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We formulate and evaluate weighted least squares (WLS) and ordinary least squares (OLS) proce-
dures for estimating the parametric mean-value function of a nonhomogeneous Poisson process. We
focus the development on processes having an exponential rate function, where the exponent may
include a polynomial component or some trigonometric components. Unanticipated problems with
the WLS procedure are explained by an analysis of the associated residuals. The OLS procedure is
based on a square root transformation of the “detrended” event (arrival) times—that is, the fitted
mean-value function evaluated at the observed event times; and under appropriate conditions, the
corresponding residuals are proved to converge weakly to a normal distribution with mean 0 and
variance 0.25. The results of a Monte Carlo study indicate the advantages of the OLS procedure
with respect to estimation accuracy and computational efficiency.
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1. INTRODUCTION

In many simulation studies, we encounter arrival processes having a long-term trend or multiply
periodic behavior. A prominent recent example is found in a large-scale simulation model of the
organ procurement and transplantation network of the United States that was developed for the
United Network for Organ Sharing (UNOS) (Pritsker, 1998). The UNOS Liver Allocation Model
(ULAM) is currently being used by UNOS to evaluate alternative liver-allocation policies for the
United States. In analyzing ULAM’s arrival streams of liver-transplant donors and patients, we
found some arrival rates to exhibit significant growth over time as well as daily, weekly, or annual
effects—that is, cyclic patterns of behavior with periods of 1, 7, or 365 days, respectively (Pritsker
et al., 1995).

In building ULAM, Pritsker et al. (1995) implemented the modeling, estimation, and simulation
procedures introduced by Kuhl, Wilson, and Johnson (1997) for representing a nonhomogeneous
Poisson process (NHPP) having an exponential rate function, where the exponent may include a
polynomial component or some trigonometric components; and throughout the rest of this paper,



we use the acronym EPTMP to describe rate functions of the form called “Exponential-Polynomial-
Trigonometric with Multiple Periodicities.” Kuhl, Wilson, and Johnson (1997) used a maximum
likelihood procedure to estimate the parameters of an EPTMP-type rate function. Although this
methodology has been found to yield accurate representations of some nonstationary arrival pro-
cesses, we have encountered the following problems with the maximum likelihood estimation pro-
cedure in certain large-scale practical applications such as the development of ULAM:

1. It does not always provide a sufficiently accurate estimate of the underlying arrival process
as represented by the historical buildup of arrivals over the relevant observation interval—
that is, in some applications the fitted mean-value function does not adequately represent
prominent features of the empirical mean-value function over the observation interval.

2. It can require extraordinarily long execution times to yield final parameter estimates, espe-
cially in situations requiring the user to fit a large number of separate arrival processes each
with a high arrival rate over the observation interval.

Item 1 above is particularly important in the validation of large-scale simulations such as ULAM,
where fidelity to the historical record of the stochastic input models driving the simulation is often
critical to acceptance of the overall study. Item 2 above can become a dominant consideration
with increasing scope and complexity of the simulation input-modeling task. For example, in the
development of ULAM we had to estimate separate arrival streams of: (a) organ donors at each
of 63 Organ Procurement Organizations, and (b) liver patients at each of 106 transplant centers;
furthermore, many of the corresponding data sets consisted of 500 to 1,500 arrivals recorded over
a five-year observation interval. These considerations motivated us to seek alternatives to the
maximum likelihood procedure for estimating the parameters of an NHPP having an EPTMP-type
rate function.

Least squares procedures have been widely used to fit distribution functions to sample data.
For example, Swain, Venkatraman, and Wilson (1988) used least squares procedures to estimate
the parameters of a cumulative distribution function (c.d.f.) in the univariate Johnson translation
system of distributions. Similarly, Wagner and Wilson (1996) found least squares to be an effective
and computationally efficient method for fitting a univariate Bézier c.d.f. to sample data. Fitting a
mean-value function and a c.d.f. are similar in that both are increasing functions which are fitted to
the (possibly rescaled) cumulative frequency of occurrence of relevant observations. Since certain
variants of least squares have been used effectively for estimating c.d.f.’s, we sought to develop
appropriate least squares procedures for estimating NHPPs. Härtler (1989) provided additional
motivation for developing such alternatives to maximum likelihood estimation of NHPPs.

The main objective of this paper is to develop and evaluate computationally efficient weighted
least squares (WLS) and ordinary least squares (OLS) procedures for fitting the mean-value func-
tion of an NHPP with an EPTMP-type rate function. An analysis of the small- and large-sample
properties of the residuals arising in the WLS procedure explains the unanticipated problems we en-
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countered in practical applications of this procedure. As an alternative least squares approach that
avoids the problems of the WLS procedure, we present an OLS procedure based on a square root
transformation of the “detrended” event (arrival) times—that is, the fitted mean-value function
evaluated at the observed event times; and under appropriate conditions, we prove that the corre-
sponding residuals converge weakly to a N(0, 1

4 ) distribution as their event indexes tend to infinity.
The results of a Monte Carlo study are summarized to indicate the advantages and disadvantages
of the OLS procedure. Based on the Monte Carlo results as well as our practical experience in using
the OLS procedure to fit NHPPs with EPTMP-type rate functions to the UNOS arrival streams of
liver- and kidney-transplant donors and patients, we believe that the techniques presented in this
paper are capable of adequately modeling a large class of arrival process encountered in large-scale
simulation applications.

The rest of this paper is organized as follows. In Section 2, we formulate the WLS and OLS
estimation procedures. The numerical methods used to implement these estimation procedures are
discussed in Section 3. Section 4 contains a summary of the results of the experimental perfor-
mance evaluation. In Section 5 we recapitulate the main findings of this research and discuss our
recommendations for future work. Although this paper is based on Kuhl (1997), some of our results
were also presented in Kuhl, Damerdji, and Wilson (1998).

2. METHODOLOGY

2.1 Basic Nomenclature

We consider counting processes that represent the buildup of events (arrivals) over time. For such
processes we are able to observe each arrival time exactly, and in general the arrival intensity (rate)
changes over time. Under certain assumptions a nonstationary arrival process can be represented
as an NHPP {N(t) : t ≥ 0}, where N(t) is the number of arrivals in the time interval (0, t] for all
t ≥ 0, such that the instantaneous arrival rate at time t, λ(t), is a nonnegative integrable function
of time; and the corresponding mean-value function is

µ(t) ≡ E[N(t)] =
∫ t

0
λ(z) dz for all t ≥ 0.

The probabilistic behavior of an NHPP is completely characterized by its rate or mean-value func-
tion.

