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Abstract

Selection of an optimal estimator typically relies on either supervised training samples (pairs of
measurements and their associated true values) or a prior probability model for the true values.
Here, we consider the problem of obtaining a least squares estimator given a measurement process
with known statistics (i.e., a likelihood function) and a set of unsupervised measurements, each
arising from a corresponding true value drawn randomly from an unknown distribution. We
develop a general expression for a nonparametric empirical Bayes least squares (NEBLS)
estimator, which expresses the optimal least squares estimator in terms of the measurement
density, with no explicit reference to the unknown (prior) density. We study the conditions under
which such estimators exist and derive specific forms for a variety of different measurement
processes. We further show that each of these NEBLS estimators may be used to express the mean
squared estimation error as an expectation over the measurement density alone, thus generalizing
Stein’s unbiased risk estimator (SURE), which provides such an expression for the additive
gaussian noise case. This error expression may then be optimized over noisy measurement
samples, in the absence of supervised training data, yielding a generalized SURE-optimized
parametric least squares (SURE2PLS) estimator. In the special case of a linear parameterization
(i.e., a sum of nonlinear kernel functions), the objective function is quadratic, and we derive an
incremental form for learning this estimator from data. We also show that combining the NEBLS
form with its corresponding generalized SURE expression produces a generalization of the score-
matching procedure for parametric density estimation. Finally, we have implemented several
examples of such estimators, and we show that their performance is comparable to their optimal
Bayesian or supervised regression counterparts for moderate to large amounts of data.

1 Introduction

The problem of estimating signals based on partial, corrupted measurements arises
whenever a machine or biological organism interacts with an environment that it observes
through sensors. Optimal estimation has a long history, documented in the published
literature of a variety of communities: statistics, signal processing, sensory perception,
motor control, and machine learning, to name just a few. The two most commonly used
methods of obtaining an optimal estimator are Bayesian inference, in which the estimator is
chosen to minimize the expected error over a posterior distribution, obtained by combining a
prior distribution with a model of the measurement process, and supervised regression, in
which the estimator is selected from a parametric family by minimizing the error over a
training set containing pairs of corrupted measurements and their correct values. Here, we
consider the problem of obtaining a least squares (also known as minimum mean squared
error) estimator, in the absence of either supervised training examples or a prior model.
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Specifically, we assume a known measurement process (i.e., the probability distribution of
measurements conditioned on true values), and we assume that we have access to a large set
of measurement samples, each arising from a corresponding true value drawn from an
unknown signal distribution. The goal, then, is to obtain a least squares estimator given these
two ingredients.

The statistics literature describes a framework for handling this situation, generally known
as empirical Bayes estimation, in which the estimator is learned from observed (noisy)
samples. More specifically, in the parametric empirical Bayes approach, one typically
assumes a parametric form for the density of the clean signal, and then learns the parameters
of this density from the noisy observations. This is usually achieved by maximizing
likelihood or matching moments (Morris, 1983; Casella, 1985; Berger, 1985), both of which
are inconsistent with our goal of minimizing mean squared estimation error. In addition, if
one assumes a parametric form for the density of the clean signal, which cannot give a good
fit to the true distribution, performance is likely to suffer. For the case of Poisson
observations, Robbins introduced a nonparametric empirical Bayesian least squares
(NEBLS) estimator that is expressed directly in terms of the measurement density, without
explicit reference to the prior (Robbins, 1956). This remarkable result was subsequently
extended to cases of additive gaussian noise (Miyasawa, 1961) and to general exponential
measurements (Maritz & Lwin, 1989), where it was referred to as a simple empirical Bayes
estimator.

Here, we develop a general expression for this type of NEBLS estimator, written in terms of
a linear functional of the density of noisy measurements. The NEBLS estimators previously
developed for Poisson, gaussian, and exponential measurement processes are each special
cases of this general form. We provide a complete characterization of observation models
for which such an estimator exists, develop a methodology for obtaining the estimators in
these cases, and derive specific solutions for a variety of corruption processes, including the
general additive case and various scale mixtures. We also show that any of these NEBLS
estimators can be used to derive an expression for the mean squared error (MSE) of an
arbitrary estimator that is written as an expectation over the measurement density (again,
without reference to the prior). These expressions provide a generalization of Stein’s
unbiased risk estimate (SURE), which corresponds to the special case of additive gaussian
noise (Stein, 1981)), and analogous expressions that have been developed for the cases of
continuous and discrete exponential families (Berger, 1980; Hwang, 1982). In addition to
unifying and generalizing these previous examples, our derivation ties them directly to the
seemingly unrelated NEBLS methodology.

In practice, approximating the reformulated MSE with a sample average allows one to
optimize a parametric estimator based entirely on a set of corrupted measurements, without
the need for the corresponding true values that would be used for regression. This has been
done with SURE (Donoho & Johnstone, 1995; Pesquet & Leporini, 1997; Benazza-
Benyahia & Pesquet, 2005; Luisier, Blu, & Unser, 2006; Raphan & Simoncelli, 2007b,
2008; Blu & Luisier, 2007; Chaux, Duval, Benazza-Benyahia, & Pesquet, 2008), and
recently with the analogous exponential case (Eldar, 2009). We refer to this as a generalized
SURE-optimized parametric least squares estimator (since the generalized SURE estimate is
used to obtain the parameters of the least squares estimator, we use the acronym
gSURE2PLS, with mnemonic pronunciation “generalized sure to please”). For the special
case of an estimator parameterized as a linear combination of nonlinear kernel functions, we
develop an incremental algorithm that simultaneously optimizes and applies the estimator to
a stream of incoming data samples. We also show that the NEBLS solution may be
combined with the generalized SURE expression to yield an objective function for fitting a
parametric density to observed data, which provides a generalization of the recently
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developed score matching procedure (Hyvärinen, 2005, 2008). Finally, we compare the
empirical convergence of several example gSURE2PLS estimators with that of their
Bayesian counterparts. Preliminary versions of this work have been presented in Raphan and
Simoncelli (2007b, 2009) and Raphan (2007).1

2 Introductory Example: Additive Gaussian Noise

We begin by illustrating the two forms of estimator for the scalar case of additive gaussian
noise (the vector case is derived in section 6.1). Suppose random variable Y represents a
noisy observation of an underlying random variable, X. It is well known that given a
particular observation Y = y, the estimate that minimizes the expected squared error
(sometimes called the Bayes least squares estimator) is the conditional mean:

(2.1)

where the denominator contains the distribution of the observed data, which we refer to as
the measurement density (sometimes called the prior predictive density). This can be
obtained by marginalizing the joint density, which in turn can be written in terms of the prior
on X using Bayes’ rule:

(2.2)

2.1 Nonparametric Empirical Bayes Least Squares Estimator

The NEBLS estimation paradigm, in which the least squares estimator is written entirely in
terms of the measurement density, was introduced by Robbins (1956) and was extended to
the case of gaussian additive noise by Miyasawa (1961). The derivation for the gaussian
case is relatively simple. First, note that the conditional density of the measurement given
the true value is

and thus, substituting into equation 2.2,

(2.3)

Differentiating this with respect to y and multiplying by σ2 on both sides gives

Finally, dividing through by PY(y) and combining with equation 2.1 gives

1In these previous publications, we referred to the generalized NEBLS estimator using the oxymoron “prior-free Bayesian estimator”
and to the corresponding generalized SURE method as “unsupervised regression.”
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(2.4)

The important feature of the NEBLS estimator is its expression as a direct function of the
measurement density, with no explicit reference to the prior. This means that the estimator
can be approximated by estimating the measurement density from a set of observed samples.
The derivation relies on only the assumptions of squared loss function and additive gaussian
measurement noise, but is independent of the prior. We will assume squared loss throughout
this article, but in section 3, we describe an NEBLS form for more general measurement
conditions.

