
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1968

Least Squares Cubic Spline Approximation, II - Variable Knots Least Squares Cubic Spline Approximation, II - Variable Knots

Carl de Boor

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
68-021

de Boor, Carl and Rice, John R., "Least Squares Cubic Spline Approximation, II - Variable Knots" (1968).

Department of Computer Science Technical Reports. Paper 149.

https://docs.lib.purdue.edu/cstech/149

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Least Squares Cubic Spline Approximation II

Variable Knots

Carl deBoor and John R. Rice

April 1968

Department of Computer Sciences

Purdue University

CSD T R 21

Versions of the spline programs of deBoor and Rice are available in the program library

of IMSL as ICSFKU and ICSVKU. Contact

International Mathematical Statistical Libraries

GNB Building

7500 Bell aire

Houston, Texas 77036

Retyped March 1994

2 Mathematical Background

We assume that the reader is familiar with FIXEDKNOT and we use the notation of that

paper. We recall that a spline of degree n with k knots E = {£;|a = £0 < £1 < £k+i = 6}

may be defined by
k rc

S{A, S, x) = 5 > (* - tfl +

where A = (oi, a 2 , . - -, at+n+i)-

We consider a function f[x) defined on a finite set

X = {x,-|a < x; < a;,-+i < 6 , i = 1 , 2 , . . . , m] .

Given a value n for the degree and a number h of knots we have the

Approximation Problem. Determine the spline j SO that

(2-1) [J [f (x) - S (A , Z t x) } 2 } ±

is minimized among all splines of degree n with k knots.

Since f (x) is only defined on the finite set X , one must use a quadrature formula for the

integral in this problem. We assume this is to be done (our algorithm uses the trapezoidal

rule), but retain the integral sign for simpler notation.

There are three basic mathematical questions associated with this problem, namely those

of the existence, uniqueness and characterization of E", x). We discuss these briefly.

The Existence Question. Simple examples show that this least-squares approximation prob-

lem does not always have a solution, e.g., take f(x) = |rc| on [- l , + l] and approximate

by a cubic spline with three knots. One may generalize the concept of spline by allow-

ing the knots to coalesce with the possibility of a resultant loss of smoothness where the

knots coalesce. These are called extended splines and are presented in [6], see also [4].

In this broader set of approximating functions there always exists a best least-squares

approximation. In order to avoid technical difficulties, the algorithm presented in this

paper does not allow the knots to coalesce.

The Uniqueness Question. It is known from general theoretical results [6], from specific

theoretical results [C. deBoor, 1963, unpublished] and from examples that the solution

of the least-squares nonlinear approximation problem need not be unique. Consider

2

the approximation to a:3 on [-1,+1] by a broken line with one break. If the break occurs

for x = 0, then by symmetry there is no break. But no best least-squares nonlinear

spline approximation can have an inactive knot (see the next section). Thus the best

approximation does not have a knot at x = 0 and, again by symmetry, there are at

least two best approximations. This line of reasoning can be applied in general.

Furthermore, there may be approximations which are local minima of (2.1), but which

are not best approximations. The algorithm presented here attempts to obtain a local
minimum of (2.1) and hence even if it converges there is no guarantee that a best

approximation has been obtained.

Characterization. There are no known necessary and sufficient conditions for 5(A" , E", a;) to

be a best approximation. The algorithm here is based on the usual necessary conditions

that one derives for a local minima.

Strict Monotonicity of the Error. It is known [deBoor, 1963, unpublished] for any specific

f(x) and fixed degree n that if the error

E\ = J[f(x)-S(A ' ,E ' ,x)}
2

of the best approximation with k + 1 knots is not zero, then the error E^+i of the best

approximation with ft + 1 knots is strictly less than Ek, i.e., Ek+1 < Ek- See [4] for

details and extension.

Inherent Limitations of the Algorithm. The problem which this algorithm attempts to solve

cannot be solved by an algorithm. Thus this algorithm is limited. This theoretical limi-

tation is manifested in several different ways. First, there is the problem of ascertaining

when "convergence" has taken place. This is required on two different levels, namely,

for the whole algorithm and for the adjustment of knots within this latter problem.

The decision that "convergence" has taken place is made on the basis of certain ad hoc

numerical tests which are not infallible.

These decisions are delicate in view of the need to achieve some efficiency. Thus these

tests have been developed on the basis of experience with a certain class of problems. It is

hoped that this class is representative of those met in general. However, these tests may be

completely inadequate in new situations. If it is intended Lo use this algorithm extensively

for a certain class of problems, it may well pay to experiment with adjustments in these tests

in order to achieve better efficiency with minimum risk.

3

The initial guess for the knots chosen might be extremely poor and result in reaching a

local minimum far from the best approximation. The simple scheme of equal spacing used

here to obtain an initial guess might well be modified and improved for certain classes of

approximation problems.

3 The Algorithm and Numerical Procedures

The basic idea of the algorithm is to vary the knots one by one so as to decrease the Z^-error.

This is done systematically from right to left by two procedures, SWEEP and OPT. The

procedure SWEEP controls the overall scheme and OPT does the variation of the individual

knots. The basic scheme used in OPT is a discrete Newton's method.

There are two delicate points in an implementation of such a scheme. The first is a

suitable choice of termination criteria for the various iterations in the algorithm. One desires

to achieve the required accuracy without doing an excessive amount of wasteful computation.

The second point is to make the computation of the i2-error as efficient as possible. It

is unavoidable that this number be evaluated frequently and it is a nontrivial computation.

Furthermore, it is easily seen that it is very inefficient to compute the Z/2-error each time by

a standard £2- a PP r 0 X i m a t i ° n procedure. Note that if only one knot is changed and if only

one of the orthogonal functions involves this knot, then the /^-approximation problem can

be solved on the basis of previous information with an order of magnitude less computation

than one can solve such problems in general. It is always arranged so this is the case and

the procedure FIXEDKNOT has a number of features to allow this. More detailed study

shows that it is also possible to make use of some previous information when changing from

one knot to another. These points are discussed in more detail in [2].

Choice of the Initial Knots. There are two single alternatives. If NOKNOT is negative,

then - N O K N O T knots are chosen equally spaced in the interval (A'A'(l) , XX(LX)).

If NOKNOT is positive, then this number of knots is to be read as data. If the function

is very unsystematic, it is often profitable to use an initial set of knots concentrated in

the regions of rapid change in the function.

Optimization of the Knots - SWEEP and OPT. Given an initial set of knots, their optimiza-

tion is guided by the procedure SWEEP. Each knot is, in turn, varied so as to minimize

the L-i-eviOT as a function of this knot. This is started with the last (i.e., the right

most) interior knot and done sequentially to the left. A cycle refers to one complete

pass from right to left. This process is repeated until a termination is encountered.

4

The variation of the Z-th knot XI(I) is carried out in OPT using what may be termed

the "discrete Newton's" method. Let e(t) denote the Z,2_erj"°r as a function of the

position t of XI(I). Given three points, ALEFT<A<ARIGHT, a new guess ABEST

for the location of X I (I) is determined as the location of the minimum of the parabola

p(t) satisfying

p(ALEFT) = e(ALEFT), p (A) = e(A), p(ARIGHT) = e(ARIGHT).

The parabola must have a minimum in order for this to make sense. Also, as to avoid

getting wild guesses through extrapolation, ABEST should be between ARIGHT and

ALEFT. For this it is sufficient to have

(3.1) e(ARIGHT), e(ALEFT) > e(A).

Thus the first part of OPT consists of a search algorithm for such a set of three points

ARIGHT, ALEFT and A. The basic step size for this search is based on the value of

CHANGE = average change in the knots in the preceding cycle. The initial value of

CHANGE is .4 and it is measured relative to the length of the interval (X I (I — 1),

XI{I + 1)).

Once such a set is found the parabolic interpolation commences. The newly found guess

ABEST replaces one of ARIGHT, ALERT or A in such a way that the inequalities (3.1)

remain valid while making the new value of ARIGHT-ALEFT as small as possible.

Termination Criteria. There are two termination criteria for SWEEP. The first is a simple

bound on the number of complete cycles or sweeps of varying all the knots, i.e.,

(3.2) No more than ITER cycles throught SWEEP

For normal use we recommend that one set ITER=4. In more difficult cases, especially

when a larger number of knots is used, one might need to increase ITER. The second

criterion is to terminate if

(3-3)
PREVER-ERROR

ERROR
< .4* ACC

where ACC = desired accuracy in i2-error (not the Z^-error itself). ERROR = current

value of the i2-error and PREVER = value of the X^-error at the start of the current

cycle of knot variation. This criterion is based on the assumption that the algorithm

is converging linearly (or faster) and the error is reduced at each cycle by a factor of .6

5

or less. If one notes that the algorithm is converging somewhat slower than this, one

should replace the coefficient .4 by a somewhat smaller number.

