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Least Squares Methods for Elliptic Systems*

By A. K. Aziz, R. B. Kellogg and A. B. Stephens

Abstract. A weighted least squares method is given for the numerical solution of elliptic partial
differential equations of Agmon-Douglis-Nirenberg type and an error analysis is provided.
Some examples are given.

1. Introduction. The use of least squares methods for the approximate solution of
equations dates back at least to Gauss. The modern theory of least squares methods
in the numerical solution of elliptic boundary value problems starts, in 1970, with
the papers of Bramble and Schatz [5], [6]. This work uses a finite-dimensional space
S of approximating functions, similar to the spaces used in finite-element methods.
The approximate solution is defined to be the minimizer of a least squares functional
that is a weighted sum of the least squares residual in the differential equation and
the least squares residual in the boundary condition. The paper [5] has an historical
importance for the following reason. It appeared during the time when numerical
analysts were shifting attention from finite-difference methods to finite-element
methods, and it provided, for the first time, a family of approximation methods for
the solution of the Dirichlet problem whose order of accuracy could be made
arbitrarily large. The paper [6] provided an extension to an elliptic equation of order
2m, and [3] gave important simplifications in the analysis. The principal advantages
of the method are that one need not satisfy exactly the Dirichlet boundary condi-
tions, and that the mathematical analysis dictates, in a natural way, the relative
weights that are given to the boundary and interior terms in the least squares
functional. Also, the method provides, in a quasioptimal sense, as good a solution as
can be expected from the space S. On the other hand, the method requires that S
consist of functions which are smooth enough to lie in the domain of the elliptic
operator. Also, the method seems to produce matrices with large condition number.

For various reasons, it is of interest to extend the theory of least squares methods
to include elliptic systems. First, if a second-order elliptic equation is written as a
first-order system, it would seem (and this is borne out by our analysis) that the
smoothness requirements for the spaces of approximating functions would be
reduced, thus eliminating one of the disadvantages of the method. A second
motivation for extending the least squares method to elliptic systems is that elliptic
systems occur frequently in applications. An example of an elliptic system is the
system of equations for Stokes flow. For this system, the least squares method does
not require the space of approximating vector fields to be incompressible. Instead,
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the incompressibility condition is considered as one of the equations in the system,
and the analysis provides, in a natural way, weights to put on the residual in the
incompressibility equation. The difficulties associated with finding approximating
spaces of incompressible vector fields are well-known; the least squares method
provides an alternate way of treating these difficulties. Finally, it is desirable to
extend the least squares method to elliptic systems to close the gap in the theory of
the method.

Some work in least squares methods for elliptic systems has appeared in the
literature. In [9], [11], a least squares method is formulated for the first-order system
in three unknowns that is associated with a single second-order elliptic equation in
the plane. The system is discussed more in Section 5. A theory of least squares
methods for elliptic systems of Petrovsky type is developed in [15], and quasioptimal
error estimates are obtained for the approximate solution. Petrovsky systems are an
important subclass of the class of elliptic systems, in which the different equations
and unknowns appearing in the system have taken the same "differentiability
order". In the least squares method, for these systems developed in [15], the residual
for each of the differential equations in the elliptic system receives the same weight
in the least squares functional. Finally, least squares methods have recently been
applied to fluid flow problems of mixed type, and to problems whose solutions
contain singularities [10].

In this paper there is developed a least squares method for the approximate
solution of elliptic boundary value problems of Agmon-Douglis-Nirenberg type
(ADN). The method involves the minimization of a least squares functional that
consists of a weighted sum of the residuals occurring in the equations and the
boundary conditions of the system. The weights occurring in the least squares
functional are determined by the indices that enter into the definition of an ADN
boundary value problem. A quasioptimal error estimate is obtained for the ap-
proximate solution generated by the method. The method reduces to the method of
[5], if the system is a single equation and to the method of [15] if the system is an
elliptic system of Petrovsky type. Our error analysis assumes that the boundary value
problem is uniquely solvable, and that the usual a priori estimate for the solution in
terms of the data holds over a range of negative regularity indices (see (2.7)). The
verification of this assumption for solvable elliptic boundary value problems seems
to involve technical difficulties concerning the ellipticity of the adjoint boundary
value problem (see, e.g., [13]). Therefore, we have made the required inequality a
hypothesis of our theorem, and we have verified this inequality in a number of
examples of particular interest.

Section 2 sets the notation and presents the salient facts concerning ADN systems.
Section 3 formulates the least squares method, and Section 4 gives the error analysis
of the method. Section 5 shows how the method applies to several elliptic systems
occurring in practice. This section concludes with a "nonconforming" version of the
method. The error analysis for this version has not been done. Finally, Section 6
contains an estimate for the condition number of the matrix associated with a least
squares method.

2. The Boundary Value Problem. Let fi c R" be a bounded domain with a smooth
boundary T. We are concerned with elliptic systems of Agmon-Douglis-Nirenberg
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(ADN) type. These are linear systems of N partial differential equations in N
unknowns, which we write

N
(2.1) Y.Lij(x,D)uJ(x)=fl(x),      xeQ,l Ki<N.

j-i
Here L¡j(x, D) is a polynomial in D = (£>,,... ,Dn), D¡ = d/dx¡, with coefficients
which depend smoothly on x. We shall suppose that there are integers s¡, the
"equation indices", and t,, the " unknown indices", such that

'L,j(x, D)sO   ifsi + tj<0,

\,j*âagL,j(x,D)*st + tj,
N

k«0,    ¿Z(si+tj) = 2m>0.
(2.2)

Together with the system (2.1), we consider m boundary conditions which we
write

N

(2-3) I,BkJ(x>D)uJ(x) = gk(x),       verjas,
j-i

where Bkj(x, D) is a polynomial in D. We shall suppose that there are integers rk the
" boundary condition indices", such that

(24) (BkJ(x,D)mQ   ifrk + tj<0,

\ßkj = aegBkJ(x,D)<rk + tj.