We seek to develop computationally efficient least squares methods for fitting NHPPs to arrival
processes having parametric rate functions such as the EPTMP-type rate function

λ(t) = exp{h(t;m,p,Θ)} for all t ∈ [0, S], (1)

with exponent

h(t;m,p,Θ) =
m∑

i=0

αit
i +

p∑
k=1

γk sin(ωkt+ φk),
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where
Θ = [α0, α1, . . . , αm, γ1, . . . , γp, φ1, . . . , φp, ω1, . . . , ωp]

is the vector of continuous parameters. When we want to emphasize the dependence on Θ of the
rate function (1) and its associated mean-value function, we write these functions as λ(t;Θ) and
µ(t;Θ), respectively. The primary objective of the least squares procedures is to estimate µ(t;Θ)
for all t ∈ [0, S].

For an NHPP {N(t) : t ≥ 0}, we let {τi : i = 1, 2, . . .} denote the corresponding (random)
arrival times; and we let {ti : i = 1, 2, . . .} denote a (fixed) realization of the arrival-time process
(that is, an observed sequence of specific arrival times). If we know the exact value of the parameter
vector Θ as well as the form of the mean-value function µ(t;Θ), then the error term

εi(Θ) ≡ µ(τi;Θ) − E[µ(τi;Θ)] for i = 1, 2, . . . (2)

represents random variation of the “detrended” arrival time µ(τi;Θ) about its mean; and thus
E[εi(Θ)] = 0 for i = 1, 2, . . . . If the errors in (2) were independent and identically distributed
(i.i.d.), then the usual approach to computing the OLS estimator Θ̃OLS of the parameter vector
Θ based on the arrivals in the observation interval [0, S] would be to minimize the error sum of
squares

SSE(Θ̂) =
N(S)∑
i=1

{
µ(τi; Θ̂) − E[µ(τi; Θ̂)]

}2

over all values of Θ̂ so that we would take Θ̃OLS = arg min
Θ̂

SSE(Θ̂) (Seber and Wild, 1989).
In the case of an NHPP, the errors in (2) are neither independent nor identically distributed;

and in particular, an NHPP has the following probabilistic characterization. If the counting process
{N(t) : t ≥ 0} is an NHPP with rate function λ(t;Θ) and mean-value function µ(t;Θ) for all t ≥ 0,
then the epochs {τi : i = 1, 2, . . .} are the arrival times of this NHPP if and only if the corresponding
“detrended” epochs {τ∗i = µ(τi;Θ) : i = 1, 2, . . .} are the arrival times of a homogeneous Poisson
process with rate 1; and in this situation the detrended arrival times {τ∗i : i = 1, 2, . . .} satisfy

E[τ∗i ] = i for i = 1, 2, . . . , (3)

and

Cov
[
τ∗i , τ

∗
j

]
= min{i, j} for i, j = 1, 2, . . . (4)

(Çinlar, 1975).
Clearly the error terms defined by (2) have the covariance structure (4) of the detrended arrival

times. To exploit this known covariance structure, we developed WLS and OLS procedures for
estimating the mean-value function of an NHPP. These methods are examined in the following
subsections.
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2.2 Weighted Least Squares Estimation of NHPPs

For the ideal situation in which an NHPP with rate function of the form (1) has known parameter
vector Θ, the corresponding ideal residuals {εi(Θ) : i = 1, . . . , n} for a fixed sample size n have the
covariance matrix V defined by (4) with inverse V−1 = [Gij ] given by

Gij =


2, if 1 ≤ i = j ≤ n− 1,

−1, if 2 ≤ j = i+ 1 ≤ n or 1 ≤ j = i− 1 ≤ n− 1,

1, if i = j = n,

0, otherwise

(5)

(Kuhl, 1997). In the WLS approach to estimating the mean-value function of a target NHPP over
the observation interval [0, S], we take n = N(S) so that the error sum of squares

SSE(Θ̂) = εT(Θ̂)V−1ε(Θ̂) =
N(S)∑
i,j=1

Gijεi(Θ̂)εj(Θ̂) (6)

is to be minimized over all feasible values of Θ̂, where the vector of actual residuals ε(Θ̂) has ith
component εi(Θ̂) ≡ µ(τi; Θ̂) − E[µ(τi; Θ̂)] for i = 1, 2, . . . . Assuming that Θ̂ is close to Θ, we use
the approximation E[µ(τi; Θ̂)] ≈ E[µ(τi;Θ)] = i = N(τi) for i = 1, 2, . . . ; thus in practice, the ith
actual residual represents the discrepancy between the fitted mean-value function µ(τi; Θ̂) and the
empirical mean-value function N(τi) for i = 1, 2, . . . .

The error sum of squares (6) may be reexpressed as

SSE(Θ̂) =
∣∣∣u(Θ̂)

∣∣∣2 =
N(S)∑
i=1

u2
i (Θ̂), (7)

where: u(Θ̂) ≡ LTε(Θ̂) is a vector of transformed residuals that in ideal circumstances should be
uncorrelated with unit variance; and for n = N(S), the n× n matrix L = [Lij ] defined by

Lij =



√
2, if i = j = 1,

−√
(i− 1)/i, if 1 ≤ j = i− 1 ≤ n− 1,√

(i+ 1)/i, if 2 ≤ j = i ≤ n− 1,

1/
√
n, if i = j = n,

0, otherwise,

(8)

yields Cholesky decomposition V−1 = LLT. Appendix A details some relevant properties of the
transformed residuals that result in unanticipated anomalous behavior of the WLS estimator

Θ̃WLS = arg min
bΘ

N(S)∑
i=1

u2
i (Θ̂) (9)

for the NHPP parameter vector Θ.
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It is clear from Appendix A (in particular, displays (A.3) and (A.4)) that information about
the discrepancy between the empirical mean-value function N(t) and the fitted mean-value func-
tion µ(t; Θ̂) has been completely eliminated from all but the last element of u(Θ̂), the vector of
transformed residuals. It follows that even in the ideal situation for which the WLS estimation pro-
cedure starts with perfect (error-free) initial estimates of the unknown parameters so that Θ̂ = Θ

and the transformed residuals u(Θ) are in fact uncorrelated with unit variance, the value of the
objective function (7) contains relatively little information about how closely the current estimate
of the mean-value function approximates the empirical mean-value function. Furthermore, in Ap-
pendix A we see that each ideal transformed residual ui(Θ) converges in distribution to a standard
reversed exponential variate W with E[W ] = 0 and Var[W ] = 1 as i → ∞ provided i 6= n; and
the last ideal transformed residual un(Θ) converges in distribution to a standard normal variate
as n → ∞. These properties of the WLS residuals explain the problems we have encountered in
practical applications of the WLS procedure based on (9).

Kuhl, Damerdji, and Wilson (1998, p. 639) and Kuhl (1997, p. 53) describe a striking example
of the anomalous behavior that can result from using the WLS procedure (9) to fit an NHPP to an
observed arrival process. The divergence between the fitted and empirical mean-value functions in
this application exemplifies the way in which the WLS estimation procedure can fail in practice.