Note that this is rarely worthwhile to compute an approximation which gives the best

i/2-error with more than one or two significant digits. We recommend setting ACC =

.1 for general applications.

There are four termination criterion for OPT. The first is a simple bound on the number

of guesses at the best position of X I (I) , i.e.,

(3.4) No more than INDLP guesses for XI(I).

We recommend INDLP = 10, a bound which is large enough so that termination rarely

occurs from this criterion.

The second criterion is a form of buffering to prevent the knots from coalescing. Set

H = XI(I + 1) - XI{I - 1), then constrain XI{I) by

(3.5) XI(I - 1) + .0625tf < XI{I) < XI(I + 1) - .0625H

This form of constraint allows a group of knots to become very closely spaced which

is sometimes essential. However, it keeps them separated enough to (almost always)

avoid failure due to numerical instabilities.

The third criterion is for the search of a triplet of points to initialize the parabolic

interpolation phase. The search for such a triplet is terminated if (in the case of search

to the right)

e(A) - e(ARIGHT) ACC

1 J ERROR ~ LXI

where LXI = number of interior knots and ERROR is the i/2-error at the end of the

previous cycle. In case of search to the left we terminate if

e(A) - e(ALEFT) ACC

1 } ERROR " L X I '

These criteria are relatively stringent because we feel it is very desirable to be able to

enter the parabolic interpolation phase for at least one time. Thus this criterion might

not cause termination in OPT even when the decrease in the L2-erTor is insignificant

for the later stages of the algorithm in a reasonable number of cases.

6

The criterion can be visualized as based on the assumption that the search is converg-

ing linearly (or faster) with an error reduction of 1 -1 /LXI or smaller. However, the

situation here is somewhat different then in SWEEP as we do not necessarily desire to

expend effort for an accurate placement of XJ{I). That is to say, in the initial stages

of the algorithm the set of knots is far enough from optimum that it is wasteful to

accurately optimize one of them with the others inaccurately located. It is unusual for

this termination criterion to be active in the terminal phases of the algorithm.

The fourth criterion is for the termination of the parabolic interpolation process. We

locate ABEST as noted above and compute the value EPRED of the parabola at its

lowest point, i.e., EPRED = p(ABEST). The optimization is terminated if

(3.8)
EPRED - e (ABEST)

ERROR
< 5 * ACC

This criterion assumes convergence which is somewhat faster than linear. This is

plausible since a discrete Newton method is used. The particular factor 5 was chosen

on the basis of some experiments and reflects a balance between global efficiency and

local accuracy as discussed in the preceding paragraph.

The most common cause for termination is that CHANGE become small. This implies

that little movement of the knots takes place in OPT which in turn causes the criterion

(3.3) in SWEEP to terminate the algorithm.

4 Variables in the Program

Global with F I X E D K N O T

ADDXI(26) LX

COEFL(27,4) MODE

FCTL(IOO) U(100)

INTERV UERROR(IOO)

JADD VORDL(28,2)

KNOT XIL(28)

LMAX XX(IOO)

Global in V A R Y K N O T

ACC LXI

CHANGE Q

ERROR XI(2S)

7

Other Important Variables

A

ABEST

ALEFT

ARIGHT

EPRED

EPSERR

Other Variables

AA

AHIGH

ALOW

DEL

DELX

DUMB

DXLEFT

DXRIGHT

DYLEFT

DYRIGHT

E

INFO (16)

INTER

KVARY

NOKNOT

PREVER

H

ELEFT

ERIGHT

ETRY

II

ITRR

K

LPCNT

LXI1 = LXI+1

LXI2 = LXI+2

5 Example

We consider a set of data which has three distinct features: (i) It is actual data (expressing

a thermal property of titanium); (ii) It is difficult to approximate using classical techniques;

(iii) There is a significant amount of noise in the data.

8

Titanium Heat Data X X (1) , U(I) with approximation U*(I)

and error UERROR(I)

XX U U* UERRORxlO 3 U u- UERRORxlO 3

595 .644 .619 25.35 845 .812 .796 15.86

605 .622 .629 -7.22 855 .907 .876 31.27

615 .638 .638 .24 865 1.044 1.051 -7.38

625 .649 .644 4.50 875 1.336 1.370 -34.31

635 .652 .650 2.35 885 1.881 1.838 42.64

645 .639 .653 -14.46 S95 2.169 2.195 -25.98

655 .646 .656 -10.13 905 2.075 2.078 -3.19

665 .657 .658 -.89 915 1.598 1.582 15.62

675 .652 .659 -6.96 925 1.211 1.197 14.15

685 .655 .660 -4.57 935 .916 .931 -14.63

695 .664 .660 4.05 945 .746 .761 -15.36

705 .663 .660 2.69 955 .672 .667 5.31

715 .663 .661 2.13 965 .627 .624 2.71

725 .668 .662 6.12 975 .615 .612 3.20

735 .676 .664 12.47 985 .607 .608 -1.24

745 .676 .666 9.93 995 .606 .606 .15

755 .686 .670 16.29 1005 .609 .604 4.62

765 .679 .675 4.32 1015 .603 .604 - .65

775 .678 .681 -3.20 1025 .601 .603 -2.49

7S5 .683 .689 -6.49 1035 .603 .604 - .74

795 .694 .700 -5.78 1045 .601 .604 -3.22

805 .699 .712 -13.29 1055 .611 .605 6.24

815 .710 .727 -17.25 1065 .601 .605 -4.19

825 .730 .745 -14.87 1075 .608 .605 2.66

835 .763 .765 -2.39

We present two approximations to this data. The first is computed with an initial set

of 7 equally spaced knots in the interval (595, 1075). The second is computed with another

initial set of knots. This is the approximation shown in the above table.

9

Initial Knots

Case 1: 595 675 755 835 915 995 1075

Case 2: 595 725 850 910 975 1040 1075

The point of these two cases is that the algorithm converges to two distinct local minima

of the nonlinear least-squares approximation problem. Note that the data have a very

pronounced peak near 900, and in Case 1 we have three interior knots to the left of this

peak, while in Case 2 we have only two to the left of this peak.

The final approximations obtained are presented for both cases. The final knots are given

along with the coefficients C(I), I = 0 ,1 ,2 ,3 of the cubic polynomial pieces of the spline.

These are the coefficients COEFL(/ , J) J = 1,2,3,4 defined in [2] for the interval

The origin for each polynomial piece is the knot immediately to the left.

Case 1 Case 2

Least Square Error

Average Error

Maximum Error

03489 Least Square Error

.02296 Average Error

.11716 Maximum Error

.01305

.00933

.04264

10

KNOTS Cubic Coefficients KNOTS Cubic Coefficients

595. C(0) = .63371

C (l) = .16475"3

C(2) = .19591 -5

C(3) = -.S1758"8

755.28 C(0) = .67678

C (l) = .16269"3

C(2) = -.19723"5

C(3) = .17472"6

839.60 C(0) = .78122

C(l) = ,35567"2

C(2) = .42224"4

C(3) = ,92733"5

877.06 C{0) = .14612+1

C(l) = .45759-1

C(2) = .10844 -2

C(3) = - 7 8 4 1 6 - 4

896.20 C(0) = .21844+1

C(l) = .10478"2

C(2) = -.34197"2

C(3) = .91502"4

910.22 C{0) = .17793+1

C(l) = -.40887"1

C(2) = .42760"3

C(3) = -.13771"5

1075.

595. C(0) = .61865

C(l) — .11658"2

C(2) = -.11255-"

C(3) = -37272"7

835.32 C(0) = .76609

C(l) = .22139-2

C(2) = .15616"4

C(3) = •7S696-5

876.56 C(0) = .14362+1

C(l) = •43668"1

C(2) = •98940"3

C(3) = -.61055"4

902.46 C(0) = .21703+1

C(l) = -.27909"1

C(2) = - .37536-2

C(3) = .18772"3

910.47 C(0) = .18022+1

C(l) = -.51906"1

C(2) = .75881 -3

C(3) = -37241" 5

977.85 C(0) = .61061

C (l) = - 37235" 3

C(2) = .60407"3

C(3) = -.28471"7

1075.