In addition to (2.2), (2.4) we require that the operators appearing in (2.1), (2.3)
satisfy the ellipticity condition, the supplementary condition, and the complemen-
tary boundary condition, as specified in [1]. We shall not state these conditions here
as they are somewhat complicated and are not explicitly needed in the sequel. What
we shall need in the sequel, and will state explicitly in Theorem 2.1, are the a priori
estimates associated with these operators. These a priori estimates follow from the
above three conditions, and in fact, are known to be equivalent to them [1].

We require some Hilbert-Sobolev spaces on ß and I\ We let C°°(ß) denote the
functions on ß which are restrictions of functions on R" all of whose derivatives
exist, and we recall that C°°(ß) is dense in HS(Q). For s g R, let H'(Q) denote the
usual Sobolev space of functions on ß, with norm ||u||s and inner product (u, v)s.
For s > 0 an integer, \\u\\2 = E|a|<J ||Z>Äi/||§. For s > 0 not an integer, H'(Q) is
defined by interpolation. For s > 0 we define

II  ii (». ")oMI-» =    sup_ ———,
i>eC°°(ß)      ||0||j

and we define H~s(&) to be the closure of functions in C°°(ß) with respect to this
norm. The spaces HS(T), s g R, with norm 1«^ and inner product (u,v)s, are
defined in a similar way. If s = 0 we drop the subscripts. We recall that the families
HS(Q) and H*(T), -co < s < co, each form an interpolating family of Hilbert
spaces. The two families are connected by the trace inequality: if s > \ and
u g Hs(íi), then the restriction of u to T has a meaning and this restriction, which
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we also denote by u, satisfies

(2.5) |m|j-i/2 < c||«||,.
With these spaces we now state

Theorem 2.1. If the problem (2.1), (2.3) satisfies the ellipticity, supplementary, and
covering conditions, andifl ^ 0, thereisac > 0 such that if Uj G Hl+'i(ü), 1 <y ^ N,
then

N N N N

(2.6) EWU» < cZUh-M, + cEI«*l/-fri/2 + cEII«J-
ill i

The proof of Theorem 2.1 is contained in [1]. We shall require some additional
hypotheses concerning the problem (2.1), (2.3). The first condition is that the
problem has a unique solution for all smooth data/¿ and gk. This condition enables
the L2-noTTas of uj on the right side of (2.6) to be eliminated. The second condition
is that the modified form of (2.6) be valid for / < 0. The verification of this
condition for general ADN systems seems to involve technical difficulties concerning
the existence of an adjoint elliptic boundary value problem [13]. We will verify the
modified inequality in a number of examples of particular interest. Summarizing our
additional hypotheses, in addition to the unique solvability of (2.1), (2.3), we shall
assume that for each real / there is a c > 0 such that if {Uj} are a collection of
smooth functions on ß, and if ( f,} and {gk} are defined by (2.1) and (2.3), then

(2-7) EIM/+,, < cLWfiWl-s, + cT.\gk\l-rk-l/2-
j i k

We give some examples of elliptic systems in R2 to illustrate the ideas. First, let
N = 1, m = 1, and consider the single elliptic equation
(2.8a) Lxu= -Au + u =f   in ß
with the single boundary condition

J2.8b) Buu = u = g   on T.
We define indices
(2.8c) An = 2,   0U-O,    >, = 2,   i1 = 0,   r, = -2.
With this choice of indices, (2.2) is satisfied. It is known that the problem (2.8a,b)
has a unique solution u for each /g H'(Q), g G Hl+3/2(T), I > 0, and that u
satisfies

(2.9) H|/+2 < C\\f\\, + c\g\,+3/2.
We now verify this fact for / < 0. Let a < 0, and let u G C°°(ß). Since C°°(ß) is
dense in Zf"(ß), there is an h g C°°(ß) such that

\\u\L = sup- < 2--.+  IW-.      11*11-
Let 4> be the solution of the problem Lx<p = h in ß with J?n</> = 0 on I\ Then from
Green's second identity,

(u,h) = (LlU,<i>)-/u,^

<IIMI«-2lMI-a + 2+l"a-1/2
d<}>
3n -0 + 1/2
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Using (2.5), and (2.8) with u replaced by h, we get

(u, h) < c||Z.1m||œ_2||a||_œ + c||5iiw|Ui/2lWI-„.
Hence, we obtain (2.9) with / = a — 2 < -2. From (2.9) we see that the map T:
(/, g) -» u is a bounded operator from H'(Q) X Hl+3/2(T) -» ///+2(ß), for / > 0,
and for / < - 2. By interpolation, we find that T is a bounded operator in the
intermediate range of /, so (2.9) holds for each / g ( — oo, oo).

