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2 Mathematical Background 

We assume that the reader is familiar with FIXEDKNOT and we use the notation of that 

paper. We recall that a spline of degree n with k knots E = {£;|a = £0 < £1 < £k+i = 6} 

may be defined by 
k rc 

S{A, S, x) = 5 > ( * - tfl + 

where A = (oi, a 2 , . - -, at+n+i)-

We consider a function f[x) defined on a finite set 

X = {x,-|a < x; < a;,-+i < 6 , i = 1 , 2 , . . . , m ] . 

Given a value n for the degree and a number h of knots we have the 

Approximation Problem. Determine the spline j  SO that 

(2-1) [ J [ f ( x ) - S ( A , Z t x ) } 2 } ± 

is minimized among all splines of degree n with k knots. 

Since f ( x ) is only defined on the finite set X , one must use a quadrature formula for the 

integral in this problem. We assume this is to be done (our algorithm uses the trapezoidal 

rule), but retain the integral sign for simpler notation. 

There are three basic mathematical questions associated with this problem, namely those 

of the existence, uniqueness and characterization of E", x). We discuss these briefly. 

The Existence Question. Simple examples show that this least-squares approximation prob-

lem does not always have a solution, e.g., take f(x) = |rc| on [ - l , + l ] and approximate 

by a cubic spline with three knots. One may generalize the concept of spline by allow-

ing the knots to coalesce with the possibility of a resultant loss of smoothness where the 

knots coalesce. These are called extended splines and are presented in [6], see also [4]. 

In this broader set of approximating functions there always exists a best least-squares 

approximation. In order to avoid technical difficulties, the algorithm presented in this 

paper does not allow the knots to coalesce. 

The Uniqueness Question. It is known from general theoretical results [6], from specific 

theoretical results [C. deBoor, 1963, unpublished] and from examples that the solution 

of the least-squares nonlinear approximation problem need not be unique. Consider 
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the approximation to a:3 on [-1,+1] by a broken line with one break. If the break occurs 

for x = 0, then by symmetry there is no break. But no best least-squares nonlinear 

spline approximation can have an inactive knot (see the next section). Thus the best 

approximation does not have a knot at x = 0 and, again by symmetry, there are at 

least two best approximations. This line of reasoning can be applied in general. 

Furthermore, there may be approximations which are local minima of (2.1), but which 

are not best approximations. The algorithm presented here attempts to obtain a local 
minimum of (2.1) and hence even if it converges there is no guarantee that a best 

approximation has been obtained. 

Characterization. There are no known necessary and sufficient conditions for 5(A" , E", a;) to 

be a best approximation. The algorithm here is based on the usual necessary conditions 

that one derives for a local minima. 

Strict Monotonicity of the Error. It is known [deBoor, 1963, unpublished] for any specific 

f(x) and fixed degree n that if the error 

E\ = J[f(x)-S(A ' ,E ' ,x)}
2 

of the best approximation with k + 1 knots is not zero, then the error E^+i of the best 

approximation with ft + 1 knots is strictly less than Ek, i.e., Ek+1 < Ek- See [4] for 

details and extension. 

Inherent Limitations of the Algorithm. The problem which this algorithm attempts to solve 

cannot be solved by an algorithm. Thus this algorithm is limited. This theoretical limi-

tation is manifested in several different ways. First, there is the problem of ascertaining 

when "convergence" has taken place. This is required on two different levels, namely, 

for the whole algorithm and for the adjustment of knots within this latter problem. 

The decision that "convergence" has taken place is made on the basis of certain ad hoc 

numerical tests which are not infallible. 

These decisions are delicate in view of the need to achieve some efficiency. Thus these 

tests have been developed on the basis of experience with a certain class of problems. It is 

hoped that this class is representative of those met in general. However, these tests may be 

completely inadequate in new situations. If it is intended Lo use this algorithm extensively 

for a certain class of problems, it may well pay to experiment with adjustments in these tests 

in order to achieve better efficiency with minimum risk. 

3 



The initial guess for the knots chosen might be extremely poor and result in reaching a 

local minimum far from the best approximation. The simple scheme of equal spacing used 

here to obtain an initial guess might well be modified and improved for certain classes of 

approximation problems. 

3 The Algorithm and Numerical Procedures 

The basic idea of the algorithm is to vary the knots one by one so as to decrease the Z^-error. 

This is done systematically from right to left by two procedures, SWEEP and OPT. The 

procedure SWEEP controls the overall scheme and OPT does the variation of the individual 

knots. The basic scheme used in OPT is a discrete Newton's method. 

There are two delicate points in an implementation of such a scheme. The first is a 

suitable choice of termination criteria for the various iterations in the algorithm. One desires 

to achieve the required accuracy without doing an excessive amount of wasteful computation. 

The second point is to make the computation of the i2-error as efficient as possible. It 

is unavoidable that this number be evaluated frequently and it is a nontrivial computation. 

Furthermore, it is easily seen that it is very inefficient to compute the Z/2-error each time by 

a standard £2- a PP r 0 X i m a t i ° n procedure. Note that if only one knot is changed and if only 

one of the orthogonal functions involves this knot, then the /^-approximation problem can 

be solved on the basis of previous information with an order of magnitude less computation 

than one can solve such problems in general. It is always arranged so this is the case and 

the procedure FIXEDKNOT has a number of features to allow this. More detailed study 

shows that it is also possible to make use of some previous information when changing from 

one knot to another. These points are discussed in more detail in [2]. 

Choice of the Initial Knots. There are two single alternatives. If NOKNOT is negative, 

then - N O K N O T knots are chosen equally spaced in the interval (A'A'( l ) , XX(LX)). 

If NOKNOT is positive, then this number of knots is to be read as data. If the function 

is very unsystematic, it is often profitable to use an initial set of knots concentrated in 

the regions of rapid change in the function. 

Optimization of the Knots - SWEEP and OPT. Given an initial set of knots, their optimiza-

tion is guided by the procedure SWEEP. Each knot is, in turn, varied so as to minimize 

the L-i-eviOT as a function of this knot. This is started with the last (i.e., the right 

most) interior knot and done sequentially to the left. A cycle refers to one complete 

pass from right to left. This process is repeated until a termination is encountered. 
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The variation of the Z-th knot XI(I) is carried out in OPT using what may be termed 

the "discrete Newton's" method. Let e(t) denote the Z,2_erj"°r as a function of the 

position t of XI(I). Given three points, ALEFT<A<ARIGHT, a new guess ABEST 

for the location of X I ( I ) is determined as the location of the minimum of the parabola 

p(t) satisfying 

p(ALEFT) = e(ALEFT), p (A) = e(A), p(ARIGHT) = e(ARIGHT). 

The parabola must have a minimum in order for this to make sense. Also, as to avoid 

getting wild guesses through extrapolation, ABEST should be between ARIGHT and 

ALEFT. For this it is sufficient to have 

(3.1) e(ARIGHT), e(ALEFT) > e(A). 

Thus the first part of OPT consists of a search algorithm for such a set of three points 

ARIGHT, ALEFT and A. The basic step size for this search is based on the value of 

CHANGE = average change in the knots in the preceding cycle. The initial value of 

CHANGE is .4 and it is measured relative to the length of the interval ( X I ( I — 1), 

XI{I + 1)).  

Once such a set is found the parabolic interpolation commences. The newly found guess 

ABEST replaces one of ARIGHT, ALERT or A in such a way that the inequalities (3.1) 

remain valid while making the new value of ARIGHT-ALEFT as small as possible. 

Termination Criteria. There are two termination criteria for SWEEP. The first is a simple 

bound on the number of complete cycles or sweeps of varying all the knots, i.e., 

(3.2) No more than ITER cycles throught SWEEP 

For normal use we recommend that one set ITER=4. In more difficult cases, especially 

when a larger number of knots is used, one might need to increase ITER. The second 

criterion is to terminate if 

(3-3) 
PREVER-ERROR 

ERROR 
< .4* ACC 

where ACC = desired accuracy in i2-error (not the Z^-error itself). ERROR = current 

value of the i2-error and PREVER = value of the X^-error at the start of the current 

cycle of knot variation. This criterion is based on the assumption that the algorithm 

is converging linearly (or faster) and the error is reduced at each cycle by a factor of .6 
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or less. If one notes that the algorithm is converging somewhat slower than this, one 

should replace the coefficient .4 by a somewhat smaller number. 

Note that this is rarely worthwhile to compute an approximation which gives the best 

i/2-error with more than one or two significant digits. We recommend setting ACC = 

.1 for general applications. 

There are four termination criterion for OPT. The first is a simple bound on the number 

of guesses at the best position of X I ( I ) , i.e., 

(3.4) No more than INDLP guesses for XI(I).  

We recommend INDLP = 10, a bound which is large enough so that termination rarely 

occurs from this criterion. 

