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Abstract. A least-squares finite element method for second-order elliptic boundary value prob-
lems having interfaces due to discontinuous media properties is proposed and analyzed. Both Dirich-
let and Neumann boundary data are treated. The boundary value problems are recast into a first-
order formulation to which a suitable least-squares principle is applied. Among the advantages of
the method are that nonconforming, with respect to the interface, approximating subspaces may be
used. Moreover, the grids used on each side of an interface need not coincide along the interface.
Error estimates are derived that improve on other treatments of interface problems and a numerical
example is provided to illustrate the method and the analyses.
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1. Introduction. Least-squares finite element methods are the subject of much
current interest; a small sample of the recent literature is given by [1], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14]. The obvious advantages of this class of methods
is that the discrete problems one must solve are symmetric and positive definite.
However, the practicality of these methods is still not fully documented due to a lack
of study of the behavior of the methods in the presence of “difficulties” arising from,
for example, the use of low-order piecewise polynomial spaces, the application of mixed
Dirichlet–Neumann boundary conditions, the discretization of nonconvex polygonal
domains, and the need to conserve some global quantity such as mass. Some of these
issues were addressed from a computational point of view in [12]. The purpose of this
paper is to address another difficulty by defining and analyzing a least-squares finite
element method for second-order elliptic equations with discontinuous coefficients;
more specifically, we consider interface problems.

One of the first finite element methods (not of least-squares type) treating inter-
face problems was proposed in [2], and a survey of finite element methods for such
problems can be found in [3]. In [1], a least-squares method for the interface problem
of Poisson equations is introduced after a general theory of the least-squares method
has been developed. The authors of [1] were well aware that proving error estimates
for the method is difficult, and therefore the weights they use in the terms related
to the interface conditions cannot be rigorously justified. In this paper, following the
approach of [8] and [13], we formulate the problem as a first-order system and then
apply least-squares principles to this system. The theory of [8] can also be applied
to the interface problem. However, the error estimate there requires that solutions
be sufficiently smooth, which may not be true for interface problems. Least-squares
finite element methods for interface problems are also considered in [15].
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To avoid global regularity requirements, we introduce two terms in the least-
squares functional that are related to the conditions on the interface. Our error
analysis shows that the method has nearly optimal order of accuracy with respect to
an appropriately defined norm. The weights used for these terms are justified by the
error estimate and are supported by our numerical experiments.

The paper is organized as follows. In the next section we introduce the problem
and some necessary notations. An existence and uniqueness theorem is stated. Then,
in section 3 we define and analyze the least-squares finite element method for the case
of Dirichlet boundary conditions. A coercive property for the least-squares functional
is proved and error estimates are obtained. In section 4 we extend the analyses to
problems with inhomogeneous Neumann boundary conditions. Finally, in section 5,
a computational example is presented.

In order to keep the exposition simple, our discussion is in the context of a single
interface separating two subdomains in each of which the coefficients of the partial
differential equations are “smooth.” However, our algorithms and results extend in
an obvious manner to problems with multiple interfaces and domains, so long as the
assumed regularity results within the subdomains separated by the interfaces remain
valid. In particular, we will assume that each of the subdomains has a “smooth”
boundary or, in the very special situations for which this can be arranged, each has a
convex boundary.

2. Statement of the problem. Assume that Ω is an open bounded domain in
Rn, n = 2 or 3, with smooth boundary. Ω1 and Ω2 are two open subsets of Ω such
that Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅. Let Γ0 = ∂Ω, Γ = Ω1 ∩ Ω2, Γ1 = ∂Ω ∩ Ω1, and
Γ2 = ∂Ω ∩ Ω2. Here, Γ is referred to as the interface. Throughout, we assume that
the subdomains Ω1 and Ω2 both have smooth (or in very special situtations, convex)
boundaries. Smooth boundaries can occur, for example, if Ω1 ⊂ Ω, Ω2 = Ω−Ω1, and
Ω1 has a smooth boundary. Convex subdomains result, for example, if one subdivides
a rectangle into smaller rectangles.