For the next example we set N = 3, m = 1, and we consider in R2 the first-order
system

lL\U = ulx- u2=fx
(2.10a) ¡L2u = uly-u3=f2 hi Q,

\L3u= -«! + u2x + m3o, = /3

with the single boundary condition

(2.10b) fij« s Ul = g   on T.

We define the indices of the problem by the equations

(2.10c) [\y]
1 0 0
1 0 0
0    1     1

,       [ßij] = [0,0,0],

[*,]-[-1,-1,0], [*,] = [2,1, !],/•,= -2.

With this choice of indices, (2.2) is satisfied. It is known that (2.10a, b) satisfies all
the conditions of an ADN elliptic boundary value problem. Note that (2.10a) gives
-A«! + «! =/3 + fi¡x +/2.V- The problem (2.10) is, basically, the problem (2.8),
written as a first-order system. Also, from (2.9) we obtain, if Uj g C°°(ß),y = 1,2,3,

KII/+2<cEII/íB/-.l + c|g|/+3/2-
j

From the first two equations of (2.10a) we then obtain

IM/+1 < cEll/,ll/-i, + c\g\i+3/2,      j = 2,3,

so (2.7) has been verified in this case. Alternately, it is possible to assume (2.7) for
/ > 0 and prove (2.7) for / < - 2, by using Green's identities and by introducing an
auxiliary boundary value problem to estimate the negative norms.

For our third example, we set N = 3, m = 2, and consider the Stokes system in
R2,

(Lxu= -Aut + u3x=f1
(2.11a) <£2«s -Au2 + u3y=f2       inß,

[L3u = ulx + u2y=f3

with the boundary conditions

(2.11b) onT.
\B2u = u2 = g2
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The variables (ult u2) represent a velocity field, and u3 represents pressure. If f3 = 0,
(2.11a) are the equations of motion of a steady-state incompressible flow, in which
the inertial terms have been neglected. The indices of the problem are

(2.11c)        [XI7] =
2    0    1
0 2    1
1 1    0

Ki = 0    0
0    0

[s,] = [0,0, -1], [tj] = [2,2,1], [rk] = [-2, -2].

It is known [14] that if {/)} and [gk] are smooth functions which satisfy the
compatibility condition

(2.12) / ngdT = ff f3dxdy,

then the problem (2.11) has a unique solution { u¡ } which satisfies

(2.13) ( u3dxdy = 0.
Ju

Furthermore, this solution satisfies the a priori inequality, for / ^ 0,

(2.14)
ll«lll/+2+ll"2ll( + 2+IM,+ l

C( 11/iH, + IIAII, + II/3IU1 + |gll/+3/2 + |g2l/ + 3/2} •
The inequahty (2.14) is the same as the inequality (2.7) for the problem (2.11).

For the Stokes problem, it is convenient to use Sobolev spaces of functions with
mean 0. Let \(4>) = (<M)- For s a nonnegative integer, |X(</>)| < c\\4>\\s, and by
interpolation, this inequahty holds for all s > 0. Since |(</>, 1)| < ||l|UI<i>||_s, the
inequahty also holds for 5 < 0. Hence X(<¡>) is a bounded linear functional on Hs(Sl)
for all real s. Let

HS(Q) = {<f> g //s(ß): À(</>) = 0}.

Then Hs(íl) is a closed subspace of HS(Q) of codimension one, the collection of
Hubert spaces { Hs(ti)} forms an interpolating family, and for s < 0 and </> G Hs(ti),

(2.15) IL = sup ^G^"J(ß)    .

(See [12].)
We now prove the inequahty (2.14) for / < 0. Let a < 0, and let uv u2, u3 G

C°°(ß), with (1/3,1) = 0. Pick hv h2, h3 g C°°(ß), with (h3,l) = 0, and let tf> =
(<¡>x, <í>2, -<i>3) be the unique solution of the Stokes problem

Lif = hi,       i = l,2,3,
(*3.l)-0,
5^ = 0,       A: = 1,2.

Setting / = (uv hx) + (u2, h2) - (u3, h3), a computation gives

/ = EU,*>)-(/3.*3) + E
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We apply (2.14) with I = -a, and with ( Uj] replaced by {<f>y}, to obtain

/<Eii/j._2N_.+2+iy.-iiwi-.+ii
2

+cE[kyL-i/2WI_a+2 + lr?yL-1/2ll<í>3ll-«+i]i

EIWU + II/3L-1 + EI*,U/2< c

EWU+ 11*3ll-a + l

To use this inequahty, we set h2 = h3 = 0, and we obtain
2

ll"iL<2—;-<cNI-.
Let /i, be chosen so that

«2

EI|/Ja_2 + ll/3IL-i
1

(«i.*i)-

-1/2 •llAlll-a-

The inequality then gives

ÍIMJM-. < / < c  E||/l_2 +II/3IL-1 + EliyL
. 1 1

Dividing both sides by Pi||_„ gives an inequahty for HmjJI,,. Inequahties for ||m2||„
and ||M3||a-i are obtained in the same way. This proves (2.14) with / = a - 2 < -2.
The inequahty for / G [ - 2,0] then follows by interpolation.

3. The Least Squares Method. In this section we define our least squares method,
and we discuss some requirements that are needed by our subspaces. We consider an
elliptic boundary value problem, (2.1), (2.3), with the associated collections of
indices. We define

jS = max( s„ rfc + |:l<i<iV, 1 < fc < m },

p. = min{Sj, rk + \: 1 < i < N, 1 < k < m},

oij = smallest integer > { \tJ, ßkj + §,l<i'<iV, l<A:<m|.