The second criterion is a form of buffering to prevent the knots from coalescing. Set 

H = XI(I + 1) - XI{I - 1), then constrain XI{I) by 

(3.5) XI(I - 1) + .0625tf < XI{I) < XI(I + 1) - .0625H 

This form of constraint allows a group of knots to become very closely spaced which 

is sometimes essential. However, it keeps them separated enough to (almost always) 

avoid failure due to numerical instabilities. 

The third criterion is for the search of a triplet of points to initialize the parabolic 

interpolation phase. The search for such a triplet is terminated if (in the case of search 

to the right) 

e(A) - e(ARIGHT) ACC 

1 J ERROR ~ LXI 

where LXI = number of interior knots and ERROR is the i/2-error at the end of the 

previous cycle. In case of search to the left we terminate if 

e(A) - e(ALEFT) ACC 

1 } ERROR " L X I ' 

These criteria are relatively stringent because we feel it is very desirable to be able to 

enter the parabolic interpolation phase for at least one time. Thus this criterion might 

not cause termination in OPT even when the decrease in the L2-erTor is insignificant 

for the later stages of the algorithm in a reasonable number of cases. 
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The criterion can be visualized as based on the assumption that the search is converg-

ing linearly (or faster) with an error reduction of 1 -1 /LXI or smaller. However, the 

situation here is somewhat different then in SWEEP as we do not necessarily desire to 

expend effort for an accurate placement of XJ{I). That is to say, in the initial stages 

of the algorithm the set of knots is far enough from optimum that it is wasteful to 

accurately optimize one of them with the others inaccurately located. It is unusual for 

this termination criterion to be active in the terminal phases of the algorithm. 

The fourth criterion is for the termination of the parabolic interpolation process. We 

locate ABEST as noted above and compute the value EPRED of the parabola at its 

lowest point, i.e., EPRED = p(ABEST). The optimization is terminated if 

(3.8) 
EPRED - e (ABEST) 

ERROR 
< 5 * ACC 

This criterion assumes convergence which is somewhat faster than linear. This is 

plausible since a discrete Newton method is used. The particular factor 5 was chosen 

on the basis of some experiments and reflects a balance between global efficiency and 

local accuracy as discussed in the preceding paragraph. 

The most common cause for termination is that CHANGE become small. This implies 

that little movement of the knots takes place in OPT which in turn causes the criterion 

(3.3) in SWEEP to terminate the algorithm. 

4 Variables in the Program 

Global with F I X E D K N O T 

ADDXI(26) LX 

COEFL(27,4) MODE 

FCTL(IOO) U(100) 

INTERV UERROR(IOO) 

JADD VORDL(28,2) 

KNOT XIL(28) 

LMAX XX(IOO) 

Global in V A R Y K N O T 

ACC LXI 

CHANGE Q 

ERROR XI(2S) 
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Other Important Variables 

A 

ABEST 

ALEFT 

ARIGHT 

EPRED 

EPSERR 

Other Variables 

AA 

AHIGH 

ALOW 

DEL 

DELX 

DUMB 

DXLEFT 

DXRIGHT 

DYLEFT 

DYRIGHT 

E 

INFO (16) 

INTER 

KVARY 

NOKNOT 

PREVER 

H 

ELEFT 

ERIGHT 

ETRY 

II 

ITRR 

K 

LPCNT 

LXI1 = LXI+1 

LXI2 = LXI+2 

5 Example 

We consider a set of data which has three distinct features: (i) It is actual data (expressing 

a thermal property of titanium); (ii) It is difficult to approximate using classical techniques; 

(iii) There is a significant amount of noise in the data. 
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Titanium Heat Data X X ( 1 ) , U(I) with approximation U*(I) 

and error UERROR(I ) 

XX U U* UERRORxlO 3 U u- UERRORxlO 3 

595 .644 .619 25.35 845 .812 .796 15.86 

605 .622 .629 -7.22 855 .907 .876 31.27 

615 .638 .638 .24 865 1.044 1.051 -7.38 

625 .649 .644 4.50 875 1.336 1.370 -34.31 

635 .652 .650 2.35 885 1.881 1.838 42.64 

645 .639 .653 -14.46 S95 2.169 2.195 -25.98 

655 .646 .656 -10.13 905 2.075 2.078 -3.19 

665 .657 .658 -.89 915 1.598 1.582 15.62 

675 .652 .659 -6.96 925 1.211 1.197 14.15 

685 .655 .660 -4.57 935 .916 .931 -14.63 

695 .664 .660 4.05 945 .746 .761 -15.36 

705 .663 .660 2.69 955 .672 .667 5.31 

715 .663 .661 2.13 965 .627 .624 2.71 

725 .668 .662 6.12 975 .615 .612 3.20 

735 .676 .664 12.47 985 .607 .608 -1.24 

745 .676 .666 9.93 995 .606 .606 .15 

755 .686 .670 16.29 1005 .609 .604 4.62 

765 .679 .675 4.32 1015 .603 .604 - .65 

775 .678 .681 -3.20 1025 .601 .603 -2.49 

7S5 .683 .689 -6.49 1035 .603 .604 - .74 

795 .694 .700 -5.78 1045 .601 .604 -3.22 

805 .699 .712 -13.29 1055 .611 .605 6.24 

815 .710 .727 -17.25 1065 .601 .605 -4.19 

825 .730 .745 -14.87 1075 .608 .605 2.66 

835 .763 .765 -2.39 

We present two approximations to this data. The first is computed with an initial set 

of 7 equally spaced knots in the interval (595, 1075). The second is computed with another 

initial set of knots. This is the approximation shown in the above table. 
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Initial Knots 

Case 1: 595 675 755 835 915 995 1075 

Case 2: 595 725 850 910 975 1040 1075 

The point of these two cases is that the algorithm converges to two distinct local minima 

of the nonlinear least-squares approximation problem. Note that the data have a very 

pronounced peak near 900, and in Case 1 we have three interior knots to the left of this 

peak, while in Case 2 we have only two to the left of this peak. 

The final approximations obtained are presented for both cases. The final knots are given 

along with the coefficients C(I), I = 0 ,1 ,2 ,3 of the cubic polynomial pieces of the spline. 

These are the coefficients COEFL( / , J) J = 1,2,3,4 defined in [2] for the interval 

The origin for each polynomial piece is the knot immediately to the left. 

Case 1 Case 2 

Least Square Error 

Average Error 

Maximum Error 

03489 Least Square Error 

.02296 Average Error 

.11716 Maximum Error 

.01305 

.00933 

.04264 
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KNOTS Cubic Coefficients KNOTS Cubic Coefficients 

595. C(0) = .63371 

C ( l ) = .16475"3 

C(2) = .19591 -5 

C(3) = -.S1758"8 

755.28 C(0) = .67678 

C ( l ) = .16269"3 

C(2) = -.19723"5 

C(3) = .17472"6 

839.60 C(0) = .78122 

C( l ) = ,35567"2 

C(2) = .42224"4 

C(3) = ,92733"5 

877.06 C{0) = .14612+1 

C( l ) = .45759-1 

C(2) = .10844 -2 

C(3) = - 7 8 4 1 6 - 4 

896.20 C(0) = .21844+1 

C( l ) = .10478"2 

C(2) = -.34197"2 

C(3) = .91502"4 

910.22 C{0) = .17793+1 

C( l ) = -.40887"1 

C(2) = .42760"3 

C(3) = -.13771"5 

1075.  

595. C(0) = .61865 

C( l ) — .11658"2 

C(2) = -.11255-" 

C(3) = -37272"7 

835.32 C(0) = .76609 

C( l ) = .22139-2 

C(2) = .15616"4 

C(3) = •7S696-5 

876.56 C(0) = .14362+1 

C( l ) = •43668"1 

C(2) = •98940"3 

C(3) = -.61055"4 

902.46 C(0) = .21703+1 

C( l ) = -.27909"1 

C(2) = - .37536-2 

C(3) = .18772"3 

910.47 C(0) = .18022+1 

C( l ) = -.51906"1 

C(2) = .75881 -3 

C(3) = -37241" 5 

977.85 C(0) = .61061 

C ( l ) = - 37235" 3 

C(2) = .60407"3 

C(3) = -.28471"7 

1075.  

The algorithm required six cycles through SWEEP for Case 1. The Z2-error decreased 

as follows: 

cycle 1 2 3 4 5 6 

I2-error .09176 .05927 .03944 .03588 .03509 .03489 

The algorithm required seven cycles through SWEEP for Case 2. The L2-error decreased as 

follows: 
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cycle 1 2 3 4 5 6 7 

I2-error .04595 .03848 .02761 .02177 .01432 .01321 .01305 

These two cases required about 17 and 23 seconds, respectively, of execution time on a 

IBM 7094 for a FORTRAN IV version of this algorithm. They required about xxx and yyy 

seconds, respectively, of execution time on a CDC 6500 in Algol. 