We can gain some intuition for the solution by considering an example in which the prior
distribution for x consists of three isolated point masses (delta functions). The measurement
density may be obtained by convolving this prior with a gaussian (see Figure 1, top). And,
according to equation 2.4, the optimal estimator is obtained by adding the log derivative of
the measurement density (see Figure 1, bottom), to the measurement. This is a form of
gradient ascent, in which the estimator “shrinks” the observations toward the local maxima
of the log density. In the vicinity of the most isolated (left) delta function, this shrinkage
function is antisymmetric with a slope of negative one, resulting in essentially perfect
recovery of the true value of x. Note that this optimal shrinkage is accomplished in a single
step, unlike methods such as the mean-shift algorithm (Comaniciu & Meer, 2002), which
uses iterative gradient ascent on the logarithm of a density to perform nonparametric
clustering.

2.2 Dual Formulation: SURE-Optimized Parametric Least Squares Estimation

Next, as an alternative to the BLS estimator, consider the parametric regression formulation
of the optimal estimation problem. Given a family of estimators, fθ, parameterized by vector
θ, we wish to select the one that minimizes the expected squared error:

where the subscripts on the expectation indicate that it is taken over the joint density of
measurements and correct values. In practice, the optimal parameters are obtained by
approximating the expectation with a sum over clean/noisy pairs of data, {xk, yk}:

(2.5)

Although this regression expression is written in terms of a supervised training set (i.e., one
that includes the true values, xk), the NEBLS formula of equation 2.4 may be used to derive
an expression for the mean squared error that relies on only the noisy measurements, yk. To
see this, we rewrite the parametric estimator as fθ (y) = y + gθ (y) and expand the mean
squared error:
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(2.6)

The middle term can be written as an expectation over Y alone by substituting the NEBLS
estimator from equation 2.4, and then integrating by parts:

where we have assumed that the term  that arises when integrating by parts is
zero (as y goes to ±∞, we assume PY(y) dies off faster than gθ(y) grows).

Finally, substituting this back into equation 2.6 gives an expression for estimation error:

(2.7)

This remarkable equation expresses the mean squared error over the joint distribution of
values and measurements as an expected value over the measurements alone. It is known as
Stein’s unbiased risk estimator (SURE), after Charles Stein, who derived it and used it as a
means of comparing the quality of different estimators (Stein, 1981).2 In section 4, we
derive a much more general form of this expression that does not assume additive gaussian
noise.

In practice, SURE can be approximated as an average over an unsupervised set of noisy
measurements, and this approximation can then be minimized over the parameters, θ, to
select an estimator:

(2.8)

2Note that Stein derived the expression directly, without reference to Miyasawa’s NEBLS estimator. In addition, Stein formulated the
problem in a “frequentist” context where X is a fixed (nonrandom) but unknown parameter, and his result is expressed in terms of
conditional expectations over Y | X. This may be readily obtained from our formulation by assuming a degenerate prior (Dirac delta)
with mass at this fixed but unknown value, and replacing all expectations over {X, Y or with conditional expectations over Y | X.
Conversely, Stein’s formulation in terms of conditional densities may be easily converted into our result by taking expectations over
X.
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where we have dropped the last term (σ2) because it does not depend on the parameter
vector, θ. Note that unlike the supervised regression form of equation 2.5, this optimization
does not rely on access to true signal values, {xk}. We refer to the function associated with

the optimized parameter, , as a SURE-optimized parametric least squares (SURE2PLS)
estimator. This type of estimator was first developed for removal of additive gaussian noise
by Donoho and Johnstone (1995), who used it to estimate an optimal threshold shrinkage
function (the resulting estimator is named SUREshrink). These results have been
generalized to other shrinkage estimators (Benazza-Benyahia and Pesquet, 2005; Chaux et
al., 2008), as well as linear families of estimators (Pesquet and Leporini, 1997; Luisier et al.,
2006; Raphan and Simoncelli, 2007b, 2008; Blu and Luisier, 2007), which we discuss in
section 5.

Intuitively, the objective function in equation 2.8 favors functions g(·) that have both a small
squared magnitude and a large negative derivative in locations where the measurements, yk,
are concentrated. As such, a good estimator will “shrink” the data toward regions of high
probability, as can be seen in the optimal solution shown in Figure 1. Note also that the
noise parameter σ2 acts as a weighting factor on the derivative term, effectively controlling
the smoothness of the solution.

2.3 Combining NEBLS with SURE Yields the Score Matching Density Estimator

The SURE2PLS solution developed in the previous section can be applied to any parametric
estimator. Consider a specific estimator that is derived by starting with a parametric form for

the prior, . Combining this with the likelihood (using equation 2.3, which specifies a
convolution of the gaussian noise density with the prior) generates a parametric form for the

measurement density, . And given this, the expression of equation 2.4 gives the BLS

estimator associated with this prior: . Finally, substituting this
estimator into equation 2.8 and eliminating common factors of σ yields an objective
function for the density parameters ϕ given samples {yk}:

(2.9)

This objective function allows one to choose density parameters that are optimal for solving
the least-squares estimation problem. By comparison, most parametric empirical Bayes
procedures select parameters for the prior density by optimizing some other criterion (e.g.,
maximizing likelihood of the data, or matching moments; Casella, 1985), which are
inconsistent with the estimation goal.3

Outside the estimation context, equation 2.9 provides an objective function that can be used

for estimating the parameters of the density  from samples. This general
methodology, dubbed score matching, was originally proposed by Hyvärinen (2005), who
developed it by noting that differentiating the log of a density eliminates the normalization
constant (known in physics as the “partition function”). This constant is generally a
complicated function of the parameters, and thus an obstacle to solving the density
estimation problem. In a subsequent publication, Hyvärinen (2008) showed a relationship of
score matching to SURE by assuming the density to be estimated is the prior (i.e., the
density of the clean signal), and taking the limit as the variance of the gaussian noise goes to

3In particular, maximizing likelihood minimizes the Kullback-Leibler divergence between the true density and the parametric density
(Wasserman, 2004).
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zero. Here (and previously, in Raphan & Simoncelli, 2007b), we have interpreted score
matching as a means of estimating the density of the noisy measurements, with the objective
function expressing the MSE achieved by an estimator that is optimal for removing finite-

variance gaussian noise when the measurements are drawn from . Notice that in this
context, although σ2 does not appear in the objective function of equation 2.9, it provides a

means of controlling the smoothness of the parametric density family, , by equation
2.3. Of course, just as maximum likelihood (ML) has been used to estimate parametric
densities outside the context in which it is optimal (i.e., compression), the score matching
methodology has been used in contexts for which squared estimation error is not relevant
and with parametric families that cannot have arisen from an additive gaussian noise
process.