We will use finite-dimensional subspaces Sh of functions to approximate our
solution. The parameter h, which represents a mesh spacing, is used to indicate the
approximation property of Sh. Let a and ß be integers with a < ß. We say that Sh
approximates optimally with respect to (/?, a) if Sh c //a(ß), and if, for each
m g Hß(Si), there isaceSj such that

(3.1) Ea'II«-4«ca'||«l,

Here, s is an integer (positive or negative) which is < a — 1. From a theorem of
Bramble and Scott [7], s may be chosen as small as desired, if the boundary T is
smooth enough.
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Since we are dealing with systems, we must consider collections of subspaces. Let
xShJ c H°i(ü), and let Sh = Sh

H"j(Ü). We define the bilinear form
X ShN. Let y = (y¡), z = (z¡), with yp Zj

(3.2) (y,úÁ=iZh2s-
í=i

N N \

\j-i       j-i     I
m IN N \+ Zh2'^  LV„ EVA

k-l \ 7 = 1 y-1 /

and we let \\y\\A denote the corresponding norm. If u = (uy), Uj g H"j(Q), is the
solution of (2.1), (2.3), we define the least squares approximation to be the function
Mh G S h which satisfies

*e&.(3.3) l|w-«*L<ll«-wL.
An equivalent formulation of the least squares problem is: uh is that function in Sh
which minimizes the expression, for v g Sh,

(3.4) E*: T,LijVj-fi + E h2r* + 1
fe-i

¿ZBkjVj - gk

The expression (3.4) is a weighted L2-norm of the residual. As we will see, the
weights have come from the theory of ADN systems outlined in Section 2. The
calculation of uh requires the solution of a symmetric, positive definite linear system
of equations. The coefficients of the linear system involve the bilinear form (3.2)
applied to basis elements of Sh- The right-hand side of the linear system involves the
right-hand sides,/,, gk, of the system (2.1), (2.3).

It is easily seen that if e = u - uh is the error in the least squares solution, then e
satisfies the orthogonality property
(3.5) (e_,w)A = 0,        w^Sh.

This formula, which will be used in our error estimates, serves to characterize the
least squares approximation.

4. Error Estimates. In this section we state and prove our main result, an optimal
error estimate for our least squares approximation. Throughout the section, we
suppose that the elliptic boundary value problem is uniquely solvable, for smooth
right-hand sides, and that (2.7) holds for all real s. The functions {«,} solve (2.1),
(2.3) and, for some p > ¡I, Uj G H'1+'j(ÇI), j = 1,... ,N. We first prove two lemmas.

Lemma 4.1. Suppose ShJ approximates optimally with respect to (p + tj, ay), j =
l,...,N. Then

IkL < cA" E \\uj\l+tj.
7 = 1

Proof. For any v g Sh it follows that

||elL,=ll«-«AL<l|«-ü||
N

<Lh>
¡=i E £,,("; ~ °j)

7-1

+  E hr* + l/1
¿=1 7-1
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SO

(4.1)       ||€L<cEAi«,-«,IL + cEA'<+1/2 £ \d"(uj-°j)\-
k,j \ß\*ißkj• ■j

Using the approximation properties of Shj, and using the fact that XtJ < s¡ + tj, we
choose the v¡ so that

(4.2) II«; - »A» * W'hX+tj-
Using the inequality \z\ < c(e\\z\\1 + e-1||z||), (see [8], [12]) with e = h1/2, and recal-
ling that ßkJ «s rk + tj, we get

(4.3) E   \D>(»j - vj)\ < ch^Wuj - Vj\\ßkj+i + ch'^Wuj - Vj\\ßkj
\ß\<ßkJ

< ch^Wuj - vjlk+lj+1 + ch-^Wuj - vji\rk+lj

where, in the last step, we have again used the approximation property of v.. Using
(4.2) and (4.3), we obtain the result.

Lemma 4.2. Assume p' > p, and assume that ShJ approximates optimally with
respect to (p' + t,, a,). Then

N
Y Le
j

< cA"'"2ÍsL,       i = l,...,N,
í¡-f»

a«<i

v
E 5t>ey

7 = 1
< c/i^-^'-'IkL,     fc=i,...,m.

rk + l/2-n'

Proof. We consider the elhptic boundary value problem

IVj = ̂  ini2>     £**./>>-& onr'

with /g C°°(ß), g g C°°(r) the space of infinitely differentiable functions on ß,
and T, respectively. Let v = (vj) denote the unique solution to the above problem
and let vh be the corresponding least squares approximation to v. Then using (3.5),
Lemma 4.1 and (2.7), we have

i        V j I      k \ j

= {e,v- vh)A <||eLlk- UhWa

i k
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Then for a given i0, we choose gk — 0,k = \,...,m, and/, = 0, / # i0, so that

El e*->    'ai  J =     sup-
»,0-M'       4eC»(S2)        ll/JI,^^

= A-2s sup U, ¡jh < cA"-2,'o|y
//06C-(0) ||//0||^ + i(o

In a similar manner we obtain the estimate for \£jBkjej\rk+l 2_ ■• This completes the
proof.

We now state and prove our main result.