6 Other Nonlinear Algorithms Based on FIXEDKNOT 

The procedure FIXEDKNOT is designed to be readily adaptable to form a basis for a variety 

of nonlinear spline approximation algorithms. We briefly outline four such algorithms. We 

have used one of these (the last one) extensively and another (the second one) in some 

experimentations. 

6.1 Noil-systematic knot optimization 

We have observed that there is frequently a significant amount of wasted computation in 

problems involving a larger number of knots, say more than 5 or 6. It occurs that a few, 

perhaps most, of the knots become correctly placed, while the remaining ones (somewhat 

more delicate) requires several additional cycles to locate accurately. The systematic nature 

of the algorithm VARYKNOT requires one nevertheless to adjust the position of all knots in 

each cycle. It is clear to us that one can devise workable criteria for determining reasonably 

well which knots are more critical. One could use these criteria to optimize the knots in an 

unsystematic manner to increase the efficiency of the computation. We have not formalized 

such criteria and believe their use would significantly increase the logical complexity of the 

algorithm. 

6.2 Systematic insertion of additional knots — Loo criterion 

A plausible scheme is to start out with no knots at all, find the best linear cubic approxi-

mation, then insert a knot near (or at) the location of the maximum error. One then could 

compute a linear spline approximation with one knot, and insert a second knot near the 

location of the maximum error. This process is then repeated until the error is reduced to 

some desired level. 

We have experimented with this scheme and it does in fact work. Special provisions must 

be taken if the data contains wild points or pronounced peaks. The maximum error will then 
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occur several times at one point. The new knots should be placed on alternating sides of this 

point and prevented from converging to this point. It usually happens that enough knots are 

placed in the neighborhood of a wild point so that the data is actually interpolated nearby. 

This is normally undesirable and this scheme is not recommended for such data. 

This scheme is not as attractive as we had expected. In addition to the problem of 

wild points and peaks, it consistently leads to more knots than really required, sometimes 

excessively so. However, it usually requires less computation time than schemes (e.g., see 6.4) 

which optimize the locations of knots. Thus when this process was applied to the data of the 

example, it took 15 interior knots to produce an approximation of the same accuracy as had 

been obtained in Case 2 above with an optimal placing of 5 interior knots. Execution time, 

on the other hand, on an IBM 7094, was merely 4 seconds. We conclude that the location 

of the maximum error is not a completely reliable guide for the place to insert additional 

knots. 

6.3 Systematic insertion of additional knots - L2 criterion 

Consider a process like 6.2 where we locate that interval between adjacent knots which has 

the most error in the L2 sense. We suspect that it is better to insert additional knots into 

this interval than near the location of the maximum error. We have not tested this suspicion, 

however. 

6.4 Systematic insertion of knots with optimization 

We have used extensively an algorithm which systematically increases the number of knots 

and optimizes all knots after each insertion. This algorithm only requires the user to specify 

the desired accuracy of approximation and the algorithm determines the number as well as 

the location of the knots. In order to achieve efficiency, the convergence criteria during the 

algorithm must depend on how close one is to the requested accuracy. Once this matter is 

satisfactorily settled, we find that it requires only slightly longer to obtain suitable approxi-

mations with this scheme than it does with VARYKNOT starting with the correct number 

of knots roughly placed. 

Note that the algorithm is essentially different from that of 6.2. Even though the initial 

guess at the new knots location is made similarly, the optimization process eliminates the 

difficulties with wild points. In fact, it is highly recommended for data smoothing, the 

identification of wild points and other types of data analysis. 
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C NONLINEAR SPLINE APPROXIMATION 

C PROGRAM WRITTEN BY CARL DE BOOR AND JOHN RICE 

C PURDUE UNIVERSITY 

C SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION GP-4052 .GP7163 

C 

C PLEASE REPORT ANY CASES OF INOPERATION TO THE AUTHORS .  

C THANKS 

C **** NUMERICAL ANALYSIS CONTROL **** 

C CONTROL PARAMETERS FUNCTION 

C ITER NO .  OF SWEEPS THRU OPT 

C BD (IN OPT) IMPROVEMENT NEEDED TO REPEAT 

C EPSERR( IN SWEEP) IMPROVEMENT NEEDED TO REPEAT 

C DIST (IN OPT NEAR 30 ,80) KEEPS KNOTS SEPARATED 

C INDLP NO .  OF PASSES THRU OPT 

C THE FOLLOWING IS THE MAIN PROGRAM FOR VARYKNOT 

C 

DIMENSION INFO(16) 

C 

C COMMON INPUT SERVES AS INPUT TO FXDKNT 

C SEE FXDKNT FOR DEFINITIONS OF VARIABLES 

CDMMDN/INPUT/LX ,XX(100)JU(100) , JADD ,ADDXI(26) .MODE 

C CDMMON OUTPUT SERVES AS OUTPUT FROM FXDKNT 

C SEE FXDKNT FOR DEFINITIONS OF VARIABLES 

COMMON/ OUTPUT /UERROR(lOO) ,  FCTL(lOO) ,XIL(28) ,C0EFL(27 ,4) ,  

* VORDL(28 ,2) ,KNOT ,LMAX ,INTERV 

C 

C COMMON OTHER SERVES AS COMMUNICATION BETWEEN OPT ,SWEEP AND HERE 

C LXI = NUMBER DF INTERIOR KNOTS ,  LXI1 = LXI+1 ,  LXI2 = LXI+2 

C Q NUMERICAL CONTROL VARIABLE USED BETWEEN OPT AND SWEEP 

C CHANGE = DITTO 

C ERROR = CURRENT VALUE OF THE L-2 ERROR - SQUARED 

C ACC = DESIRED ACCURACY QF L-2 ERROR 

C XI(28)= ARRAY FOR KNOTS 

COMMDN/ OTHER / LXI ,LXI1 ,LXI2 ,Q ,  CHANGE ,ERROR ,ACC ,  XI(28) 

C 

C ACC = .i AND ITER = 4 TO 8 SEEM TO BE GOOD VALUES FOR TYPICAL USES 

ACC = .1 
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ITER = 8 

C 

C ***INFD IS SIMPLY AN IDENTIFICATION OF THE DATA*** 

1 READ(5 , 605) (INFO(l) ,1=1 ,16) 

605 F0RMAT(16A5) 

WRITE(6 , 651) (INFO(I) ,1=1 ,16) 

651 F0RMAT(1H1 , 20X , 16A5 / /) 

C 

C READ IN ND .  OF POINTS=LX AND THE DATA XX AND U 

C *** IF NOKNOT . GE . 1 ,  THEN READ IN LXI2=N0KN0T KNOTS*** 

C *** OTHERWISE PROGRAM CHOOSES LXI2 =-NOKNOT EQUISPACED KNOTS 

READ(5 , 610) NOKNOT ,  LX ,  (XX(I) ,  U( l) ,  1=1 ,LX) 

C 

C **CHECK ON GIVEN DATA 

C THESE CHECKS PREVENT USER FROM EXCEEDING BOUNDS ON STORAGE 

C AND FROM PRESENTING UNORDERED XX ARRAY 

IF(IABS(NOKNOT) .GE .  28 .OR .IABS(NOKNOT) .LT .  3 ) GO TO 3 

IF( LX . LT . O .OR .  LX . GT .  100 ) GO TO 4 

WRITE(6 , 610) (I ,  XX(I) ,  U(I) ,  1=1 ,LX) 

WRITE(6 , 612) NOKNOT ,  ITER 

DO 2 L=2 , LX 

IF(XX(L)-XX(L-1)) 6 ,6 ,2 

2 CONTINUE 

GO TO 14 

3 WRITE(6 , 660) 

GO TD 7 

4 WRITE(6 , 662) 

GO TO 7 

6 WRITE(6 , 664) 

7 WRITE(6 , 666) 

GO TD 1 

C 

C **INITIALIZE 

14 IF( NOKNOT .LT .  0) GO TO 25 

C 

C *** READ IN LXI2 = NOKNOT KNOTS *** 

LXI2 = NOKNOT 
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READ(5 , 601) (XI(J) ,  J = 1 ,LXI2) 

601 F0RMAT(6F12 . 6) 

GO TO 30 

C 

C WHEN NOKNOT IS NEG . ,  INTRODUCE -NOKNOT EqUISPACED KNOTS 

25 LXI2 = -NOKNOT 

XI(1) = XX( l) 

XICLXI2) = XX(LX) 

DEL = (XX(LX) - XX(l)) /FLDAT(LXI2-l) 

DO 26 J = 3 ,LXI2 

26 XI(J-I) = XI(J-2) + DEL 

C 

C SET UP INITIAL APPROXIMATION 

30 ADDXI( l) = XI(1) 

ADDXI(2) = XI(LX12) 

