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Abstract In this paper, we propose least-squares

images (LS-images) as a basis for a novel edge-

preserving image smoothing method. The LS-image

requires the value of each pixel to be a convex

linear combination of its neighbors, i.e., to have

zero Laplacian, and to approximate the original

image in a least-squares sense. The edge-preserving

property inherits from the edge-aware weights for

constructing the linear combination. Experimental

results demonstrate that the proposed method achieves

high quality results compared to previous state-of-the-

art works. We also show diverse applications of LS-

images, such as detail manipulation, edge enhancement,

and clip-art JPEG artifact removal.

Keywords feature-preserving; image enhancement;

image smoothing; least-squares images

(LS-images)

1 Introduction

Edge-preserving image smoothing has emerged

as a valuable tool for many applications in

image processing and computer graphics, and has

received much attention [1–12]. However, it is still

a challenging problem due to the difficulty of

distinguishing sharp edges from noises.

Of the previous methods for edge-preserving

image smoothing, some are gradient domain

methods, which generally specify both zeroth-

order constraints to provide desired pixel values
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and first-order differential constraints to provide

desired pixel gradients, examples being the total

variation model [2], WLS optimization [5], and

L0 smoothing [9, 12]. Inspired by use of second-

order differential Laplacian constraints for image

colorization [13] and segmentation [14], we propose

least-squares images (LS-images) as a basis for

a novel edge-preserving image smoothing method.

The LS-image is constructed with inhomogeneous

Laplacian constraints set to zero and approximates

the original image in a least-squares sense. The edge-

preserving property is achieved by using edge-aware

weights to compute the inhomogeneous Laplacian.

Minimizing second-order Laplacians with vertex

constraints has been widely used in digital geometry

processing, for purposes such as smoothing [15,

16], geometry compression [17], and high-pass

quantization [18].

Experimental results demonstrate the proposed

method achieves high quality results. The LS-image

is simple, robust, and versatile, and may be used

in many of the applications that have so far been

based on previous approaches. It can be used for

detail manipulation, edge enhancement, and clip-art

compression artifact removal.

The rest of this paper is organized as follows.

Section 2 describes previous work on edge-

preserving image smoothing. The LS-image is

introduced in Section 3. Experimental results and

comparisons with existing methods are discussed

in Section 4. Applications of LS-images are

demonstrated in Section 5. Finally this paper is

concluded in Section 6.

2 Previous work

Edge-preserving image smoothing, which smooths

small details and preserves sharp edges, has already

received a great deal of attention. A full review
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of edge-preserving image smoothing is beyond the

scope of this paper. In this section, only approaches

that are most relevant to the proposed one are

surveyed.

2.1 Explicit weighted-average methods

Classical bilateral filtering [3] is perhaps the

simplest and most intuitive of the explicit weighted-

average methods. It smooths each pixel as a linear

combination of its neighbors, where weights consider

both spatial distance and range similarity. A number

of efficient implementations of bilateral filtering

have been proposed [19–21]. A bilateral texture

filter has also been proposed to effectively remove

textures while preserving structures [22]. Mean shift

filtering [4] can also be regarded as an explicit

weighted-average method, where a moving window

is used to compute the average. Edge-avoiding

wavelets with explicit image-adaptive weights can

also be used for edge-preserving image smoothing [7].

However, constraints on kernel size of the wavelet

may limit its applicability. Derived from a local

linear model between a guidance image and the

final filtering result, explicit and efficient guided

filtering has been used for edge-preserving image

smoothing [11]. Another class of explicit edge-

preserving filtering uses weights based on geodesic

distances between pixels [23, 24]. Karacan et al. [25]

proposed an explicit structure-preserving image

smoothing method, where the weights are derived

from region covariances. Learning an image filter

from a pair of example images is considered in

Ref. [26].

As stated in Ref. [11], the local explicit weighted-

average methods have one limitation: unavoidable

halos appear near certain weak edges. Global

implicit methods attenuate these halos, at the price

of high computational cost. Our proposed edge-

preserving image smoothing method is a global

implicit approach.

2.2 Gradient based methods

As a first-order differential quantity, the gradient

contains information about details, and has been

widely used in edge-preserving image smoothing [1,

5, 9, 12]. Anisotropic diffusion achieves edge-

preserving smoothing by use of an edge-stopping

function to permit smoothing only in the interior

of regions without crossing sharp edges; the edge-

stopping function is based on magnitudes of the

gradients [1]. The flexible weighted least-squares

optimization framework achieves edge-preserving

smoothing by minimizing gradients using edge-aware

weights [5]. Reconstructing images that minimize

gradients in the L0 norm is another state-of-the-

art edge-preserving smoothing approach [9, 12]. Xu

et al. [27] proposed a new inherent variation and

relative total variation measures, and developed

an efficient optimization system to extract main

structures from textures.