Theorem 4.1. Let ß be a bounded domain with smooth boundary T. We consider the
elliptic system (2.1) with covering boundary conditions (2.3) and assume that this
boundary value problem has a unique solution u which satisfies (2.7) for all smooth f¡
and gk. Let p > p, v < u and 8 > max(2/Z - v, u). Assume that the subspaces ap-
proximate optimally with respect to (8 + tj, ay); then

(4.4) L\\Uj-uJhl+tj<ch^'Zhl+lj-
7-1 7-1

Proof. We have by (2.7)

(4.5) EINÜBE £V;
'        7

+ cE E**,«,-
•-rt-l/2

Let w, = Y.jL^ej, and recall that s, — 5 < v — st < 0. If s¡- 8 < 0, interpolation of
the identity operator gives

II     II II     II9      II     II1 ~e o       Si~V\\wits,< qkiU_4H|    .     e = 8-zrj-

If j, = 8, then v = s¡ and the inequahty holds with 6 = 0, for example. From (3.2),
||w,|| < cA~i'||e||/4, and from Lemma 4.2,

Hence, using Lemma 4.1,

(4.6) H^ < ch-'\\e\\A < cA"-"E ll«,IU,.
7

The boundary terms are treated in a similar fashion. Let yk = LjBkJej, and recall
that rk- 8 + \ ^v - rk- \ ^O.U8> rk+ \,

\ykl-rk-i/2 « ckl^-i+i/ah
,1-« 6 rk+t-'

8-rk-\

lfS = rk+ j, then v = rk + \ and the inequahty holds with 6-0. From (3.2),

\yk\ < cA-^-^ÍéIL,
and from Lemma 4.2,

\yk\rk- 8 + 1/2 < cA'-^-MHI
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Hence, using Lemma 4.1,

(4.7) \ykl-rk-i/2 < cA-'||eL < cA"-"E hjl+tj.
j

Using the estimates (4.6) and (4.7) in (4.5) finishes the proof.
With additional hypotheses on the subspace ShJ, we obtain error estimates in

higher norms. Specifically, we assume that ShJ satisfies the "inverse" assumption

(4.8)       ||d,||? < ch,+'J-"\\vj\l+tj   for any v} g Shj where v + tj < q « a,.

Then we have the following corollary to Theorem 4.1.

Corollary 4.1. Suppose, in addition to the hypotheses of Theorem 4.1, that each
Shj satisfies (4.8). Then for ft < yy < a, - ry,

7

Proo/. We have for vJh g 5,,

K - uÀyj+tj < K - VJ"Wyj+,j + K» - "A+'y-
Using the approximation property (3.1), we have

and from (4.8),

ll«y* - "A+i, < c/l""Yjll"7A ~ ty*L+v
Now

llM7A - Djhh+tj < ll«y - "y»IL+f/ + ll«7 "" ̂ l+o < <**"1Md+f,
by Theorem 4.1 and (3.1). This completes the proof.

Theorem 4.1 provides a quasi-optimal error estimate, in the sense that the
approximate solution for each component function, u,, has accuracy of order
0(hli~"), and no greater order of accuracy could be expected, considering that (i)
the error in Uj is measured in H"~'i(ü), and (ii), the solution component, Uj, is
assumed to lie in Hli+'j(Q). The regularity requirements for the solution fit naturally
into the theory of ADN systems. The particular powers of A that appear in the
minimizing functional, ||m - uh\\A, are critical for the success of the method. It is
important to obtain results of the type of Theorem 4.1 with spaces ShJ that are as
simple as possible. If we impose a, perhaps strange, inverse assumption on the ShJ,
we can obtain the same conclusion, with reduced approximation hypotheses required
of the Shj. The inverse assumption that we need is that there is a c > 0 such that for
eachz g Sh,

(4.9) Y,BkjZj  < ch ' ¿ZBkjZj,      0 < /< min{a,. - ßkj - £}, 1 < k < m.

The reduced approximation hypothesis is expressed in terms of a larger possible
value for v. The result is as follows.
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Theorem 4.2. Let ß be a bounded domain with smooth boundary T. Suppose that the
problem (2.1), (2.3) has, for any smooth f¡ and gk, a unique solution u which satisfies
(2.7). Let p > p, v < min{s,, a7 - t,, i, j = 1,...,N}, 8 > max(2jä - v, p). Assume
that the subspaces approximate optimally with respect to (8 + t¡, a¡), and that (4.9)
holds for each z G Sh. Then the error estimate (4.4) holds.

Proof. Proceeding as in the proof of Theorem 4.1, we arrive at (4.5). The estimates
of the terms on the right side of (4.5) are exactly the same, except for the boundary
norm in the case v — rk — \ > 0. Suppose that v - rk — \ > 0, pick a good ap-
proximation v G Sh to m, and write e¡ = u - v¡ + v¡ — uhj. Using the triangle
inequality,

ZBkjej
v-rk-\/2 -1/2

Y,BkJ{vj- uhj)
rk-\/2

LBkj(Uj- Vj)
j i

= 1 + 11.

Since ßkj < rk + tj, 0<v-rk-^ + ßkj < v + t¡ — {~. Hence, we may use the
trace inequality and the approximation property to obtain

KcZ    E    \D^Uj-Vj)l_rk_l/2
j.k  \ß\<ß*j

^c'Zhj-v j"*+ßkJ-
j,k

<cA"-"EWL+0

<cEK "J\\v+t,

To bound II, since v g uh G Sh, there is the possibility of using (4.9). Since
V < Oij - tj,   v

(4.9) to obtain
i < «i - h - rk < a. ß

II < ch-"+r"+l/2

< ch~

LBkj(vj- uhj)

kj

< ch~

Hence we may apply

v- u*h\\A

+ 11«- «*L)<cA  "||w - Uh\\
From Lemma 4.1, we get the desired bound for II, and the proof is finished.