The algorithm required six cycles through SWEEP for Case 1. The Z2-error decreased

as follows:

cycle 1 2 3 4 5 6

I2-error .09176 .05927 .03944 .03588 .03509 .03489

The algorithm required seven cycles through SWEEP for Case 2. The L2-error decreased as

follows:

11

cycle 1 2 3 4 5 6 7

I2-error .04595 .03848 .02761 .02177 .01432 .01321 .01305

These two cases required about 17 and 23 seconds, respectively, of execution time on a

IBM 7094 for a FORTRAN IV version of this algorithm. They required about xxx and yyy

seconds, respectively, of execution time on a CDC 6500 in Algol.

6 Other Nonlinear Algorithms Based on FIXEDKNOT

The procedure FIXEDKNOT is designed to be readily adaptable to form a basis for a variety

of nonlinear spline approximation algorithms. We briefly outline four such algorithms. We

have used one of these (the last one) extensively and another (the second one) in some

experimentations.

6.1 Noil-systematic knot optimization

We have observed that there is frequently a significant amount of wasted computation in

problems involving a larger number of knots, say more than 5 or 6. It occurs that a few,

perhaps most, of the knots become correctly placed, while the remaining ones (somewhat

more delicate) requires several additional cycles to locate accurately. The systematic nature

of the algorithm VARYKNOT requires one nevertheless to adjust the position of all knots in

each cycle. It is clear to us that one can devise workable criteria for determining reasonably

well which knots are more critical. One could use these criteria to optimize the knots in an

unsystematic manner to increase the efficiency of the computation. We have not formalized

such criteria and believe their use would significantly increase the logical complexity of the

algorithm.

6.2 Systematic insertion of additional knots — Loo criterion

A plausible scheme is to start out with no knots at all, find the best linear cubic approxi-

mation, then insert a knot near (or at) the location of the maximum error. One then could

compute a linear spline approximation with one knot, and insert a second knot near the

location of the maximum error. This process is then repeated until the error is reduced to

some desired level.

We have experimented with this scheme and it does in fact work. Special provisions must

be taken if the data contains wild points or pronounced peaks. The maximum error will then

12

occur several times at one point. The new knots should be placed on alternating sides of this

point and prevented from converging to this point. It usually happens that enough knots are

placed in the neighborhood of a wild point so that the data is actually interpolated nearby.

This is normally undesirable and this scheme is not recommended for such data.

This scheme is not as attractive as we had expected. In addition to the problem of

wild points and peaks, it consistently leads to more knots than really required, sometimes

excessively so. However, it usually requires less computation time than schemes (e.g., see 6.4)

which optimize the locations of knots. Thus when this process was applied to the data of the

example, it took 15 interior knots to produce an approximation of the same accuracy as had

been obtained in Case 2 above with an optimal placing of 5 interior knots. Execution time,

on the other hand, on an IBM 7094, was merely 4 seconds. We conclude that the location

of the maximum error is not a completely reliable guide for the place to insert additional

knots.

6.3 Systematic insertion of additional knots - L2 criterion

Consider a process like 6.2 where we locate that interval between adjacent knots which has

the most error in the L2 sense. We suspect that it is better to insert additional knots into

this interval than near the location of the maximum error. We have not tested this suspicion,

however.

6.4 Systematic insertion of knots with optimization

We have used extensively an algorithm which systematically increases the number of knots

and optimizes all knots after each insertion. This algorithm only requires the user to specify

the desired accuracy of approximation and the algorithm determines the number as well as

the location of the knots. In order to achieve efficiency, the convergence criteria during the

algorithm must depend on how close one is to the requested accuracy. Once this matter is

satisfactorily settled, we find that it requires only slightly longer to obtain suitable approxi-

mations with this scheme than it does with VARYKNOT starting with the correct number

of knots roughly placed.

Note that the algorithm is essentially different from that of 6.2. Even though the initial

guess at the new knots location is made similarly, the optimization process eliminates the

difficulties with wild points. In fact, it is highly recommended for data smoothing, the

identification of wild points and other types of data analysis.

13

7 References

1. G. Birkhoff and C. de Boor, Error bounds for cubic spline interpolation, J. Math.

Meek. 13 (1964), 827-835.

2. C. de Boor and J.R. Rice, Least squares cubic spline approximation I-Fixed knots.

Technical Report CSD-TR 20, Computer Sciences, Purdue University (1968).

3. J.F. Hart et. al., Computer Approximations, John Wiley, New York (1986).

4. C.R. Hobby and J.R. Rice, Approximation from a curve of functions, Arch. Rat. Mech.

24 (1967), 91-106.

5. A. Meir and A. Sharma, Degree of approximation of spline interpolation, J. Math.

Meek. 15 (1966), 759-767.

6. J.R. Rice, The approximation of functions, Vol II, Chapter 10, Addison Wesley (1969).

14

C NONLINEAR SPLINE APPROXIMATION

C PROGRAM WRITTEN BY CARL DE BOOR AND JOHN RICE

C PURDUE UNIVERSITY

C SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION GP-4052 .GP7163

C

C PLEASE REPORT ANY CASES OF INOPERATION TO THE AUTHORS .

C THANKS

C **** NUMERICAL ANALYSIS CONTROL ****

C CONTROL PARAMETERS FUNCTION

C ITER NO . OF SWEEPS THRU OPT

C BD (IN OPT) IMPROVEMENT NEEDED TO REPEAT

C EPSERR(IN SWEEP) IMPROVEMENT NEEDED TO REPEAT

C DIST (IN OPT NEAR 30 ,80) KEEPS KNOTS SEPARATED

C INDLP NO . OF PASSES THRU OPT

C THE FOLLOWING IS THE MAIN PROGRAM FOR VARYKNOT

C

DIMENSION INFO(16)

C

C COMMON INPUT SERVES AS INPUT TO FXDKNT

C SEE FXDKNT FOR DEFINITIONS OF VARIABLES

CDMMDN/INPUT/LX ,XX(100)JU(100) , JADD ,ADDXI(26) .MODE

C CDMMON OUTPUT SERVES AS OUTPUT FROM FXDKNT

C SEE FXDKNT FOR DEFINITIONS OF VARIABLES

COMMON/ OUTPUT /UERROR(lOO) , FCTL(lOO) ,XIL(28) ,C0EFL(27 ,4) ,

* VORDL(28 ,2) ,KNOT ,LMAX ,INTERV

C

C COMMON OTHER SERVES AS COMMUNICATION BETWEEN OPT ,SWEEP AND HERE

C LXI = NUMBER DF INTERIOR KNOTS , LXI1 = LXI+1 , LXI2 = LXI+2

C Q NUMERICAL CONTROL VARIABLE USED BETWEEN OPT AND SWEEP

C CHANGE = DITTO

C ERROR = CURRENT VALUE OF THE L-2 ERROR - SQUARED

C ACC = DESIRED ACCURACY QF L-2 ERROR

C XI(28)= ARRAY FOR KNOTS

COMMDN/ OTHER / LXI ,LXI1 ,LXI2 ,Q , CHANGE ,ERROR ,ACC , XI(28)

C

C ACC = .i AND ITER = 4 TO 8 SEEM TO BE GOOD VALUES FOR TYPICAL USES

ACC = .1

15

ITER = 8

C

C ***INFD IS SIMPLY AN IDENTIFICATION OF THE DATA***

1 READ(5 , 605) (INFO(l) ,1=1 ,16)

605 F0RMAT(16A5)

WRITE(6 , 651) (INFO(I) ,1=1 ,16)

651 F0RMAT(1H1 , 20X , 16A5 / /)

C

C READ IN ND . OF POINTS=LX AND THE DATA XX AND U

C *** IF NOKNOT . GE . 1 , THEN READ IN LXI2=N0KN0T KNOTS***

C *** OTHERWISE PROGRAM CHOOSES LXI2 =-NOKNOT EQUISPACED KNOTS

READ(5 , 610) NOKNOT , LX , (XX(I) , U(l) , 1=1 ,LX)

C

C **CHECK ON GIVEN DATA

C THESE CHECKS PREVENT USER FROM EXCEEDING BOUNDS ON STORAGE

C AND FROM PRESENTING UNORDERED XX ARRAY

IF(IABS(NOKNOT) .GE . 28 .OR .IABS(NOKNOT) .LT . 3) GO TO 3

IF(LX . LT . O .OR . LX . GT . 100) GO TO 4

WRITE(6 , 610) (I , XX(I) , U(I) , 1=1 ,LX)

WRITE(6 , 612) NOKNOT , ITER

DO 2 L=2 , LX

IF(XX(L)-XX(L-1)) 6 ,6 ,2

2 CONTINUE

GO TO 14

3 WRITE(6 , 660)

GO TD 7

4 WRITE(6 , 662)

GO TO 7

6 WRITE(6 , 664)

7 WRITE(6 , 666)

GO TD 1

C

C **INITIALIZE

14 IF(NOKNOT .LT . 0) GO TO 25

C

C *** READ IN LXI2 = NOKNOT KNOTS ***

LXI2 = NOKNOT

16

READ(5 , 601) (XI(J) , J = 1 ,LXI2)