The first- and second-order moment structure arising in WLS estimation of the mean-value
function of an NHPP is similar to the corresponding moment structure that arises in WLS esti-
mation of c.d.f.’s. In particular, compare equations (5) and (8) above to the corresponding results
(7) and (8) of Swain, Venkatraman, and Wilson (1988), wherein the latter results were used to
formulate a WLS procedure for estimating a c.d.f. in the Johnson translation system of distribu-
tions. However, in the case of fitting a Johnson c.d.f., certain constraints must be imposed on the
WLS estimation procedure to ensure that the fitted c.d.f. is monotonically increasing with lower
and upper limits of 0 and 1, respectively. These constraints prevent the errors observed in WLS
estimation of a Johnson c.d.f. from being as pronounced as the errors observed in WLS estimation
of an NHPP. Nevertheless, the analysis given in this section can be easily adapted to explain the
problems arising in WLS estimation of Johnson c.d.f.’s that were reported by Swain, Venkatraman,
and Wilson (1988).

2.3 Ordinary Least Squares Estimation of NHPPs

Because of the fundamental problems that we encountered in using the WLS procedure for estimat-
ing NHPPs, we developed an alternative approach based on a variance-stabilizing transformation
together with an OLS estimation procedure. In building a statistical model for which the vari-
ance of the original response variable is proportional to its mean (as in (3) and (4)), a standard
variance-stabilizing transformation is to take the square root of the original response (Box, Hunter,
and Hunter, 1978). This suggests using a least-squares formulation based on ideal residuals having
the form

√
µ(τi;Θ) − E[

√
µ(τi;Θ) ] for i = 1, 2, . . . . In Appendix B, we show that as i → ∞,
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E[
√
µ(τi;Θ) ] −

√
i− 1

4 → 0 and Var[
√
µ(τi;Θ) ] → 1

4 ; moreover we show that ideal residuals of
the form

ηi(Θ) ≡
√
µ(τi;Θ) −

√
i− 1

4 for i = 1, 2, . . . (10)

converge in distribution to a normal distribution with mean zero and variance 1
4 ,

ηi(Θ) D−→
i→∞

N(0, 1
4 ) . (11)

Thus, we see that the square root transformation does in fact stabilize the variance of the ideal resid-
uals defined by (10); and (11) motivates our formulation of the variance stabilized–OLS estimate
for the parameter vector Θ as

Θ̃OLS = arg min
bΘ

SSE(Θ̂), where SSE(Θ̂) =
N(S)∑
i=1

(√
µ(τi; Θ̂) −

√
i− 1

4

)2

. (12)

The next step is to identify an efficient numerical procedure for: (a) determining appropriate values
for m and p in (1); and then (b) minimizing the sum of squared errors SSE(Θ̂) defined in (12) for
the given values of m and p.

3. PARAMETER ESTIMATION PROCEDURE

Given the degree m of the polynomial trend component and the number p of periodic components
in the EPTMP-type rate function (1), we use the Nelder-Mead simplex search algorithm (Nelder
and Mead, 1964; Olsson, 1974; Olsson and Nelson, 1975) to perform the OLS procedure, yielding
the final estimator Θ̃OLS in (12). The Nelder-Mead algorithm is a general-purpose, direct-search
method for unconstrained optimization of continuous response functions that may be nondiffer-
entiable. We investigated several other optimization methods including the Levenberg-Marquardt
algorithm, which is a specialized gradient-search method for least squares problems (Kennedy and
Gentle, 1980). On a suite of typical least-squares test problems, we found that the Nelder-Mead al-
gorithm was faster than the Levenberg-Marquardt algorithm while yielding solutions with virtually
the same accuracy. Moreover in an extensive evaluation of the performance of the Nelder-Mead
algorithm versus the Powell method (1964), the Davidon-Fletcher-Powell method (Davidon, 1959;
Fletcher and Powell, 1963), and the truncated-Newton method (Nash, 1984), Flanigan (1993) and
Wagner and Wilson (1996) found the Nelder-Mead algorithm to be faster and more stable for least
squares estimation of univariate Bézier distributions. These considerations motivated our use of
the Nelder-Mead algorithm in implementing the OLS estimation procedure.

The number p of periodic components and the initial estimates for the frequencies {ω1, . . . , ωp}
can be obtained either from prior information about the process or from a standard spectral analysis
of the series of events (Lewis, 1970). For some illustrative examples, see Lee, Wilson, and Crawford
(1991) or Kuhl and Wilson (1996). In many applications, the values of p and the frequencies
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{ω1, . . . , ωp} are known at the outset; and throughout the rest of this paper, we assume that these
quantities are known and therefore not subject to estimation.

To determine an appropriate value of the degree m of the polynomial trend component, we use
a heuristic variant of the likelihood ratio test developed by Kuhl, Wilson, and Johnson (1997). For
a fixed value of m, this heuristic likelihood ratio test uses the rapid approximation method detailed
in Sections 2.2–2.3 of Kuhl, Wilson, and Johnson (1997) to compute an initial estimate Θ̂m of the
hypothesized vector Θm of unknown continuous parameters. In practice we have found that Θ̂m

is an excellent approximation to the associated maximum likelihood estimator of Θm (in the sense
of nearly maximizing the likelihood function) while requiring much less computing time than the
maximum likelihood estimator. We sought to exploit this property in our procedure for estimating
m.

The approximate likelihood ratio test to determine the final estimate of the trend degree m
operates as follows. Suppose n arrivals have been observed at the arrival times t1 < t2 < · · · < tn

in the observation interval [0, S] as a realization of an NHPP with a rate function of the form (1).
Given N(S) = n and t = (t1, t2, . . . , tn), for each trial degree m we let Lm(Θ̂m|n, t) denote the
corresponding log-likelihood function evaluated at Θ̂m, the initial estimate of Θm based on the
rapid approximation technique of Kuhl, Wilson, and Johnson (1997). Under the null hypothesis
that the current value of m is the true degree of the trend component of the underlying EPTMP-
type rate function (1), the test statistic

2
[
Lm+1(Θ̂m+1|n, t) −Lm(Θ̂m|n, t)

]
(13)

has approximately a chi-squared distribution with one degree of freedom provided S and n are suf-
ficiently large. Thus we use (13) to assess the importance of successive increments of the likelihood
function as the degree of the estimated trend component is repeatedly incremented by one. The
degree of the fitted EPTMP-type rate function is determined to be the smallest value of m for
which the difference (13) is not significant at a prespecified level of significance. The corresponding
vector Θ̂m provides the initial parameter estimates (starting values) for the Nelder-Mead simplex
search algorithm, which in turn yields the final least squares estimate Θ̃m of the vector of unknown
continuous parameters.