LXI1 = LXI2-1 

LXI = LXI1-1 

MODE = 0 

JADD = LXI2 

DO 35 J = 3 ,LXI2 

35 ADDXI(J) = XI(J-I) 

ERROR = FXDKNT(0) 

C ***N0TE .  NODE HAS BEEN SET EQUAL TO 1 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

WRITE(6 , 900) (XI(1) ,  I=1 ,LXI2) 

900 FORMAT(28H KNOTS PRIDR TD OPTIMIZATION /(9F12 .6)) 

C 

C OPTIMIZE KNOTS 

CALL SWEEP(ITER) 

C 

WRITE(6 , 640) 

640 FORMAT(49X ,22H*** FINAL OUTPUT ***/ / /) 

MODE = 1 

JADD = 0 

DUMB = FXDKNT(l) 

C 

GO TO 1 
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610 F0RMAT(214 ,  /(2F12 .8)) 

611 FORMAT (11H GIVEN DATA / /(I4 ,2F14 .8)) 

612 FORMAT(1H /32H NO .  OF INITIAL KNOTS = ,13/ 

1 7H ITER = ,13) 

660 FORMAT(32H1KN0T CONTROL PARAMETER ' NOKNOT ' / 

1 19H NOT WITHIN BOUNDS ) 

662 F0RMATC24H1ND .  OF DATA POINTS ' LX ' / 

1 28H NOT WITHIN BOUNDS 0 TO 100 .) 

664 FORMAT(24H1DATA POINTS NOT READ IN/ 

1 20H IN ASCENDING ORDER . ) 

666 FORMAT(1H / / /43H CORRECT INDICATED INPUT ERROR AND RESTART . ) 

END 

C 
Qsf: £ $ $ $ £ * $$ sfc* * * * * * * * * ** * * * ** + s f e + + + + 

SUBROUTINE SWEEP(ITRR) 

C 

C KVARY+1 = INDEX OF KNOT BEING VARIED 

C SUBROUTINE OPT(I) OPTIMIZES ITH INTERIOR KNOT 

C 

COMMON /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) ,MODE 

COMMON / OUTPUT /UERROR(IOO) , FCTL(100) , XIL(28)
)
C0EFL(27

1
4) ,  

* VORDL(28 ,2) ,KNOT ,LMAX , INTERV 

COMMON / OTHER / L X I , L X I 1 , L X I 2 , C H A N G E , E R R O R ,ACC,  XI(28) 

C AT ALL TIMES ,  ERROR CONTAINS (L2 ERROR)**2 OF CURRENT B . A .  

C 

ITER = ITRR 

C **NEXT CARDS SET NUMERICAL ANALYSIS CONTROLS 

EPSERR = ACC/2 .5 

CHANGE = .4*FL0AT(LXI) 

C 

10 KVARY = LXI 

Q = CHANGE /FLOAT(LXI) 

C *#* THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C*** WRITE (6 ,902) ITER ,q 

C+902 FORMAT (8H ITER ,  q I5 ,E20 .8) 
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CHANGE = 0 .  

PREVER = ERROR 

MODE = 2 

JADD = 0 

KNOT = KNOT - 1 

DUMB = FXDKNT(0) 

20 CONTINUE 

*+* THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C*** WRITE(6 , 900) KVARY 

C*900 F0RMAT(1H / / /8H VARYING ,14 ,I6HTH INTERIOR KNOT) 

C*** WRITE(6 , 901) ERROR 

C*901 FDRMAT(16H SQ .  OF L2-ERRDR ,E16 .6) 

C 

CALL DPT(KVARY) 

KVARY = KVARY -1 

JADD = JADD + 1 

IF( JADD .LE .  1) GO TO 22 

K= JADD 

DO 21 I = 2 ,JADD 

K= K-l 

21 A D D X K K + l ) = ADDXI(K) 

22 ADDXI( l) = XI(KVARY + 2) 

KNOT = LXI1 - JADD 

MODE = 2 

DUMB = FXDKNT(0) 

IF( KVARY .NE .  0 ) GO TO 20 

C THE LAST CALL TO FXDKNT PRODUCES THE B . A .  USING ALL KNOTS 

C SINCE THEN ADDXI CONTAINS ALL KNOTS 

ERROR = DUMB 

C *** THE FOLLOWING TWD CARDS PRODUCE PRINTED OUTPUT OF L1 , L2 , L-INF 

C** JADD = 0 

C** DUMB = FXDKNT(2) 

C 

C **IF CHANGE IN ERROR IS BIG ENOUGH MAKE ANOTHER SWEEP ,  ELSE QUIT 

IF(ABS(PREVER-ERRDR) /PREVER .LE .EPSERR) GO TO 60 

ITER = ITER-1 

19 



C **CHECK NUMBER DF PASSES THROUGH SHEEP 

IF(ITER .EQ .O) GO TO 40 

GO TO 10 

40 CONTINUE 

C 

C IN FINAL VERSION GO TD 40 ,  GO TO 60 ARE REPLACERD BY RETURN 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C++* WRITE(6 , 620) 

RETURN 

60 CONTINUE 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C*** WRITE(6 , 610) 

RETURN 

C*610 FORMAT(54H *** SWEEP DISCONTINUED - INSUFFICIENT CHANGE IN ERROR) 

C+620 FDRMAT (36H *** NO .  OF ALLOWABLE SWEEPS USED UP) 

END 

C 

C 

SUBROUTINE DPT(II) 

C 

C I REFERS TO THE ITH INTERIOR KNOT 

C OPT FINDS THE OPTIMAL ITH KNOT BETWEEN THE I-1ST AND I+1ST KNOTS 

C THE REMAINING KNOTS ARE HELD FIXED .  

C INDLP = A BOUND ON THE NUMBER OF TRIES ALLOWED 

C FOR IMPROVEMENT OF THE ITH KNOT 

C Q = MULTIPLICATION FACTOR WHICH SHOULD DECREASE AS A 

C FUNCTION OF THE NO .  OF SWEEPS THRU SWEEP 

C q IS ALTERED IN SWEEP 

C 

COMMON /INPUT /LX ,XX(lOO) ,U(100) ,JADD .ADDXI(26) .MODE 

COMMON/ OUTPUT /UERROR(IOO) .FCTL(lOO) ,XIL(28) ,C0EFL(27 ,4) ,  

* VORDL(28 KNOT ,LMAX ,INTERV 

COMMON / OTHER / LXI ,LXI1 ,LXI2 ,Q ,CHANGE ,ERROR ,ACC ,  XI(28) 

C 

I = II 
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C **NUMERICAL ANALYSIS PARAMETERS SET HERE 

INDEP=9 

RD = ACC#ERROR /FLOAT(LXI) 

DIST = .0625 

H = XI(I+2)-Xl(I) 

ALOW = XI(I) + DIST+H 

AHIGH = Xl(l+2) - DIST+H 

LPCNT= 0 

MODE = 3 

C 

C **BEGIN SEARCH - FIND THREE VALUES FOR THE ITH KNOT 

C SUCH THAT L2-ERROR AT MIDDLE VALUE ,  A ,  IS LESS THAN 

C ERROR AT LEFT VALUE ,  ALEFT ,  AND AT RIGHT VALUE ,  ARIGHT 

A = XI(I+1) 

E = FXDKNT(A) 

ALEFT = A + q*(XI(I)-A) 

ELEFT = FXDKNT(ALEFT) 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C+** ARIGHT = 0 .  

C*** ERIGHT = 0 .  

C*** WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A ,ARIGHT 

SGN = SIGN(1 . jELEFT-E) 

IF (SGN .GE .O) GO TO 20 

GO TO 60 

C 

C **SEARCHING FDR NEW KNOT TO THE RIGHT 

10 ALEFT = A 

ELEFT = E 

A = ARIGHT 

E = ERIGHT 

20 ARIGHT = A + q*(Xl(I+2)-A) 

C 

C **BUFFER TO PREVENT COALESCING OF KNOTS 

30 IF (AHIGH .GE .ARIGHT) GO TD 40 

AA = AHIGH 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C++* WRITE(6 , 610) I 
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GO TO 199 

C 

40 ERIGHT = FXDKNT(ARIGHT) 

c
 *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

O * * * WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A ,ARIGHT 

IF (E .LE .ERIGHT) GO TO 100 

C 

C **CHECK TO STOP OPT 

IF(E -ERIGHT .LE .RD .DR.  LPCNT .GT .  INDLP ) GO TO 240 

5 LPCNT = LPCNT+1 

IF(SGN . GT . O) GO TO 10 

C 

C *#SEARCHING FOR NEW KNOT TO THE LEFT 

60 ARIGHT = A 

ERIGHT = E 

A = ALEFT 

E = ELEFT 

70 ALEFT = A + Q*(XI(I)-A) 

C 

C 

C **BUFFER TO PREVENT COALESCING OF KNOTS 

80 IF (ALEFT .GE .ALOW) GO TO 90 

AA = ALOW 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C***+ WRITE(6 , 620) I 