Consider the following elliptic boundary value problem on Ω:

(2.1) −div (Ai∇ui) + ciui = fi in Ωi, i = 1, 2 ,

(2.2) ui|Γi = 0 , i = 1, 2 ,

(2.3) u1|Γ = u2|Γ , and
(
A1∇u1 · n1

)
|Γ +

(
A2∇u2 · n2

)
|Γ = 0 ,

where ci ≥ c > 0 and Ai = (ailk), i = 1, 2, and l, k = 1, . . . , n, are n × n positive
definite matrices so that, if λij , j = 1, . . . , n, denote the eigenvalues of Ai, then there
exist two constants Ca and Cb such that

0 < Ca ≤ λij ≤ Cb, i = 1, 2 , j = 1, . . . , n .

The cases for which c1 = 0 and/or c2 = 0 may also be treated at the expense of
greatly complicating the analyses. The constants appearing in our estimates will, in
general, depend on Ca and Cb and, in particular, on the ratio Cb/Ca. In (2.3), ni
denotes the unit outer normal vector on Ωi, i = 1, 2.

For k ≥ 0, we denote by Hk(D) the standard Sobolev space consisting of functions
defined over the domain D and having square integrable derivatives of order up to
k. For negative values of k, these spaces are also defined in the usual manner as
appropriate dual spaces. In particular, H−1(D) is the dual space of H1

0 (D), where the
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latter is the space of functions having one square integrable derivative with respect to
D and that vanish on the boundary of that domain. Also, Hk(D) = (Hk(D))n denotes
the space of vector-valued functions, each of whose components belongs to Hk(D).
The standard Sobolev norm for functions belonging toHk(D) and Hk(D) = (Hk(D))n

is denoted by ‖ · ‖k,D.
For k ≥ 0, define the Banach spaces

Ḣk(Ω) = {u = (u1, u2) | ui = u|Ωi ∈ Hk(Ωi) , i = 1, 2}

with norm |||u|||k = ‖u1‖k,Ω1 + ‖u2‖k,Ω2 and

V̇k(Ω) = {v = (v1,v2) | vi = v|Ωi ∈ Hk(Ωi) , i = 1, 2}

with norm |||v|||k = ‖v1‖k,Ω1 + ‖v2‖k,Ω2 . We may extend these definitions to k = −1;
for example,

Ḣ−1(Ω) = {u = (u1, u2) | ui = u|Ωi ∈ H−1
Γi (Ωi) , i = 1, 2} ,

where H−1
Γi (Ωi) denotes the dual space of H1

Γi(Ωi) = {u ∈ H1(Ωi) |u = 0 on Γi},
i = 1, 2. Note that, generally, Ḣk(Ω) 6⊂ Hk(Ω) and V̇k(Ω) 6⊂ Vk(Ω). In particular,
we will work with the space Ḣ1(Ω), which is generally not a subspace of H1(Ω), so
that approximations for {u | u|Ωi = ui , i = 1, 2} will be nonconforming in the sense
that these approximations need not belong to H1(Ω).

Let

(2.4) H = Ḣ1(Ω) , V = V̇1(Ω) , and H0 = {u ∈ H | u|Γ0 = 0} .

Along the interface Γ, let [u]Γ = u1 − u2 and [v · n]Γ = v1 · n1 + v2 · n2. Let

(2.5) H(Γ,Ω) = {u ∈ H | [u]Γ = 0} , H0(Γ,Ω) = H(Γ,Ω) ∩H0 ,

and

(2.6) V(Γ,Ω) = {v ∈ V | [v · n]Γ = 0} .

Note that H(Γ,Ω) ⊂ H1(Ω). Also, define the Hilbert spaces

V(div,Ωi) = {v ∈ L2(Ωi) = (L2(Ωi))n | div v ∈ L2(Ωi)}

with norm ‖v‖div,Ωi = ‖v‖0,Ωi + ‖div v‖0,Ωi and

V(div) = {v = (v1,v2) | vi ∈ V(div,Ωi)}

with norm |||v|||div = ‖v1‖div,Ω1 + ‖v2‖div,Ω2 .
Concerning the problem (2.1)–(2.3), we have the following result.
THEOREM 2.1. Assume, for k ≥ 1, that f ∈ Ḣk−2(Ω), ailj ∈ Hk(Ωi), i = 1, 2,

l, j = 1, . . . , n, and ci ∈ Hk(Ωi) for i = 1, 2. Then, there exists a unique solution
u ∈ Ḣk(Ω) for (2.1)–(2.3).

Proof. See [16].
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3. Least-squares finite element approximations. We rewrite (2.1)–(2.3) as
a system of first-order differential equations:

(3.1) −div (vi) + ciui = f in Ωi , i = 1, 2 ,

(3.2) Ai∇ui − vi = 0 in Ωi , i = 1, 2 ,

(3.3) u|Γ0 = 0 , [u]Γ = 0 , and [v · n]Γ = 0 .