601 F0RMAT(6F12 . 6)

GO TO 30

C

C WHEN NOKNOT IS NEG . , INTRODUCE -NOKNOT EqUISPACED KNOTS

25 LXI2 = -NOKNOT

XI(1) = XX(l)

XICLXI2) = XX(LX)

DEL = (XX(LX) - XX(l)) /FLDAT(LXI2-l)

DO 26 J = 3 ,LXI2

26 XI(J-I) = XI(J-2) + DEL

C

C SET UP INITIAL APPROXIMATION

30 ADDXI(l) = XI(1)

ADDXI(2) = XI(LX12)

LXI1 = LXI2-1

LXI = LXI1-1

MODE = 0

JADD = LXI2

DO 35 J = 3 ,LXI2

35 ADDXI(J) = XI(J-I)

ERROR = FXDKNT(0)

C ***N0TE . NODE HAS BEEN SET EQUAL TO 1

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6 , 900) (XI(1) , I=1 ,LXI2)

900 FORMAT(28H KNOTS PRIDR TD OPTIMIZATION /(9F12 .6))

C

C OPTIMIZE KNOTS

CALL SWEEP(ITER)

C

WRITE(6 , 640)

640 FORMAT(49X ,22H*** FINAL OUTPUT ***/ / /)

MODE = 1

JADD = 0

DUMB = FXDKNT(l)

C

GO TO 1

17

610 F0RMAT(214 , /(2F12 .8))

611 FORMAT (11H GIVEN DATA / /(I4 ,2F14 .8))

612 FORMAT(1H /32H NO . OF INITIAL KNOTS = ,13/

1 7H ITER = ,13)

660 FORMAT(32H1KN0T CONTROL PARAMETER ' NOKNOT ' /

1 19H NOT WITHIN BOUNDS)

662 F0RMATC24H1ND . OF DATA POINTS ' LX ' /

1 28H NOT WITHIN BOUNDS 0 TO 100 .)

664 FORMAT(24H1DATA POINTS NOT READ IN/

1 20H IN ASCENDING ORDER .)

666 FORMAT(1H / / /43H CORRECT INDICATED INPUT ERROR AND RESTART .)

END

C
Qsf: £ $ $ $ £ * $$ sfc* * * * * * * * * ** * * * ** + s f e + + + +

SUBROUTINE SWEEP(ITRR)

C

C KVARY+1 = INDEX OF KNOT BEING VARIED

C SUBROUTINE OPT(I) OPTIMIZES ITH INTERIOR KNOT

C

COMMON /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) ,MODE

COMMON / OUTPUT /UERROR(IOO) , FCTL(100) , XIL(28)
)
C0EFL(27

1
4) ,

* VORDL(28 ,2) ,KNOT ,LMAX , INTERV

COMMON / OTHER / L X I , L X I 1 , L X I 2 , C H A N G E , E R R O R ,ACC, XI(28)

C AT ALL TIMES , ERROR CONTAINS (L2 ERROR)**2 OF CURRENT B . A .

C

ITER = ITRR

C **NEXT CARDS SET NUMERICAL ANALYSIS CONTROLS

EPSERR = ACC/2 .5

CHANGE = .4*FL0AT(LXI)

C

10 KVARY = LXI

Q = CHANGE /FLOAT(LXI)

C *#* THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C*** WRITE (6 ,902) ITER ,q

C+902 FORMAT (8H ITER , q I5 ,E20 .8)

18

CHANGE = 0 .

PREVER = ERROR

MODE = 2

JADD = 0

KNOT = KNOT - 1

DUMB = FXDKNT(0)

20 CONTINUE

+ THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C*** WRITE(6 , 900) KVARY

C*900 F0RMAT(1H / / /8H VARYING ,14 ,I6HTH INTERIOR KNOT)

C*** WRITE(6 , 901) ERROR

C*901 FDRMAT(16H SQ . OF L2-ERRDR ,E16 .6)

C

CALL DPT(KVARY)

KVARY = KVARY -1

JADD = JADD + 1

IF(JADD .LE . 1) GO TO 22

K= JADD

DO 21 I = 2 ,JADD

K= K-l

21 A D D X K K + l) = ADDXI(K)

22 ADDXI(l) = XI(KVARY + 2)

KNOT = LXI1 - JADD

MODE = 2

DUMB = FXDKNT(0)

IF(KVARY .NE . 0) GO TO 20

C THE LAST CALL TO FXDKNT PRODUCES THE B . A . USING ALL KNOTS

C SINCE THEN ADDXI CONTAINS ALL KNOTS

ERROR = DUMB

C *** THE FOLLOWING TWD CARDS PRODUCE PRINTED OUTPUT OF L1 , L2 , L-INF

C** JADD = 0

C** DUMB = FXDKNT(2)

C

C **IF CHANGE IN ERROR IS BIG ENOUGH MAKE ANOTHER SWEEP , ELSE QUIT

IF(ABS(PREVER-ERRDR) /PREVER .LE .EPSERR) GO TO 60

ITER = ITER-1

19

C **CHECK NUMBER DF PASSES THROUGH SHEEP

IF(ITER .EQ .O) GO TO 40

GO TO 10

40 CONTINUE

C

C IN FINAL VERSION GO TD 40 , GO TO 60 ARE REPLACERD BY RETURN

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C++* WRITE(6 , 620)

RETURN

60 CONTINUE

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C*** WRITE(6 , 610)

RETURN

C*610 FORMAT(54H *** SWEEP DISCONTINUED - INSUFFICIENT CHANGE IN ERROR)

C+620 FDRMAT (36H *** NO . OF ALLOWABLE SWEEPS USED UP)

END

C

C

SUBROUTINE DPT(II)

C

C I REFERS TO THE ITH INTERIOR KNOT

C OPT FINDS THE OPTIMAL ITH KNOT BETWEEN THE I-1ST AND I+1ST KNOTS

C THE REMAINING KNOTS ARE HELD FIXED .

C INDLP = A BOUND ON THE NUMBER OF TRIES ALLOWED

C FOR IMPROVEMENT OF THE ITH KNOT

C Q = MULTIPLICATION FACTOR WHICH SHOULD DECREASE AS A

C FUNCTION OF THE NO . OF SWEEPS THRU SWEEP

C q IS ALTERED IN SWEEP

C

COMMON /INPUT /LX ,XX(lOO) ,U(100) ,JADD .ADDXI(26) .MODE

COMMON/ OUTPUT /UERROR(IOO) .FCTL(lOO) ,XIL(28) ,C0EFL(27 ,4) ,

* VORDL(28 KNOT ,LMAX ,INTERV

COMMON / OTHER / LXI ,LXI1 ,LXI2 ,Q ,CHANGE ,ERROR ,ACC , XI(28)

C

I = II

20

C **NUMERICAL ANALYSIS PARAMETERS SET HERE

INDEP=9

RD = ACC#ERROR /FLOAT(LXI)

DIST = .0625

H = XI(I+2)-Xl(I)

ALOW = XI(I) + DIST+H

AHIGH = Xl(l+2) - DIST+H

LPCNT= 0

MODE = 3

C

C **BEGIN SEARCH - FIND THREE VALUES FOR THE ITH KNOT

C SUCH THAT L2-ERROR AT MIDDLE VALUE , A , IS LESS THAN

C ERROR AT LEFT VALUE , ALEFT , AND AT RIGHT VALUE , ARIGHT

A = XI(I+1)

E = FXDKNT(A)

ALEFT = A + q*(XI(I)-A)

ELEFT = FXDKNT(ALEFT)

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C+** ARIGHT = 0 .

C*** ERIGHT = 0 .