GO TO 199 

C 

90 ELEFT = FXDKNT(ALEFT) 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

O * * * WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A ,  ARIGHT 

IF (E .LE .ELEFT) GO TO 100 

C 

C *#CHECK TO STDP OPT 

IF(E - ELEFT .LE .RD .OR.  LPCNT .GT .  INDLP ) GO TO 230 

GO TO 50 

C 

C **REQUIRED 3 VALUES HAVE BEEN FOUND 
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C FOLLOWING CDDE FINDS PT .  AT WHICH HIN OF PARABOLA CURVE PASSING 

C THRU THE ERROR VALUES AT THE PTS ALEFT ,  A ,  ARIGHT OCCURS 

100 DXLEFT = ALEFT - A 

DXRGHT = ARIGHT - A 

DYLEFT = (ELEFT-E)/DXLEFT 

DYRGHT = (ERIGHT-E)/DXRGHT 

DEL = .5/(DYLEFT-DYRGHT)*(DXRGHT+DYLEFT-DXLEFT*DYRGHT) 

EPRED = F+DEL*(DYRGHT+(DEL-DXRGHT) /(ARIGHT-ALEFT)*(DYRGHT-DYLEFT) 

ABEST = A + DEL 

EBEST = FXDKNT(ABEST) 

*** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C*** WRITE (6 ,900) ELEFT ,EBEST ,ERIGHT ,ALEFT ,ABEST ,ARIGHT 

C 

C **DETERMINE WHETHER ABEST GIVES BEST APPRX AND MAKE APPROPRIATE 

SWITCHING OF THE AI ' S DEPENDING ON SIGN OF DEL 

IF (EBEST .LE .E) GO TO 130 

IF(DEL)110 ,200 ,120 

110 ALEFT = ABEST 

ELEFT = EBEST 

GO TO 170 

120 ARIGHT = ABEST 

ERIGHT = EBEST 

GO TO 170 

130 IF(DEL)140 ,200 ,150 

140 ARIGHT = A 

ERIGHT = E 

GO TO 160 

150 ALEFT = A 

ELEFT = E 

160 A = ABEST 

E = EBEST 

C 

C ++FOLLOWING TESTS DETERMINE WHETHER OR NOT TO 

C REITERATE PARABDLA MINIMIZATION PHASE 

170 IF (ABS(EPRED-EBEST) .LT .5 .+RD) GO TO 210 

IF(LPCNT .GT . INDLP) GO TO 200 

LPCNT = LPCNT+ i 
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GO TO 100 

C 

190 ETRY = FXDKNT(AA) 

IF (E .LT .ETRY) GO TO 200 

A = AA 

E = ETRY 

200 CHANGE = CHANGE + ABS(A -XI(I+1))/H 

XICI+1) = A 

ERROR = E 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C++* WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A ,ARIGHT 

RETURN 

C 

C IN FINAL VERSION GO TO 210 ,  IS REPLACED BY GO TO 200 

210 CONTINUE 

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C*** WRITE(6 , 640) LPCNT 

GO TO 200 

230 A = ALEFT 

E = ELEFT 

C *** T H I S I S TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C*** WRITE(6 , 640) LPCNT 

GO TO 200 

240 A = ARIGHT 

E = ERIGHT 

C *#* THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT *** 

C*** WRITE(6 , 640) LPCNT 

GO TO 200 

C*610 FORMAT(46H *** OPT DISCONTINUED - KNOT BEING OPTIMIZED ( ,12 ,35K IS 

C****MOVED TOO CLOSE TO RIGHT NEIGHBOR) 

C*620 FORMAT(46H *## OPT DISCONTINUED - KNOT BEING OPTIMIZED ( ,I2 ,34H IS 

C****MOVED TOD CLOSE TO LEFT NEIGHBOR) 

C*640 FORMAT(24H *** OPT DISCONTINUED AT ,I4 ,31H - INSUFFICIENT CHANGE IN 

C++* * ERROR) 

C*900 FORMAT(25H PARABOLA - ERROR VALUES ,3E20 .6/12X ,13HAI VALUES 

C++* 1 3E20 . 6) 

END 

24 



FUNCTION FXDKNT (ARG) 

C THE FUNCTION RETURNS THE SQUARE OF THE L2-ERR0R 

DOUBLE PRECISION TRPZWT ,SUM 

LOGICAL M0DE3 

DIMENSION WEIGHT(IOO) ,CUBERR(100) 

COMMDN / WANDT / TREND(lOO) , TRPZWT(100) ,  PRINT(200) 

COMMON /INPUT /LX ,XX(lOO) ,U(100) ,JADD ,ADDXI(26) ,MODE 

C U(L) = FCT TO BE APPR AT XX(L) ,  L=1 , LX .  

C XX(L) IS ASSUMED TO BE NONDECREASING WITH L 

C ADDXI(I) = I-TH KNOT TD BE INTRODUCED ,  1=1 ,JADD 

C MODE = 0 ,1 ,2 ,3 .  SEE COMMENTS BELOW ( AND IN NUBAS) 

COMMON / OUTPUT /UERRDR(lOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4)
5 

* VORDL(28 ,2) ,KNOT ,LMAX , INTERV 

C UERROR(L) = ERROR OF BEST L2 APPROX TO U ,  L=1 , LX 

C KNOT = CURRENT NO .  OF KNOTS (INCL BDRY KNOTS) 

C INTERV = KNOT - 1 = CURRENT NO .  OF INTERVALS (POL .PIECES) 

C XIL(K) , K=1 , KNOT ,  CURRENT (ORDERED) SET OF KNOTS 

C THE MAXIMUM ERROR OCCURS AT XX(LMAX) 

C IF ARG=1 ,  FCTL(L) CONTAINS THE CURRENT B . APPROX TO U AT XX(L) 

C CDEFL(I , . ) CONTAINS THE POL . COEF .  ON I-TH INTERVAL FOR B . A .  

C VORDL(I , . ) CONTAINS VALUE AND DERIV .  OF B . A .  AT XIL(I) 

COMMON / BASIS /FCT(100 ,30) ,V0RD(30 ,28 ,2) ,BC(30) ,ILAST 

C FCT (L ,M) = BASIS FCT M AT XX(L) 

C VORD(M , K , L) CONTAINS THE ORDS (L=l) AND SLOPES (L=2) OF FCT M 

C AT THE KNOT INTRODUCED AS K-TH .  CORRELATION TO ORDERING OF 

C KNOTS BY SIZE IS DONE VIA IORDER ,  I . E . ,  ORD AND SLOPE AT 

C XIL(K) ARE IN VORD(M , IORDER(K) , I) .  

C BC(I) = COORDINATE OF U (AND OF B . A .  TO U) WRTO I-TH O .N .FCT 

C ILAST = CURRENT NO .  OF BASIS FCTNS 

COMMON / LASTS /I0RDER(28) ,INSIRT(30) ,XKNOT 

C THE FCT ILAST (TO BE) INTRODUCED LAST HAS ADDITIONAL KNOT 

C XKNDT ,  THE KNOT JUST INTRO-

C DUCED HAS INDEX INSERT IN XIL , INSERT IS SAVED IN INSIRT(ILAST) 

C FOR POSSIBLE REPLACEMENT OF KNOTS LATER ON (SEE M0DE=2 , 3) .  

C ***LOCAL VARIABLES 
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C XSCALE = XX(LX) - XX( l) ,  USED TO NORMALIZE INNER PRODUCT 

C = LENGTH DF THE INTERVAL DF INTEGRATION 

C KNDTSV = NO .  OF KNOTS USED IN MOST RECENT CALL TO FXDKNT 

C ERBUT l = SQ .  OF L2-ERR0R OF APPROX USING ALL BUT THE ONE 

C KNOT BEING VARIED ( USED IN MODE = 3) 

C CUBERR = UERROR OF B . A .  BY CUBIC POL-S (NEEDED FOR MODE = 2) 

C M0DE3 = TRUE OR FALSE DEP .  ON WHETHER PREV .  CALL WAS IN 

C MODE=3 OR NOT 

EQUIVALENCE (IPRINT ,CHANGE) 

C ARG IS EITHER FIXED PDINT (M0DE .NE .3) TO PICK PRINT-OUT OPTION 

C OR IS FLOATING POINT (M0DE=3) TO GIVE NEW VALUE OF KNOT VARIED 

CHANGE = ARG 

IF (MODE .GT .0) GO TO 29 

C 

C *#* M0DE=0* COMPUTE BASIS FCT 1 THROUGH 4 AND .A.  TO U WRTO THESE 

C THEN SET MODE = 1 AND PUT UERROR INTO U .  