In this paper, the LS-image approach minimizes

the Laplacian, which is a second-order differential

quantity, to provide smoothing. The edge-preserving

property of the LS-image is inherited from the edge-

aware inhomogeneous Laplacian.

2.3 Other approaches

Paris et al. [10] manipulated the coefficients

of the Laplacian pyramid around each pixel to

provide edge-preserving smoothing. A mixed-domain

edge-aware image manipulation method based on

Gaussian pyramids was given in Ref. [28]. Inspired

by the 1D Hilbert–Huang transform (HHT), Subr et

al. [6] proposed an edge-preserving image smoothing

method based on averaging two envelops which fit

the local maxima and minima of the image. An

efficient structure-aware image smoothing method

based local extrema on space-filling curves was

proposed in Ref. [29]. Edge-aware image smoothing

methods have also been used for image and video

abstraction [30, 31].

3 Edge-preserving smoothing via LS-

image

In this section, we first describe a novel edge-

preserving smoothing method via the proposed

LS-image, and then analyse the mathematical

relationship of our method to other related work.

3.1 LS-image

Given an original image g (gray or color) with

n pixels, the LS-image u is an edge-preserving

smoothing result, which minimizes the following

energy:
n
∑

i=1

(

λ‖u(i)−g(i)‖2+‖u(i)−
∑

j∈N(i)

wiju(j)‖
2

)

(1)
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where i denotes the index of a pixel. The data term

‖u(i) − g(i)‖2 ensures the LS-image approximates

the original image, while the smoothing term

constrains the value of each pixel to be a convex

combination of the values of its neighbors N(i), so

that each pixel has a zero Laplacian. As explained

in Section 4.2, in this paper we fix N(i) to be the

3×3 neighborhood of pixel i. The parameter λ allows

a trade-off between the data and smoothing terms;

decreasing λ leads to a smoother LS-image u .

The non-linear weights wij play an important role

in the edge-preserving properties of LS-images. They

are set as follows:

wij ∝ exp(−β‖g(i)− g(j)‖2) (2)

where
∑

j∈N(i) wij = 1.0, and β is a parameter

to control the edge-preserving extent; increasing

β preserves more features. Gaussian weights as

above have been widely used, for image colorization

[13], image segmentation [14], and computation

of envelopes from extrema [6]. As noted for

image segmentation [14], it is useful to normalize

the squared distances ‖g(i) − g(j)‖2, ∀j ∈ N(i),

i = 1, · · · , n, before computing the weights.

The energy in Eq. (1) can be uniquely minimized

as the solution of the following linear system:

(λI + LTL)u = λg (3)

where I is the n-dimensional identity matrix, and L

is an n × n inhomogeneous Laplacian matrix with

elements

Lij =

⎧

⎪

⎨

⎪



1, i = j

−wij , j ∈ N(i)

0, otherwise

(4)

3.2 Relation to other work

Bilateral filter. As stated in Eq. (3), our edge-

preserving LS-image may be expressed as applying

the operator LSλ,β = λ(λI + LTL)−1 to the original

image vector g . Each row of LSλ,β could be

thought as a kernel that determines the value of

the corresponding pixel as a weighted combination

of other pixels in the original image.

In Fig. 1, we compare our filter kernels with

classical bilateral filters in Ref. [3]. Firstly, it can

be seen that filter kernels of the both two methods

are edge-aware, and thus our smoothing method is

spatially-variant filtering. Secondly, the support of

filter kernels of our LS-image is much larger than the

3× 3 neighbors in Eq. (1).

(a) Input image (b) Bilateral filter (c) Our LS-image

Fig. 1 Filter kernels. Left: kernels are centered at the pixels

denoted by the red dots. Middle: filter kernels for bilateral

filtering with δs = 5 and δr = 0.1. Right: filter kernels for

LS-images with β = 100 and λ = 10−5.

Weighted least-squares method. Both the LS-

image and weighted least-squares (WLS) method in

Ref. [5] can preserve sharp edges, by solving a linear

system. The linear system for WLS is

(I + λLg)u = g (5)

where Lg is a five-point spatially inhomogeneous

Laplacian matrix, while the matrix L in Eq. (3)

is an extended ten-point spatially inhomogeneous

Laplacian matrix.

The smoothness term in WLS minimizes a

first-order differential quantity, gradient, while

the LS-image approach minimizes a second-order

differential quantity, the Laplacian. The edge-

preserving property of WLS is achieved by

minimizing homogeneous gradients with edge-aware

weights, while LS-image uses edge-aware weights

for computing the inhomogeneous Laplacian. In

geometry processing, minimizing the Laplacian

corresponds to plate energy, while minimizing

gradients corresponds to membrane energy [32].