C*** WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A ,ARIGHT

SGN = SIGN(1 . jELEFT-E)

IF (SGN .GE .O) GO TO 20

GO TO 60

C

C **SEARCHING FDR NEW KNOT TO THE RIGHT

10 ALEFT = A

ELEFT = E

A = ARIGHT

E = ERIGHT

20 ARIGHT = A + q*(Xl(I+2)-A)

C

C **BUFFER TO PREVENT COALESCING OF KNOTS

30 IF (AHIGH .GE .ARIGHT) GO TD 40

AA = AHIGH

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C++* WRITE(6 , 610) I

21

GO TO 199

C

40 ERIGHT = FXDKNT(ARIGHT)

c
 *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

O * * * WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A ,ARIGHT

IF (E .LE .ERIGHT) GO TO 100

C

C **CHECK TO STOP OPT

IF(E -ERIGHT .LE .RD .DR. LPCNT .GT . INDLP) GO TO 240

5 LPCNT = LPCNT+1

IF(SGN . GT . O) GO TO 10

C

C *#SEARCHING FOR NEW KNOT TO THE LEFT

60 ARIGHT = A

ERIGHT = E

A = ALEFT

E = ELEFT

70 ALEFT = A + Q*(XI(I)-A)

C

C

C **BUFFER TO PREVENT COALESCING OF KNOTS

80 IF (ALEFT .GE .ALOW) GO TO 90

AA = ALOW

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C***+ WRITE(6 , 620) I

GO TO 199

C

90 ELEFT = FXDKNT(ALEFT)

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

O * * * WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A , ARIGHT

IF (E .LE .ELEFT) GO TO 100

C

C *#CHECK TO STDP OPT

IF(E - ELEFT .LE .RD .OR. LPCNT .GT . INDLP) GO TO 230

GO TO 50

C

C **REQUIRED 3 VALUES HAVE BEEN FOUND

22

C FOLLOWING CDDE FINDS PT . AT WHICH HIN OF PARABOLA CURVE PASSING

C THRU THE ERROR VALUES AT THE PTS ALEFT , A , ARIGHT OCCURS

100 DXLEFT = ALEFT - A

DXRGHT = ARIGHT - A

DYLEFT = (ELEFT-E)/DXLEFT

DYRGHT = (ERIGHT-E)/DXRGHT

DEL = .5/(DYLEFT-DYRGHT)*(DXRGHT+DYLEFT-DXLEFT*DYRGHT)

EPRED = F+DEL*(DYRGHT+(DEL-DXRGHT) /(ARIGHT-ALEFT)*(DYRGHT-DYLEFT)

ABEST = A + DEL

EBEST = FXDKNT(ABEST)

*** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C*** WRITE (6 ,900) ELEFT ,EBEST ,ERIGHT ,ALEFT ,ABEST ,ARIGHT

C

C **DETERMINE WHETHER ABEST GIVES BEST APPRX AND MAKE APPROPRIATE

SWITCHING OF THE AI ' S DEPENDING ON SIGN OF DEL

IF (EBEST .LE .E) GO TO 130

IF(DEL)110 ,200 ,120

110 ALEFT = ABEST

ELEFT = EBEST

GO TO 170

120 ARIGHT = ABEST

ERIGHT = EBEST

GO TO 170

130 IF(DEL)140 ,200 ,150

140 ARIGHT = A

ERIGHT = E

GO TO 160

150 ALEFT = A

ELEFT = E

160 A = ABEST

E = EBEST

C

C ++FOLLOWING TESTS DETERMINE WHETHER OR NOT TO

C REITERATE PARABDLA MINIMIZATION PHASE

170 IF (ABS(EPRED-EBEST) .LT .5 .+RD) GO TO 210

IF(LPCNT .GT . INDLP) GO TO 200

LPCNT = LPCNT+ i

23

GO TO 100

C

190 ETRY = FXDKNT(AA)

IF (E .LT .ETRY) GO TO 200

A = AA

E = ETRY

200 CHANGE = CHANGE + ABS(A -XI(I+1))/H

XICI+1) = A

ERROR = E

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C++* WRITE (6 ,900) ELEFT ,E ,ERIGHT ,ALEFT ,A ,ARIGHT

RETURN

C

C IN FINAL VERSION GO TO 210 , IS REPLACED BY GO TO 200

210 CONTINUE

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C*** WRITE(6 , 640) LPCNT

GO TO 200

230 A = ALEFT

E = ELEFT

C *** T H I S I S TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C*** WRITE(6 , 640) LPCNT

GO TO 200

240 A = ARIGHT

E = ERIGHT

C *#* THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

C*** WRITE(6 , 640) LPCNT

GO TO 200

C*610 FORMAT(46H *** OPT DISCONTINUED - KNOT BEING OPTIMIZED (,12 ,35K IS

C****MOVED TOO CLOSE TO RIGHT NEIGHBOR)

C*620 FORMAT(46H *## OPT DISCONTINUED - KNOT BEING OPTIMIZED (,I2 ,34H IS

C****MOVED TOD CLOSE TO LEFT NEIGHBOR)

C*640 FORMAT(24H *** OPT DISCONTINUED AT ,I4 ,31H - INSUFFICIENT CHANGE IN

C++* * ERROR)

C*900 FORMAT(25H PARABOLA - ERROR VALUES ,3E20 .6/12X ,13HAI VALUES

C++* 1 3E20 . 6)

END

24

FUNCTION FXDKNT (ARG)

C THE FUNCTION RETURNS THE SQUARE OF THE L2-ERR0R

DOUBLE PRECISION TRPZWT ,SUM

LOGICAL M0DE3

DIMENSION WEIGHT(IOO) ,CUBERR(100)

COMMDN / WANDT / TREND(lOO) , TRPZWT(100) , PRINT(200)

COMMON /INPUT /LX ,XX(lOO) ,U(100) ,JADD ,ADDXI(26) ,MODE

C U(L) = FCT TO BE APPR AT XX(L) , L=1 , LX .

C XX(L) IS ASSUMED TO BE NONDECREASING WITH L

C ADDXI(I) = I-TH KNOT TD BE INTRODUCED , 1=1 ,JADD

C MODE = 0 ,1 ,2 ,3 . SEE COMMENTS BELOW (AND IN NUBAS)

COMMON / OUTPUT /UERRDR(lOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4)
5

* VORDL(28 ,2) ,KNOT ,LMAX , INTERV

C UERROR(L) = ERROR OF BEST L2 APPROX TO U , L=1 , LX

C KNOT = CURRENT NO . OF KNOTS (INCL BDRY KNOTS)

C INTERV = KNOT - 1 = CURRENT NO . OF INTERVALS (POL .PIECES)

C XIL(K) , K=1 , KNOT , CURRENT (ORDERED) SET OF KNOTS

C THE MAXIMUM ERROR OCCURS AT XX(LMAX)

C IF ARG=1 , FCTL(L) CONTAINS THE CURRENT B . APPROX TO U AT XX(L)

C CDEFL(I , .) CONTAINS THE POL . COEF . ON I-TH INTERVAL FOR B . A .

C VORDL(I , .) CONTAINS VALUE AND DERIV . OF B . A . AT XIL(I)

COMMON / BASIS /FCT(100 ,30) ,V0RD(30 ,28 ,2) ,BC(30) ,ILAST

C FCT (L ,M) = BASIS FCT M AT XX(L)

C VORD(M , K , L) CONTAINS THE ORDS (L=l) AND SLOPES (L=2) OF FCT M

C AT THE KNOT INTRODUCED AS K-TH . CORRELATION TO ORDERING OF

C KNOTS BY SIZE IS DONE VIA IORDER , I . E . , ORD AND SLOPE AT

C XIL(K) ARE IN VORD(M , IORDER(K) , I) .

C BC(I) = COORDINATE OF U (AND OF B . A . TO U) WRTO I-TH O .N .FCT

C ILAST = CURRENT NO . OF BASIS FCTNS

COMMON / LASTS /I0RDER(28) ,INSIRT(30) ,XKNOT

C THE FCT ILAST (TO BE) INTRODUCED LAST HAS ADDITIONAL KNOT

C XKNDT , THE KNOT JUST INTRO-

C DUCED HAS INDEX INSERT IN XIL , INSERT IS SAVED IN INSIRT(ILAST)

C FOR POSSIBLE REPLACEMENT OF KNOTS LATER ON (SEE M0DE=2 , 3) .

C ***LOCAL VARIABLES

25

C XSCALE = XX(LX) - XX(l) , USED TO NORMALIZE INNER PRODUCT

C = LENGTH DF THE INTERVAL DF INTEGRATION

C KNDTSV = NO . OF KNOTS USED IN MOST RECENT CALL TO FXDKNT

C ERBUT l = SQ . OF L2-ERR0R OF APPROX USING ALL BUT THE ONE

C KNOT BEING VARIED (USED IN MODE = 3)

C CUBERR = UERROR OF B . A . BY CUBIC POL-S (NEEDED FOR MODE = 2)

C M0DE3 = TRUE OR FALSE DEP . ON WHETHER PREV . CALL WAS IN

C MODE=3 OR NOT

EQUIVALENCE (IPRINT ,CHANGE)

C ARG IS EITHER FIXED PDINT (M0DE .NE .3) TO PICK PRINT-OUT OPTION

C OR IS FLOATING POINT (M0DE=3) TO GIVE NEW VALUE OF KNOT VARIED

CHANGE = ARG

IF (MODE .GT .0) GO TO 29

C

C *#* M0DE=0* COMPUTE BASIS FCT 1 THROUGH 4 AND .A. TO U WRTO THESE

C THEN SET MODE = 1 AND PUT UERROR INTO U .

