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ABSTRACT

We formulate and evaluate weighted and ordinary least
squares procedures for estimating the parametric rate
function of a nonhomogeneous Poisson process. Special
emphasis is given to processes having an exponential rate
function, where the exponent may include a polynomial
component or some frigonometric components or both.
Theoretical and experimental evidence is provided to
explain some surprising problems with the weighted least
squares procedure. The ordinary least squares procedure is
based on a square root transformation of the “detrended”
event times; and the results of an extensive Monte
Carlo study are summarized to show the advantages and
disadvantages of this procedure.

1 INTRODUCTION

In this paper we focus on arrival (counting) processes, and
more particularly, arrival processes that can be classified as
nonstationary point processes. For such processes we are
able to observe each arrival time exactly, and in general
the arrival intensity (rate) changes over time. Under
certain assumptions a nonstationary arrival process can be
represented as a nonhomogeneous Poisson process (NHPP)
(Cinlar, 1975). Using NHPPs, we can accurately represent
a large class of arrival processes encountered in practice.
An NHPP {N(t) : t > 0} given by

N(t) = # of arrivals in [0,¢] forall t>0
is a generalization of the Poisson process in which the
instantaneous arrival rate A(f) at time ¢ is a nonnegative
integrable function of time. The mean-value function of

the NHPP is defined by

u(t) =E[N(t)] for all ¢>0;
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and the relationship between the rate function and the
mean-value function is

E[N(t)] = /Ot A(z)dz for all ¢ 2>0.

The probabilistic behavior of the NHPP is completely
defined by the rate or mean-value functions. The literature
in this area includes both parametric and nonparametric
methods for estimating the NHPP rate function. To
model arrival processes having several periodic effects or
a long-term trend (or both), Kuhl, Wilson, and Johnson
(1997) utilized an NHPP whose rate function is of the
type exponential-polynomial-trigonometric with multiple
periodicities (EPTMP).

The principle of least squares is a method for estimating
the parameters of a statistical model fitted to sample data
by minimizing an appropriate sum of squared estimation
errors. In this paper we investigate least squares methods
for fitting NHPPs to arrival processes having parametric
rate functions such as an EPTMP-type rate function of the
form ’

’\(t) = exP{h(t; m,p, @)}a te [Ov S]a 0))

with
h(t;m,p,©) =Y out’ + i sin(wit + ¢x),
i=0 k=1

where

6= [aoaa17"'7am7717"'77p1¢17"-v¢pa(‘")17"'7wp]

is the vector of continuous parameters. The least squares
procedure will be used to fit the mean-value function p(t)
to N(t), the observed cumulative number of arrivals at
time ¢ € [0, S].
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Least squares. has been widely used to fit distribution
functions to observed data. For example, Swain, Venka-
traman, and Wilson (1988) successfully used least squares
procedures to estimate the parameters of cumulative dis-
tribution functions (c.d.f’s) from the univariate Johnson
translation system of distributions based on observed data.
Similarly, Wagner and Wilson (1996) found least squares
to be an effective and computationally efficient method for
fitting a univariate Bézier c.d.f. to sample data. Fitting a
mean-value function and a c.d.f. are similar in that both
are increasing functions which are fitted to the (possibly
rescaled) cumulative frequency of occurrence of relevant
sample data. Since certain variants of least squares have
proven to be advantageous methods for fitting distribution
functions, we are motivated to develop appropriate least
squares procedures for estimating the mean-value function
of an NHPP. )

2 METHODOLOGY

2.1 Setup for Least Squares Estimation of NHPPs

For an NHPP {N(t) : t > 0} in the interval [0,S], let
{ri:1=1,2,...,N(S)} denote the corresponding arrival
times. Throughout this-paper, we let {r; : ¢ =1,2,...}
denote a sequence of random arrival times; and a realization
of this process (that is, an observed sequence of specific
arrival times) we will write as {¢; : ¢ = 1,2,...}. If
we know the functional form of the mean-value function
#(t; ©), then we have.the relationship

w(7:50) =E[u(1;0)] +&; fori=12,..., (2
where &; is the random error, i.e. the statistical variation
around the mean, and Elg;} = 0. I the errors {e; :
i=1,2,...} were independent and identically distributed
(i.id.), then we could calculate the ordinary least squares
estimates of the parameters, denoted ®¢rs, by minimizing
the error sum of squares.