We compare our LS-image with the WLS method

in Fig. 2, which demonstrates that our approach

can generate clearer edges—see particularly the two

cars in the top region. This is because WLS only

considers the 4 nearest neighbors of a pixel in Eq. (5),

while our LS-image approach takes into account the

25 nearest neighbors in Eq. (3). Thus, the interaction

range τ , defined in Section 5 in Ref. [8], is τ = 1 for

WLS, while τ = 2 for LS-images.

Image segmentation and colorization. The

edge-aware smoothing term of our LS-image

approach in Eq. (1) is inspired by a colorization

method based on optimization [13], and random

walks for segmentation [14]. However, these works

use sparse and hard constraints, while in LS-images,

all pixels are constrained in a soft linear squares sense

for edge-preserving image smoothing.
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(a) Input image (b) WLS (λ = 0.2, α = 1.2) (c) Ours (β = 1500, λ = 10−4)

Fig. 2 Comparing our LS-image with the WLS result [5].

4 Implementation and results

In this section, we discuss implementation details,

demonstrate that our method producing artifact-free

results, and compare it to previous state-of-the-art

approaches.

4.1 Implementation

Our algorithms were implemented in MATLAB on

a PC with a 3.30 GHz Intel (R) core (TM) i3 CPU

and 3.20 GB of RAM. They were not optimized for

speed. The most time-consuming part of our method

is solving the linear system in Eq. (3), using the built-

in solver of MATLAB. It takes about 2 s for the 384×

512 image in Fig. 3. A C++ implementation on a

GPU would speed up our method.

4.2 Parameters

The LS-image approach has three parameters: choice

of neighborhood N(i), λ to trade off smoothing and

edge-preservation, and β for computing weights.

Figure 4 demonstrates the effects of choosing

different neighborhoods N(i). It can be seen that

enlarging N(i) gives better results, as observed in

Ref. [8]. However, a larger N(i) would destroy the

sparse property of the inhomogeneous Laplacian

matrix, and induce expensive computational cost. In

this paper, we fixed N(i) to be the 3 × 3 neighbors

of pixel i, following Refs. [6, 13].

In Fig. 3, LS-images with different values of λ

are displayed. It can be seen that in all cases the

sharp edges are preserved, while decreasing λ leads

(a) Input image (b) λ = 10−4 (c) λ = 10−6 (d) λ = 10−8

Fig. 3 LS-images for different values of λ (β is fixed at 3000).

(a) Input image (b) 4 neighbors (c) 3 × 3 neighbors (d) 5 × 5 neighbors

Fig. 4 The effect of using different neighborhoods N(i) for LS-images; β = 1000 and λ = 10−4 are used from (b) to (c).
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to smoother images. In experiments, we find that

λ = 10−4 or λ = 10−6 provides satisfactory results

for most images.

Figure 5 shows LS-images with different values

of β, which controls the edge-preservation extent.

Larger β preserves more sharp edges. If the variance

of the grey of color is small, the parameter should

also be small. For example, the variance of color in

Fig. 9 is small, so choosing a smaller β = 100 would

get desirable result. However, it is difficult to find a

fixed or an automatic value for β for all images.

4.3 Comparisons with other methods

In this paper, we have carefully tuned the parameters

used for all the methods compared, in order to

generate the best results.

Guided filtering. We compare our method with

the explicit guided image filtering method [11] in

Fig. 6, which demonstrates that our method can

preserve weaker edges in the sky region indicated by

a box, while guided filtering cannot. As analysed in

Ref. [11], smoothing of weaker edges is a limitation

of explicit methods such as bilateral filtering and

guided filtering. Our LS-image approach, being an

implicit method, can preserve weaker edges to some

extent at the price of more greater computational

cost.

Weighted least-squares method. In Fig. 2, we

compare our LS-image with the WLS method [5].

Our results are better than those of WLS, especially

within the red box indicated. However, the WLS

method is faster than our method. The time

taken by WLS and our method is 0.8 s and 2.5 s

respectively.

L0 gradient minimization. In Fig. 7,

we compare our LS-image with L0 gradient

minimization [9]. Our result can preserve sharp

edges better than theirs, as shown in the highlighted

box. Meanwhile, our approach takes about 3 s, which

is much faster than the L0 gradient minimization

cost of about 78 s for the CUP version.

Local Laplacian filter. Figure 8 compares our

LS-image approach with local Laplacian filters via

a Laplacian pyramid, as in Ref. [10]. Both methods

can preserve sharp edges, but our result is globally

brighter and closer to the original image than theirs,

especially in the indicated region showing hair and

hat. This is because the local Laplacian filters just

modify the coefficients of the Laplacian pyramid to

obtain the final result without a data term to ensure

closeness to the original image.

Other previous work. In Fig. 9, we compare

our LS-image result with other classic previous edge-

preserving smoothing methods: bilateral filtering [3],

(a) Input image (b) β = 1500 (c) β = 500 (d) β = 100

Fig. 5 LS-images with different values of the parameter β (λ is fixed at 10−4).