XSCALE = XX(LX) - XX(l)

DD 10 1=5 ,30

10 INSIRT(I) = 0

DD 11 L=1 ,LX

UERROR(L) = U(L)

TREND(L) = T(XX(L))

11 WEIGHT(L) = W(XX(L))

DO 12 L=2 ,LX

12 TRPZWT(L) = (XX(L)-XX(L-1))/4 .*(WEIGHT(L-1)+WEIGHT(L))

C

XIL(l) = ADDXI(l)

XIL(2) = ADDXI(2)

IQRDER(l) = 1

I0RDER(2) = 2

KNOT = 2

INTERV = 1

DO 19 1=1 ,4

ILAST = I

CALL NUBAS

DO 19 L=1 ,LX

19 UERROR(L) = UERROR(L) - BC(I)*FCT(L , I)

26

MDDE = 1

DD 20 L = 1 , LX

20 CUBERR(L) = UERROR(L)

C IF (JADD .LE .2) , ONLY B .APPROX BY CUBICS IS COMPUTED

C OTHERWISE , ADDXI(I) , 1 .GT .2 , CONTAINS ADDITIONAL KNOTS

JADD = JADD - 2

IF (JADD .LE .O) GO TO 60

DD 21 1=1 ,JADD

21 ADDXI(I) = ADDXI(1+2)

GO TO 51

C

29 GO TO (40 ,40 ,30) ,MODE

C

C *** MDDE=3 *** MERELY REPLACE THE LAST KNOT INTRODUCED BY

C CHANGE AND RECOMPUTE L2 ERROR . CHANGE ENTERS

C VIA THE ARGUMENT JPRINT = CHANGE .

C THIS MODE SHOULD BE USED FOR

C MINIMIZING THE L2-ERR0R WRTO THE KNOT

C INTRODUCED LAST AS IT MINIMIZES THE COMP WORK

C IF M0DE3 = TRUE (I .E . , THE PRECEDING CALL TO FXDKNT

C WAS IN M0DE=3) ,THE PROGR WILL ASSURE THAT CHANGE

C HAS THE SAME ORDER REL TO THE OTHER KNOTS AS THE

C PREV INTRODUCED VALUE FDR KNOT . OTHERWISE

C IF MDDE3=FALSE(THE PRECEDING CALL WAS IN SOME OTHER MODE)

C , A FCT IS ADDED WITH CHANGE AS THE ADD . KNOT .

C UERROR IS ASSUMED TO CONTAIN ERROR OF B . A . TO U WRTO

C ALL PREV FCTNS . **NOTE** IF THE NEXT CALL TO FXDKNT

C IS IN A MODE OTHER THAN 3 , THE CHANGE PROPOSED

C NOW WILL BE MADE PERMANENT .

30 XKNOT = CHANGE

IF (MDDE3) GO TO 35

M0DE3 = .TRUE .

ERBUT1 = FXDKNT

MODE = 2

CALL NUBAS

KNOTSV = KNOT

27

MODE = 3 GO TO 36

35 CALL NUBAS

36 FXDKNT = ERBUT l - BC(ILAST)/XSCALE*BC(ILAST)

RETURN

C

C ***M0DE=1 ,2*** RETAIN THE FIRST KNOT KNOTS INTRODUCED EARLIER

C (HENCE THEIR CORRESP FCTNS) BUT REPLACE FURTHER

C FCTNS (IF ANY) BY FCTNS HAVING ADDITIONAL

C KNOTS ADDXI(I) , 1=1 , JADD , HENCE

C IF KNOT .LT .KNDTSV(=NO .OF KNOTS USED IN PREV CALL

C 40 THROUGH 49 RESTORES ARRAYS IORDER . XIL , UERROR TO THE STATE OF

C ILAST = KNDT + 2 , INVERTING THE ACTION OF DO 11 . . . TO 14 IN NUBAS

40 IF (KNOT .LT .KNDTSV) GO TO 42

KNOT = KNOTSV

IF (.NOT .M0DE3) GO TO 50

DO 41 L=1 ,LX

41 UERROR(L) = UERROR(L) - BC(ILAST)*FCT(L , ILAST)

GO TO 49

42 DO 43 L=1 , LX

43 UERRDR(L) = CUBERR(L)

IF (KN0T .LE .2) GO TO 48

IDUM = KNDT + 1

DO 45 IO=IDUM ,KNOTSV

INSERT = INSIRT(ILAST)

ILM3 = ILAST - 3

DO 44 K=INSERT , ILM3

IDRDER(K) = IDRDER(K+1)

44 XIL(K) = XIL(K+ l)

45 ILAST = ILAST-1

DO 47 1=5 ,ILAST

DO 47 L=1 ,LX

47 UERROR(L) = UERROR(L) - BC(I)*FCT(L , I)

GO TO 49

48 XIL(2) = XIL(ILAST-2)

I0RDER(2) = 2

KNOT = 2

49 IF (JADD .GT .O) GO TO 51

28

ILAST = KNOT + 2

INTERV = KNOT - 1

GO TO 60

C

C ***M0DE=1 ,2*** ADD JADD BASIS FCTNS , I . E . , FOR 10=1 , JADD ,

C CONSTRUCT FCT ILAST WITH ONE MORE KNOT , VIZ .

C XKNOT=ADDXI(10) , THAN THE PREVIOUS LAST FCT ,

C ORTHONORMALIZE IT OVER ALL PREVIOUS FCTNS , THEN

C COMPUTE THE COORDINATE BC(ILAST) OF U WRTO IT ,

C SUBTRACT OUT ITS COMPONENT FROM UERROR .

50 IF (JADD .LE .0) GO TO 61

51 DO 52 10=1 ,JADD

XKNDT = ADDXI(IO)

CALL NUBAS

DO 52 L=1 ,LX

52 UERROR(L) = UERROR(L) - BC(ILAST)*FCT(L ,ILAST)

C

60 FXDKNT= DOT(31 , 2) /XSCALE

KNOTSV = KNOT

61 M0DE3 = .FALSE .

IF (IPRINT .EQ .O) RETURN

C VARIOUS PRINTING IS DONE DEP ON THE ARG = IPRINT

GO TO (70 ,80 ,90) ,IPRINT

C

C COMPUTE COEFFICIENTS OF BEST APPROX AND PRINT

C **** BEST APPROXIMATION PRINTOUT ****

FORMAT IS

C KNOTS XI(J) CUBIC COEFFICIENTS P(I , J) IN

C INTERVAL (XI(J) , XI(J+1))

C ERROR CURVE (SCALED)

C

C THE FOLLOWING FORTRAN CODE FINDS VALUES AT X OF THE

C APPROXIMATION FROM THIS OUTPUT

C I=LXI

C 1 A=X-XI(1)

C IF(A) 2 ,4 ,4

C 2 1=1-1

29

C IF(I) 3 ,3 ,1

C 3 1=1

C 4 V=P(1 ,I)+A*(P(2 ,I)+A*(P(3 ,I)+A*P(4 ,I)))

C

70 WRITE(6 , 610)

DO 72 1=1 ,KNOT

ILOC = IORDER(I)

DO 72 L= l , 2

SUM = 0 .DO

DO 71 J=l ,ILAST

71 SUM=SUM + BC(J)*VORD(J ,ILOC ,L)

72 VORDL(I , L) = SUM

CALL EVAL

DO 73 1=1 ,INTERV

WRITE(6 , 620) I ,XIL(I)

73 WRITE (6 ,630) (J ,CDEFL(I ,J) ,J=1 ,4)

WRITE (6 ,620) KNOT ,XIL(KNDT)

610 FORMAT(42X ,5HKNDTS ,22X ,18HCUBIC COEFFICIENTS / /)

620 FDRMAT(35X , 3HXI(, 12 , 3H) = , F12 . 6)

630 FORMAT(67X , 2HC(, 11 , 3H) = , E16 . 6)

C

C **COMPUTE L2 , LI , MAX ERRORS AND PRINT

80 ERRL2 = SQRT(FXDKNT)

ERRL99= 0 .