N(S)

SSOESY

i=1

{1r:8) — Elu(rs O))}

over all values of © so that we take éow = arg ming SSg

(8) (Seber and Wild 1989).

In the case of an NHPP, the errors {¢;: i =1,2,...}
in (2) are neither independent nor identically distributed
— in particular, an NHPP has the following probability
structure. Given an NHPP {N(¢) : t > 0} with rate
function A(t) and mean-value function p(t), the sequence
of arrival epochs 77,72, ... are event times of this NHPP
if and only if the “detrended” arrival epochs

7 = u(7:; ©)
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Figure 1: Relationship between Original and Detrended
Arrival Times

for i = 1,2,... constitute a Poisson process with rate 1
(Cinlar 1975). Figure 1 illustrates this relationship.

Since the detrended arrival times 7§, 73, . . . come from
a Poisson process with rate 1, the detrended interarrival
times

«_f T if i=1,
X “{ —tr,, Hi=23,...

are i.i.d. exponential random variables with mean 1;' and
7;* has an i-stage Erlang distribution with scale parameter
1 so that

Efr}]=1 for i=1,2,.... €)]

Furthermore, the variance of 7' is equal to 4, and the
covariance between 7" and 7} for ¢ < j is

B J ‘
Covlr,7}] = Cov [Z X5, ZX;‘] = 1. 4)
k=1 =1

Since the expected value of u(7;; ©) is the constant
1, the covariance structure of the errors {&;:1=1,2,...}
in (2) will coincide with the covariance structure of the
detrended arrival times given in (4). To exploit the known
covariance structure of the “idealized” estimation errors
{e;::1=1,2,...}, we developed a weighted least squares
(WLS) procedure for estimating the mean-value function
of an NHPP as well as an ordinary least squares (OLS)
procedure. These methods are examined in the following
subsections.
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2.2 Weighted Least Squares Estimation of NHPPs

It can be shown that the variance-covariance matrix V of
the idealized residuals {&;} in (2) has inverse given by

2 -1 o ... 0 0 0]
-1 2 -1 ... 0 0 0
0 -1 2 ... 0 0 0
v-l= D : Do :
0 0 0 ... 2 -1 0
0 0 0o ... -1 2 -1
[ 0 0 0 ... 0 -1 1]

(Kuhl, Damerdji, and Wilson 1998). In the WLS approach
to estimating the mean-value function of a target NHPP,
the error sum of squares to be minimized is SSg(©)
= sT(@)V‘le(@) over all values of ©, where the
ith element of the vector s(@)) of actual residuals is
&i(©) = u(ri; 8) — Elu(r; ©)] for i = 1,2,...,N(S).
In terms of the vector u(®) = V-1/2¢(®) of transformed
residuals, the WLS estimate of the NHPP parameter vector
© is given by

N(S)
argmin Y u}(6),
o

i=1

éWLS =

where the ith transformed residual is
w(®) = p(r;8)y/HE — p(riy1;0)/dr )
for i=1,2,...,N(S) —1; and the last element of u is
un(s)(©) =/ whsy [#(TN(S); ) - N(TN(S))] - ©
It is clear from (5) and (6) that all information

about the discrepancy between the empirical mean-value
function N(-) and the fitted mean-value function u(-; ®)

has been completely eliminated from the first N(S) — 1

elements of u, and only the last element of u contains
any information about the discrepancy between these
two functions. It follows that even in the idealized
situation in which the weighted least squares estimation
procedure starts with perfect (error-free) initial estimates
of the unknown parameters so that © = O, the value
of the objective function SSg(®) contains relatively little
information about how closely the current estimate of
the mean-value function approximates the empirical mean-
value function. Therefore it should not be surprising if
sitnations arise in which the final WLS estimate of the
mean-value function bears almost no reasonable relation
to the empirical mean-value function.