5. Examples. In this section, we apply the least squares method to the elliptic
boundary value problems discussed in Section 2. In each case, we list the hypotheses
on the subspaces that are required for our theorems, and state the error estimates
provided by the theorems.

The first example concerns the problem (2.8). From (2.8c) we find that p = 0,
p = — \, al = 2. Hence, we require that Shl c //2(ß). If p > 0, v < — 2, and
8 > max{u, — v}, and if 5A1 approximates optimally with respect to (8 + 2,2), then
the error ex in the least squares method satisfies

(5.1) lkilL+2 < ch,l~ *lll/i + 2-

If Sh also satisfies the inverse assumption (4.4), we obtain in addition the estimate

(5.2) IMv + 2 < Ch<í    Y|kll+2, " < V < r4-
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In particular, if we choose v = -2, p = 2, then our requirement is that Shl
approximate optimally with respect to (4,2), and (5.1) is ||e,||0 < cA4||e||4. This can
be achieved, for example, by letting Shl be a space of bicubic splines on a uniform
mesh. These results are identical with the results obtained in [5], [3].

The second example concerns the boundary value problem (2.10). From (2.10c),
we find that p = 0, p = — §, [a,] = [1,1,1]. Hence we require that ShJ c TY^ß),
j = 1,2,3. This regularity requirement on the subspaces is less stringent than the
requirement of the first example, and is a reason for preferring the reformulation of
(2.8) as the first-order system, (2.10), when using a least squares method. If u > 0,
v < — 2, and 8 > max{ix, -v], and if Shj approximates optimally with respect to
(t, + 8,1), j = 1,2,3, then the error e. in the least squares method satisfies

(5.3) ElkA+^^'ENW,-
7 7

If Sh also satisfies the inverse assumption (4.4), we obtain in addition the estimate

(5-4) ¿Z\\ej\\y + lj<ch^Zhl+tj,       "<V<M-
7

In particular, if we choose v = —2,p = 2, then 0 = 2 and our requirement is that
ShJ approximates optimally with respect to (tj + 2,1), and (5.3) implies that

(5-5a) HeJ < cA4(|M4 + ||ii2||3 + ||w3||3).

With suitable inverse assumptions, we also obtain, from (5.4),

(5.5b) IMi<cA3(|M4 + |M3+||k3||3).

These can be achieved, for example, by letting Shl be a space of continuous,
piecewise bicubic polynomials on a uniform mesh, and by letting Sh2 and Sh3 be
collections of continuous, piecewise biquadratic polynomials on the same mesh.

It is of interest to apply Theorem 4.2 to this example. In this case, the inverse
assumption becomes

(5.6) |z|/< ch~'\z\,       0</<l,zeSM.
Suppose that Shl satisfies (5.6). We may then use Theorem 4.2 with »»< — 1.
Choosing v = -1, p = 0, so 8 = 1, and assuming that Shl approximates optimally
with respect to (3,1), and Sh2 and Sh3 approximate optimally with respect to (2,1),
we obtain the error estimate

lkilli + lk2ll+ll«3ll<<*[M2 + IMi+Mj-
This can be achieved, for example, by letting Shl be a space of continuous, piecewise
biquadratic polynomials on a uniform mesh, and by letting Sh2 and Sh3 be continu-
ous, piecewise bilinear polynomials on the same mesh.

A problem similar to (2.10) has been treated by Jesperson [11] using a least
squares method that only contains a weight on the boundary integral. In Jesperson's
problem,/! = f2 = 0, and the term -«, is removed from L3u. These changes do not
affect the ellipticity indices, or our analysis of the problem. The method of Jesperson
consists in minimizing, for v G Sh, the expression

(5-8)        ||«i,x-«2ll   +hi,y-«3\\   + IK* + «3..,--/sil   + h~1\u1-g\\
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The proof of Lemma 4.3 in [11] is incorrect, but this lemma is a special case of the
inequahty (2.7) for the problem (2.10). In contrast, for this problem, the functional
(3.4) becomes

2 2 ii2 2
(5.9) h~2\\ulx - u2\\   + h-2\\uUy - u3\\   +||«2,x + «3,,-/3||   +h~3\u1-g\.

To describe some typical results that are obtained in [11], let ¡eSt be the
approximate solution that is obtained by minimizing (5.8), and let | = u - uh be the
resulting error. Suppose first that Shj,j = 1,2,3, is a space of continuous piecewise
bihnear functions on a uniform mesh of size A. If wt G H2(Q), one has pjl <
cAHmjIIj. If «! g i/3(ß), one has p^l < cA^li/jHj, and, if the subspaces also satisfy
(5.6), it is shown that pjl, < cAH«,^. Next, suppose that Shl is a space of
continuous, piecewise biquadratic functions on a uniform mesh, while Sh2 and Sh3
are piecewise bilinear functions on the same mesh. In this case, if wx g H2(ü), the
result llêjH < cA2||iz,||3 is obtained, and, if the subspaces satisfy (5.6), p^^ < cAUw,^.
If w, g 774(ß), then one has the estimates p,|| < cA^lw,!^, and p,^ < cA2||m,||4,
where the latter inequality also assumes (5.6). Comparing the error estimates (5.5)
and (5.7) with these estimates, it seems difficult to draw general conclusions.
However, it seems that the functional (5.9) provides error estimates that utilize more
fully the regularity of the solution, while the functional (5.8) allows the use of
simpler spaces of test functions. Perhaps further analysis, as well as numerical
studies, would be needed to decide the relative merits of the two least squares
methods.