We introduce subspaces Hh ⊂ H0 and Vh ⊂ V parameterized by h, usually chosen
to be some measure of the grid size such as the largest diameter of the triangles in a
triangulation of Ω. Note that Hh need not be a subset of H1(Ω) so that in this sense
our method is nonconforming.

We assume that the subspaces Hh and Vh possess the approximation properties

inf
uh∈Hh

‖u− uh‖k,Ωi ≤ Chs−k‖u‖s,Ωi ∀ u ∈ Ḣs(Ω) , uh ∈ Hh , i = 1, 2

and

inf
vh∈Vh

‖v − vh‖k,Ωi ≤ hs−k‖v‖s,Ωi ∀ v ∈ V̇s(Ω) , vh ∈ Vh , i = 1, 2 ,

where 0 < k < s. As a result, we have that

(3.4) inf
uh∈Hh

|||u− uh|||k ≤ Chs−k|||u|||s ∀ u ∈ Ḣs(Ω) , uh ∈ Hh

and

(3.5) inf
vh∈Vh

|||v − vh|||k ≤ hs−k|||v|||s ∀ v ∈ V̇s(Ω) , vh ∈ Vh ,

where 0 < k < s. We also assume that the following inverse inequality holds in Hh:
there exists a constant C such that for uh = (uh1 , u

h
2 ) ∈ Hh,

(3.6) ‖uh1 − uh2‖1/2,Γ ≤
C

h1/2 ‖u
h
1 − uh2‖0,Γ .

Note that if the restrictions to Γ of the approximating spaces in Ω1 and Ω2 coincide,
then the inverse property (3.6) is simply the inverse property in the usual sense.

3.1. The least-squares functional. We define a functional on H0 ×V as fol-
lows. For u ∈ H0 and v ∈ V, let

(3.7)
J (u,v; f) =

2∑
i=1

(‖ − div vi + ciui − f‖20 + ‖Ai∇ui − vi‖20)

+
1

h1+ε0

∫
Γ
[u]2Γ dΓ +

1
hε1

∫
Γ
[v · n]2Γ dΓ ,

where f ∈ Ḣ0(Ω) and ε0, ε1 > 0. Note that if u ∈ H0(Γ,Ω) and v ∈ V(Γ,Ω), then
the last two terms in (3.7) vanish. Also, note that if u and v satisfy (3.1)–(3.3), then
J (u,v; f) = 0.

The functional J (·, · ; ·) satisfies the following coercivity property.
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PROPOSITION 3.1. Let uh = (uh1 , u
h
2 ) ∈ Hh, vh = (vh1 ,v

h
2 ) ∈ Vh, u = (u1, u2) ∈

H0(Γ,Ω), and v = (v1,v2) ∈ V(Γ,Ω). Then, for h sufficiently small, there exists a
constant C > 0 independent of h such that

(3.8) J (u− uh,v − vh; 0) ≥ C
(
|||u− uh|||21 + |||v − vh|||2div

)
.

Proof. Let

Ĵ (u,v) =
2∑
i=1

(‖ − c−1/2
i div vi + c

1/2
i ui‖20 + ‖A

1
2
i ∇ui −A

− 1
2

i vi‖20)

+
1

h1+ε0

∫
Γ
[u]2Γ dΓ +

1
hε1

∫
Γ
[v · n]2Γ dΓ .

It is easy to see that J (·, · ; 0) and Ĵ (·, ·) are equivalent, i.e., that there exist two
positive constants C1 and C2 such that

C1J (u,v; 0) ≤ Ĵ (u,v) ≤ C2J (u,v; 0)

for all u ∈ H and v ∈ V. Thus, it suffices to prove that

Ĵ (u− uh , v − vh) ≥ C
(
|||u− uh|||21 + |||v − vh|||2div

)
for some constant C > 0. Now, since u ∈ H0(Γ,Ω) and v ∈ V(Γ,Ω), we have that

Ĵ (u− uh , v − vh)

=
2∑
i=1

(
‖ − c−1/2

i div (vi − vhi ) + c
1/2
i (ui − uhi )‖20

+ ‖A1/2
i ∇(ui − uhi )−A−1/2

i (vi − vhi )‖20
)

+
1

h1+ε0

∫
Γ
|uh1 − uh2 |2 dΓ +

1
hε1

∫
Γ
((vh1 − vh2 ) · n)2 dΓ.