3 General Formulation: NEBLS Estimator

We now develop a generalized form for the NEBLS estimator of equation 2.4. Suppose we
make a vector observation, y, that is a corrupted version of an unknown vector x (these need
not have the same dimensionality). The BLS estimate is again the conditional expectation of
the posterior density, which we can express using Bayes’ rule as4

(3.1)

Now define linear operator A to perform an inner product with the likelihood function

and rewrite the measurement density in terms of this operator:

(3.2)

Similarly, the numerator of the BLS estimator, equation 3.1, may be rewritten as a
composition of linear transformations applied to PX(x):

(3.3)

where operator X is defined as

Note that equation 3.2 implies that PY always lies in the range of A. Assuming for the
moment that A is invertible, we can define A−1, an operator that inverts the observation
process, recovering PX from PY. The numerator can then be written as

4The derivations throughout this article are written assuming continuous variables, but they hold for discrete variables as well, for
which the integrals must be replaced by sums, functions by vectors, and functionals by matrices.
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(3.4)

with linear operator L ≡ A ∘ X ∘ A−1. In general, this operator maps a scalar-valued function
of a vector, PY(y), to a vector-valued function. In the discrete scalar case, PY(y) and N(y) are
each vectors, the argument yselects a particular index, A is a matrix containing PY|X, X is a
diagonal matrix containing values of x, and ∘ is simply matrix multiplication. Combining all
of these, we arrive at a general NEBLS form of the estimator:

(3.5)

That is, the BLS estimator may be computed by applying a linear operator to the
measurement density and dividing this by the measurement density. This linear operator is
determined solely by the observation process (as specified by the density PY|X), and thus the
estimator does not require any knowledge of or assumption about the prior PX.

The derivation above may seem like sleight of hand, given that we assumed that the prior
could be recovered exactly from the measurement density using A−1. But in section 6.2, we
show that while the operator A−1 may be ill conditioned (e.g., a deconvolution in our
introductory example of section 2), it is often the case that the composite operator L is more
stable (e.g., a derivative in the introductory example). More surprising, even when A is
strictly non invertible, it may still be possible to find an operator L that generates a NEBLS
estimator. In section 6 and appendix B, we use equation 3.5 to derive NEBLS estimators for
specific observation models, including those that have appeared in previous literature.

The NEBLS expression of equation 3.5 may be used to rewrite other expectations over X in
terms of expectations over Y. For example, if we wish to calculate EX|Y{Xn | Y = y}, then
equation 3.4 would be replaced by (A ∘ Xn ∘ A−1){PY} = (A ∘ Xn ∘ A−1)n{PY} = Ln{PY}.5

Exploiting the linearity of the conditional expectation, we may extend this to any
polynomial function, g(x) = ∑ckxk:

(3.6)

And finally, consider the problem of finding the BLS estimator of X given Z where

with r an invertible, differentiable, transformation. Using the known properties of change of
variables for densities, we can write PY(Y) = Jr PZ(r(Y)), where Jr is the Jacobian of the
transformation r(·). From this, we obtain

5It is easiest to imagine this in the scalar case, but the formula is also valid for the vector case, where n becomes a multi-index.
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(3.7)

4 Dual Formulation: SURE2PLS Estimation

As in the scalar gaussian case, the NEBLS estimator may be used to develop an expression
for the mean squared error that does not depend explicitly on the prior, and this may be used
to select an optimal estimator from a parametric family. This form is particularly useful in
cases where it proves difficult to develop a stable nonparametric approximation of the ratio
in equation 3.5 (Carlin & Louis, 2009).

Consider an estimator fθ(Y) parameterized by vector θ, and expand the mean squared error
as

(4.1)

Using the NEBLS estimator of equation 3.5, the second term of the expectation may be
written as

(4.2a)

(4.2b)

(4.2c)

where L* is the dual operator of L, defined by the equality of lines 4.2a and 4.2b. In general,
L* maps a vector-valued function of y into a scalar-valued function of y. In the discrete
scalar case, L* is simply the matrix transpose of L. Substituting this for the second term of
equation 4.1, and dropping the last term (since it does not depend on θ), gives a prior-free
expression for the optimal parameter vector:

(4.3)

This generalized SURE (gSURE) form includes as special cases those formulations that
have appeared in previous literature (see section 1, and Table 1 for specific citations).6 Our
approach thus serves to unify and generalize these results, and to show that they can be

6As in the gaussian (SURE) case, these previous results were described in a frequentist setting in which X is fixed but unknown and
are written as expectations over Y | X, but they are equivalent to our results (see note 2). In practice, there is no difference between
assuming the clean data are independent and identically distributed (i.i.d) samples from a prior distribution, or assuming they are fixed
and unknown values that are to be estimated individually from their corresponding Y values.
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derived from the corresponding NEBLS estimators. Conversely, it is relatively
straightforward to show that the estimator of equation 3.5 can be derived from the gSURE
expression of equation 4.3 (see Raphan, 2007, for a proof).

In practice, we can solve for the optimal θ by minimizing the sample mean of this quantity:

(4.4)

where {yk} is a set of observed data. This optimization does not require any knowledge of
(or samples drawn from) the prior PX, and so we think of it as the unsupervised counterpart
of the standard (supervised) regression solution of equation 2.5. When trained on
insufficient data, this estimator can still exhibit errors analogous to overfitting errors seen in
supervised training. This is because the sample mean in equation 4.4 is only asymptotically
equal to the MSE. As with supervised regression, cross-validation or other resampling
methods can be used to limit the dimensionality or complexity of the parameterization so
that it is appropriate for the available data.

The resulting generalized SURE-optimized parametric least squares (gSURE2PLS)

estimator, , may be applied to the same data set used to optimize . This may seem odd
when compared to supervised regression, for which such a statement makes no sense (since
the supervised training set already includes the correct answers). But in the unsupervised
context, each newly acquired measurement can be used for both estimation and learning, and
it would be wasteful not to take advantage of this fact. In cases where one also has access to
some supervised data , in addition to unsupervised data , the
corresponding objective functions may be combined additively (since they both represent
squared errors) to obtain a semisupervised solution:

where we have again discarded a term that does not depend on θ. Again, the gSURE2PLS
methodology allows the estimator to be initialized with some supervised training data, but
then to continue to adapt its estimator while performing the estimation task.

The operator L* extracts that information from a function on Y that is relevant for
estimating X and may be used in more general settings than the one considered here. For
example, the derivation in equation 4.2c can be generalized, using the result in equation 3.6,
to give

for arbitrary polynomials f and g (and hence functions that are well approximated by
polynomials). And this may be further generalized to any joint polynomial, which can be
written as a sum of pairwise products of polynomials in each variable. As a particular
example, this means that we can recover any statistic of X (e.g., any moment of the prior)
through an expectation over Y:

(4.5)
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where 1 indicates a function whose value is (or vector whose components are) always one.

Finally, for a parametric prior density, the NEBLS estimator of equation 3.5 may be
substituted into the gSURE objective function of equation 4.4 to obtain a generalized form
of the score matching density estimator of equation 2.9. Specifically, a parametric density

 may be fit to data {yk} by solving

(4.6)

Recall that the operator L is determined by the observation process that governs the
relationship between the true signal and the measurements in the original estimation
problem. When used in this parametric density estimation context, different choices of
operator will lead to different density estimators, in which the density is selected from a
family “smoothed” by the measurement process underlying L. In all cases, the density
estimation problem can be solved without computing the normalization factor, which is

eliminated in the quotient .

As a specific example, assume the observations are positive integers, n, sampled from a

mixture of Poisson densities, , where the rate variable X is distributed according to a

parametric prior density, . Using the form of L for Poisson observations (see section
6.1), we obtain an estimator for parameter ϕ from data {nk}:

5 Incremental gSURE2PLS Optimization for Kernel Estimators

The gSURE2PLS methodology introduced in section 4 requires us to minimize an
expression that is quadratic in the estimation function. This makes it particularly appealing
for use with estimators that are linear in their parameters, and several authors have exploited
this in developing estimators for the additive gaussian noise case (Pesquet and Leporini,
1997; Luisier et al., 2006; Raphan and Simoncelli, 2007b, 2008; Blu & Luisier, 2007). Here,
we show that this advantage holds for the general case, and we use it to develop an
incremental algorithm for optimizing the estimator.

