
ferent test excitations provided that the n voltage vectors are 
independent, i.e., the matrix in (3) is nonsingular. 

The proof of the above theorem is obvious because if the 
matrix in (3) is nonsingular, then it can be inverted to produce 
y,,- *. , Y,. However, several interesting observations can be 
made. First, the branches in the cutset must be branches of a tree or 
else the columns of the matrix in (3) will not be independent. This 
restriction immediately rules out parallel elements. Secondly, at 
least one of the test sources must be contained in the cutset. If this 
is not true, then the right-hand side of (3) is zero. Since the yi’s 
are not zero, this means that the test voltage vectors are depen- 
dent. For example, if all of the admittances are connected to a 
common node, then at least one of the test current sources must 
be connected to this node, as illustrated in fig. 10 of [I], or else 
an independent set of voltages vectors will not be obtained. 

III. CONTROLLED SOURCES 

Controlled sources can easily be handled in the method. 
Voltage-controlled current sources are treated the same as ad- 
mittance branches. However, the matrix in (3) will be singular if 
the controlling voltage is linearly dependent on one or more of 
the other voltages in this matrix. For example, the controlling 
voltage must not be the voltage across one of the admittances in 
the cutset, otherwise (3) will contain two identical columns. 
However, this dependency can be removed, if this admittance 
can be computed from a previous cutset calculation so that by 
substitution its voltage can be eliminated from present cutset 
equations. A similar result can be obtained using the differential 
form of Tellegen’s theorem [4]. Given the branch constraint 
Zs =g,V,, a term (V, +AV,)p@Vg, appears on the left side of 
(11) in [ 11. Since all branches are shorted in the adjoint circuit, 
except for the branches in the cutset, then either I$ is zero if the 
controlled source is not in the cutset, or I$ = I$, in (12) of [ 11. 

Current-controlled current sources (Zs =pZ,) should not be 
included in the cutset unless the controlling current Z, can be 
measured or computed. For example, if Z, is the current through 
an admittance which has been previously calculated, then Zij) 
can be determined for each test condition from the node volt- 
ages (i.e., ZF) = Y,V,“)) and fi can be computed. In the adjoint 
circuit approach the term (Z, +AZ,)$A/? appears [4]. If this 
source is not contained in the cutset, then I$ =O. If it is 
contained in the cutset, then again Z, + AZ, must be measured 
or computed in order to determine Afi. 

Finally, controlled voltage sources must not be contained in 
any of the cutsets, unless their currents can be measured. HOW- 
ever, in the case of voltage-controlled voltage sources (I$ = PI’,,), 
the parameter p can be computed if all node voltages are 
accessible. If such a source has a series impedance and the 
internal node is not accessible, then the Norton transformation 
can be used and the source becomes a voltage-controlled current 
source in parallel with an impedance. In the adjoint circuit 
approach controlled voltage source terms in (1 l), [ 11, are 
eliminated by simply replacing the controlled voltage source 
with an open-circuit in the adjoint circuit. 

II. SUMMARY 

The above derivation of the algorithm is simpler than that 
used in [l]. However, when all nodes are accessible, the opera- 
tional amplifier scheme of component isolation described in [l] 
is more practical because it is easier to implement in the auto- 
matic test equipment and handles both linear and nonlinear 
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components with ease. Finally, the equations derived in (1) on 
the basis of the differential form of Tellegen’s theorem have 
been used to generate a new algorithm for the location of single 
and :multiple faults when not all of the nodes are accessible 
[4]-[G]. 
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Least-Squares Low-Pass Filters with Nonmonotonic 
Response 

HENRIQUE S. MALVAR AND LUIZ P. CALGBA 

Aba’mei-A new class of all-pole low-pas fiiter functions, derived from 
the lemt-sqmres approximation technique, is intnnh~ced. The magnitude 
response is compared with those of some other all-pole filters, Iike the 
Butterworth, LSM, and Chebyshev ones. ‘I& three subclasses of the new 
clarrs seem to be a suitable choice for the approximation function in rib3 
syutbusls. 

I. INTRODUCTION 

In :spite of its mathematical simplicity, the Butterworth low- 
pass filter is not widely used in practical filter synthesis, since it 
does not provide a high selectivity. Other monotonic filters, such 
as the L [I], [2], H  [2], and LSM [3] ones, have been developed, 
with better stopband performance. However, in these filters, 
while the stopband attenuation is improved, the passband per- 
formance becomes worse. It is natural, therefore, to search for a 
filter that has the desirable features of the Butterworth filter, but 
with increased stopband attenuation, even though a nonmono- 
tonic one. This was done recently by Jovanovic and Babrenovic 
[4], using the minimisation of the ratio of the reflected power to 
the transmitted power in the passband, and a particular form for 
their polynomials. 

The main objective of this work is to use the least-squares 
approximation technique to find solutions to the approximation 
problem, without the restriction of monotonic response. 

II. THE Q, POLYNOMIALS 

The magnitude squared function of the Q  filter has the form: 
1 

In(‘w)12 = 1+ $Q,2( w) (1) 
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Fig. 1. Attenuation curves (decibels x frequency) for the filters of the first 
group (low attenuation for w+O). The filters, all of sixth order, are: 
B-Butterworth, L-Papoulis, H-Halpem, LSM-Least-squares monotonic, 
J-R-Jovanovik and Rabrenok, and Qz (E = 1). 
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Fig. 2. Attenuation curves (decibelsxfrequency) for the filters of the set- 
and group (high attenuation for w-0). The filters, all of sixth order, are: 
Q66, Q& and TS (Chebyshev); for all filters, E = 1. 

where IH( is the magni tude of the filter transfer function, 
Q ”(w) is the Q  polynomial of nth degree,  and  EZ is a  parameter 
that controls the loss. 