Figure 2 shows an example of the anomalous behavior
that can result from using the WLS procedure to fit an
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NHPP. In this example, the empirical mean-value function
represents the arrival of patients at a kidney-transplant
center in the United States over the time period January
1, 1991 ~ December 31, 1995. The divergence between
the fitted and empirical mean-value functions provides a
striking example of the way in which the WLS estimation
procedure can fail in practice.

Cumulative Arrivals

1 ¥ i ¥
0 365 730 1095 1460 1825
Time (Days)

Figure 2: Weighted Least Squares Estimate of the Mean-
Value Function (Smooth Curve) versus the Empirical Mean-
Value Function of Kidney Transplant Center 103 (Step
Function).

2.3 Ordinary Least Squares Estimation of NHPPs

Because of the fundamental problems that we encountered
in using the WLS procedure for estimating NHPPs, we
developed an alternative approach based on a variance-
stabilizing transformation together with an OLS estimation
procedure. When building a statistical model for which the
variance of the original response variable is proportional
to its mean (as in (3) and (4)), a standard variance-
stabilizing transformation is to work with the square root
of the original response (Box, Hunter, and Hunter 1978).
Therefore, we have implemented the following square root
transformation to “normalize” and “stabilize the variance”
of the dependent variable in our statistical model of the
detrended arrival epochs so that the associated idealized
residuals have the following form

& = Vil ©) - E[Va(r:; ©)| ™
fori=1,2,....

In Kuhl, Damerdji, and Wilson (1998) we show that
as i — 0o, E[y/u(7;©)] is asymptotic to 4/i—1 and
Var[\/u(7i; ©)) — %; moreover idealized residuals of the
form \/p(7; ©) — \/i—‘% converge in distribution to a
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normal distribution with mean zero and variance %,
Viam©) —+/i— 1 2 N(o,1)
“ 4 Soo T\

Thus, we see that the square root transformation does in
fact stabilize the variance of the idealized residuals {&;}
in (7); and we obtain the variance stabilized-ordinary least
squares estimate for the parameter vector © as

N(S)

: — 2
OoLs = arggmin Z (V,u('r,-;@) —4/i— %) . ®
i=1

The next step is to identify an appropriate numerical
procedure for minimizing the sum of squared errors on
the right-hand side of (8).

3 PARAMETER ESTIMATION
PROCEDURE

Given an EPTMP-type rate function of the form (1),
we must determine the degree m of the polynomial
component of the exponent and least squares estimates of
the parameters of ©. To determine m, we will use a
sequential model selection procedure. Based on the initial
estimates of the parameters, we perform a likelihood ratio
test to determine the appropriate degree m. Then we
condition the estimation of the parameters on a fixed value
of m -and compute the final least squares estimate of the
parameter vector ©. :
_ The procedure for-obtaining the least squares estimate
©,,.-conditioned on a fixed value of m involves a numerical
search procedure over the relevant parameter space. We
have " investigated several numerical search procedures
including the Levenberg-Marquardt procedure, which is a
specialized search gradient-search method for least squares
problems (Kennedy and Gentle 1980), and the Nelder-
Mead simplex seéarch procedure (Barton 1996, Olsson
1974, Olsson and Nelson 1975), which is a general direct-
search method for unconstrained optimization of continuous
response functions that may be nondifferentiable. We chose
the Nelder-Mead simplex search procedure to perform this
numerical optimization because of its ability to handle
weighted least squares formulations of our problem.
Moreover in the case of least squares estimation of the
mean-value function for an NHPP having an EPTMP-
type rate function, we found that the performance and
computational efficiency of the Nelder-Mead procedure
is approximately equivalent to that of the Levenberg-
Marqguardt procedure.