Consider a scalar estimator that is formed as a weighted sum of fixed nonlinear kernel
functions:

where h(y) is a vector with components containing the kernel functions, hj(y). Substituting
this into equation 4.4, and using the linearity of the operator L* gives a gSURE expression
for unsupervised parameter optimization from n samples:
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(5.1)

where L*{h}(y) is a vector whose jth component is L*{hj}(y). The quadratic form of the
objective function allows us to write the solution as a familiar closed-form expression:

(5.2)

where we define

(5.3a)

(5.3b)

Note that the quantity mn is (n times) an n-sample estimate of EY(L*{h}(Y)), which by
equation 4.2c provides an unsupervised estimate of EX,Y(h(Y) · X).

In addition to allowing a direct solution, the quadratic form of this objective function lends
itself to an incremental algorithm, in which the estimator is both applied to and updated by
each measurement as it is acquired sequentially over time. The advantage of such a
formulation is that the estimator can be updated gradually, based on all previous
observations, but without needing to store and access those observations for each update. To
see this, we rewrite the expressions in equation 5.3 as

(5.4a)

(5.4b)

These equations, combined with equation 5.2, imply that the optimal parameter vector can
be computed by combining the most recent data observation yn with summary information
stored in an accumulated matrix Cn−1 and vector mn−1. The basic algorithm is illustrated in a
flow diagram in Figure 2. For each iteration of the algorithm, an incoming data value yn is
used to incrementally update the estimator, and the same estimator is then used to compute
the estimate . The diagram also includes an optional path for supervised data xn, which
may be used to improve the estimator.

This incremental formulation bears some similarity to the well-known Kalman filter
(Kalman, 1960), which provides an incremental estimate of a state variable that is observed
through additive gaussian measurements. But note that the standard Kalman filter is based
on a state model with known linear or gaussian dynamics and known gaussian noise
observations, whereas our formulation allows a more general (although still assumed
known) observation model that is applied to independent state values drawn independently
from an unknown prior.

In practice, this algorithm may be made more efficient and flexible in a number of ways.
Specifically, the equations may be rewritten so as to accumulate the inverse covariance
matrix, thus avoiding the costly matrix inversion on each iteration. They may also be written
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so as to directly accumulate the estimator parameter vector  instead of m. Finally, the
accumulation of data can be weighted (e.g., exponentially) over time so as to emphasize the
most recent data and “forget” older data. This is particularly useful in a case where the
distribution of the state variable is changing over time. These variations are described in
appendix A.

6 Derivation of NEBLS Estimators

In section 2, we developed the NEBLS estimator for the scalar case of additive gaussian
noise. The formulation of section 3 is much more general and can be used to obtain NEBLS
estimators for a variety of other corruption processes. But in many cases, it is difficult to
obtain the operator L directly from the expression in equation 3.4, because inversion of the
operator A is unstable or undefined. This issue is addressed in detail in section 6.2. But we
first note that it is necessary and sufficient that applying L to the measurement density
produces the numerator of the BLS estimator in equation 3.1:

where we have used equations 3.2 and 3.3 to express both numerator and measurement
density as linear functions of the prior. This expression must hold for every prior density,
PX. From the definition of A, this means that it is sufficient to find an operator L such that

(6.1)

Cressie (1982) noted previously that if an operator could be found that satisfied this
relationship, then it could be used to define a corresponding NEBLS estimator. Here we note
that in the scalar case, this equation implies that for each value of x, the conditional density
PY|X(y|x) must be an eigenfunction (or eigenvector, for discrete variables) of operator L,
with associated eigenvalue x.7 We have used this eigenfunction property to obtain a variety
of NEBLS estimators by direct inspection of the observation density PY|X. Table 1 provides
a listing of these, including examples that appear previously in the nonparametric empirical
Bayes and SURE-optimized estimator literatures.

6.1 Derivation of Specific NEBLS Estimators

In this section, we provide a derivation for a few specific NEBLS estimators and their
gSURE2PLS counterparts. Derivations of the remainder of the estimators given in Table 1
are provided in appendix B.

6.1.1 Additive Noise: General Case—Consider the case in which a vector-valued

variable of interest is corrupted by independent additive noise: Y = X + W, with the noise
drawn from some distribution, PW(w). The conditional density may then be written as

We seek an operator that, when applied to this conditional density (viewed as a function of
y), will obey

7For the vector case, this must be true for each component of x and associated component of the operator.

Raphan and Simoncelli Page 13

Neural Comput. Author manuscript; available in PMC 2013 March 27.

H
H

M
I A

u
th

o
r M

a
n
u
s
c
rip

t
H

H
M

I A
u
th

o
r M

a
n
u
s
c
rip

t
H

H
M

I A
u
th

o
r M

a
n
u
s
c
rip

t



(6.2)

Subtracting y PW(y − x) from both sides of equation 6.2 gives

where we have defined linear operator M{f}(y) ≡ L{PY}(y) − y PY(y). Since this equation
must hold for all x, it implies is a linear shift-invariant operator (acting in y) and can be
represented as convolution with a kernel m(y). Taking the Fourier transform of both sides
and using the convolution and differentiation properties gives

so that

(6.3)

Thus, the linear operator is

(6.4)

where  denotes the inverse Fourier transform. The dual operator (consistent with
equations 4.2a and 4.2b), is then:

(6.5)

where f is the vector-valued estimator and a tilde indicates the Hermitian transpose (i.e.,
conjugation and transpose).

Note that throughout this discussion, X and W play symmetric roles. Thus, we can solve for
the BLS estimator if we know the density of either the noise or the signal. We also note that
if the additive noise is such that the observation process is not invertible (e.g., if the Fourier
transform of PW is band-limited), the proof of equation 6.4 implies that this operator is still
valid if we define

whenever . As examples, we consider the following specific cases of additive
noise.

6.1.2 Additive Gaussian Noise (Vector Case)—The expression in equation 6.4 can be

used to derive the solution for the full vector-valued generalization of the scalar gaussian
additive noise case given in section 2. The noise model is
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with covariance matrix Λ and mean vector μ. In this case, the Fourier transform of the
density is

which, on substitution into equation 6.3 yields

Substituting into equation 6.4, and then into equation 3.5 yields the NEBLS estimator:

(6.6)

And substituting into equation 6.5 yields the dual operator:

In Raphan and Simoncelli (2007a, 2010), we have developed a practical implementation of
this NEBLS estimator, based on a local exponential approximation of the gradient of the log
of the measurement density PY.

6.1.3 Additive Laplacian Noise (Scalar Case)—When the additive noise is drawn

from a Laplacian distribution, we have

with Fourier transform

which gives

The resulting BLS estimator is then

(6.7)
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where ⋆ denotes convolution and

with

This solution uses a convolutional operator, as compared to the differentiation found in the
gaussian case. There are a variety of noise densities (e.g., the family of generalized gaussian
distributions) for which the operator will be a convolution with a kernel that depends on the
form of the noise. In these cases, the kernel may be used directly to approximate the
convolutional operator from observed samples {yk}:

Note that this has the form of a kernel density estimator. While such density estimators are
generally biased (Scott, 1992), in our situation this approximation is unbiased and converges
to the desired convolution K ⋆ PY as the number of samples (N) increases, since

Of course, the denominator of equation 6.7 still needs to be approximated using some choice
of density estimator (see Scott, 1992, for a review and further references).

Finally, substituting into equation 6.5 yields the dual operator

where the ⋆ indicates convolution.