Integrating by parts, one obtains, for i = 1, 2,

‖ − c−1/2
i div (vi − vhi ) + c

1/2
i (ui − uhi )‖20 + ‖A1/2

i ∇(ui − uhi )−A−1/2
i (vi − vhi )‖20

= ‖c−1/2
i div (vi − vhi )‖20 + ‖c1/2i (ui − uhi )‖20 − 2

∫
Ωi

div (vi − vhi )(ui − uhi ) dΩ

+ ‖A1/2
i ∇(ui − uhi )‖20 + ‖A−1/2

i (vi − vhi )‖20 − 2
∫

Ωi
∇(ui − uhi ) · (vi − vhi ) dΩ

= ‖c−1/2
i div (vi − vhi )‖20 + ‖c1/2i (ui − uhi )‖20 + ‖A1/2

i ∇(ui − uhi )‖20

+ ‖A−1/2
i (vi − vhi )‖20 − 2

∫
Γ
(ui − uhi )(vi − vhi ) · n dΓ .

Hence, for some constant C3 > 0,

Ĵ (u−uh,v − vh)

≥C3

2∑
i=1

(
‖div (vi − vhi )‖20 + ‖ui − uhi ‖20 + ‖∇(ui − uhi )‖20 + ‖vi − vhi ‖20

)
+ 2

∫
Γ
(u1 − uh1 )(v1 − vh1 ) · n dΓ− 2

∫
Γ
(u2 − uh2 )(v2 − vh2 ) · n dΓ

+
1

h1+ε0

∫
Γ
(uh1 − uh2 )2 dΓ +

1
hε1

∫
Γ

(
(vh1 − vh2 ) · n

)2
dΓ .
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By the definition of H0(Γ,Ω) and V(Γ,Ω), trace theorems, and the inverse property
(3.6) on Hh, we have, for some constant C4 > 0,∣∣∣∣∫

Γ
(u1 − uh1 )(v1 − vh1 ) · n dΓ−

∫
Γ
(u2 − uh2 )(v2 − vh2 ) · n dΓ

∣∣∣∣
=
∣∣∣∣∫

Γ
(uh1 − uh2 )(v1 − vh1 ) · n dΓ +

∫
Γ
(u2 − uh2 )(vh1 − vh2 ) · n dΓ

∣∣∣∣
≤ ‖uh1 − uh2‖1/2,Γ‖(v1 − vh1 ) · n‖−1/2,Γ + ‖u2 − uh2‖0,Γ‖(vh1 − vh2 ) · n‖0,Γ

≤ C4

(
ε|||v − vh|||2div +

1
hε
‖uh1 − uh2‖20,Γ +

1
ε
‖vh1 − vh2‖20,Γ + ε|||u− uh|||21

)
.

Hence,

Ĵ (u− uh,v − vh) ≥ (C3 − C4ε)
(
|||u− uh|||21 + |||v − vh|||2div

)
+
(

1
h1+ε0

− 2C4

hε

)∫
Γ
|uh1 − uh2 |2 dΓ +

(
1
hε1
− 2C4

ε

)∫
Γ

(
(vh1 − vh2 ) · n

)2
dΓ .

We first choose ε small enough so that C3−C4ε > 0. Then, for this fixed ε, we choose
h0 sufficiently small so that 2C4h

ε0
0 ≤ ε and 2C4h

ε1
0 ≤ ε. Thus, for 0 < h < h0, we

have that

Ĵ (u− uh,v − vh) ≥ C(|||u− uh|||21 + |||v − vh|||2div) .

Proposition 3.1 shows a certain coercive property about the functional J . If
we choose u = 0 and v = 0 in (3.8), then we see that the coercive property is
true on the finite-dimensional subspace Hh × Vh of H × V, i.e., J (uh,vh; 0) ≥
C(‖uh‖21 + ‖vh‖2H(div)) for (uh,vh) ∈ Hh ×Vh. However, this does not hold for all
elements of H × V. Neverthless, Proposition 3.1 suffices for us to obtain an error
estimate for the least-squares finite element approximations of the solution of (3.1)–
(3.3).

3.2. Finite element approximations. We define (uh∗ , vh∗ ) to be the solution
of the following problem:

(3.9) J(uh∗ ,v
h
∗ ; f) = min

uh∈Hh,vh∈Vh
J(uh,vh; f) .