The initial parameter estimates are based on meth-
ods by Kuhl, Wilson, and Johnson (1997) for rapidly
approximating the maximum likelihood estimates of the
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parameters of an EPTMP-type rate function. To determine
the degree m of the polynomial, the user can specify
the minimum and maximum degree of the polynomial
to be fitted. For each degree m of the polynomial, let
©,, denote the initial estimate of the parameter vector
© based on the procedure of Kuhl, Wilson, and Johnson
(1997). We use the likelihood ratio test of Lee, Wilson
and Crawford (1991) to determine the final estimate of m.
Suppose a sequence of n events is observed at the epochs
t <ty <--- <ty in a fixed time interval [0, S] as a
realization of an NHPP with a rate function of the form
(1). For each trial degree m, we let L,,, AGmln,t)‘ denote

the corresponding log-likelihood function evaluated at @m,
given N(5) =n and t = (t1,12,...,t,). Under the null
hypothesis that the current value of m is the true degree
of the trend component -of the underlying EPTMP-type

rate function, the test statistic ’

2 [£m+1 (ém+1 In, t) —Lom (émln, t)] ©)

has approximately the chi-squared distribution with one
degree of freedom provided S and n are sufficiently large.
Thus we exploit (9) to assess the importance of successive
increments of the likelihood function as. the degree of the
estimated trend component is repeatedly incremented by
one. The degree of the fitted EPTMP-type rate function
is determined to be the smallest value of m for which the
difference (9) is not significant at a pregpeciﬁed level of
significance. The corresponding vector ©,,, provides the
initial parameter estimates for the Nelder-Mead simplex
search procedure to compute the final least squares estimate
©,,, of the parameter vector ©.

4 EXPERIMENTAL PERFORMANCE
EVALUATION

4.1 Generation of Experimental Data

To evaluate the procedure for fitting an EPTMP-type rate
function to a nonhomogeneous Poijsson process having
multiple cyclic effects, we chose seven NHPPs which
represent processes having up to four cyclic components
or a general trend over time or both. These cases were
chosen based on the set of experimental cases used by
Kuhl, Wilson, and Johnson (1997) to evaluate a maximum
likelihood estimation procedure for NHPPs with EPTMP-
type rate functions. Case 1 is a EPTMP-type rate function
with one periodic component. Cases 2 through 4 consist of
exponential rate functions with two periodic components.
Cases 1 and 2 do not contain a general trend over
time. Cases 3, 4, and 5 contain general trends which
are represented by polynomials of degree 1, 2, and 3,
respectively. Rate functions of type EPTMP with three
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Table 1: Parameters of NHPPs Used in the Experimental Evaluation

Case
Parameter 1 2 3 4 5 6 7
Qo 3.6269 3.6269 3.6269 3.6269 4.5197 3.6269 3.6269
ay —_ — 0.1000 -0.1000 —-0.4743 — —_
Qs _ — —_ 0.0200 0.0873 — —
Qg — —_ — —  —0.0041 — —_
T 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592
" —0.6193 —0.6193 —0.6193 —0.6193 —0.6193 —0.6193 ~0.6193
w1y 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831
Yo — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
ba — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
woy — 125664 12,5664 12.5664 12.5664 12.5664 12.5664
Y3 — — — — — 0.2500 0.2500
o3 — — — — —_— 0.2500 0.2500
ws — — _— _ — 25.1327 25.1327
Y4 — —_ — — — — 0.7500
04 — — — — — — 0.7000
wy — — _— — —_ —_ 3.1416

and four periodic components and no long-term trend are
utilized in Cases 6 and 7, respectively.

The parameters of the rate function for each case
are shown in Table 1. The frequencies used in the
experimentation are expressed in radians per unit time
such that w; = 27, wg = 4w, w3 = 87, and wy = 7
radians per unit time. If the unit of time is taken to be one
year, then these frequencies represent annual, semiannual,
quarterly, and biennial effects, respectively.

Realizations of the selected NHPPs were generated
over the interval [0, S] using the program mp3sim (Kuhl,
Wilson, and Johnson 1997). For each case, K = 100

independent replications were simulated over the interval

[0,12]; and the resulting event-count samples were used
first to verify the correct operation of the piecewise in-
version scheme implemented in mp3sim. Then on each
replication of each case, an EPTMP-type rate function was