6.1.4 Poisson Process with Random Rate—Assume the hidden value, X, is positive

and continuous, while the observation, Y, is discrete and has Poisson distribution with rate
X:

It is easy to verify that
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and from this that

As a result, the NEBLS estimator is

which matches the original result derived by Robbins (1956).

Finally, the dual operator, L*, is readily derived from L by writing equations 4.2a and 4.2b,
and replacing the integral by a sum

from which we see that L*{f}(n) = nf(n − 1).

6.2 Noninvertible Observations

An NEBLS estimator always exists when the observation process, A, is invertible, as can be
seen from equation 3.4. In some cases (including some of those derived in this article), the
estimator exists even when A−1 is not defined. On the other hand, it is clear that some
estimation problems do not allow an NEBLS form. Consider the extreme situation in which
the observation contains no information about the quantity to be estimated: the optimal
estimator is simply the mean of the prior density, which must be known in advance (i.e., it
cannot be estimated from the data). In this section, we examine the conditions under which
an NEBLS estimator may be defined for a noninvertible observation process.

We first decompose the prior into a sum of three orthogonal components, PX(x) = P1(x) +
P2(x) + P3(x), with

where  denotes the nullspace of an operator and ()⊥ the orthogonal complement of a
subspace. The measurement density may now be expressed as

since the second and third density components lie in the nullspace of A. And since the first
component of the prior is orthogonal to the nullspace, it may be recovered from the
measurement density: P1 = A#{PY}, where ()# indicates the pseudo-inverse. Note that P1 is
guaranteed to integrate to one as long as PY does, since
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Substituting the decomposed prior into the numerator of the BLS estimator, as given by
equation 3.3, produces

(6.8)

where we have discarded the term containing P3 (since it lies in the nullspace of operator A ∘
X, and replaced the term containing P1 with its NEBLS equivalent. The second term
depends on P2, the component of the prior that cannot be recovered from the observation
density but is nevertheless required to construct the BLS estimator. Thus, we can express the
optimal estimator in NEBLS form if and only if the subspace containing this second
component is zero (as is true of all solutions derived in this article). If not, then obtaining an
optimal estimator requires a priori knowledge of that term.

Consider a simple example. Suppose we randomly select a coin with probability of heads X
∈ [0, 1], where X has prior density PX. We then perform a binomial experiment, flipping the
chosen coin n times and observing the number of heads, so that

where . From this, we see that for each number of observed heads, k, the
measurement probability consists of an inner product of PX with a particular polynomial of
degree n:

(6.9)

Since the measurement process maps an arbitrary continuous prior density on the unit
interval to a discrete measurement distribution, a simple dimensionality argument tells us
that this process cannot be invertible. In particular, the measurement distribution contains
the inner product of the prior density with n + 1 linearly independent polynomials of degree
n, so we can recover the inner product of our prior with any polynomial of degree n but not

with polynomials of higher degree. Define  as the set of orthogonal polynomials of
ascending degree (obtained by} starting with monomials and using Gram-Schmidt

orthogonalization over the unit interval). Then  is the space of polynomials of degree

up to n, spanned by , and  is spanned by . From the observation

distribution, we may reconstruct P1, the projection of the prior density onto , but no
component of the prior in .
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It might seem natural at this point to Nsimply constrain the prior to be an nth-order
polynomial in X, which would allow recovery of the entire prior from the observation
distribution. Although this constraint would certainly allow construction of an NEBLS
estimator, it is far more restrictive than necessary. To construct the BLS estimator, we must
be able to calculate its numerator, which is the inner product of the prior with a polynomial
of degree n + 1:

This does not depend on the prior component P3, which lies in the space spanned by

, and therefore there is no need to place any restrictions on this component of the
prior (e.g., by assuming it is equal to zero). The prior component P2, on the other hand,
which lies in the space spanned by qn+1(x) (i.e., P2(x) = cqn+1(x), for some constant c),
cannot be recovered from the observation density and is required to derive the BLS
estimator. Thus, the BLS estimator may be written as a sum of a prior-free term and a
second term,

The value of c must be assumed a priori.

It is worth pointing out that this behavior is tied to the parameterization used. If, for
example, we choose X ∈ [0, ∞) with density PX and then perform the Bernoulli experiment

with probability of heads , then

In order to obtain the BLS estimator of X, we need to know

Now it is easy to see that for k < n,
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Knowing PY(k) gives the inner product of PX, using weighting function , with all
polynomials up to degree n. However, in order to know N(n), we need to know the inner
product of PX with xn+1. Therefore, in general, we cannot solve for N(n). Again, we can get
around this by making assumptions about the missing (but necessary) portion of the prior.

Now consider the problem of developing a gSURE formula when the observation process is
noninvertible. In this case, the constraints on the operator involve an interaction between the
observation process and the family of estimators over which optimization occurs. From
equation 4.2c, we see that the gSURE expression for the MSE relies on finding an operator
M* satisfying

(6.10)

which must hold for any observation density that could have arisen through the
measurement process (i.e., PY = A ∘ PX, for some density PX). Decomposing the prior into
orthogonal components as in equation 6.8, allows us to write

Substituting this back into equation 6.10 and integrating by parts, we see that

or, equivalently,

(6.11)

which must hold for PY = A{PX}, for any prior PX = P1 + P2 + P3. Note that PY does not
depend on the prior component P2 since it lies in the nullspace of A). Thus, if we vary this
component of the prior, the left side of equation 6.11 will stay the same while the right side
will change, which implies that

or, equivalently,

(6.12)

This is therefore a necessary condition for the operator M* to exist. It is also a sufficient
condition, since if equation 6.12 is satisfied, then the operator M = L will satisfy equation
6.11. Thus, selecting a family of estimators that satisfies the constraint of equation 6.12
guarantees that the optimal solution may be found through gSURE2PLS even when an
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NEBLS solution does not exist. Note that for overly restricted families of estimators, the
choice of operator, M, may not be unique.

In our coin tossing example, since the subspace of functions that are in the nullspace of A
but orthogonal to the nullspace of A ∘ X is spanned by qn+1(x), equation 6.12 requires that

(note that integral over y is replaced by a sum over k). Since, qn+1(x) is orthogonal to
polynomials of degree less than n + 1, this is equivalent to requiring that

which in turn implies that

7 Empirical Convergence Properties

In this section, we implement several scalar NEBLS and gSURE2PLS estimators and
examine their convergence properties.

7.1 NEBLS Examples

In practice, the NEBLS estimators rely on approximating the density of the observed data,
PY(Y), and the estimator quality depends critically on the choice of density estimator. If the
density estimate converges to the true measurement density, then the associated NEBLS
estimator should approach the BLS estimator as the number of data samples grows. In
Figure 3, we examine the behavior of three estimators based on equation 3.5. The first case
corresponds to data drawn independently from a binary source, which are observed through

a process in which bits are switched with probability . The estimator does not know the
binary distribution of the source (which was a “fair coin” for our simulation) but does know
the bit-switching probability. For this estimator, we use the observations to approximate PY
using a simple histogram and then use the matrix version of the linear operator in equation
3.4 to construct the estimator. We then apply the constructed estimator to the same observed
data to estimate the uncorrupted value associated with each observation. We measure the

behavior of the estimator, , using the empirical MSE,

(7.1)

where {xk} are the underlying true values and  are the corresponding estimates based
on the observations. We characterize the behavior of this estimator as a function of the
number of data points, N, by running many Monte Carlo simulations for each N,
constructing the estimator using the N observations, applying the constructed estimator to
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these observations, and recording the empirical MSE. Figure 3 indicates the mean
improvement in empirical MSE (measured by the increase in empirical MSE compared with
using the ML estimator, which, in this case, is the identity function) over the Monte Carlo
simulations, the mean improvement using the conventional BLS estimation function,

, assuming the prior density is known, and the standard deviations of the
improvements taken over our simulations. Note that the large variance in the BLS estimator
for small numbers of data points arises from fluctuations of the empirical MSE.