Ultimately our only justification for the heuristic likelihood ratio test (13) is that we have found
it to work reasonably well in a large class of practical applications. Some evidence of the reliability
of this test can be found in Table IV of the experimental performance evaluation described in the
next section. In general we have observed that (13) performs reliably in data sets of “moderate” to
“large” size—that is, in applications with n ≥ 500 arrivals; and this is precisely the situation that
our overall OLS estimation procedure is designed to handle. We use the heuristic likelihood ratio
test (13) in preference to Akaike’s Information Criterion (AIC) (Akaike, 1974) for two reasons:

1. In other work we found the AIC to yield overparameterized models (see also p. 175 of Venables
and Ripley (1994)), whereas in all of our computational experience (13) largely avoids this
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problem.

2. The AIC requires computation of the maximum likelihood estimator of the vector of unknown
continuous parameters; and our main motivation for development of the least squares esti-
mator (12) was to avoid the computational overhead inherent in using maximum likelihood
estimation in this context.

We implemented the parameter estimation method described above in the public-domain soft-
ware package mp3ls (Kuhl and Wilson, 1998); and we used mp3ls to carry out the experimental
performance evaluation described in the next section.

4. EXPERIMENTAL PERFORMANCE EVALUATION

4.1 Generation of Experimental Data

To evaluate the performance of the OLS procedure in estimating an NHPP with rate function of
the form (1), we employed seven target NHPPs that represent processes having up to four cyclic
components or a general trend over time or both. As summarized in Table I, these cases are
based on the set of experimental cases used by Kuhl, Wilson, and Johnson (1997) to evaluate their
maximum likelihood estimation procedure for NHPPs with EPTMP-type rate functions. Notice
that Cases 1 through 6 in Table I coincide with the similarly numbered cases in Kuhl, Wilson, and
Johnson (1997). Case 0 is a EPTMP-type rate function with one periodic component. Cases 1
through 3 consist of exponential rate functions with two periodic components. Cases 0 and 1 do
not contain a general trend over time. Cases 2, 3, and 4 contain general trends that are represented
by polynomials of degree 1, 2, and 3, respectively. Rate functions of type EPTMP with three and
four periodic components and no long-term trend are utilized in Cases 5 and 6, respectively.

In addition to these seven cases, we performed a “Base Case” experiment that is used as a
benchmark for comparing the goodness-of-fit statistics computed in the each of the seven main
experimental cases. The Base Case indicates the relative magnitude of the various goodness-of-
fit statistics that we would obtain if instead of approximating the observed arrival process with
an appropriate NHPP model, we were to use a (homogeneous) Poisson process having a constant
arrival rate. In the Base Case we generated realizations of the NHPP specified for Case 0, but we
simply fitted a homogeneous Poisson process to the observed series of events. Although many of
the resulting goodness-of-fit statistics are only directly comparable to their counterparts in Case
0, the Base Case provides some means for judging the relative performance of the OLS procedure
(12) when it is used in conjunction with the NHPP model (1) to estimate an arrival process.

As shown in Table I, the frequencies used in the experimentation are expressed in radians per
unit time so that ω1 = 2π, ω2 = 4π, ω3 = 8π, and ω4 = π radians per unit time. If the unit of
time is taken to be one year, then these frequencies represent annual, semiannual, quarterly, and
biennial effects, respectively.
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TABLE I Parameters of NHPPs Used in the Experimental Evaluation.

Parameter Case
0 1 2 3 4 5 6

α0 3.6269 3.6269 3.6269 3.6269 3.6269 3.6269 3.6269
α1 — — 0.1000 −0.1000 −0.4743 — —
α2 — — — 0.0200 0.0873 — —
α3 — — — — −0.0041 — —
γ1 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592
φ1 −0.6193 −0.6193 −0.6193 −0.6193 −0.6193 −0.6193 −0.6193
ω1 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831
γ2 — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
φ2 — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
ω2 — 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664
γ3 — — — — — 0.2500 0.2500
φ3 — — — — — 0.2500 0.2500
ω3 — — — — — 25.1327 25.1327
γ4 — — — — — — 0.7500
φ4 — — — — — — 0.7000
ω4 — — — — — — 3.1416

Realizations of the selected NHPPs were generated over the observation interval (0, S] using the
piecewise inversion algorithm mp3sim (Kuhl and Wilson, 1996). For each case, we set S = 12 and we
generated K = 100 independent replications of the corresponding arrival process {N(t) : t ∈ (0, S]}.
On each replication of each case, we used a significance level of 0.05 in the approximate likelihood
ratio test (13) to determine the appropriate degree m of the polynomial trend, where m was limited
to the range 0 ≤ m ≤ 6; and then we applied the OLS scheme (12) to fit an NHPP to the observed
series of event times. The software package mp3ls (Kuhl and Wilson, 1998) was invoked on each
replication of each case to perform this parameter estimation procedure. The objective of the
performance evaluation using mp3sim and mp3ls was to characterize the statistical goodness of fit
and the computational efficiency achieved by the OLS procedure in the chosen suite of seven test
problems.

4.2 Formulation of Performance Measures

To evaluate the performance of the OLS estimation procedure, we used both visual-subjective and
numerical goodness-of-fit criteria. Some of these numerical performance measures were formulated
by Kuhl, Wilson, and Johnson (1997) to evaluate their maximum likelihood estimation procedure for
fitting an EPTMP-type rate function. Among these goodness-of-fit statistics are absolute measures
of error that are specific to each experiment as well as relative performance measures that can be
compared across different experiments. For replication k of a given case (k = 1, . . . ,K), we let
λ̃k(t) and µ̃k(t) respectively denote the estimated rate and mean-value functions; and we let λ(t)
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and µ(t) respectively denote the true underlying rate and mean-value functions, where we have
suppressed the dependence of these latter functions on the true parameter vector Θ for notational
simplicity.

We used the following goodness-of-fit statistics to measure the ability of the OLS procedure to
estimate the theoretical rate and mean-value functions of the underlying NHPP in each experimental
case. As defined in Kuhl, Wilson, and Johnson (1997), we let

δk ≡ 1
S

∫ S

0

∣∣∣λ̃k(t) − λ(t)
∣∣∣ dt and δ∗k ≡ max

{∣∣∣λ̃k(t) − λ(t)
∣∣∣ : 0 ≤ t ≤ S

}
respectively denote the average absolute error and maximum absolute error that occur in estimating
the rate function λ(t) for all t ∈ [0, S] on the kth replication of the target NHPP; and we let δ and
Vδ respectively denote the sample mean and the sample coefficient of variation of the observations
{δk : k = 1, . . . ,K}. The statistics δ∗ and Vδ∗ are computed similarly from the observations
{δ∗k : k = 1, . . . ,K}. Moreover, we let

∆k ≡ 1
S

∫ S

0

∣∣∣µ̃k(t) − µ(t)
∣∣∣ dt and ∆∗

k ≡ max
{∣∣∣µ̃k(t) − µ(t)