XSCALE = XX(LX) - XX(l) 

DD 10 1=5 ,30 

10 INSIRT(I) = 0 

DD 11 L=1 ,LX 

UERROR(L) = U(L) 

TREND(L) = T(XX(L)) 

11 WEIGHT(L) = W(XX(L)) 

DO 12 L=2 ,LX 

12 TRPZWT(L) = (XX(L)-XX(L-1))/4 .*(WEIGHT(L-1)+WEIGHT(L)) 

C 

XIL(l) = ADDXI(l) 

XIL(2) = ADDXI(2) 

IQRDER(l) = 1 

I0RDER(2) = 2 

KNOT = 2 

INTERV = 1 

DO 19 1=1 ,4 

ILAST = I 

CALL NUBAS 

DO 19 L=1 ,LX 

19 UERROR(L) = UERROR(L) - BC(I)*FCT(L , I) 
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MDDE = 1 

DD 20 L = 1 ,  LX 

20 CUBERR(L) = UERROR(L) 

C IF (JADD .LE .2) ,  ONLY B .APPROX BY CUBICS IS COMPUTED 

C OTHERWISE ,  ADDXI(I) ,  1 .GT .2 ,  CONTAINS ADDITIONAL KNOTS 

JADD = JADD - 2 

IF (JADD .LE .O) GO TO 60 

DD 21 1=1 ,JADD 

21 ADDXI(I) = ADDXI(1+2) 

GO TO 51 

C 

29 GO TO (40 ,40 ,30) ,MODE 

C 

C *** MDDE=3 *** MERELY REPLACE THE LAST KNOT INTRODUCED BY 

C CHANGE AND RECOMPUTE L2 ERROR .  CHANGE ENTERS 

C VIA THE ARGUMENT JPRINT = CHANGE .  

C THIS MODE SHOULD BE USED FOR 

C MINIMIZING THE L2-ERR0R WRTO THE KNOT 

C INTRODUCED LAST AS IT MINIMIZES THE COMP WORK 

C IF M0DE3 = TRUE (I .E . ,  THE PRECEDING CALL TO FXDKNT 

C WAS IN M0DE=3) ,THE PROGR WILL ASSURE THAT CHANGE 

C HAS THE SAME ORDER REL TO THE OTHER KNOTS AS THE 

C PREV INTRODUCED VALUE FDR KNOT .  OTHERWISE 

C IF MDDE3=FALSE(THE PRECEDING CALL WAS IN SOME OTHER MODE) 

C ,  A FCT IS ADDED WITH CHANGE AS THE ADD .  KNOT .  

C UERROR IS ASSUMED TO CONTAIN ERROR OF B . A .  TO U WRTO 

C ALL PREV FCTNS .  **NOTE** IF THE NEXT CALL TO FXDKNT 

C IS IN A MODE OTHER THAN 3 ,  THE CHANGE PROPOSED 

C NOW WILL BE MADE PERMANENT .  

30 XKNOT = CHANGE 

IF (MDDE3) GO TO 35 

M0DE3 = .TRUE .  

ERBUT1 = FXDKNT 

MODE = 2 

CALL NUBAS 

KNOTSV = KNOT 
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MODE = 3 GO TO 36 

35 CALL NUBAS 

36 FXDKNT = ERBUT l - BC(ILAST)/XSCALE*BC(ILAST) 

RETURN 

C 

C ***M0DE=1 ,2*** RETAIN THE FIRST KNOT KNOTS INTRODUCED EARLIER 

C (HENCE THEIR CORRESP FCTNS) BUT REPLACE FURTHER 

C FCTNS (IF ANY) BY FCTNS HAVING ADDITIONAL 

C KNOTS ADDXI(I) , 1=1 , JADD ,  HENCE 

C IF KNOT .LT .KNDTSV(=NO .OF KNOTS USED IN PREV CALL 

C 40 THROUGH 49 RESTORES ARRAYS IORDER . XIL ,  UERROR TO THE STATE OF 

C ILAST = KNDT + 2 ,  INVERTING THE ACTION OF DO 11 . . .  TO 14 IN NUBAS 

40 IF (KNOT .LT .KNDTSV) GO TO 42 

KNOT = KNOTSV 

IF ( .NOT .M0DE3) GO TO 50 

DO 41 L=1 ,LX 

41 UERROR(L) = UERROR(L) - BC(ILAST)*FCT(L , ILAST) 

GO TO 49 

42 DO 43 L=1 , LX 

43 UERRDR(L) = CUBERR(L) 

IF (KN0T .LE .2) GO TO 48 

IDUM = KNDT + 1 

DO 45 IO=IDUM ,KNOTSV 

INSERT = INSIRT(ILAST) 

ILM3 = ILAST - 3 

DO 44 K=INSERT , ILM3 

IDRDER(K) = IDRDER(K+1) 

44 XIL(K) = XIL(K+ l) 

45 ILAST = ILAST-1 

DO 47 1=5 ,ILAST 

DO 47 L=1 ,LX 

47 UERROR(L) = UERROR(L) - BC(I)*FCT(L , I) 

GO TO 49 

48 XIL(2) = XIL(ILAST-2) 

I0RDER(2) = 2 

KNOT = 2 

49 IF (JADD .GT .O) GO TO 51 
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ILAST = KNOT + 2 

INTERV = KNOT - 1 

GO TO 60 

C 

C ***M0DE=1 ,2*** ADD JADD BASIS FCTNS ,  I . E . ,  FOR 10=1 , JADD ,  

C CONSTRUCT FCT ILAST WITH ONE MORE KNOT ,  VIZ .  

C XKNOT=ADDXI(10) ,  THAN THE PREVIOUS LAST FCT ,  

C ORTHONORMALIZE IT OVER ALL PREVIOUS FCTNS ,  THEN 

C COMPUTE THE COORDINATE BC(ILAST) OF U WRTO IT ,  

C SUBTRACT OUT ITS COMPONENT FROM UERROR .  

50 IF (JADD .LE .0) GO TO 61 

51 DO 52 10=1 ,JADD 

XKNDT = ADDXI(IO) 

CALL NUBAS 

DO 52 L=1 ,LX 

52 UERROR(L) = UERROR(L) - BC(ILAST)*FCT(L ,ILAST) 

C 

60 FXDKNT= DOT(31 , 2) /XSCALE 

KNOTSV = KNOT 

61 M0DE3 = .FALSE .  

IF (IPRINT .EQ .O) RETURN 

C VARIOUS PRINTING IS DONE DEP ON THE ARG = IPRINT 

GO TO (70 ,80 ,90) ,IPRINT 

C 

C COMPUTE COEFFICIENTS OF BEST APPROX AND PRINT 

C **** BEST APPROXIMATION PRINTOUT **** 

FORMAT IS 

C KNOTS XI(J) CUBIC COEFFICIENTS P(I , J) IN 

C INTERVAL (XI(J) ,  XI(J+1)) 

C ERROR CURVE (SCALED) 

C 

C THE FOLLOWING FORTRAN CODE FINDS VALUES AT X OF THE 

C APPROXIMATION FROM THIS OUTPUT 

C I=LXI 

C 1 A=X-XI(1) 

C IF(A) 2 ,4 ,4 

C 2 1=1-1 
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C IF(I) 3 ,3 ,1 

C 3 1=1 

C 4 V=P(1 ,I)+A*(P(2 ,I)+A*(P(3 ,I)+A*P(4 ,I))) 

C 

70 WRITE(6 , 610) 

DO 72 1=1 ,KNOT 

ILOC = IORDER(I) 

DO 72 L= l , 2 

SUM = 0 .DO 

DO 71 J=l ,ILAST 

71 SUM=SUM + BC(J)*VORD(J ,ILOC ,L) 

72 VORDL(I , L) = SUM 

CALL EVAL 

DO 73 1=1 ,INTERV 

WRITE(6 , 620) I ,XIL(I) 

73 WRITE (6 ,630) (J ,CDEFL(I ,J) ,J=1 ,4) 

WRITE (6 ,620) KNOT ,XIL(KNDT) 

610 FORMAT(42X ,5HKNDTS ,22X ,18HCUBIC COEFFICIENTS / /) 

620 FDRMAT(35X ,  3HXI( ,  12 ,  3H) = ,  F12 . 6) 

630 FORMAT(67X , 2HC( , 11 , 3H) = , E16 . 6) 

C 

C **COMPUTE L2 ,  LI ,  MAX ERRORS AND PRINT 

80 ERRL2 = SQRT(FXDKNT) 

ERRL99= 0 .  