fitted to the observed series of event times. For all of the °

applications of the estimation procedure, the frequencies
of the periodic effects are considered to be known. The
user-specified significance level for the approximate like-
lihood ratio test (9) to determine the appropriate degree
of the polynomial was set equal to 0.05. In each case
with the exception of Case 7, the initial parameter esti-
mates specified in Section 3 were used in the approximate
likelihood ratio test (9). Since the quality of the initial
parameter estimates degrades as the number of periodic
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components increases, the approximate likelihood ratio
test based on these initial parameter estimates also begins
to fail as the number of periodic components increases.
In running these experiments, we found that when the
number of periodic components was greater than or equal
to four, the performance of the test (9) was unacceptable.
Therefore, in Case 7 the true maximum likelihood estimates
were used in the test statistic (9). The minimum degree
of the fitted polynomial was set to zero and the maximum
degree of the fitted polynomial was set to six on every
application of the OLS estimation procedure.

4.2 Formulation of Performance Measures

To evaluate the performance of the OLS estimation
procedure, we used both visual-subjective and numerical
goodness-of-fit criteria. These numerical performance
measures were utilized by Kuhl, Wilson, and Johnson
(1997) to evaluate the maximum likelihood estimation
procedure for fitting an EPTMP-type rate function. These
include absolute measures of error for each experiment
and relative performance measures that can be compared
across the different experiments. For replication &k of a
given case (k= 1,..., K), the estimated rate function is
denoted by Ax(t) and the estimated mean-value function
is denoted by [ix(%).

As defined in Kuhl, Wilson, and Johnson (1997),
we let 6; and &} respectively denote the average absolute
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Table 2: Statistics Describing the Errors in Estimating A(t) and u(t), t € [0, 12]

Case
1 2 3 4 5 6 7

u(S) 586 588 1126 967 968 599 714
F} 100 114 160 122 144 144 126
Vs 065 047 036 027 062 040 0.36
Qs 021 023° 017 015 018 029 021
& 237 294 655 803. 563 407 525
Vs 060 047 042 032 057 048 037
Qe 048 060 070 100 070 082 088
A 124 128 156 129 161 11.0 116
Va 084 073 070 059 063 082 059
Qa 0043 0.043 0.033 0.038 0036 0.037 0.031
AF 251 254 374 333 347 234 243
Vax 074 064 065 052 054 073 053
Qa- 0.087 0.086 0081 0.097 0077 0.078 0.065

error and maximum absolute error that occur in estimating
the rate function A(¢) on the kth replication of the target
NHPP over the time interval [0, S]. Similarly, we let
A and Aj, respectively denote the average absolute error
- and maximum absolute error that occur in estimating the
mean-value function pu(t) on the kth replication of the
target NHPP over the time interval [0, S]. The sample
mean of the observations {6 : k =1,..., K} is denoted
by 6; and V; denotes corresponding sample coefficient of
variation, The statistics 6 and V- are computed similarly
from the observations {6} : k =1,...,K}. The sample
statistics A, Va, A¥, and Va~ are defined in the same
fashion. As in Kuhl, Wilson, and Johnson (1997), we
also féport the “normalized” statistics @5, (s, Qa, and
Qa-~ to facilitate comparison of results for different rate
functions.

In addition to performance measures that indicate the
ability of the least squares procedure to fit an EPTMP-type
rate and mean-value function to the rate and mean-value
function of the underlying NHPP, we have formulated
performance measures that indicate the ability of the
least squares procedure to fit the observed arrival process.
‘Space limitations preclude elaboration of these performance
measures in this paper. For a detailed discussion of these
statistics. and their application in the present Monte Carlo
study, see Kuhl, Damerdji, and Wilson (1998). ‘

Beyond the numerical performance measures of good-
ness of fit to the underlying arrival process or to a
realization of that process, graphical methods are used
to provide a visual means of determining the quality of
the estimates. For each case, the underlying theoretical
rate. (respectively, mean-value) function is graphed along
with a tolerance band for the estimated rate (respectively,
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mean-value) function. Kuhl, Wilson, and Johnson (1997)
provide a detailed description of the method used to
construct these tolerance bands.