DD 82 L=1 ,LX

DIF = ABS(UERRDR(L)*WEIGHT(L))

IF (ERRL99 .GT .DIF) GD TO 81

LMAX = L

ERRL99 = DIF

81 ERRL1 = ERRL1+ DIF

82 CONTINUE

ERRL1 = ERRL1 /FLDAT(LX)

WRITE(6 , 623) ERRL2 , ERRL1 , ERRL99 ,XX(LMAX)

C *** THE FOLLOWING CARD IS TEMPORARY

GO TO (90 ,96 ,96)IPRINT

C

C ** SCALE ERROR CURVE AND PRINT

30

90 IE = U

SCALE = 1 .

IF (ERRL99 .GE .10 .) GO TO 92

DO 91 IE=1 ,9

SCALE = SCALE*10 .

IF (ERRL99*SCALE .GE .10 .) GO TO 92

91 CONTINUE

92 DD 93 L= l . LX

93 PRINT (L) = UERROR(L)*SCALE

GO TO (94 ,95 ,95) .IPRINT

94 WRITE (6 ,621) IE ,(L ,XX(L) ,FCTL(L) ,PRINT(L) ,L=1 ,LX)

GO TO 96

95 WRITE (6 ,622) IE ,(L ,XX(L) ,PRINT(L) ,L=1 ,LX)

96 RETURN

621 FORMAT(1H / /45X ,36HAPPR0XIMATI0N AND SCALED ERROR CURVE /38X ,

*10HDATA POINT , 7X , 13HAPPR0XIMATIDN ,3X , 16HDEVIATI0N X 1 0 E + , H /

*(31X , I4 ,F16 .8 ,F16 .8 ,F17 .6))

622 FORMAT(1H / /58X , 11HERR0R CURVE /38X , 10HDATA POINT , 23X ,

116HDEVIATI0N X 10E+ ,Il /(31X ,14 ,F16 .8 ,16X ,F17 .6))

623 FORMAT(1H / / /40X20HLEAST SQUARE ERROR = ,E20 .6 /

1 40X2OHAVERAGE ERROR = ,E20 .6 /

2 40X20HMAXIMUM ERROR = ,F20 .6 ,3H AT .F12 .6 / / / ;

END

C

SUBROUTINE INTERP

C

C COMPUTE THE SLOPES V0RDL(I , 2) , I=2 ,KN0T-1 AT INTERIOR

C KNOTS OF CUBIC SPLINE FOR GIVEN VALUES V0RDL(I ,1) ,1=1 ,KNOT

C AT ALL THE KNOTS AND GIVEN BOUNDARY DERIVATIVES

DIMENSION D(28) , DIAG(28)

CDMMON / OUTPUT /UERROR(iOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4) ,

* VORDL(28 ,2) ,KNOT ,LMAX , INTERV

DATA DIAG(l) ,D(l)/1 . ,0 . /

DO 10 M=2 , KNOT

D(M) = XIL(M) - XIL(M-l)

10 DIAG(M) = (VORDL(M ,1)-V0RDL(M-1 ,1))/D(M)

31

DD 20 M=2 , INTERV

VORDL(M , 2) = 3 .*(D(M)*DIAG(M+l) + D(M+1)*DIAG(M))

20 DIAG(M) = 2 .*(D(M)+D(M+l))

DO 30 M=2 , INTERV

G = -D(M+1) /DIAG(M-1)

DIAG(M) = DIAG(M) + G*D(M-1)

30 VORDL(M , 2) = V0RDL(M , 2) + G*V0RDL(M-1 ,2)

NJ = KNOT

DD 40 M=2 , INTERV

NJ = NJ - 1

40 VORDL(NJ , 2) = (V0RDL(NJ ,2) - D(NJ)*V0RDL(NJ+1 ,2)) /DIAG(NJ)

RETURN

END

C

C

FUNCTION DDT (M ,INDEX)

C COMPUTE INNER PRODUCT OF FCT M WITH FCT ILAST (INDEX=l) OR

C UERRDR (INDEX=2)

DOUBLE PRECISION DDOT ,G ,TRPZWT

CDMMON / WANDT / TREND(IOO) ,TRPZWT(100) ,G(100)

CDMMON /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) ,MODE

COMMON / OUTPUT /UERROR(IOO) . FCTLC lOO) , XIL(28)
J
C0EFL(27

1
4) ,

* VORDL(28 ,2) ,KNOT ,LMAX ,INTERV

COMMON / BASIS /FCT(100 ,30) ,V0RD(30 ,28 ,2) ,BC(30) ,ILAST

GO TO (10 ,30) .INDEX

10 IF (M .EQ .ILAST) GO TO 20

DD 11 L=1 , LX

11 G(L) = FCT(L ,1)*FCTL(L)

GO TO 80

20 DO 21 L=1 , LX

21 G(L) = FCTL(L)*FCTL(L)

GO TO 80

30 IF (M .EQ .31) GO TO 40

DO 31 L=1 , LX

31 G(L) = FCTL(L)*UERROR(L)

GO TO 80

32

40 DO 41 L=1 ,LX

41 G(L) = UERROR(L)*UERROR(L)

80 DDOT = O .DO

DO 81 L=2 ,LX

81 DDOT = DDOT + (G(L-l) + G(L))*TRPZWT(L)

C

DOT = DDOT

RETURN

END

C

c
SUBROUTINE EVAL

C COMPUTE POL . COEFF COEFL(I ,K) OF FCT ILAST FROM VORDL ,

C THEN COMPUTE FCTL(L) = (FCT ILAST)*TREND AT XX(L) , L=1 , LX

C

DOUBLE PRECISION G , TRPZWT

COMMON / WANDT / TREND(IOO) ,TRPZWT(100) ,G(100)

COMMON /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) ,MODE

COMMON / DUTPUT /UERROR(lOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4) ,

* V0RDL(28 ,2) ,KNOT ,LMAX , INTERV

DO 10 1=1 ,INTERV

COEFL(I , 1) = VDRDL(I , 1)

C0EFL(I , 2) = VORDL(I , 2)

DX = XIL(I+ l) - XIL(I)

DUM1 = (VORDL(1+1 ,1)-VORDL(I ,1))/DX

DUM2 = V0RDL(I ,2)+V0RDL(I+1 ,2)-2 .*DUM1

C0EFL(I , 3) = (DUM1-DUM2-V0RDL(1 ,2))/DX

10 COEFL(I , 4) = DUM2 /DX /DX

C

J = 1

ISWTCH = 1

DO 20 L=1 ,X

GO TO

11 IF (J .EQ .INTERV) GO TO

IF (XX(L) .LT .XIL(J+l)) G O T O

J = J + 1

(11 ,13) ,ISWTCH

12

13

33

GO TO 11

12 ISWTCH = 2

13 DX = XX(L) - XIL(J)

20 FCTL(L) = (COEFL(J , l)+DX*(C0EFL(J ,2)+DX*(COEFL(J ,3)

* +DX+COEFL(J ,4))))*TREND(L)

RETURN

END

C

C

SUBROUTINE NUBAS

DOUBLE PRECISION SUM

C0MMDN /INPUT /LX ,XX(100) ,U(100) ,JADD ,ADDXI(26) .MODE

COMMON / OUTPUT /UERRDR(lOO) ,FCTL(100) ,XIL(28) ,C0EFL(27 ,4) ,

* VORDL(28 ,2) ,KNOT ,LMAX ,INTERV

COMMDN/ BASIS /FCT(100 ,30) ,V0RD(30 ,28 ,2) ,BC(30) ,ILAST

COMMDN / LASTB /IDRDER(28) ,INSIRT(30) ,XKNOT

C C0EF(IC , .) CONTAINS THE POL COEFFICIENTS OF FCT M FOR INTER-

C VAL TO THE RIGHT OF XI(IC) , IC=ICM , ICM+M-3 ,

C WITH ICM = M*(M-7) /2 + 10 (WITH DBVIDUS MODS FOR MODE . 4)

C THE FCT ILAST (TD BE) INTRODUCED LAST , HAS ITS VALUES AT THE

C THE POINTS XX(L) IN FCTL(L) , HAS FIRST INDEX ICLAST

C IN COEF AND XI , HAS ADDITIONAL KNOT XKNOT , THE KNOT KNOTS

C FOR IT ARE CONTAINED , IN INCREASING ORDER , IN XIL , ITS COR-

C RESPONDING ORDS AND SLOPES ARE IN VORDL , THE KNDT JUST INTRO-

C DUCED HAS INDEX INSERT IN XIL , INSERT IS SAVED IN INSIRT(ILAST)

C FOR POSSIBLE REPLACEMENT DF KNOTS LATER ON (SEE M0DE=2 , 3) .