∣∣∣ : 0 ≤ t ≤ S
}

respectively denote the average absolute error and maximum absolute error that occur in estimating
the mean-value function µ(t) for all t ∈ [0, S] on the kth replication of the target NHPP; and we
let ∆ and V∆ respectively denote the sample mean and the sample coefficient of variation of the
observations {∆k : k = 1, . . . ,K}. The statistics ∆∗ and V∆∗ are computed similarly from the
observations {∆∗

k : k = 1, . . . ,K}. As in Kuhl, Wilson, and Johnson (1997), we also report the
“normalized” statistics

Qδ ≡ δ

µ(S)/S
, Qδ∗ ≡ δ∗

µ(S)/S
, Q∆ ≡ ∆

1
S

∫ S

0
µ(t) dt

, and Q∆∗ ≡ ∆∗

1
S

∫ S

0
µ(t) dt

to facilitate comparison of results for different cases.
In addition to goodness-of-fit statistics that measure the ability of the OLS procedure to estimate

the theoretical rate and mean-value functions of the underlying NHPP, we formulated statistics that
measure the ability of the OLS procedure to approximate each observed arrival process. On the kth
replication of a given NHPP (k = 1, 2, . . . ,K), we let {ti,k : i = 1, 2, . . . ,Nk(S)} denote the arrival
epochs observed in the time interval [0, S]. Thus for k = 1, 2, . . . ,K, the kth replication of the
sum of squared OLS estimation errors and the mean squared OLS estimation error are respectively
given by

SSE(Θ̃)k ≡
Nk(S)∑
i=1

(√
µ̃k(ti,k) −

√
i− 1

4

)2

and MSE(Θ̃)k ≡ SSE(Θ̃)k/Nk(S).

We let SSE and VSSE
respectively denote the sample mean and the sample coefficient of variation

of the observed values {SSE(Θ̃)k : k = 1, 2, . . . ,K}. Similarly, we let MSE and VMSE
respectively
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denote the sample mean and the sample coefficient of variation of the observed values {MSE(Θ̃)k :
k = 1, 2, . . . ,K}.

The average absolute error and maximum absolute error that occur in estimating the empirical
mean-value function on the kth replication are respectively given by

Dk ≡ 1

Nk(S)

Nk(S)∑
i=1

∣∣∣µ̃k(ti,k) − i
∣∣∣ and D∗

k ≡ max
{∣∣∣µ̃k(ti,k) − i

∣∣∣ : 1 ≤ i ≤ Nk(S)
}

for k = 1, 2, . . . ,K. We let D denote the sample mean of the observed values {Dk : k = 1, 2, . . . ,K};
and we let D∗ denote the sample mean of the observed values {D∗

k : k = 1, 2, . . . ,K}. We also
formulated two types of aggregate performance measures to compare D and D∗ across experiments.
The first type uses the grand average level of the empirical mean-value functions computed over all
K replications to normalize the average performance measures D and D∗ so that we take

QD =
D

1
K

K∑
k=1

1
S

∫ S

0
Nk(t)dt

and QD∗ =
D∗

1
K

K∑
k=1

1
S

∫ S

0
Nk(t)dt

.

The second type of aggregate performance measure is calculated by expressing each performance
measure Dk and D∗

k observed on the kth replication as a percentage of the average level of the
empirical mean-value function on that replication; then the resulting normalized statistics are
averaged over all K replications, yielding

HD =
1

K

K∑
k=1

Dk

1
S

∫ S

0
Nk(t)dt

and HD∗ =
1

K

K∑
k=1

D∗
k

1
S

∫ S

0
Nk(t)dt

,

respectively.
In addition to numerical goodness-of-fit statistics, we used graphical methods to provide a visual

means of determining the quality of the estimates. For each case, the underlying theoretical rate
(respectively, mean-value) function was graphed along with a tolerance band for the estimated
rate (respectively, mean-value) function. Approximate tolerance bands for the rate function λ(t),
t ∈ (0, S], were obtained as follows. For each fixed time t ∈ (0, S], let

λ̃(1)(t) < λ̃(2)(t) < · · · < λ̃(K)(t)

denote the ordered estimates of λ(t) obtained on all K replications of the estimation procedure.
Thus an approximate 100(1 − β)% tolerance interval for λ(t) is given by[

λ̃(dKβ/2e)(t), λ̃(dK{1−β/2}e)(t)
]
,

where dze denotes the smallest integer greater than or equal to z. For example if K = 100 and
β = 0.10, then the estimated 90% tolerance interval for λ(t) at a single fixed time t ∈ [0, S] is
[λ̃(5)(t), λ̃(95)(t)]. Similarly, tolerance intervals are obtained for the mean-value function µ(t) at a
fixed time t ∈ (0, S].

12



4.3 Presentation of Results

For each of the experimental cases specified in Subsection 4.1, Tables II and III contain a summary
of the goodness-of-fit statistics formulated in Subsection 4.2. The statistics in Table II describe
the errors in estimating the underlying theoretical rate and mean-value functions. The statistics in
Table III describe the errors in fitting the K = 100 empirical mean-value functions. These tables
also include entries of the form ±ŜE[·] (that is, plus-or-minus the estimated standard error) for the
following performance measures: δ, δ∗, ∆, ∆∗, SSE, and MSE. Thus for example, we see from Table
II that in Case 3, ∆ = 12.9 and ŜE[∆] = 0.76. The estimated standard errors reported in Tables II
and III provide some evidence that taking K = 100 replications of the OLS estimation procedure
for each case yields reasonably stable estimates of the selected goodness-of-fit statistics for that
case. Moreover, Table IV shows the frequency distribution of the fitted degree of the polynomial
trend taken over all 100 replications for each case. Figures 1 through 6 display the graphs of 90%
tolerance bands for the rate functions and mean-value functions associated with cases 1, 3, and 6.

TABLE II Goodness-of-Fit Statistics for Estimating λ(t) and µ(t), t ∈ [0, 12], with ± the Esti-
mated Standard Errors for Selected Statistics.