The final example concerns the Stokes problem, (2.11). From (2.11c) we find that
p. = 0, p = — 1, [ctj] = [2,2,1]. Hence, we require that ShJ c H2(£i), j = 1,2, and
Sh3 c //^(ß). The ¿-norm in this case is defined by

Il       II2 M A II2 II A II2 ,   -211 II2\\u\\a =11 -A«i + «3,JI   +||-A«2 + «3,J   +h    \\uUx + u2J\

+ A"3[|m1|2-I-|m2|2].

The analysis of the method is comphcated by the compatibility condition (2.12) that
is needed for the solvability of the problem. To handle this difficulty we follow the
approach of Wendland [15] and modify the system of equations. For this, let z be a
smooth function defined on ß and such that (z, 1).¥= 0. The function z(x) = 1 will
suffice. We consider, instead of (2.11a), the system

/-All! + «3,x=/i,

(5.10) / -Au2 + u3y =f2,

[Ul,x+ »2,y + «Z=/3.

The modified problem (5.10), (2.11b) is to be solved for the unknown function u and
the unknown number a. If/and g are smooth functions, the problem (5.10), (2.11b)
has a solution {u, a). The function u3 is specified up to an additive constant. If u3 is
chosen so that (u3,1) = 0, the solution {u, a) satisfies, for all real /, the inequahty

(5 11) ll"ill'+2 + HM2II'+2 + IM/+1 + l«l
< C[ll/lll/ + II/2II/ + II/3IL1 + \gl\l+3/2 + y,+ 3/2] •
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To see this, define a = [(/3,1) - <« ■ g, l)]/(z, 1) and replace f3 by f3 - az. The
new problem then becomes the Stokes equations (2.11b) with a modified right-hand
side. The new right-hand side satisfies the compatibility condition (2.12), so from the
theory of the Stokes problem (2.11), there is a solution u which satisfies (u3,1) = 0,
and which also satisfies (2.14) for all real /. The estimate

<      |a|<C[||/3||/+1 + |gl|/+3/2 + |g2|/+3/2],

and the estimate (5.11), follows from this.
To formulate and analyze a least squares method for the system (5.10), we define a

bilinear form on pairs of triples {u, a) and {v, ß} by the expression

\\{u,a},{v,ß}fA = (-AUl + uXx,-AVl + v3tX)

+ (-Au2 + u3y, -Av2 + v3y)

+ h~2(Ul,x +  «2,r +  «Z> »1.» +  V2,y +  ßz)

+ h^{(u1,vl) + (u2,v2)}.

We remark that the corresponding quadratic form, which we write ||{m, a)\\A,
defines a seminorm, since if u3 = 1, and ux = u2 = 0, a = 0, then \\{u, ot}\\2A = 0.
The corresponding least squares approximation, [uh,ah], is not unique, since an
arbitrary constant can be added to the third component of uh. Nevertheless, virtually
the same argument that is used to prove Theorem 4.1 leads to a proof of the
following theorem

Theorem. Let p ^ 0, p < -1, 5 > maxi-p, p) and let ShJ approximate optimally
with respect to (8 + tJy a). Let [u,a] be a solution with (u3,1) = (uh3,1). Then

I« - «J + Ell", - "yJL,, < cA"-"Ell"ylU,,.
7 7

As a final illustration of the least squares methodology, we formulate a nonconfor-
ming least squares methods. Since we prove nothing about the method and give no
numerical results, its value is a matter of conjecture.

Nonconforming finite element methods have been used to avoid the regularity
requirements on the subspaces, especially for higher-order problems (see, e.g., [2]).
We formulate a nonconforming least squares method for the problem (2.8). To
motivate our method, let T0 be a smooth closed curve in ß, dividing ß into two
subdomains QY and ß2. The boundary of ß, is ro, the boundary of ß2 is ro U T.
Using these subdomains, the problem (2.8) may be given a different formulation as
follows. We seek functions ux and u2, defined in ß, and ß2, such that

(5.12a) -AuK + uK=f   in0,,« = 1,2,
(5.12b) u^(x) - u2(x) = 0,       x g r0,

(5.12c) _i(x)_-2(^ = 0,       xer0)

(5.12d) u2(x) = g(x),       xgT0.

In these equations, n denotes the unit normal on T0, pointing from ß, into ß2. It
may be shown that there is a unique solution pair, uv u2, of (5.12), and the solution
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is uK = u restricted to ßK, k = 1,2, where u is the solution of (2.8). The equations
(5.12b, c) serve as boundary conditions for the problem, with indices r — — 2 and
r = -1,respectively. (5.12) is a problem of "interface" or "transmission" type, and
the theory of elliptic boundary value problems may be extended to include this type
of problem.