DD 82 L=1 ,LX 

DIF = ABS(UERRDR(L)*WEIGHT(L)) 

IF (ERRL99 .GT .DIF) GD TO 81 

LMAX = L 

ERRL99 = DIF 

81 ERRL1 = ERRL1+ DIF 

82 CONTINUE 

ERRL1 = ERRL1 /FLDAT(LX) 

WRITE(6 , 623) ERRL2 ,  ERRL1 ,  ERRL99 ,XX(LMAX) 

C *** THE FOLLOWING CARD IS TEMPORARY 

GO TO (90 ,96 ,96)IPRINT 

C 

C ** SCALE ERROR CURVE AND PRINT 
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90 IE = U 

SCALE = 1 .  

IF (ERRL99 .GE .10 .) GO TO 92 

DO 91 IE=1 ,9 

SCALE = SCALE*10 .  

IF (ERRL99*SCALE .GE .10 .) GO TO 92 

91 CONTINUE 

92 DD 93 L= l . LX 

93 PRINT (L) = UERROR(L)*SCALE 

GO TO (94 ,95 ,95) .IPRINT 

94 WRITE (6 ,621) IE ,(L ,XX(L) ,FCTL(L) ,PRINT(L) ,L=1 ,LX) 

GO TO 96 

95 WRITE (6 ,622) IE ,(L ,XX(L) ,PRINT(L) ,L=1 ,LX) 

96 RETURN 

621 FORMAT(1H / /45X ,36HAPPR0XIMATI0N AND SCALED ERROR CURVE /38X ,  

*10HDATA POINT , 7X ,  13HAPPR0XIMATIDN ,3X ,  16HDEVIATI0N X 1 0 E + , H / 

*(31X , I4 ,F16 .8 ,F16 .8 ,F17 .6)) 

622 FORMAT(1H / /58X ,  11HERR0R CURVE /38X ,  10HDATA POINT ,  23X ,  

116HDEVIATI0N X 10E+ ,Il /(31X ,14 ,F16 .8 ,16X ,F17 .6)) 

623 FORMAT(1H / / /40X20HLEAST SQUARE ERROR = ,E20 .6 / 

1 40X2OHAVERAGE ERROR = ,E20 .6 / 

2 40X20HMAXIMUM ERROR = ,F20 .6 ,3H AT .F12 .6 / / / ; 

END 

C 

SUBROUTINE INTERP 

C 

C COMPUTE THE SLOPES V0RDL(I , 2) ,  I=2 ,KN0T-1 AT INTERIOR 

C KNOTS OF CUBIC SPLINE FOR GIVEN VALUES V0RDL(I ,1) ,1=1 ,KNOT 

C AT ALL THE KNOTS AND GIVEN BOUNDARY DERIVATIVES 

DIMENSION D(28) ,  DIAG(28) 

CDMMON / OUTPUT /UERROR(iOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4) ,  

* VORDL(28 ,2) ,KNOT ,LMAX , INTERV 

DATA DIAG(l) ,D(l)/1 . ,0 . / 

DO 10 M=2 , KNOT 

D(M) = XIL(M) - XIL(M-l) 

10 DIAG(M) = (VORDL(M ,1)-V0RDL(M-1 ,1))/D(M) 
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DD 20 M=2 , INTERV 

VORDL(M , 2) = 3 .*(D(M)*DIAG(M+l) + D(M+1)*DIAG(M)) 

20 DIAG(M) = 2 .*(D(M)+D(M+l)) 

DO 30 M=2 , INTERV 

G = -D(M+1) /DIAG(M-1) 

DIAG(M) = DIAG(M) + G*D(M-1) 

30 VORDL(M , 2) = V0RDL(M , 2) + G*V0RDL(M-1 ,2) 

NJ = KNOT 

DD 40 M=2 , INTERV 

NJ = NJ - 1 

40 VORDL(NJ , 2) = (V0RDL(NJ ,2) - D(NJ)*V0RDL(NJ+1 ,2)) /DIAG(NJ) 

RETURN 

END 

C 

C 

FUNCTION DDT (M ,INDEX) 

C COMPUTE INNER PRODUCT OF FCT M WITH FCT ILAST (INDEX=l) OR 

C UERRDR (INDEX=2) 

DOUBLE PRECISION DDOT ,G ,TRPZWT 

CDMMON / WANDT / TREND(IOO) ,TRPZWT(100) ,G(100) 

CDMMON /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) ,MODE 

COMMON / OUTPUT /UERROR(IOO) . FCTLC lOO) , XIL(28)
J
C0EFL(27

1
4) ,  

* VORDL(28 ,2) ,KNOT ,LMAX ,INTERV 

COMMON / BASIS /FCT(100 ,30) ,V0RD(30 ,28 ,2) ,BC(30) ,ILAST 

GO TO (10 ,30) .INDEX 

10 IF (M .EQ .ILAST) GO TO 20 

DD 11 L=1 , LX 

11 G(L) = FCT(L ,1)*FCTL(L) 

GO TO 80 

20 DO 21 L=1 , LX 

21 G(L) = FCTL(L)*FCTL(L) 

GO TO 80 

30 IF (M .EQ .31) GO TO 40 

DO 31 L=1 , LX 

31 G(L) = FCTL(L)*UERROR(L) 

GO TO 80 
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40 DO 41 L=1 ,LX 

41 G(L) = UERROR(L)*UERROR(L) 

80 DDOT = O .DO 

DO 81 L=2 ,LX 

81 DDOT = DDOT + (G(L-l) + G(L))*TRPZWT(L) 

C 

DOT = DDOT 

RETURN 

END 

C 

c 
SUBROUTINE EVAL 

C COMPUTE POL .  COEFF COEFL(I ,K) OF FCT ILAST FROM VORDL ,  

C THEN COMPUTE FCTL(L) = (FCT ILAST)*TREND AT XX(L) , L=1 , LX 

C 

DOUBLE PRECISION G , TRPZWT 

COMMON / WANDT / TREND(IOO) ,TRPZWT(100) ,G(100) 

COMMON /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) ,MODE 

COMMON / DUTPUT /UERROR(lOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4) ,  

* V0RDL(28 ,2) ,KNOT ,LMAX , INTERV 

DO 10 1=1 ,INTERV 

COEFL(I , 1) = VDRDL(I , 1) 

C0EFL(I , 2) = VORDL(I , 2) 

DX = XIL(I+ l) - XIL(I) 

DUM1 = (VORDL(1+1 ,1)-VORDL(I ,1))/DX 

DUM2 = V0RDL(I ,2)+V0RDL(I+1 ,2)-2 .*DUM1 

C0EFL(I , 3) = (DUM1-DUM2-V0RDL(1 ,2))/DX 

10 COEFL(I , 4) = DUM2 /DX /DX 

C 

J = 1 

ISWTCH = 1 

DO 20 L=1 ,X 

GO TO 

11 IF (J .EQ .INTERV) GO TO 

IF (XX(L) .LT .XIL(J+l)) G O T O 

J = J + 1 

(11 ,13) ,ISWTCH 

12 

13 
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GO TO 11 

12 ISWTCH = 2 

13 DX = XX(L) - XIL(J) 

20 FCTL(L) = (COEFL(J , l)+DX*(C0EFL(J ,2)+DX*(COEFL(J ,3) 

* +DX+COEFL(J ,4))) )*TREND(L) 

RETURN 

END 

C 

C 

SUBROUTINE NUBAS 

DOUBLE PRECISION SUM 

C0MMDN /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) .MODE 

COMMON / OUTPUT /UERRDR(lOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4) ,  

* VORDL(28 ,2) ,KNOT ,LMAX ,INTERV 

COMMDN/ BASIS /FCT(100 ,30) ,V0RD(30 ,28 ,2) ,BC(30) ,ILAST 

COMMDN / LASTB /IDRDER(28) ,INSIRT(30) ,XKNOT 

C C0EF(IC , . ) CONTAINS THE POL COEFFICIENTS OF FCT M FOR INTER-

C VAL TO THE RIGHT OF XI(IC) ,  IC=ICM , ICM+M-3 ,  

C WITH ICM = M*(M-7) /2 + 10 (WITH DBVIDUS MODS FOR MODE . 4) 

C THE FCT ILAST (TD BE) INTRODUCED LAST ,  HAS ITS VALUES AT THE 

C THE POINTS XX(L) IN FCTL(L) ,  HAS FIRST INDEX ICLAST 

C IN COEF AND XI ,  HAS ADDITIONAL KNOT XKNOT ,  THE KNOT KNOTS 

C FOR IT ARE CONTAINED ,  IN INCREASING ORDER ,  IN XIL , ITS COR-

C RESPONDING ORDS AND SLOPES ARE IN VORDL ,  THE KNDT JUST INTRO-

C DUCED HAS INDEX INSERT IN XIL , INSERT IS SAVED IN INSIRT(ILAST) 

C FOR POSSIBLE REPLACEMENT DF KNOTS LATER ON (SEE M0DE=2 , 3) .  