Figure 3b shows the case of estimating a randomly varying rate parameter that governs an
inhomogeneous Poisson process. The prior on the rate (unknown to the estimator) is
exponential. The observed values Y are the (integer) values drawn from the Poisson process.
In this case, the histogram of observed data was used to obtain a naive approximation of
PY(n), the appropriate operator from Table 1 was used to convert this into an estimator, and
this estimator was then applied to the observed data. It should be noted that improved
performance for this estimator is expected if we were to use a more sophisticated
approximation of the ratio of densities.

Figure 3c shows similar results for additive gaussian noise, with the empirical MSE being
replaced by the empirical signal-to-noise-ratio (SNR), which is defined as

(7.2)

The signal density is a generalized gaussian with exponent 0.5, and the noisy SNR is 4.8 dB.
In this case, we compute equation 3.5 using a more sophisticated approximation method, as
described in Raphan and Simoncelli (2007a). We fit a local exponential model similar to that
used in Loader (1996) to the data in bins, with bin width adaptively selected so that the
product of the number of points in the bin and the squared bin width is constant. This bin
width selection procedure, analogous to adaptive binning procedures developed in the
density estimation literature (Scott, 1992), provides a reasonable trade-off between bias and
variance and converges to the correct answer for any well-behaved density (Raphan &
Simoncelli, 2007a). Note that in this case, convergence is substantially slower than for the
binary case, as might be expected given that we are dealing with a continuous density rather
than a single scalar probability. But the variance of the estimates is quite low, even for
relatively small amounts of data.

7.2 gSURE2PLS Examples

Now consider the empirical behavior of the gSURE2PLS methodology in the additive
gaussian case, as developed in section 2.2. The estimator is written as

and the parameter vector, θ, may be optimized over the observed data using the expression
given by equation 2.8. As in the parameterization of section 5, we write the function gθ(y) as
a linear combination of nonlinear kernels

(7.3)
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where h(y) is a vector with jth component equal to kernel function hj(y). We define these
kernels as

as illustrated in Figure 4. Then, as in section 5, substituting this into equation 2.7 yields a
quadratic objective function with optimal solution

(7.4)

where

We apply this estimator to the same data that were used to obtain  and measure the
empirical SNR.

For our simulations, we used a generalized gaussian prior, with exponent 0.5. The noisy
SNR was 4.8 dB. Figure 5 shows the empirical behavior of these “SUREbumps” estimators
when using 3 bumps (see Figure 5a) and 15 bumps (Figure 5b), illustrating the bias-variance
trade-off inherent in the fixed parameterization. Three bumps behaves fairly well for small
amounts of data, but the asymptotic behavior for large amounts of data is biased and thus
falls short of ideal. Fifteen bumps asymptotes correctly but has very large variance for small
amounts of data (i.e., it is overfitting). A more sophisticated method might use cross
validation or some other resampling method to appropriately set the number of bumps to
minimize both these effects. For comparison purposes, we have included the behavior of
SUREshrink (Donoho & Johnstone, 1995), in which equation 2.7 is used to choose an
optimal threshold, θ, for the function

As can be seen, SUREshrink shows significant asymptotic bias, although the variance
behavior is nearly ideal.

Figure 5d shows a comparison of the gSURE2PLS method to a supervised method, for the
15-bump kernel estimator (we find that the performance of the gSURE2PLS solution in the
3-bump and soft thresholding cases is nearly identical to that of the corresponding
supervised regression solution). For each number of samples, N, the supervised method is
trained on N pairs of state or measurement data and then tested on a separate set of N
measurements. Compared with the gSURE2PLS method, we see that theaverage
performance of the supervised method converges slightly faster, but the variance is slightly
worse.

8 Discussion

We have developed two general (and related) reformulations of the least squares estimation
problem for the setting in which one knows the observation process and has access to
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corrupted observations of many data samples. We do not assume knowledge of the prior
density or assume access to samples from the prior.

The NEBLS form expresses the estimator in terms of a linear operator that depends on only
the observation model. This unifies and generalizes those cases found in the literature
(Robbins, 1956; Miyasawa, 1961; Maritz & Lwin, 1989). We discussed the conditions on
measurement densities under which such NEBLS estimators may be obtained, provided a
methodology for deriving them, and used it to derive solutions for a variety of specific
observation situations. These estimators require estimating the observation density from
observed data, and this may limit their usefulness, especially in high-dimensional cases. It is
worth noting, however, that the NEBLS form can be employed successfully for the problem
of denoising local blocks of signal or image data (Raphan & Simoncelli, 2010), where it
provides an asymptotic correction of the recently developed “nonlocal means” estimator
(Buades, Coll, & Morel, 2005).

We also used the NEBLS form to express the MSE as an expectation over the measurement
density. This provides a generalization of SURE and related methods for exponential cases
(Stein, 1981; Berger, 1980; Hwang, 1982), as well as providing a new means of deriving
them from their seemingly unrelated NEBLS counterparts. The generalized risk estimate
may then be used to optimize a parametric estimator (dubbed the gSURE2PLS estimator), as
has been done with SURE for the gaussian noise case (Donoho & Johnstone, 1995; Pesquet
& Leporini, 1997; Benazza-Benyahia & Pesquet, 2005; Luisier et al. 2006; Raphan &
Simoncelli, 2007b, 2008; Blu & Luisier, 2007; Chaux et al., 2008). In cases where a NEBLS
operator does not exist, we have shown how a parametric estimator family can be chosen so
that gSURE2PLS is still valid. For any gSURE2PLS estimator that is parameterized as a
sum of kernel functions, the gSURE optimization may be computed in closed form, and this
leads naturally to an incremental algorithm in which the estimator is simultaneously refined
by and applied to an incoming stream of measurements. Note that this incremental solution
is general and not limited to the case of additive gaussian observations. We also showed that
the two forms may be combined to yield a new form of parametric density estimation that is
equivalent to score matching when the observation process is additive gaussian noise.

Finally, we have implemented several NEBLS and SURE2PLS estimators and examined
their empirical convergence properties, showing that these estimators can perform as well as
their full Bayesian or supervised regression counterparts. The implementation of NEBLS
estimators must be handled on a case-by-case basis and can be tricky since it requires the
estimation of the measurement density from observed samples. The gSURE2PLS case is
generally more straightforward, with success depending primarily on selection of a
parametric family that can provide a good approximation to the optimal estimator and for
which optimization of the gSURE2PLS objective function is feasible. More generally, one
could imagine adjusting the complexity of the estimator family depending on the amount of
data available (for example, using cross-validation methods) or incorporating prior
information about a particular problem to regularize the solution.

We believe it should be possible to generalize and extend these methods further. For
example, we have assumed squared error loss throughout, but it is worth considering
whether other loss functions might allow some form of nonparametric empirical Bayes
solution. Note that equation 3.6 implies that our formulation is easily extended to any loss
function that can be expressed as MSE in a nonlinearly transformed signal space. The
advantage of the BLS solutions is that they effectively smooth the prior with the likelihood
before integrating, whereas other estimators (such as MAP) will not generally have this
property. A recent methodology, known as the discrete universal denoiser (DUDe)
(Weissman, Ordentlich, Seroussi, Verdú, & Weinberger, 2005), provides a method for
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computing an optimal unsupervised denoiser with arbitrary loss functions. But the algorithm
relies on recovery of the entire prior from the observed data and is thus restricted to discrete
priors. Our other main assumption has been that the observation model is fully known, and
we have not studied the effect of errors in this model on the performance of the resulting
NEBLS and gSURE2PLS estimators. We believe it may also be possible to learn the dual
operator L* satisfying equation 4.2c from supervised data (e.g., for a scenario in which the
measurement process is unknown but stable, and the statistics of the environment are
drifting, thus precluding the use of supervised regression). Note that in this case, it is only
necessary to learn the operator L* in terms of its action on members of the parametric
estimator family.