We then have the following error estimate.
THEOREM 3.2. Let s > 0. Assume that the solution (u,v) of (3.1)–(3.3) satisfies

u ∈ Ḣs+1(Ω) ∩H0(Γ,Ω) and v ∈ V̇ s+1(Ω) ∩V(Γ,Ω). Then, for h sufficiently small
and for 0 < ε1 ≤ 1 and any δ > ε0 > 0, there exists a constant C > 0 such that

(3.10) |||u− uh∗ |||1 + |||v − vh∗ |||div ≤ Chs−δ(|||u|||s+1 + |||v|||s+1) .

Proof. By the approximation properties (3.4) and (3.5), there exist ûh ∈ Hh and
v̂h ∈ Vh such that

(3.11) |||u− ûh|||1 ≤ Chs|||u|||s+1

and

(3.12) |||v − v̂h|||1 ≤ Chs|||v|||s+1 .
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By Proposition 3.1 and the definition of uh∗ and vh∗ ,

(3.13)

|||u−uh∗ |||21 + |||v − vh∗ |||2div ≤ CJ (u− uh∗ ,v − vh∗ ; 0)

= CJ (uh∗ ,v
h
∗ ; f) ≤ CJ (ûh, v̂h; f) = CJ (u− ûh,v − v̂h; 0)

≤ |||u− ûh|||21 + |||v − v̂h|||2div

+
1

h1+ε0

∫
Γ
(ûh1 − ûh2 )2 dΓ +

1
hε1

∫
Γ

(
(v̂h1 − v̂h2 )n

)2
dΓ .

Using trace theorems, we have that

(3.14)

1
h1+ε0

∫
Γ
(ûh1 − ûh2 )2 dΓ +

1
hε1

∫
Γ
((v̂h1 − v̂h2 ) · n)2 dΓ

=
1

h1+ε0

∫
Γ
(ûh1 − u1 + u2 − ûh2 )2 dΓ

+
1
hε1

∫
Γ

(
(v̂h1 − v1 + v2 − v̂h2 ) · n

)2
dΓ

≤ 2
h1+ε0

(∫
Γ
(ûh1 − u)2 dΓ +

∫
Γ
(ûh2 − u)2 dΓ

)
+

2
hε1

(∫
Γ

(
(v̂h1 − v) · n

)2
dΓ +

∫
Γ

(
(v̂h2 − v) · n

)2
dΓ
)

≤ 1
h1+ε0

|||u− ûh|||2(1/2)(1+2δ−ε0) +
1
hε1
|||v − v̂h|||21− ε12

≤ h2s−2δ|||u|||2s+1 +
1
hε1

h2(s+ ε1
2 )|||v|||2s+1 ≤ Ch2(s−δ)(|||u|||2s+1 + |||v|||2s+1)

for h sufficiently small. Combining (3.11)–(3.14) yields (3.10).
Remark. The conclusion of Theorem 3.2 is also valid for problems with homoge-

neous Newmann boundary conditions and mixed homogeneous boundary conditions.
Remark. Theorem 3.2 is a generalization of Theorem 5.1 of [8]. We merely require

that u ∈ Ḣs+1(Ω) and v ∈ V̇s+1(Ω), i.e., regularity within each subdomain and not
across interfaces. Furthermore, we allow for the use of nonconforming elements in the
sense that the finite element functions uh ∈ Hh need not belong to H1(Ω).

4. Inhomogeneous Neumann boundary conditions. We now consider prob-
lem (3.1) with the homogeneous Dirchlet boundary condition replaced by an inhomo-
geneous Neumann boundary condition; i.e., we consider the problem

(4.1) −div (vi) + ciui = f in Ωi , i = 1, 2 ,

(4.2) Ai∇ui − vi = 0 in Ωi , i = 1, 2 ,

(4.3) v · n|Γ0 = g , [u]Γ = 0 , and [v · n]Γ = 0 .

Define the functional K(u,v; f, g) on H × V as follows. For u ∈ H and v ∈ V ,

(4.4)
K(u,v;f, g) =

2∑
i=1

(‖ − div(vi) + ciui − f‖20 + ‖Ai∇ui − vi‖20)

+
1

h1+ε0

∫
Γ
[u]2Γ dΓ +

1
hε1

∫
Γ
[v · n]2Γ dΓ.+

1
hε2

∫
Γ0

(v · n− g)2 dΓ.
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First we prove a coercivity property for K; the result and its proof are similar to
that of Proposition 3.1. Let Hh ⊂ H and Vh ⊂ V be finite-dimensional subspaces
satisfying the approximation properties (3.4) and (3.5).