We shall use (5.12) to motivate our nonconforming method; however, we shall
consider a situation in which the curves ro are not smooth. For this, let there be
given a uniform mesh of size A on ß. The mesh divides ß into a number of
subdomains ßK; each ßK is either a mesh rectangle or the intersection of a mesh
rectangle with the domain ß. The mesh lines consist of a collection of line segments
TkX. Each line segment, TkX, is the common boundary of two subdomains ßK and ßx.
We choose a unit normal nxX on each line segment TkX, and if x g TkX, we let

u(x ±) = hmw(x ± enKX).

Let Sh be a collection of piecewise polynomials on the mesh; no continuity
conditions are required for the functions in Sh. Our nonconforming least squares
method is to minimize, for v g Sh, the quantity

E//1A»-/]2
K

+ E/    {h~3[v(x+)-v(x-)]2 + h-1
K.X    r«x  \

ä~(x+)- t(x-)on on

+ h~3 Ll-if-
The weights appearing in the integral over TkX are dictated by the values of r
associated with the boundary conditions (5.21b, c). It would be of interest to give an
error analysis for this method.

6. Condition Number. If the Dirichlet problem (2.8) is solved numerically using
Galerkin's method with typical finite-element matrices on a uniform mesh of size A,
the resulting stiffness matrix has condition number 0(h2). If the same problem is
solved using the weighted least squares method of [5], the condition number of the
associated matrix is 0(A-4). This results in extra difficulties in obtaining an
accurate solution of the hnear system. These considerations led Bramble and Nitsche
[4] to formulate a modified least squares method with a reduced condition number.
The least squares method in [11] also has a reduced condition number. Here, we give
an upper bound for the condition number of our linear system.

For the condition number bounds, we require some assumptions on the subspaces
ShJ. First, we suppose that there is a set of basis functions, <¡>jK, of Shj, such that

(6.1) eA"E«2<   E*A,   <£A"Ea2-
K K K

The positive constants e and E are independent of A. This inequahty enables us to
estimate the L2-norm of a function Oj g Shj in terms of the coefficients in the
expansion v} = £ aK<j>jK. Secondly, we require the inverse assumption

(6.2) \\vj\\ < Z>A-'||ü,||,       vj g Shj, 0 < / < a,,
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where the constant D is independent of A. Notice that if (6.2) and the upper
inequality of (6.1) are combined, we obtain for any numbers aK the inequality

(6.3) E  LaKax{*>%, ^yx) < ^Eh2"'2'^^.
|/3|</k,X k

The matrix problem arising from our least squares method depends on the basis
functions chosen for the subspace Sh- H $hjnas dimension dj, then Sh has dimension
d = T.dj. To describe d linearly independent functions in Sh, let / and X be given
with 1 < / < N, 1 < X < d,. Let i///,X) be defined in terms of its component
functions v//j/,X) by vtj/,X) = </>/x for/" h and ^i'A) " °> for> * '• The d functions
vp(/X) form a basis for Sh. The least squares method for the problem (2.1), (2.3),
consists in minimizing the expression (3.4) over all v g Shj. The solution of this
problem is given by the solution of an associated linear system of equations. The
matrix A of the linear system is of order d; a typical matrix entry is provided by the
quantity (¿<*'«>, t(W)A.

The condition number of A is defined to be cond A = \\A\\ • ||^_1||, where the
norm is any matrix norm. Choosing the matrix norm arising from the Euclidean
vector norm, we find that cond A = Xmax/Xtnin, where Xmax and X^ are the largest
and smallest eigenvalues of A. Since A is positive definite, these eigenvalues are
positive and may be estimated by the Rayleigh quotient Q = qTAq/aTa, where
a = (a,x) g Rd. For this, if a is given, let v = £ a/x^'-X) G Sh. Then aTAa = (v, v)A,
so

(6-4) Q = (v,v_)A/Lajx.
We require upper and lower estimates for the numerator. For the upper estimate, we
use (3.2), (6.3), and the inequahty |z|2 < c(A||z||2 + A_1||z||2) to obtain

IbIUcIA^A+cI    E   h2^\D%\Pkj
Uj k,j \ß\aßkj

< cEAn+2î^2X"< + cY.{h2r^2\\Vjfßkj + l + A2r*||i>,||¿

< cA"(max[A2î'-2H A2"-2^])Eö2a-
v i,j,k I

Let y = max[2\0 - 2si,2ßkj — 2rk]. Since XtJ < s¡ + tj, ßkj < rk + tj, and since
equality holds for some of these indices, we have y = 2 max tj. The above inequali-
ties then give

(6-5) cA"-"E«/
For the lower estimate, we require a further inverse assumption. We suppose that

(6-6) EVj <cAJ Em
(6.7) T.BkJVj < cAf' + 1/2

-1/2
LBkjVj

To understand these assumptions, recall that s¡ < 0, rk + \ < 0. If the differential
operators Ltj and BkJ all have constant coefficients, then the quantities E L, u and
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'LjBkJVj are piecewise polynomials, and the inequalities (6.6) and (6.7) are not
unreasonable. With these inequalities, (3.2), and (2.7) with / = 0, we have

2

\WÎa > cE
k J

2
2ELijVj       +cY,¿ZBkjVj >cEI|wyll0>cEl|o,-

-rk-l/2 7 7

Using (6.1), we then obtain

(6.8) \\v\\A > ch"Y.a2x.

The inequalities (6.5) and (6.8) give upper and lower bounds for Amax and XrrÁn.
Using these bounds, we obtain

(6.9) coná A ^ch~\
In the case of the model problem (2.10), we find that y = 4, so cond A < cA~4.
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