More generally, we think that the framework described here could be relevant for the design
and construction of machines that need to optimize their estimation behavior in an
environmentally adaptive way. On the biological side, Bayesian inference has been used to
explain a variety of phenomena in human sensory and motor behavior, but very little has
been said about how these estimators can be implemented, and even less about how these
estimators can be learned without supervision or built-in priors. The estimators discussed
here may offer a promising avenue for resolving these issues.

Acknowledgments

We are grateful to Sam Roweis, Maneesh Sahani, and Yair Weiss for helpful comments on this work, and to the
anonymous reviewers for their suggestions in improving the manuscript. This research was funded by the Howard
Hughes Medical Institute and by New York University through a McCracken Fellowship to M.R.

Appendix A: Incremental Forms for gSURE2PLS Estimators

In section 5, we showed a simple incremental form of gSURE2PLS for an estimator written
as a linear combination of kernel functions. Here, we expand on this, providing a more
efficient and more general form.

First, we note that it may be desirable to weight the incremental update rule in equation 5.4:

where the weights, an and bn, are scalars in the range (0, 1) and hn is an abbreviation for
h(yn). The weighting can provide numerical stability (so that the stored quantities do not
continue to grow indefinitely) and allow the estimator to adapt to slowly time-varying

statistics. A value of  will equally weight all past data, while smaller weights will
weight recent data more heavily. The choice of weighting allows a compromise between
including more data (which reduces the variance of the estimation error) and adapting more
rapidly (which reduces bias). The former depends on the complexity or dimensionality of
the parameterization, and the latter depends on the rate at which the environmental statistics
change.

Second, note that the incremental solution as provided in section 5 requires the inversion of
a matrix, which can be expensive, depending on the number of parameters. As is common in
the derivation of the Kalman filter, we can use the Woodbury matrix identity (Hager, 1989)
to rewrite the incremental form directly in terms of the inverse matrix:
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where we have defined

Note that since  is a scalar, computation of this expression does not require matrix

inversion. Putting all of this together and letting Sn denote , the incremental algorithm is
defined by the following set of equations:

(A.1a)

(A.1b)

(A.1c)

(A.1d)

(A.1e)

The matrix Sn and the vector mn constitute the stored state variables, and vn, , and  are
calculated based on this state and the observed data, yn (or, more specifically, the observed
data processed by the kernels, h(yn) and L*{h}(yn)).

Finally, it is also possible to rewrite these equations so that the parameter vector, , takes
the role of the stored state variable, in place of mn. Specifically, we can substitute equation
A.1c into A.1d to obtain:

Appendix B: Derivations of Additional NEBLS Estimators

In this section, we provide derivations of the remainder of the NEBLS estimators and their
dual operators, as listed in Table 1 (derivations for general additive noise and Poisson noise
are in section 6.1).
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B.1 Discrete Exponential Families

First, consider the discrete exponential family of the form

(B.1)

where h is chosen to normalize the density (i.e., so that summing over n gives one). This
case includes the Poisson case discussed in the previous section, among others. Noting that

we see by inspection that an operator satisfying the eigenfunction relationship of equation
6.1 is

which tells us that

as found in Maritz and Lwin (1989). The dual form is readily obtained from equations 4.2a–
b,

Also, we note from equation 3.6 that the appropriate linear operator for  will be

(B.2)

This means that if PY|X is instead parameterized as

(B.3)

we will have

The dual form is then
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B.2 Continuous Exponential Families

Now consider the continuous exponential family of the form

where we assume that T is differentiable. By inspection, we obtain

which gives the NEBLS estimator

The dual operator is

As before, we may also deduce that if the likelihood is instead parameterized as

we then have8

and so

The dual operator is then

8We are assuming here that y takes on positive values. In some cases, y can take on negative, or both negative and positive, values, in
which case the limits of integration would have to be changed for the operator L or the dual operator L*.
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A particular case is that of a Laplacian scale mixture, for which

so that

and

B.3 Power of Fixed Density

An interesting family of observation processes are those for which

(B.4)

for some density PW. This occurs, for example, when X takes on integer values, and Y is a
sum of X i.i.d. random variables with distribution PW. Taking the derivative of equation B.4
gives

Rearranging this equality and using the fact that differentiation in the Fourier domain is
multiplication by an imaginary ramp in the signal domain gives

and comparing to the desired eigenfunction relationship of equation 6.1 allows us to define
the operator

(B.6)

where
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(B.7)

Thus, the linear operation first multiplies PY by y and then convolves with m(y). The
corresponding dual operator must first convolve f (y) with the dual of m(y) and then
multiply by y, which we can express in the Fourier domain as

Four special cases are of particular interest. The first occurs when X is a positive variable
and Y is a Poisson random variable with rate X. This corresponds to equation B.4 with

Substituting into equation B.7 gives

(B.8)

Substituting this into equation B.6, taking the inverse Fourier transform, and substituting
into equation 3.1 gives the estimator

(B.9)

consistent with the result derived in section 6.1.

The second example arises when X is a positive random variable and Y is a zero mean
gaussian with variance X, a case known as the gaussian scale mixture (GSM) (Andrews &
Mallows, 1974). In this case equation B.4 holds for

and the operator will be

(B.10)

which gives

(B.11)

where H is the Heaviside step function. Since yPY(y) is odd, this is equal to

Raphan and Simoncelli Page 30

Neural Comput. Author manuscript; available in PMC 2013 March 27.

H
H

M
I A

u
th

o
r M

a
n
u
s
c
rip

t
H

H
M

I A
u
th

o
r M

a
n
u
s
c
rip

t
H

H
M

I A
u
th

o
r M

a
n
u
s
c
rip

t



(B.12)

where the numerator is now the mean of the density to the left of y and may be
approximated in an unbiased way by the average of data less than y. Note that since EY{Y}=
0, this may also be written as9

(B.13)

in agreement with our results in section B.2.