DIMENSION TEMP(30) ,XI(381) ,COEF(381 ,4)

IF (MODE .GT .O) GO TO 8

c
 ***CONSTRUCT FCT ILAST FOR ILAST .LE .4

XI(ILAST) = XIL(l)

ICLAST = ILAST

ILM1 = ILAST-1

IF (ILAST .GT .2) GO TO 7

IF (ILAST .Eq .2) GO TO 6

C FIRST BASIS FCT IS A CONSTANT

VORDL(1 , 1) = 1 .

34

VORDL(2 , 1) = 1 .

VDRDL(l , 2) = 0 .

V0RDL(2 , 2) = 0 .

GO TO 67

C SECOND BASIS FCT IS A STRAIGHT LINE

6 VORDL(2 , 2) = V0RDL(l , l)/(XIL(2) - XIL(l))*2 .

VDRDL(1 , 2) =-V0RDL(2 , 2)

C

7 VORDL(2 , 1) = - V0RDL(2 , l)

VORDL(2 , 2) = - VORDL(2 , 2)

GO TO 59

C

8 GO TO (10 ,10 ,14) .MODE

c
 ***SET UP CONSTANTS DEP .ON ILAST . INSERT NEW KNOT INTO XIL

C AND UPDATE VORD FOR FCT M , M=1 , ILAST-1

10 KNOT = KNOT + 1

ILAST = KNOT + 2

ICLAST = ILAST*(ILAST-7)/2 + 10

ILM1 = ILAST-1

INTERV = KNOT - 1

DO 11 INSERT=2 ,INTERV

IF (XKNOT .LT .XIL(INSERT)) GO TO 12

11 CONTINUE

GO TO 95

12 IF (XKNOT .LE .XIL(INSERT-l)) GO TO 95

10 = KNOT

DO 13 L=INSERT , INTERV

XIL(I0+1) = XIL(IO)

13 IDRDER(I0+1) = IORDER(10)

IORDER(INSERT) = KNOT

14 XIL(INSERT) = XKNOT

DX = XKNOT - XIL(l)

DD 15 1=1 ,4

VORD(I . KNOT , l)=COEF(1 ,1)+DX*(C0EF(1 ,2)+DX*(C0EF(I ,3)

* +DX*CDEF(I ,4)))

35

15 VDRD(I , KNOT ,2)=C0EF(I ,2)+DX*(2 .*COEF(I ,3)+DX*3 .*C0EF(I ,4))

ID = 4

IBOUND = 4

DO 19 1=5 , ILM1

ID = ID + I - 4

IBOUND = IBOUND + 1 - 3

17 IF (ID .EQ .IBOUND) GO TO 18

IF (XKNOT . LT . XKID+1)) GO TO 18

ID = IX + 1

GO TO 17

18 DX = XKNOT - XI(ID)

VDRD(I , KNOT , 1)=COEF(ID ,1)+DX#(COEF(ID ,2)+DX*(COEF(lD ,3)

* +DX*COEF(ID , 4)))

19 VORD(I ,KNOT ,2)=COEF(ID ,2)+DX*(COEF(ID ,3)*2 .+DX*3 .*COEF(ID ,4))

C

C DEFINE LAST BASIS FUNCTION

GD TO (30 ,40 ,50) ,MODE

C *** MODE=1 *** ADD ILAST-TH BASIS FUNCTION . CONSTRUCT FROM FCT

C ILAST-1 BY REFLECTING THE PART OF THE LATTER TO

C THE RIGHT OF XKNOT ACROSS THE X-AXIS , THEN INTER

C PDLATING . THIS SHOULD INDUCE ONE MORE OSCILLATIO

C N IN FCT ILAST THAN IN FCT I-1AST-1

C

29 MDDE = 1

30 V0RDL(1 , 2) = V0RD(ILM1 ,1 ,2)

DO 31 K= l , INSERT

ILOC = IORDER(K)

31 VORDL(K , 1) = V0RD(ILM1 ,ILOC ,1)

DD 32 K=INSERT , INTERV

ILOC = I0RDER(K+1)

32 VORDL(K+1 , 1) =-VDRD(ILMl ,ILOC ,1)

VORDL(KNOT , 2) =-VORD(ILMl ,2 ,2)

GO TO 55

C

C *** M0DE=2 *** REPLACE FCT ILAST BY INTERPOLATING IT AT THE

C CURRENT SET OF KNOTS . IF FCT ILAST HAS NOT BEEN

C PREVIOUSLY DEF (INSIRT(ILAST)=0)(SEE 9 ABOVE ,

36

C ALSO MAIN AT 10)) SET MDDE=1 , PROCEED IN THAT MODE

C

40 IF (INSIRT(ILAST) .EQ .O) GO TO 29

VORDL(1 , 1)=VORD(ILAST , 1 , 1)

VORDL(1 , 2)=VORD(ILAST , 1 , 2)

ID = ICLAST

IBOUND = ICLAST + ILAST - 4

DO 43 K=2 , INTERV

41 IF (ID .EQ .IBOUND) GO TO 42

IF (XIL(K) . LT . XKID+1)) GO TO 42

ID = ID +1

GO TO 41

42 DX = X I L 0 0 - XI (ID)

43 VORDL(K , 1) = C0EF(ID ,1)+DX*(C0EF(ID ,2)+DX(C0EF(ID ,3)

* +DX+COEF(ID , 4)))

VORDL(KNOT , 1)=V0RD(ILAST , 2 , 1)

VORDL(KNOT , 2)=VORD(ILAST , 2 , 2)

GO TO 55

C

C *** M0DE=3 *** CHANGE FCT ILAST BY CHANGING JUST THE KNOT INTRO

C DUCED LAST

C

50 ID = ICLAST + INSERT - 1

DX = XKNOT - XI(ID)

XI(ID) = XKNOT

IF (DX .GE .O .) GO TO 51

ID = ID - 1

DX = XKNOT - XI(ID)

51 VORDL(INSERT , 1) = C0EF(ID ,1) +DX*(C0EF(ID ,2)+DX*(COEF(ID ,3)

* +DX+COEF(ID , 4)))

C

C *** INTERPOLATE

55 CALL INTERP

GO TO (57 ,57 ,59) .MODE

57 ID = ICLAST - 1

DO 56 10=1 ,INTERV

ID = ID + 1

37

56 XI(ID) = XIL(IQ)

INSIRT(ILAST) = INSERT

c
 ORTHONORMALIZE FCT ILAST OVER PREVIOUS (ORTHONORMAL) SET

C THEN COMPUTE THE COMPONENT BC(ILAST) OF UERROR WRTO IT

C FINALLY ,STORE THE VARIOUS REPRESENTATIONS OF FCT ILAST

C

59 CALL EVAL

DO 69 1=1 , ILM1

TEMP(I) = - DOT(I , 1)

DO 69 L=1 ,LX

69 FCTL(L) = FCTL(L) + TEMP(1)*FCT(L , I)

DO 61 K=1 , KNOT

ILOC = IORDER(K)

DO 61 L=1 , 2

SUM = 0 .DO

DO 68 1=1 ,ILM1

69 SUM = SUM + TEMP(I)*VORD(l , ILOC ,L)

61 VORDL(K , L) = VORDL(K , L) + SUM

67 CALL EVAL

C = SQRT(D0T(ILAST ,1))

BC(ILAST) = D0T(ILAST , 2) / C

DO 62 K=1 , KNOT

ILOC = IORDER(K)

DO 62 L=1 ,2

VORDL(K , L) = VORDL(K ,L)/C

62 VORD(ILAST , ILDC , L) = VORDL(K , L)

ID = ICLAST - 1

DO 63 10=1 ,INTERV

ID = ID + 1

DO 63 L=1 , 4

63 CDEF(ID , L) = C0EFL(10 ,L)/C

DD 64 L=1 , LX

64 FCT(L , ILAST) = FCTL(L) /C

RETURN

38

C *** THIS OUTPUT INDICATES A FAILURE CONDITION ***

95 WRITE (6 ,950) XKNOT , ILAST

950 FORMAT (15H *** NEW KN0T , E20 . 8 , 13H FOR FUNCTION , 13 , 5OH OUT OF BO

*UNDS OR COINCIDENT WITH A PREVIOUS KN0T . /36H *** EXECUTION CANNO

*T BE CONTINUED)

STOP

C

END

C

C***********TREND AND WEIGHT FUNCTIONS*********************************

C

FUNCTION T(Z)

T = 1 .

RETURN

END

C

FUNCTION W(Z)

W = 1 .

RETURN

END

39

	Least Squares Cubic Spline Approximation, II - Variable Knots
	Report Number:
	

	tmp.1307986960.pdf.vK9ng