Case µ(S) δ Vδ Qδ δ∗ Vδ∗ Qδ∗ ∆ V∆ Q∆ ∆∗ V∆∗ Q∆∗

Base 586 29.8 0.02 0.61 58.3 0.05 1.19 13.7 0.73 0.046 31.7 0.66 0.110
±0.06 ±0.29 ±1.00 ±2.09

0 586 10.0 0.65 0.21 23.7 0.60 0.48 12.4 0.84 0.043 25.1 0.74 0.087
±0.65 ±1.42 ±1.04 ±1.86

1 588 11.4 0.47 0.23 29.4 0.47 0.60 12.8 0.73 0.043 25.4 0.64 0.086
±0.54 ±1.38 ±0.93 ±1.63

2 1126 16.0 0.36 0.17 65.5 0.42 0.70 15.6 0.70 0.033 37.4 0.65 0.081
±0.58 ±2.75 ±1.09 ±2.43

3 967 12.2 0.27 0.15 80.3 0.32 1.00 12.9 0.59 0.038 33.3 0.52 0.097
±0.33 ±1.61 ±0.76 ±1.73

4 396 12.9 0.69 0.39 57.5 0.65 1.44 10.7 0.54 0.058 26.6 0.51 0.144
±0.89 ±3.74 ±0.58 ±1.36

5 599 13.9 0.46 0.28 40.9 0.46 0.82 11.1 0.81 0.037 23.5 0.73 0.079
±0.64 ±1.88 ±0.90 ±1.72

6 714 13.0 0.32 0.22 52.3 0.38 0.88 13.7 0.64 0.037 29.2 0.59 0.078
±0.42 ±1.99 ±0.88 ±1.72

4.4 Analysis of Results

Comparing the results in Table II for Case 0 to the results for the Base Case, we see that in Case
0 the theoretical rate and mean-value functions are both estimated with greater accuracy. For
example, in the Base Case the average maximum absolute errors δ∗ and ∆∗ in estimating the rate
and mean-value functions are 58.3 ± 0.29 and 31.7 ± 2.09, respectively; by contrast in Case 0 the
corresponding statistics are 23.7 ± 1.42 and 25.1 ± 1.86, respectively. These results provide some
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TABLE III Goodness-of-Fit Statistics for Estimating N(t), t ∈ [0, 12], with ± the Estimated
Standard Errors for Selected Statistics.

Case µ(S) SSE VSSE
MSE VMSE

D D∗ QD QD∗ HD HD∗

Base 586 95.1 0.060 0.162 0.060 7.94 24.6 0.026 0.082 0.0002 0.0007
±0.57 ±0.00097

0 586 36.6 0.035 0.062 0.035 5.40 17.3 0.018 0.058 0.0001 0.0006
±0.13 ±0.00022

1 588 32.3 0.066 0.055 0.065 5.37 17.2 0.018 0.057 0.0001 0.0006
±0.21 ±0.00036

2 1126 46.0 0.004 0.041 0.009 6.11 20.8 0.013 0.045 0.0001 0.0004
±0.02 ±0.00004

3 967 26.9 0.016 0.028 0.014 4.65 16.8 0.013 0.049 0.0001 0.0005
±0.04 ±0.00004

4 396 34.7 0.402 0.088 0.403 4.92 15.5 0.026 0.083 0.0007 0.0019
±1.39 ±0.00355

5 599 33.8 0.027 0.056 0.025 5.52 17.8 0.018 0.058 0.0002 0.0005
±0.09 ±0.00014

6 714 37.8 0.011 0.053 0.116 5.96 19.9 0.016 0.052 0.0003 0.0007
±0.04 ±0.00062

indication of the potential problems associated with using a homogeneous Poisson process to model
a time-dependent arrival process.

Whereas the performance measures in Table II that describe the estimation errors in fitting
the underlying rate function are generally larger (worse) for the OLS estimation procedure than
the corresponding results reported by Kuhl, Wilson, and Johnson (1997) for maximum likelihood
estimation, the performance measures that describe the errors in fitting the underlying mean-
value function are approximately the same for the two estimation methods. The results for Case
3 exemplify these phenomena, where we see that the statistics δ and δ∗ for OLS estimation are
12.2 ± 0.33 and 80.3 ± 1.61, respectively, according to Table II; and the corresponding statistics
for maximum likelihood estimation are 6.3 and 45.4, respectively, according to Table 2 of Kuhl,
Wilson, and Johnson (1997). On the other hand, the statistics ∆ and ∆∗ for OLS estimation in
Case 3 are 12.9± 0.76 and 33.3± 1.73, respectively; and the corresponding statistics for maximum
likelihood estimation in Case 3 are 13.1 and 33.4, respectively. To put these goodness-of-fit statistics
in perspective, we remark that on a personal computer with a 266 MHz Pentium II processor, the
maximum likelihood estimation procedure mp3mle (Kuhl and Wilson, 1996) required 380 minutes
to fit the 100 replications of Case 3; by contrast, the OLS estimation procedure mp3ls (Kuhl and
Wilson, 1998) required 70 minutes to fit the same 100 data sets. For all the other experimental
cases, we have observed similar speed-ups in using mp3ls versus mp3mle.

The larger rate-function estimation errors that were obtained with the OLS procedure may be
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partially explained as follows. Essentially the objective function in (12) for the OLS procedure is
based on the discrepancies between the square root of the fitted mean-value function and the square
root of the empirical mean-value function; and there is no guarantee that the corresponding fitted
rate function will closely approximate the underlying true rate function. The difference between
the quality of the fits for the two estimation methods is also evident in the plots of the rate and
mean-value functions.

The results in Table III provide some evidence that the OLS procedure generally yields an accu-
rate estimate of the target empirical mean-value function in each data set to which the procedure is
applied. For example, in Case 3 we see that HD = 0.0001 and QD∗ = 0.0005 so that on a “typical”
replication of Case 3, the average and maximum absolute errors in estimating the empirical mean-
value function are respectively 0.01% and 0.05% of the time-weighted average level of the empirical
mean-value function computed over that replication of Case 3. Moreover, the residual mean square
MSE in Case 3 is 0.028±0.00004; and this provides another perspective on the accuracy with which
the empirical mean-value function is estimated on each realization of Case 3. More generally, the
performance measures MSE, QD, QD∗ , HD, and HD∗ in Table III indicate that the OLS estimation
procedure yields consistently accurate fits to the empirical mean-value function across all seven
cases.

In Section 2 and Appendix B, we have shown that if the fitted mean-value function coincides
exactly with the underlying mean-value function, then the expected value of MSE should approach
0.25 as n → ∞; however, the observed values of MSE in Table III range from 0.028 to 0.088
across the seven cases. This may be an indication that the fitted mean-value function is tracking
random variability associated with the empirical mean-value function and thus is deviating from
the underlying mean-value function.

Table IV indicates the ability of the fitting procedure to determine the degree of the exponential-
polynomial trend present in the underlying NHPP rate function. These results indicate that the
approximate likelihood ratio test (13) works reasonably well in general for rate functions having up
to p = 4 periodic components—provided at least a “moderate” sample size (n ≥ 500) is available.
For example, we experimented with a variant of Case 4 in which the intercept α0 was increased from
3.6269 to 4.5197 so that the expected sample size increased from 396 to 968; and in this situation
the observed frequencies of fitted polynomial trends of degree 0, 1, 2, 3, and 4 were 3, 0, 1, 95, and
1, respectively.

The plots of the 90% tolerance bands about the theoretical rate functions indicate that the
OLS estimation procedure is consistently able to fit a reasonable EPTMP-type rate function to
the underlying NHPP. Similar to the results reported by Kuhl, Wilson, and Johnson (1997) for
maximum likelihood estimation, the plots of the tolerance bands for OLS estimation are widest at
the peaks and valleys of the arrival rate. In addition, the tolerance bands tend to be wider as the
number of periodic components increases.