As is well known, Q,,(w) must be  an  even polynomial [5]. Clearly, some constraint must be  imposed to the coefficients 
Therefore, we can write of the Q, polynomial, otherwise we would find the trivial solu- 

Qn(w) = 2  ad, i=n,n-2;..,nmod2 (2) 
t ion ai =0, Vi. In this work, we consider the following con- 
straints: 

where n  mod 2  denotes the remainder of n  +  2. 
The minimum ratio of the reflected power to the transmitted 

power in the passband is obtained by minimising the integral 161:  

1) Q,<l>=l (4) 

2) aQ,(w)/ao=n2, form-1 (5) 



and [5] L. Weinberg, Network Analysis and Synthesis. New York: McGraw Hill, 

3) a, =2”-‘. 
1962, pp. 229. 

(6) [6] J. Kurtz, H. J. Orchard, and G. C. Temes, “Least-squares passbaod 
filters,” IEEE Tram. Circuit Themy, vol. CT-19, pp. 302-304, May 1972. 

The first restriction defines the passband as w < 1. The second [7] H. S. Malyar, “Novas aproximac8es para a &tese de filtros eldtricos,” 
and third constraints are characteristics of the Chebyshev poly- M. SC. thesis, Universidade Federal do Rio de Janeiro, 1979. 

nomials [7]. 
[8] I. S~okolaikoff, Advanced Calculw. New York: McGraw-Hil l, 1939, pp. 

33 l-334. 
If we solve the minimization problem using only one of the [9] H. J. Orchard, “Inductorless filters,” Electron. L&t., vol. 2, pp. 224-225, 

restrictions, we can define three subclasses of the Q, polynomi- 19616. 

als, Ql, Q$, and Qz, corresponding to the constraints 1,2, and 3, 
respectively. 

The coefficients a, can be found by using the Lagrange’s 
multiplier [8], that leads to: 

&[E+AF,(A)]=O, j=n,n-2;..,nmod2 
J Q-Enhancement and Extension of the Stablity Range 

F,(A)=0 (7) of Generalized Immitance Converters 
where k denotes the k th restriction, A is the set of the coeffi- JOSEF A. NOSSEK AND GEORG J. SMOLKA 
cients ui, X is the Lagrange’s multiplier, and 

F,(A)=l- xui Q-9 Abstmct-A compensation technique is proposed which will extend the 
useful bandwidth of Antoniou-type immfttance converters for the realiza- 

&(A)=n* - ziui (9) tion of RC-active filters with bigb pole-Q towar& higher frequendes 

F3(A)=un -2”-’ (10) 
Using aperational amplifiers with very bigb unity-gain-frequency, stability 
problems are likely to occur. A  method for an essential improvement of the 

and stability margin is presented. 

(11) I. INTRODUCTION 

Because most LC ladder networks have very low sensitivities 
It is important to note that Q,” and Qz do not satisfy (4), that in pass;- and stopband, it is convenient to derive active RC-filters 

is, their passbands are not w < T. Therefore, we must normalize from these ‘doubly terminated reactance filters. The required 
them (by making a frequency scaling), after their calculation, in network-elements-simulated inductors or supercapacitors-can 
order to have all the Q, filters with a passband o < 1. be realized very effectively by means of generalized immittance 

The magnitude responses of these filters are shown in Figs. 1 converters. A converter type described by Antoniou [l] has 
and 2, for n=6 and E = 1. The filters considered for the com- proved. to be very useful. 
parison were: 

first group (Fig. 1)-B (Butterworth), L (Papoulis [l]), H  II. QUALITY FACTOR 

(Halpem [2]), LSM (Rakovich & Litovsky [3]), J & R (Jovanovic Fig. 1 shows the Antoniou-type converter. 
& Rabrenovic [4]) and Qt. As it has been shown elsewhere [2]-[4], it is advantageous to 

second group (Fig. 2)-Q:, Q& and T, (Chebyshev). choose Gs = G4, in order to eliminate most of the influence of 

III. CONCLUSIONS 
the nonideal operational amplifiers. 

From port 1 we obtain an input admittance 
As was shown in Figs. 1 and 2, the Q, polynomials have good 

magnitude characteristics, mainly the subclass Qi, that seems to 
y = L G,Gd% 1 
E’ s’---=- 

be one of the best choices for the approximation function when 
G,C, sL 

the attenuation in the passband is the most important factor. i.e., a simulated inductance, if the op amps are ideal. At port 2 a 
The other subclasses (Q,” and Qi) seem to be more suitable for supercapacitive input admittance 
applications that originally required the Chebyshev filter, but W5G3 
there’s a designer’s wish for an approximation with a more Y,, =s2* ___ 

GA 
=s2D 

smooth characteristic in the passband, but with almost the same 
performance in the stopband, for a given E. is seen if the op amps are ideal. 

It is also expected good sensitivity characteristics for filters For both one-port admittances, YE, and YE2, the maximum 

designed with the Q, polynomials, because of the Orchard’s Q-factor can be derived. 

argument [9]. Assuming A(s)= 1/(1/A, +s/GB), where A, is the dc gain 
and GAB the gain-bandwidth product, this leads to 
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