PROPOSITION 4.1. Let (uh,vh) ∈ Hh×Vh with uh = (uh1 , u
h
2 ) and vh = (vh1 ,v

h
2 )

and (u,v) ∈ H(Γ,Ω) × V(Γ,Ω) with u = (u1, u2) and v = (v1,v2). Then, for h
sufficiently small, there is a constant C > 0 independent of h such that

K(u− uh,v − vh; 0, 0) ≥ C(|||u− uh|||21 + |||v − vh|||2div) .

Proof. Define

(4.5)
K̂(u,v) =

2∑
i=1

(‖ − c−1/2
i div (vi) + c

1/2
i ui‖20 + ‖A1/2

i ∇ui −A
−1/2
i vi‖20

+
1

h1+ε0

∫
Γ
[u]2Γ dΓ +

1
hε1

∫
Γ
[v · n]2Γ dΓ +

1
hε2

∫
Γ0

(v · n)2 dΓ .

It is easy to see that K(·; 0, 0) and K̂(·) are equivalent, i.e., that there exist two positive
constants C1 and C2 such that

C1K(u,v; 0, 0) ≤ K̂(u,v) ≤ C2K(u,v; 0, 0)

for all u ∈ H and v ∈ V. Thus, it suffices to prove that

K̂(u− uh,v − vh) ≥ C(|||u− uh|||21 + |||v − vh|||2div)

for some constant C > 0 and all u ∈ H(Γ,Ω) and v ∈ V (Γ,Ω). Now, by the definition
of H(Γ,Ω) and V (Γ,Ω),

K̂(u− uh,v − vh)

=
2∑
i=1

(‖ − c−1/2
i div (vi − vhi ) + c

1/2
i (ui − uhi )‖20 + ‖A1/2

i ∇(ui − uhi )−A−1/2
i (vi − vhi )‖20)

+
1

h1+ε0

∫
Γ
|uh1 − uh2 |2 dΓ +

1
hε1

∫
Γ
((vh1 − vh2 ) · n)2 dΓ +

1
hε2

∫
Γ0

(v · n− vh · n)2 dΓ .

Integrating by parts, one has

‖−c−1/2
i div (vi − vhi ) + c

1/2
i (ui − uhi )‖20 + ‖A1/2

i ∇(ui − uhi )−A−1/2
i (vi − vhi )‖20

= ‖c−1/2
i div (vi − vhi )‖20 + ‖c1/2i (ui − uhi )‖20 − 2

∫
Ωi

div(vi − vhi )(ui − uhi ) dΩ

+ ‖A1/2
i ∇(ui − uhi )‖20 + ‖A−1/2

i (vi − vhi )‖20 − 2
∫

Ωi
∇(ui − uhi ) · (vi − vhi ) dΩ

= ‖div (vi − vhi )‖20 + ‖ui − uhi ‖20 + ‖A1/2
i ∇(ui − uhi )‖20

+ ‖A−1/2
i (vi − vh

i )‖20 − 2
∫

Γ
(ui − uhi )(vi − vhi ) · n dΓ

+ 2
∫

Γ0

(u− uh)(v − vh) · n dΓ .
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Hence,

(4.6)

K̂(u− uh,v − vh)

≥C
2∑
i=1

(
‖div (vi − vhi )‖20 + ‖ui − uhi ‖20 + ‖∇(ui − uhi )‖20 + ‖vi − vhi ‖20

)
+ 2

∫
Γ
(u1 − uh1 )(v1 − vh1 ) · n dΓ− 2

∫
Γ
(u2 − uh2 )(v2 − vh2 ) · n dΓ

+ 2
∫

Γ0

(u− uh)(v − vh) · n dΓ +
1

h1+ε0

∫
Γ
(uh1 − uh2 )2 dΓ

+
1
hε1

∫
Γ
((vh1 − vh2 ) · n)2 dΓ +

1
hε2

∫
Γ0

(v · n− vh · n)2 dΓ

=I + II + III + IV,

where

I =C
2∑
i=1

(‖div (vi − vhi )‖20 + ‖ui − uhi ‖20 + ‖∇(u− uh)‖20 + ‖vi − vhi ‖20),

II =2
(∫

Γ
(u1 − uh1 )(v1 − vh1 ) · n dΓ−

∫
Γ
(u2 − uh2 )(v2 − vh2 ) · n dΓ

)
,

III =2
∫

Γ0

(u− uh)(v − vh) · n dΓ,

IV =
1

h1+ε0

∫
Γ
(uh1 − uh2 )2 dΓ

+
1
hε1

∫
Γ
((vh1 − vh2 ) · n)2 dΓ +

1
hε2

∫
Γ0

(v · n− vh · n)2 dΓ .