The plots of the 90% tolerance bands about the theoretical mean-value functions also indicate
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FIGURE 1 90% Tolerance Intervals for λ(t), t ∈ [0, 12], in Case 1.
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FIGURE 2 90% Tolerance Intervals for µ(t), t ∈ [0, 12], in Case 1.
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FIGURE 3 90% Tolerance Intervals for λ(t), t ∈ [0, 12], in Case 3.
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FIGURE 4 90% Tolerance Intervals for µ(t), t ∈ [0, 12], in Case 3.

17



FIGURE 5 90% Tolerance Intervals for λ(t), t ∈ [0, 12], in Case 6.

FIGURE 6 90% Tolerance Intervals for µ(t), t ∈ [0, 12], in Case 6.
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TABLE IV Frequency of Fitted Polynomial Degree for K = 100 Realizations.

True Fitted Degree
Case Degree 0 1 2 3 4 5 6

0 0 93 7 0 0 0 0 0
1 0 87 13 0 0 0 0 0
2 1 0 94 6 0 0 0 0
3 2 0 0 87 13 0 0 0
4 3 26 10 14 48 2 0 0
5 0 98 2 0 0 0 0 0
6 0 99 1 0 0 0 0 0

that the OLS estimation procedure consistently provides reasonable estimates of the underlying
NHPP. Also from the plots of the tolerance bands, we observe that the widths of the tolerance
bands increase over time. This behavior is expected. Because the error is cumulative over time,
the estimation error increases as the mean-value function increases.

Beyond the results displayed in Tables II through IV and in Figures 1 through 6, our practical
experience in applying the OLS estimation procedure to time-dependent arrival processes exhibiting
a “moderate” to “large” number of cyclic effects (that is, in processes with 4 < p ≤ 20) indicates
the procedure’s robustness in handling increasingly complex estimation problems. By contrast,
in many of these applications involving more than p = 4 cyclic effects, the maximum likelihood
estimation procedure implemented in mp3mle (Kuhl and Wilson 1998) simply failed to converge to
a final answer.

5. CONCLUSIONS AND RECOMMENDATIONS

In this paper we developed and evaluated WLS and OLS methods for estimating the parameters of
an NHPP having an EPTMP-type rate function. Anomalous performance of the WLS procedure is
explained by an analysis of the associated residuals. The OLS estimation procedure is specifically
designed to handle situations in which a large number of arrival processes must be fitted to histor-
ical records of “moderate” to “large” length (that is, sample sizes of at least 500). A central limit
theorem for the OLS residuals together with an extensive experimental performance evaluation of
the OLS estimation procedure suggest that this procedure can yield an adequate approximation
to an arrival process with much less computational effort than would be required by maximum
likelihood estimation, provided a sufficient volume of sample data is available. Moreover, several
practical applications of the OLS estimation procedure to the development of stochastic input mod-
els for large-scale simulation experiments have demonstrated the robustness of the OLS estimation
procedure in handling increasingly complex estimation problems.

Further improvement in the performance of the OLS estimation procedure may require the
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development of an alternative to the approximate likelihood ratio test (13) for determining the
degree of the polynomial trend component of the rate function. It would also be highly desirable
to develop an automated procedure to determine the number of trigonometric rate components.
These issues are the subject of ongoing work.
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APPENDIX A: PROPERTIES OF RESIDUALS ARISING FROM WLS

ESTIMATION OF NHPPs

If the sample size n is fixed in the WLS procedure of Subsection 2.2, then it follows from (8) that
the ith transformed residual for i = 1, 2, . . . , n − 1 is

ui(Θ̂) =
√

i+1
i

{
µ(τi; Θ̂) − E[µ(τi; Θ̂)]

}
−

√
i

i+1

{
µ(τi+1; Θ̂) − E[µ(τi+1; Θ̂)]

}
(A.1)

≈
√

i+1
i

{
µ(τi; Θ̂) −N(τi)

}
−

√
i

i+1

{
µ(τi+1; Θ̂) −N(τi+1)

}
(A.2)

= µ(τi; Θ̂)
√

i+1
i − µ(τi+1; Θ̂)

√
i

i+1 , (A.3)

since in (A.1), the expectation E[µ(τi; Θ̂)] is unknown and in practice we take E[µ(τi; Θ̂)] ≈
E[µ(τi;Θ)] = i = N(τi) to obtain the ith approximated residual (A.2); and similarly the last
transformed residual is

un(Θ̂) =
1
√
n

{
µ(τn; Θ̂) − E[µ(τn; Θ̂)]

}
≈ 1

√
n

[
µ(τn; Θ̂) −N(τn)

]
. (A.4)

Notice the exact cancellation occurring in (A.3):√
i+1

i

{
−N(τi)

}
−

√
i

i+1

{
−N(τi+1)

}
= −

√
i(i + 1) +

√
i(i+ 1) = 0,

so that in practice the information about the discrepancy between the empirical mean-value function
N(t) and the fitted mean-value function µ(t; Θ̂) has been completely eliminated from all but the
last element of u(Θ̂); and thus the resulting WLS estimator (9) of the parameter vector Θ cannot
be expected to yield acceptable fits to historical data.

In the rest of this appendix, we establish the asymptotic mean and variance of the ideal WLS
residuals

ui(Θ) =


√

i+1
i τ

∗
i −

√
i

i+1τ
∗
i+1, i = 1, . . . , n− 1,

1√
n
(τ∗n − n), i = n,

(A.5)

where for each positive integer j, the random variable τ∗j =
∑j

`=1X
∗
` ; and the {X∗

` } are i.i.d.
exponential variates with mean 1.
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Definition 1 A standard reversed exponential variate W has p.d.f.

fW (w) =

{
e−(1−w), w ≤ 1,
0, w > 1,

so that W has mean 0, variance 1, and moment generating function MW (z) ≡ E[ezW ] = ez/(1+ z)
for all z > −1.

Proposition 1 The ideal WLS residuals in (A.5) converge in distribution to a standard reversed
exponential variate W as i→ ∞ provided i 6= n; and the last ideal WLS residual in (A.5) converges
in distribution to a standard normal variate as n→ ∞ so that

ui(Θ) D−→
i→∞
i6=n

W and un(Θ) D−→
n→∞

N(0, 1). (A.6)

Proof. The second part of (A.6) follows immediately from (A.5) for the case i = n together with the
central limit theorem. For the case that i 6= n in (A.5), direct calculation of the moment generating
function Mui(Θ)(z) ≡ E{exp[zui(Θ)]} shows that ln

[
Mui(Θ)(z)

]
= −i ln{

1 − z/[i(i+ 1)]1/2
} −

ln
{
1 + z[i/(i+ 1)]1/2

}
for all z ∈ (−1, 1); and combining this result with the expansion ln(1−y) =

−y+O(y2) for all y with |y| < 1 (Dwight 1961, Equation 601.1), we see that limi→∞, i6=nMui(Θ)(z) =
ez/(1 + z) = MW (z) for all z ∈ (−1, 1). Thus the first part of (A.6) follows immediately from the
continuity theorem for moment generating functions (Hogg and Craig, 1995, Section 5.3).

