT
    IF (DXOFEOO.) GO IO 51
    ID = [D - 1
    DX = XXNOT - XI(ID)
    51 VORDL(INSERT,1)= COEF(ID,1) +DX*(COEF(ID,2)+DX*(COEF(ID,3)
        * +Dx*COEF(ID,4))1
C
            ##* INTERPOLATE
            5 5 ~ C A L L ~ I N T E R P
                                GO TO (57,57,59),MODE
    57 ID = ICLAST - I
    DO 56 1O=I,INTYRV
    ID = ID + 1
    56 XI(ID) = XIL(IO)
    INSIRT(ILAST) = INSERT
```

 C THEN: CO:OUTE THE COMPOBEFIT : OCIILASTI OF UERROR I:RTU IT C FINALLY, ETCRE T:iE VARIOUS RFPRESEGTATIONS OF FCT ILAST

C
59 CALL EVAL

$2060 \mathrm{~L}=1, \mathrm{LX}$
6o FCTL(L) $=F C T L(L)+T F: P(1) * F C T(L, I)$
DO $61 \mathrm{~K}=1$,МNOT
ILOC = IORDER(S)
DO $61 \mathrm{~L}=1,2$
$C U^{2,1}=0 . D 0$
DO $68[=1, I L: 11$
GO SU: = SUM + TEIP(I)*VOPD(I,ILOC,L)
$61 \operatorname{VOPDL}(K, L)=\operatorname{VOROL}(K, L)+S U:$
67 (ALL EVAL
$C=$ SERT(DOTIIL\&ST, 1)
$\because C(I L A S T)=$ クOT(ILAST,2) / C
DO $62 k=1, \mathrm{KNOT}$
ILOC = IORDER(K)
no $62 \mathrm{~L}=1,2$
VOPDL(K,L) = VORDL(K,L)/C
62 VOPD(ILAST,ILOC,L) $=\operatorname{VORDL}(K, L)$.
$10=1$ CLAST -1
DO 63. $L O=1, I$ IATERV
$I L=I D+1$
DO $63 \mathrm{~L}=1,4$
S $3 \operatorname{COFF}(I D, L)=\operatorname{COEFL}(I O, L) / C$
no $64 \mathrm{~L}=1$ loLX
E 4 FCT(L,ILAST) $=$ FCTL(L)/C

RETURM

95 WRITE (6,950) XKINOT,ILAST

 * T de COYTIMUEOI
sto?
C
END
c

C
FUnction T(Z)
$\mathrm{T}=1$ 。
RETUR:
END
c
FUNCTIO.Y : : (Z)
$4=1 \rho$
RETIJRA!
Fi!?

[^0]: de Boor, Carl and Rice, John R., "Least Squares Cubic Spline Approximation I - Fixed Knots" (1968). Department of Computer Science Technical Reports. Paper 141.
 https://docs.lib.purdue.edu/cstech/141

[^1]: *This work was initiated at the General Motors Research Laboratories. The final stages were partially supported by NSF grant GP-7163. We wish to thank John lloff for assistance in preparing preliminary versions of this algorithm.
 +This author was also partially supported by NSF grant GP-4052.