By the proof of Theorem 3.1 we have that for ε > 0,

|II| ≤ Cε|||v − vh|||2div +
1
hε
‖uh1 − uh2‖20,Γ +

1
ε
‖vh1 − vh2‖20,Γ + ε|||u− uh|||21 .

Using the Schwartz inequality we have that

|III| = 2
∣∣∣∣∫

Γ0

(u− uh)(v · n− vh · n) dΓ
∣∣∣∣ ≤ ε3 ∫

Γ0

(u−uh)2 dΓ+
1
ε3

∫
Γ0

(v·n−vh·n)2 dΓ

for ε3 > 0. Hence

K̂(u− uh,v − vh) ≥ (C1 − ε− ε3)|||u− uh|||21 + (C2 − ε)|||v − vh|||2div

+
(

1
h1+ε0

− 1
hε

)∫
Γ
|uh1 − uh2 |2 dΓ +

(
1
hε1
− 1
ε

)∫
Γ
((vh1 − vh2 ) · n)2 dΓ

+
(

1
hε2
− 1
ε3

)∫
Γ0

(v · n− vh · n)2 dΓ .

We first choose ε and ε3 small enough so that Ci − ε− ε3 > 0. Then, for this fixed ε,
we let h0 be sufficiently small so that h1+ε0

0 ≤ hε, hε10 < ε, and hε20 < ε3. Thus, for
0 > h > h0, we obtain

K̂(u− uh,v − vh) ≥ C
(
|||u− uh|||21 + |||v − vh|||2div

)
.

The proof is complete.
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Assume that (uh∗ , vh∗ ) is the solution of the following problem:

K(uh∗ ,v
h
∗ ; f, g) = min

uh∈Hh,vh∈Vh
K(uh,vh; f, g) .

We have the following error estimate.
THEOREM 4.2. Let s > 0. Assume that the solutions u and v of (4.1)–(4.3) satisfy

u ∈ Ḣs+1(Ω) and v ∈ V̇ s+1(Ω). Then, for h sufficiently small and for 0 < ε1, ε2 ≤ 1,
and any δ > ε0 > 0, there exists a constant C > 0 such that

(4.7) |||u− uh∗ |||1 + |||v − vh∗ |||div ≤ Chs−δ(|||u|||s+1 + |||v|||s+1) .

Proof. By the approximation properties (3.4) and (3.5), there exist ûh ∈ Hh and
v̂h ∈ Vh such that

|||u− ûh|||1 ≤ Chs|||u|||s+1

and

|||v − v̂h|||1 ≤ Chs|||v|||s+1 .

By Proposition 4.1 and the definition of uh∗ and vh∗ we have that

(4.8)

|||u− uh∗ |||21 + |||v − vh∗ |||2div

≤ CK(u− uh∗ ,v − vh∗ ; 0, 0) = CK(uh∗ ,v
h
∗ ; f, g)

≤ CK(ûh, v̂h; f, g) = CK(u− ûh,v − v̂h; 0, 0)

≤ |||u− ûh|||21 + |||v − v̂h|||2div +
1

h1+ε0

∫
Γ
(ûh1 − ûh2 )2 dΓ

+
1
hε1

∫
Γ
((v̂h1 − v̂h2 ) · n)2 dΓ +

1
hε2

∫
Γ0

((v̂h − v) · n)2 dΓ .

From the proof of Theorem 3.2, we have that

(4.9)

1
h1+ε0

∫
Γ
(ûh1 − ûh2 )2 dΓ +

1
hε1

∫
Γ
((v̂h1 − v̂h2 ) · n)2 dΓ

≤ h2s−2δ|||u|||2s+1 +
1
hε1

h2(s+ ε1
2 )|||v|||2s+1 ≤ Ch2(s−δ)(|||u|||2s+1 + |||v|||2s+1) .