(a) Input image (b) Result of guided filtering (c) Our LS-image

Fig. 6 Comparing our method with the guided filtering [11]. (a) Input image; (b) the guided filtering result (r = 16, ε = 0.12);

and (c) our LS-image (β = 1000, λ = 10−4).
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(a) Input image (b) L0 minimization (λ = 0.0015, κ = 1.05) (c) Our approach (β = 1000, λ = 10−6)

Fig. 7 Comparing LS-images with L0 gradient minimization ((a) and (b) are directly reproduced from Ref. [9]).

Fig. 8 The Lena image (left) smoothed using local Laplacian

filters [10] (middle) and our method with β = 500 and λ = 10−5

(right).

the mean-shift method [4], total variation [2],

weighted least-squares optimization [5], and L0

gradient minimization [9, 12]. It can be clearly shown

that our method achieves comparable results to L0

gradient minimization [12] for the step edge image,

and generates better results than the other methods.

5 Applications

The proposed LS-image has many potential

applications. We apply it to detail manipulation,

edge enhancement, and clip-art JPEG artifact

removal.

5.1 Detail manipulation

An LS-image u can be seen as a smoothed base layer

of the original image g in Eq. (3). Thus the original

image can be decomposed as follows:

g = u + d (6)

where d is the detail. Boosting the detail d can

achieve detail manipulation.

Figure 10 shows that boosting using different

smoothed layers can produce versatile detail

manipulation effects.

5.2 Clip-art compression artifacts removal

Current image compression standards, such as

JPEG, when used with low bit rates lead to annoying

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9 (a) Image from Ref. [5], with added noise. Results using:

(b) bilateral smoothing [3] (δs = 12, δr = 0.5); (c) mean-shift

smoothing [4] (hs = 10, hr = 8); (d) total variation [2] (λ = 3);

(e) weighted least-squares optimization [5] (λ = 2, α = 3); (f)

L0 gradient minimization [9] (λ = 0.3, κ = 2); (g) Cheng et

al.’s method [12] (λ = 0.45); and (h) our method (β = 100,

λ = 10−6).

32



Least-squares images for edge-preserving smoothing 33

(a) Input image (b) LS-image (β = 1000) (c) LS-image (β = 200) (d) Boosted from (b) (e) Boosted from (c)

Fig. 10 Detail manipulation. (a) Input image; (b) and (c) two LS-images with different values of β (λ is fixed to 10−5); (d) and

(e) enhanced results boosting detail, based on (b) and (c) respectively (2.0×).

visual artifacts, especially for cartoon images. LS-

image processing is suitable for removing these

artifacts, due to its edge-preserving property, as the

approaches in Refs. [9, 12] (see Fig. 11).

5.3 Edge enhancement

Some images like Fig. 12(a) may contain tiny details

making them indistinguishable from sharp edges.

The output LS-image displayed in Fig. 12(c), whose

gradient map is shown in Fig. 12(f), both removes

small textures while preserving the main edges (see

Fig. 12(i)). The LS-image approach produces better

results than the state-of-the-art work in Ref. [9].

6 Conclusions

In this paper, we define least-squares images (LS-

images), which have zero inhomogeneous Laplacian

and approximate the original image in a least-

squares sense, as a novel edge-preserving image

smoothing approach. Comparisons with previous

state-of-the-art edge-preserving image smoothing

methods demonstrate it achieves high quality

results. We have also shown that the LS-image

approach can be applied to detail manipulation,

edge enhancement, and clip-art JPEG artifact

(a) Input images (b) Results in Ref. [9] (c) Our results

Fig. 11 JPEG artifact removal. (a) Low quality JPEG

compressed images. (b) Restoration results via L0 gradient

minimization. (c) Restoration via LS-images (β = 1000, λ =

0.0001).

(a) Input (b) L0 minimization (c) Ours

(d) Gradients of (a) (e) Gradients of (b) (f) Gradients of (c)

(g) Edges of (a) (h) Edges of (b) (i) Edges of (c)

Fig. 12 Smoothing for edge enhancement and detection. Our

LS-image (c) (β = 500, λ = 10−8) suppresses low-amplitude

details and enhances high contrast edges better than the method

in Ref. [9] (b) (figure directly copied from their paper). (d)–(f)

are gradient maps of (a)–(c), scaled for visualization. (g)–(i) are

Canny edges of (a)–(c).

removal. A limitation, however, is that the proposed

smoothing method cannot extract main structures

from complex textured patterns.

For future work, we would like investigate further

image smoothing methods that minimize other

differential quantities, such as curvature. We will

also seek further applications for our LS-images, and

intend to extend our LS-images to extract structures

from complex textures, as in Refs. [22, 25, 27].
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