A third special case occurs when . That is, Y is aX corrupted by by zero mean
additive gaussian noise, with variance equal to X (we can trivially generalize to variance,
which is linear in X). In this case equation B.4 will hold for

In this case, the NEBLS operator is

where

so that

A fourth special case is when X is a random positive value, W is an independent variable
drawn from an α-stable distribution (Feller, 1970) with Fourier transform

and

9More generally, it may be the case that more than one operator L agrees on the range of A (i.e., they agree on all possible PY that
may arise from a particular process). In this case, the NEBLS estimator may not be unique.
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Generally, if PW is an infinitely divisible distribution and X is an arbitrary positive real
number, then the right side of equation B.4 will be the Fourier transform of some density,
which can be used as the observation process. In the particular case of the alpha-stable
distribution, the NEBLS operator is

so that

B.4 Multiplicative Lognormal Noise

Now consider the case of multiplicative lognormal noise,

where W is gaussian noise of variance σ2, and independent of X. In this case, taking
logarithms gives

yielding an additive gaussian noise model. From the NEBLS solution for additive gaussian
noise (see equation 6.6), we have

where Z = ln(Y) and Dz represents the derivative operator with respect to z. However, we
wish to find EX|Y(X | Y) so we need to use the change of variables formula in equation 3.7.
Since X = eln(X), we have

By the Baker-Campbell-Hausdorff formula (Wilcox, 1967) we have that
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so that

Next, using the fact that ln(Y) = Z, we have by the change of variables formula

so that

Note that it would have been difficult to garner this result by simple inspection of the
likelihood,

The dual form is

B.5 Mixture of Uniform Noise

Consider the case when our observation is drawn from a uniform density, whose width is
controlled by hidden variable X:

where x ≥ 0. The density of Y is thus a mixture of uniform densities. We note that the
(complement of the) cumulative distribution is

and thus, by inspection, an operator that has PY | X as an eigenfunction may be written

giving
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That is, the estimator adds to the observed value the complement of the cumulative
distribution divided by the measurement density. The dual operator is
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Figure 1.
Illustration of the NEBLS estimator for a one-dimensional value with additive gaussian
noise. (Top) Measurement density, PY(y), arising from a signal with prior consisting of three
point masses (indicated by upward arrows) corrupted by additive gaussian noise. (Bottom)
Derivative of the log measurement density, which, when added to the measurement, gives
the NEBLS estimator (see equation 2.4).
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Figure 2.
Circuit diagram for an incremental gSURE2PLS kernel estimator, as specified by equation
5.2 and 5.4b. The quantities mn and Cn must be accumulated and stored internally. The gray

box encloses the portion of the diagram in which  is computed and may be replaced by a

circuit that directly accumulates the inverse matrix,  (see appendix A). The entire

diagram can also be formulated in terms of the parameter vector, , in place of the vector
mn (also shown in appendix A). If supervised data (i.e., clean values xn) are available for
some n, they may be incorporated by flipping the switch to activate the dashed-line portion
of the circuit (effectively replacing the right-hand side of equation 4.2c by the left-hand
side).
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Figure 3.
Empirical convergence of NEBLS estimator to conventional BLS solution, as a function of
number of observed samples of Y. For each number of observations, each estimator is
simulated many times. Black dashed lines show the improvement of the NEBLS estimator,
averaged over simulations, relative to the ML estimator. The white line shows the mean
improvement using the conventional BLS solution, EX|Y(X | Y = y), assuming the prior
density is known. Gray regions denote ±1 standard deviation. (a) Binary noise (10,000
simulations for each number of samples). (b) Poisson noise (1000 simulations). (c) Additive
gaussian noise (1000 simulations).
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Figure 4.
Example “bump” kernel functions, as used for linear parameterization of “SUREbumps”
estimators in Figures 5a and 5b. The sum of these functions is the identity (indicated by the
dashed black line).
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Figure 5.
Empirical convergence of gSURE2PLS methods compared to optimal BLS solution, as a
function number of data observations, for three different parameterized estimators. (a)
Three-bump kernel estimator. (b) Fifteen-bump kernel estimator. (c) Soft thresholding
(SUREshrink). (d) Comparisons of gSURE2PLS and supervised regression, for the 15-bump
kernel estimator. All simulations use a generalized gaussian prior (exponent 0.5) and
additive gaussian noise. Noisy SNR is 4.8 dB.
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Table 1

NEBLS Estimation Formulas for a Variety of Observation Processes, as Listed in the Left Column.

Observation Process Observation Density: PY|X(y|x) Numerator of Estimator: L{PY}(y)

General discrete A (matrix) (A ∘ X ∘ A−1)PY(y)

Additive:

 General (section 6.1) PW(y − x) yPY (y) − F−1{i∇w ln (PW
^ (ω))PY

^ (ω)}(y)

 Gaussian (Miyasawa,
1961; Stein, 1981*)

exp −
1
2

(y − x − μ)T ∧−1 (y − x − μ)
∣ 2π ∧ ∣

(y − μ)PY(y) + Λ ∇y(y)

 Laplacian
1

2α e −∣(y−x)∕α∣ yPY (y) + 2α 2{PW
′ ⋆ PY }(y)

 Poisson ∑
λ ke −λ

k !
δ(y − x − ks) yPY(y) − λs PY(y − s)

 Cauchy
1
π ( α

(α(y − x))2 + 1
) yPY (y) − { 1

2παy
⋆ PY }(y)

 Uniform {
1
2a

, ∣ y − x ∣ ≤a

0, ∣ y − x ∣ > a
yPY (y) + a ∑k sgn(k )PY (y − ak ) −

1
2
∫PY (y

~)sgn(y − y
~)d y

~

 Random number of
components

PW(y − x), where:

 W ∼∑k=0
K Wk ,

 Wk i.i.d. (Pc), K ~ Poiss(λ)

yPY(y) − λ{(yPc) ⋆ PY}(y)

 Gaussian scale mixture Y = x + ZU ,
U ~ N(0, Λ), Z ~ pZ

yPY (y) + (F−1{ ∫0
∞z pz

(z)e −z
1
2
ω T ∧ω

dz

∫0
∞pz

(z)e −z
1
2
ωT∧ωdz } ⋆ ∧ ∇y PY )(y)

Discrete exponential:

 General (section B.1)
  (Maritz & Lwin, 1989;
Hwang, 1982*)

h(x)g(n)xn g(n)

g(n + 1) PY (n + 1)

 Inverse (Hwang, 1982) h(x)g(n)x−n g(n)

g(n − 1) PY (n − 1)

 Poisson (section 6.1)
  (Robbins, 1956;
Hwang, 1982*)

x ne −x

n !

(n + 1)PY(n + 1)

Continuous exponential:

 General (section B.3)
 (Maritz & Lwin, 1989;
Berger, 1980*)

h(x)g(y)eT(y)x g(y)

T ′(y)
d
dy

( PY (y)
g(y) )
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Observation Process Observation Density: PY|X(y|x) Numerator of Estimator: L{PY}(y)

 Inverse (Berger, 1980*) h(x)g(y)eT(y)/x − g(y)∫y
∞ T ′(y

~)

g(y
~)

PY (y
~)d y

~

 Laplacian scale mixture 1
x

e
−

y
x

, x, y > 0
Pr{Y > y}

Power of fixed:

 General (section B.3) PY ∣X
^ (ω ∣ x) = PW

^ (ω) x (F−1{ 1

i
d

dw
ln(PW
^ (ω)) } ⋆ (yPY ))(y)

 Gaussian scale mixture 1

2πx
e

−
y 2

2x EY{Y; Y > y}

 Signal-dependent AWGN Y = ax + xW , W ∼ N(0, 1) sgn(a)((e ax I{ax<0}) ⋆ (yPY ))(y)

 Multiplicative α-stable
Y = x

1
αW ,  W α-stable

(F−1{ i

sgn(ω) ∣ ω ∣ α−1 } ⋆ (yPY ))(y)

Multiplicative lognormal
(section B.4) Y = xeW, W Gaussian

e

3
2
σ 2

PY
(e σ 2

y)y

Uniform mixture (section
B.5)

1
2x

, ∣ y ∣ ≤x

0, ∣ y ∣ > x

∣y∣PY(y) + Pr{Y > ∣y∣}

Notes: Expressions in parentheses indicate the section containing the derivation and brackets contain the bibliographical references for operators L,

with the asterisk denoting references for the parametric dual operator, L*. Middle column gives the measurement density (note that variable n

replaces y for discrete measurements). Right column gives the numerator of the NEBLS estimator, L{PY}(y). The symbol * indicates convolution,

a hat (e.g., ) indicates a Fourier transform, and  is the inverse Fourier transform.
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