Using trace theorems we have that

(4.10)

1
hε2

∫
Γ0

(v · n− v̂h · n)2 dΓ ≤ 1
hε2
|||v − v̂h|||21− ε22

≤ 1
hε2

h2(s+ ε2
2 )|||v|||2s+1 = Ch2s|||v|||2s+1

for h sufficiently small. Substituting (4.9) and (4.10) into (4.8), we obtain (4.7).
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FIG. 1. Interface problem used in computational example.

5. Numerical results. In this section we report the results of computations
which illustrate our method and error analysis. We take for the domain the rectangle
Ω = (0, 2) × (0, 1). The interface occurs at x = 1 so that Ω1 = (0, 1) × (0, 1) and
Ω2 = (1, 2) × (0, 1). In (2.1)–(2.3), Ai = diag (ai, ai) with a1 = 1 and a2 = 1/2 and
c1 = c2 = 1; see Figure 1.

For the exact solution, we choose

u1(x, y) = sin(πx) sin(πy), (x, y) ∈ Ω1 = (0, 1)× (0, 1)

and

u2(x, y) = − sin(2πx) sin(πy), (x, y) ∈ Ω2 = (1, 2)× (0, 1) .

The right-hand sides f1 and f2 in (2.1) are then determined from this choice for
(A1, c1, u1) and (A2, c2, u2), respectively. Note that the global solution merely belongs
to H1(Ω). We choose ε0 = 2/3 and ε1 = 3/4 in the functional (3.4).

Standard techniques of the calculus of variations may be used to deduce that any
solution (uh∗ ,v

h
∗ ) of (3.8) necessarily satisfies the variational problem: find (uh∗ ,v

h
∗ ) ∈

Hh × V h such that

(5.1) B
(
(uh∗ ,v

h
∗ ), (ũ

h, ṽh)
)

= F
(
(ũh, ṽh)

)
∀ (ũh, ṽh) ∈ Hh × V h ,

where, for uh = (uh1 , u
h
2 ), vh = (vh1 ,v

h
2 ), ũh = (ũh1 , ũ

h
2 ), vh = (ṽh1 , ṽ

h
2 ), we have

B
(
(uh,vh),(ũh, ṽh)

)
=

2∑
i=1

((
div (vhi ) + ciui , div (ṽhi ) + ciũ

h
i

)
Ωi

+
(
Ai∇uhi − vhi , Ai∇ũhi − ṽhi

)
Ωi

)
+

1
h1+ε0

(
uh1 − uh2 , ũh1 − ũh2

)
Γ +

1
hε1

(
(vh1 − vh2 ) · n , (ṽh1 − ṽh2 ) · n

)
Γ

and

F
(
(ũh, ṽh)

)
=

2∑
i=1

(fi , −div (ṽhi ) + ũhi )Ωi .

Here, (·, ·)Ωi and (·, ·)Γ denote the L2(Ωi) and L2(Γ) inner products, respectively.
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FIG. 2. Negative of logarithm of error vs. − log(h).

TABLE 1
Rates of convergence.

Function L2 error H1 error
u 3.315 1.837
v 2.321 1.214
w 2.138 1.038

div v 1.898 —

For our numerical results, globally continuous piecewise quadratic finite element
functions based on uniform triangulations of Ωi, i = 1, 2, were used for all unknowns,
i.e., uhi and the components of vhi , i = 1, 2. The nodes of the triangulations of Ω1
and Ω2 coincide on the interface Γ. Hence, we expect that convergence rates will be
determined according to (3.9) with s = 3.

Figure 2 displays the L2 error of the approximate solutions for u = (u1, u2),
v = (A1∇u1, A2∇u2), the error of u in the H1 seminorm, and the L2 norm error
of div v. In Table 1, we list the rates of convergence estimated by linear regression.
These convergence rates match our error estimates in section 3.

Remark. From Table 1, we see that the L2 error in the approximation to u is one
order higher than that for its derivative.

Remark. As shown in [9] and [13], if ‖curl v‖2 is added to the standard least-
squares functional, then the optimal error estimate in the H1-norm for v may be
achieved. Also, the error for v in the L2 norm of is one order higher. Our numerical
experience (see Figure 3) indicates that if we add ‖curl v‖2 to the functional (3.4),
then the H1 error in the approximation v is seemingly better, but the L2 error is not
improved.
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FIG. 3. Negative of logrithm of error vs. − log(h). Solid line: without curl term in functional;
dashed line: with curl term in functional.
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