APPENDIX B: PROPERTIES OF THE SQUARE-ROOT-TRANSFORMED

OLS PROCEDURE

In this appendix we establish the asymptotic mean and variance as well as the asymptotic distri-
bution of the ideal OLS residuals (10).

Proposition 2 The ideal OLS residuals in (10) satisfy

lim
i→∞

E[ηi(Θ)] = 0 and lim
i→∞

Var[ηi(Θ)] = 1
4 . (B.1)

Proof. For i = 1, 2, . . ., we have

E[ηi(Θ)] =
∫ ∞

0

√
y

1

Γ(i)
yi−1e−ydy −

√
i− 1

4 =
√
i− 1

4

[
Γ(i+ 1

2)

Γ(i)
√
i

· 1√
1 − 1/(4i)

− 1

]
. (B.2)

Next we show that

Q(x) ≡ Γ(x+ 1
2)

Γ(x)
√
x

for all x > 0 has derivative Q′(x) > 0 for all sufficiently large x. (B.3)
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Observe thatQ′(x) = Q(x)
[
ψ(x+ 1

2) − ψ(x) − 1/(2x)
]
, where ψ(x) ≡ Γ′(x)/Γ(x) is the psi (digam-

ma) function. Equation (6.3.18) of Abramowitz and Stegun (1972) yields the asymptotic expansion
ψ(x) = ln(x) − 1/(2x) − 1/(12x2) + O(x−4) as x → ∞; and combining this with the expansion
ln(1 + y) = y − 1

2y
2 + O(y3) for all y with |y| < 1 (Dwight 1961, Equation 601), we obtain the

following asymptotic expansion for Q′(x):

Q′(x) =
2x− 1

16x3 + 8x2
+O(x−3) > 0 as x→ ∞. (B.4)

Using (B.4) and Stirling’s approximation, we see that for sufficiently large x, the function Q(x)
increases monotonically to the limit

lim
x→∞Q(x) = lim

x→∞
e−x−1/2(x+ 1

2 )x

e−xxx
= lim

x→∞

(
1 + 1

2x

)x

√
e

= 1. (B.5)

It follows from (B.2) through (B.5) that as i→ ∞,

|E[ηi(Θ)]| =

∣∣∣∣∣√i− 1
4

[
Q(i)√

1 − 1/(4i)
− 1

]∣∣∣∣∣≤
∣∣∣∣∣√i− 1

4

[
1√

1 − 1/(4i)
− 1

]∣∣∣∣∣= 1
2

(√
4i−√

4i− 1
)
→ 0.

The variance of ηi(Θ) is given by

Var[ηi(Θ)] = i− Γ2(i+ 1
2)

Γ2(i)
= i

[
1 −Q2(i)

]
for i = 1, 2, . . . . (B.6)

Applying L’Hospital’s rule to (B.6), and using (B.4) and (B.5) to simplify the resulting asymptotic
expression, we obtain

lim
i→∞

Var[ηi(Θ)] = lim
x→∞

2Q(x)Q′(x)

x−2
= lim

x→∞

[
4x3 − 2x2

16x3 + 8x2
+O(x−1)

]
= 1

4 .

Proposition 3 The ideal OLS residuals in (10) converge in distribution to a normal variate with
mean 0 and variance 1

4 as i→ ∞,

ηi(Θ) D−→
i→∞

N
(
0, 1

4

)
. (B.7)

Proof. From (10) we see that the moment generating function of ηi(Θ) is

Mηi(Θ)(z) ≡ E{exp[zηi(Θ)]} = exp
(
−z

√
i− 1

4

)∫ ∞

0

exp(z
√
y)yi−1e−ydy

Γ(i)
(B.8)

for −∞ < z <∞. Making the change of variables 1
2x

2 = y in (B.8), we see that

Mηi(Θ)(z) =
exp

(
−z

√
i− 1

4

)
2i−1

Γ(2i)
Γ(i)

∫ ∞

0

exp
[−(x2/2 − zx/

√
2)

]
x2i−1

Γ(2i)
dx (B.9)
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for −∞ < z < ∞. Display (1) of Cherry (1946) establishes that for −∞ < a < ∞, the parabolic
cylinder function satisfies

D−ν−1(a) ≡
exp

(
− 1

4a
2
)

Γ(ν + 1)

∫ ∞

0
exp

[ −(
x2/2 + ax

)]
xν dx ∼ exp

(
1
2ν − a

√
ν
)

√
2ν(ν+1)/2

as ν → ∞. (B.10)

If we take a ≡ −z/√2 and ν ≡ 2i− 1 in (B.10), then we see that (B.9) has the form

Mηi(Θ)(z) =

 exp
(
−z

√
i− 1

4

)
2i−1

· Γ(2i)
Γ(i)

·D−2i(−z/
√

2)

 exp
(

1
8z

2
)

for −∞ < z <∞. (B.11)

Letting ωi(z) denote the term in square brackets on the right-hand side of (B.11), we show that
limi→∞ ωi(z) = 1 for all real z. It follows from (B.10) that for each z ∈ (−∞,∞), we have

ωi(z) ∼
exp

(
−z

√
i− 1

4

)
2i−1

· Γ(2i)
Γ(i)

·
exp

(
i− 1

2 + z
√
i− 1

2

)
√

2(2i − 1)i
as i→ ∞. (B.12)

Applying Stirling’s Formula to (B.12) and rearranging terms, we see that for each z ∈ (−∞,∞),

ωi(z) ∼

 exp
(
z
√
i− 1

2

)
exp

(
z
√
i− 1

4

)
 [

(2i)2i−1/2

(2i)i−1/2(2i − 1)i

][
exp

(
i− 1

2

)
ei

]
as i→ ∞. (B.13)

We have

lim
i→∞

exp
(
z
√
i− 1

2

)
exp

(
z
√
i− 1

4

) = lim
i→∞

exp
[
z

(√
i− 1

2 −
√
i− 1

4

)]
= 1 for −∞ < z <∞, (B.14)

and

lim
i→∞

[
(2i)2i−1/2

(2i)i−1/2(2i− 1)i

][
exp

(
i− 1

2

)
ei

]
= lim

i→∞
e−1/2

(1 − 1
2i)

i
= 1. (B.15)

It follows from (B.11) and (B.13) through (B.15) that limi→∞Mηi(Θ)(z) = exp
[

1
2

(
z2/4

)]
for −∞ <

z < ∞; thus the conclusion (B.7) follows from the continuity theorem for moment generating
functions (Hogg and Craig, 1995).
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