4.3 Presentation of Results

The statistical results on the estimation of A(t) and u(t)
for each experimental case are shown in Table 2. These
statistics describe the errors in estimating the underlying
theoretical rate and mean-value functions. Table 3 shows
the frequency distribution of the fitted degree of the
polynomial trend taken over 100 replications for each
case. Figures 4.3 through 4.3 contain the graphs of
90% tolerance bands for the fate function and mean-value
function for cases 1, 5, and 7.

4.4 Analysis of Results

The statistical results in Table 2 seem to be reasonable
for the selected measures of performance. Since these
experimental cases are based on those of Kuhl, Wilson,
and Johnson (1997), we will use their statistical results as
a benchmark for evaluating the performance of our least
squares estimation procedure.

In general, the performance measures in Table 2 that
describe the estimation errors in fitting the underlying rate
function (those involving &) are higher (worse) for the least
squares estimation procedure than the corresponding results
reported for maximum likelihood estimation. However, the
performance measures that describe the errors in fitting the
underlying mean-value function (those involving A) are
approximately the same for the two estimation methods.
The larger rate-function estimation errors that were obtained
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with the least squares procedure may be due to the fact that
the objective function for the least squares procedure is
based on the discrepancies between the fitted mean-value
function and the empirical mean-value function. Thus a
good fit to the mean-value function -does not necessarily
guarantee that the fit o its derivative, the rate function, will
be good. The difference between the quality of the fits for
the two methods is also evident in the plots of the rate and
mean-value functions. Also, we observe that the errors in
estimating the underlying rate and mean-value functions
tend to increase as the degree m of the long-term trend and
the number p of periodic components increase. One reason
for this may be that as the number of periodic components
increases, the initial estimates of the parameters begin to
degrade, which may cause the numerical search procedure
to start too far from the optimum. Poor starting values for
the parameter estimates may result in the procedure finding
a local minimum least squares estimate and stopping at a
suboptimal solution.

Table 3 indicates the ability of the fitting procedure to
determine the degree of the exponential-polynomial trend
present in the underlying NHPP rate function. These
results indicate that the likelihood ratio test based on the
initial estimates for the maximum likelihood estimation
procedure works ‘well in general for rate functions having
up to three periodic components. With more than three
periodic components, we were able to achieve similarly
good results but at the cost of computing the final maximum
likelihood estimates to be used in the likelihood ratio test.

Table 3: Frequency of Fitted Polynomial Degree for
K = 100 Realizations

True Fitted Degree

Case Degree 0 1 2 3 4 5 6
1 0 9% 7 06 0 0 0 O
2 0 8 13 0 0 0 0 O
3 1 0 949 6 0 0 0 O
4 2 0 0 8 13 0 0 O
5 -3 3 0 1 95 1 0 O
6 0 100 0 0 0 0 0 O
7 0 %9 6 0 0 0 0 0

The plots of the 90% tolerance bands about the
rate functions indicate that the least squares estimation
procedure is consistently able to fit a reasonable EPTMP-
type rate function to the underlying NHPP. Similar to the
results reported by Kuhl, Wilson, and Johnson (1997)
for maximum likelihood estimation, the plots of the
tolerance bands for least squares estimation are widest
at the peaks and valleys of the arrival rate. In addition,
the tolerance bands tend to be wider as the number of
periodic components increases.

The plots of the 90% tolerance bands about the
mean-value function also indicate that the least squares
procedure consistently provides reasonable estimates of the
underlying NHPP. Also from the plots of the tolerance
bands, one can observe that the widths of the tolerance
bands increase over time. This behavior is expected.
Because the error is cumulative over time, the estimation
error increases as the mean-value function increases.

5 CONCLUSION

In this paper we have developed a least squares method for
estimating the parameters of an NHPP having an EPTMP-
type rate function. This procedure has been implemented
in the public domain computer software mp31s. Using this
software, we have performed an experimental evaluation
of our least squares procedure. The results of this study
indicate that the least squares estimation method does a
good job of doing what it was designed to do. Namely, the
procedure is capable of accurately tracking the empirical
mean-value function of an NHPP. In addition, we have
developed a weighted least squares formulation of this
problem, and have shown theoretically why weighted least
squares fails when applied to an estimation problem with
a first- and second-order moment structure such as that
arising in estimation of the mean-value function for an
NHPP. -
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