DIMENSION TEMP(30) ,XI(381) ,COEF(381 ,4) 

IF (MODE .GT .O) GO TO 8 

c
 ***CONSTRUCT FCT ILAST FOR ILAST .LE .4 

XI(ILAST) = XIL(l) 

ICLAST = ILAST 

ILM1 = ILAST-1 

IF (ILAST .GT .2) GO TO 7 

IF (ILAST .Eq .2) GO TO 6 

C FIRST BASIS FCT IS A CONSTANT 

VORDL(1 , 1) = 1 .  
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VORDL(2 , 1) = 1 .  

VDRDL( l , 2) = 0 .  

V0RDL(2 , 2) = 0 .  

GO TO 67 

C SECOND BASIS FCT IS A STRAIGHT LINE 

6 VORDL(2 , 2) = V0RDL(l , l)/(XIL(2) - XIL( l))*2 .  

VDRDL(1 , 2) =-V0RDL(2 , 2) 

C 

7 VORDL(2 , 1) = - V0RDL(2 , l) 

VORDL(2 , 2) = - VORDL(2 , 2) 

GO TO 59 

C 

8 GO TO (10 ,10 ,14) .MODE 

c
 ***SET UP CONSTANTS DEP .ON ILAST .  INSERT NEW KNOT INTO XIL 

C AND UPDATE VORD FOR FCT M , M=1 , ILAST-1 

10 KNOT = KNOT + 1 

ILAST = KNOT + 2 

ICLAST = ILAST*(ILAST-7)/2 + 10 

ILM1 = ILAST-1 

INTERV = KNOT - 1 

DO 11 INSERT=2 ,INTERV 

IF (XKNOT .LT .XIL(INSERT)) GO TO 12 

11 CONTINUE 

GO TO 95 

12 IF (XKNOT .LE .XIL(INSERT-l)) GO TO 95 

10 = KNOT 

DO 13 L=INSERT , INTERV 

XIL(I0+1) = XIL(IO) 

13 IDRDER(I0+1) = IORDER(10) 

IORDER(INSERT) = KNOT 

14 XIL(INSERT) = XKNOT 

DX = XKNOT - XIL(l) 

DD 15 1=1 ,4 

VORD(I . KNOT ,  l)=COEF(1 ,1)+DX*(C0EF(1 ,2)+DX*(C0EF(I ,3) 

* +DX*CDEF(I ,4))) 
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15 VDRD(I , KNOT ,2)=C0EF(I ,2)+DX*(2 .*COEF(I ,3)+DX*3 .*C0EF(I ,4)) 

ID = 4 

IBOUND = 4 

DO 19 1=5 , ILM1 

ID = ID + I - 4 

IBOUND = IBOUND + 1 - 3 

17 IF (ID .EQ .IBOUND) GO TO 18 

IF (XKNOT . LT . XKID+1)) GO TO 18 

ID = IX + 1 

GO TO 17 

18 DX = XKNOT - XI(ID) 

VDRD(I , KNOT ,  1)=COEF(ID ,1)+DX#(COEF(ID ,2)+DX*(COEF(lD ,3) 

* +DX*COEF(ID , 4))) 

19 VORD(I ,KNOT ,2)=COEF(ID ,2)+DX*(COEF(ID ,3)*2 .+DX*3 .*COEF(ID ,4)) 

C 

C DEFINE LAST BASIS FUNCTION 

GD TO (30 ,40 ,50) ,MODE 

C *** MODE=1 *** ADD ILAST-TH BASIS FUNCTION .  CONSTRUCT FROM FCT 

C ILAST-1 BY REFLECTING THE PART OF THE LATTER TO 

C THE RIGHT OF XKNOT ACROSS THE X-AXIS ,  THEN INTER 

C PDLATING .  THIS SHOULD INDUCE ONE MORE OSCILLATIO 

C N IN FCT ILAST THAN IN FCT I-1AST-1 

C 

29 MDDE = 1 

30 V0RDL(1 , 2) = V0RD(ILM1 ,1 ,2) 

DO 31 K= l , INSERT 

ILOC = IORDER(K) 

31 VORDL(K , 1) = V0RD(ILM1 ,ILOC ,1) 

DD 32 K=INSERT , INTERV 

ILOC = I0RDER(K+1) 

32 VORDL(K+1 , 1) =-VDRD(ILMl ,ILOC ,1) 

VORDL(KNOT , 2) =-VORD(ILMl ,2 ,2) 

GO TO 55 

C 

C *** M0DE=2 *** REPLACE FCT ILAST BY INTERPOLATING IT AT THE 

C CURRENT SET OF KNOTS .  IF FCT ILAST HAS NOT BEEN 

C PREVIOUSLY DEF (INSIRT(ILAST)=0)(SEE 9 ABOVE ,  
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C ALSO MAIN AT 10)) SET MDDE=1 , PROCEED IN THAT MODE 

C 

40 IF (INSIRT(ILAST) .EQ .O) GO TO 29 

VORDL(1 , 1)=VORD(ILAST , 1 , 1) 

VORDL(1 , 2)=VORD(ILAST , 1 , 2) 

ID = ICLAST 

IBOUND = ICLAST + ILAST - 4 

DO 43 K=2 , INTERV 

41 IF (ID .EQ .IBOUND) GO TO 42 

IF (XIL(K) . LT . XKID+1)) GO TO 42 

ID = ID +1 

GO TO 41 

42 DX = X I L 0 0 - XI (ID) 

43 VORDL(K , 1) = C0EF(ID ,1)+DX*(C0EF(ID ,2)+DX(C0EF(ID ,3) 

* +DX+COEF(ID , 4))) 

VORDL(KNOT , 1)=V0RD(ILAST , 2 , 1) 

VORDL(KNOT , 2)=VORD(ILAST , 2 , 2) 

GO TO 55 

C 

C *** M0DE=3 *** CHANGE FCT ILAST BY CHANGING JUST THE KNOT INTRO 

C DUCED LAST 

C 

50 ID = ICLAST + INSERT - 1 

DX = XKNOT - XI(ID) 

XI(ID) = XKNOT 

IF (DX .GE .O .) GO TO 51 

ID = ID - 1 

DX = XKNOT - XI(ID) 

51 VORDL(INSERT , 1) = C0EF(ID ,1) +DX*(C0EF(ID ,2)+DX*(COEF(ID ,3) 

* +DX+COEF(ID , 4))) 

C 

C *** INTERPOLATE 

55 CALL INTERP 

GO TO (57 ,57 ,59) .MODE 

57 ID = ICLAST - 1 

DO 56 10=1 ,INTERV 

ID = ID + 1 
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56 XI(ID) = XIL(IQ) 

INSIRT(ILAST) = INSERT 

c
 ORTHONORMALIZE FCT ILAST OVER PREVIOUS (ORTHONORMAL) SET 

C THEN COMPUTE THE COMPONENT BC(ILAST) OF UERROR WRTO IT 

C FINALLY ,STORE THE VARIOUS REPRESENTATIONS OF FCT ILAST 

C 

59 CALL EVAL 

DO 69 1=1 , ILM1 

TEMP(I) = - DOT(I , 1) 

DO 69 L=1 ,LX 

69 FCTL(L) = FCTL(L) + TEMP(1)*FCT(L , I) 

DO 61 K=1 , KNOT 

ILOC = IORDER(K) 

DO 61 L=1 , 2 

SUM = 0 .DO 

DO 68 1=1 ,ILM1 

69 SUM = SUM + TEMP(I)*VORD(l , ILOC ,L) 

61 VORDL(K , L) = VORDL(K , L) + SUM 

67 CALL EVAL 

C = SQRT(D0T(ILAST ,1)) 

BC(ILAST) = D0T(ILAST , 2) / C 

DO 62 K=1 , KNOT 

ILOC = IORDER(K) 

DO 62 L=1 ,2 

VORDL(K , L) = VORDL(K ,L)/C 

62 VORD(ILAST , ILDC , L) = VORDL(K , L) 

ID = ICLAST - 1 

DO 63 10=1 ,INTERV 

ID = ID + 1 

DO 63 L=1 , 4 

63 CDEF(ID , L) = C0EFL(10 ,L)/C 

DD 64 L=1 , LX 

64 FCT(L , ILAST) = FCTL(L) /C 

RETURN 
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C *** THIS OUTPUT INDICATES A FAILURE CONDITION *** 

95 WRITE (6 ,950) XKNOT , ILAST 

950 FORMAT (15H *** NEW KN0T , E20 . 8 , 13H FOR FUNCTION , 13 , 5OH OUT OF BO 

*UNDS OR COINCIDENT WITH A PREVIOUS KN0T . /36H *** EXECUTION CANNO 

*T BE CONTINUED) 

STOP 

C 

END 

C 

C***********TREND AND WEIGHT FUNCTIONS********************************* 

C 

FUNCTION T(Z) 

T = 1 .  

RETURN 

END 

C 

FUNCTION W(Z) 

W = 1 .  

RETURN 

END 
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