
Comp. Part. Mech. (2014) 1:277–305

DOI 10.1007/s40571-014-0027-2

Least squares moving particle semi-implicit method

An arbitrary high order accurate meshfree Lagrangian approach for incompressible flow

with free surfaces

Tasuku Tamai · Seiichi Koshizuka

Received: 27 February 2014 / Revised: 8 May 2014 / Accepted: 26 May 2014 / Published online: 11 July 2014

© OWZ 2014

Abstract In this paper, a consistent meshfree Lagrangian

approach for numerical analysis of incompressible flow

with free surfaces, named least squares moving particle

semi-implicit (LSMPS) method, is developed. The present

methodology includes arbitrary high-order accurate mesh-

free spatial discretization schemes, consistent time integra-

tion schemes, and generalized treatment of boundary condi-

tions. LSMPS method can resolve the existing major issues of

widely used strong-form particle method for incompressible

flow—particularly, the lack of consistency condition for spa-

tial discretization schemes, difficulty in enforcing consistent

Neumann boundary conditions, and serious instability like

unphysical pressure oscillation. Applications of the present

proposal demonstrate remarkable enhancements of stability

and accuracy.

Keywords Least squares moving particle semi-implicit

method · LSMPS method · High order scheme · Meshfree

compact scheme · Moving particle semi-implicit method

1 Introduction

Today the finite element method (FEM) [101], the finite vol-

ume method (FVM) [98], and the finite difference method

(FDM) [87] based computational mechanics play a conspic-

uous role in technology advancement. A noteworthy feature

of them is that they divide a continuum domain into discrete

subdivision usually called mesh/grid, which requires connec-
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tivity based on a topological map; however, the characteris-

tic of them is not always suitable. For instance, in order to

adapt topological and geometric changes undergone by the

real material, such as simulations of fluid flow or large strain

continuum deformation, Lagrangian description (i.e. moving

mesh/grid) could be applied; however, one would face dis-

tortion of mesh/grid which results in either termination of the

computation or severe deterioration in numerical accuracy.

Arbitrary Lagrangian Eulerian (ALE) formulations [26,36]

have been developed to overcome the difficulty caused by

distortion of mesh/grid, of which objective is to move mesh/

grid independently from actual motion of material so that dis-

tortion could be minimized; nevertheless, distortion of mesh/

grid still remains and causes overwhelming errors in numer-

ical solutions.

Under these circumstances, meshfree methods and/or par-

ticle methods, which discretize a continuum by only a set of

nodal points or particles, have been sought in order to find bet-

ter discretization procedures without mesh/grid constraints.

Since the connectivity among nodes can be generated any-

time desired and can change with time, meshfree/particle

methods can easily handle simulations of very large defor-

mations, even with the changes of the topological structure

and fragmentation–coalescence of continuum.

In general, according to computational modelings and for-

mulations, meshfree/particle methods can be categorized into

two different classifications as well: the weak form formula-

tions of Partial Differential Equations (PDEs); and the strong

form formulations of PDEs. The first class of meshfree/

particle methods is used with various weak formulations such

as Galerkin methods, for example, diffuse element method

(DEM) [73], element free Gelerkin (EFG) method [11,13–

15,67], reproducing Kernel particle method (RKPM) [21,

63–65], h-p cloud method [27,28,58,74], partition of unity

method (PUM) [7–9,69], meshless local Petrov–Gelerkin
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(MLPG) method [2–6], finite point method (FPM) [75–

77,80], particle finite element method (P-FEM) [38,78,79],

reproducing Kernel element method (RKEM) [56,62,66,86].

The second category of meshfree/particle methods is used

to approximate the strong form PDEs discretized by spe-

cific collocation techniques, for instance, smoothed parti-

cle hydrodynamics (SPH) method [31,60,68,71,72], moving

particle semi-implicit (MPS) method [48,49], meshfree finite

difference method [57,59], finite pointset method (FPM)

[95–97].

In various weak form meshfree/particle methods, shape

functions, or more general meshfree interpolants, are con-

structed based on the so-called “partition of unity”, then con-

sistency conditions, polynomial completeness, or reproduc-

ing conditions are satisfied. On the other hand, although the

strong form particle methods such as the SPH method and the

MPS method have been shown to be useful widely in engi-

neering applications especially in fluid dynamics, their stan-

dard formulae of spatial discretization schemes are not con-

sistent except under very limited conditions, and do not hold

polynomial completeness/reproducing conditions or differ-

ential completeness/reproducing conditions. According to

the Lax’s equivalence theorem [51], this major issue must

never be overlooked. Moreover, this matter yields adverse

effects for both computational accuracy and stability. Some

correction methods for resolving the lack of polynomial com-

pleteness or reproducing conditions on the spatial discretiza-

tion schemes (which will be discussed in Chap. 3) have been

proposed; however, they are far from adequate in terms of

the compatibility with satisfaction of higher order consis-

tency conditions and numerical stability. Strong form mesh-

free/particle methods still have a difficulty relating to pro-

cedures of enforcing boundary conditions, especially Neu-

mann boundary conditions. Hence, prevailing strong form

particle methods, whose advantage is that they can hand-

ily run numerical analysis of continuum with large defor-

mation, even with the changes of topological structure and

fragmentation–coalescence, are inadequately studied as an

accurate mathematical computation.

With taking particular note to controversies described

above, we develop a new consistent fully Lagrangian mesh-

free particle method, named least squares moving particle

semi-implicit (LSMPS) method, for numerical analysis of

incompressible fluid flow with free surfaces. As its name sug-

gests, LSMPS method is based on the method of weighted

“Least Squares” procedure, and follows fundamentals of the

MPS method [48,49]: “Moving Particle” means meshfree

fully Lagrangian approach, and “Semi-implicit” represents

the type of time integration algorithm for incompressible flow

which is well-known as the projection method [33]. LSMPS

method succeeds the name of the existing MPS method; how-

ever, all of LSMPS formulae are different from of the current

MPS method.

In this paper, we introduce a new methodology and for-

mulae as a meshfree Lagrangian approach (particle method),

including arbitrary high order accurate meshfree spatial dis-

cretization schemes, consistent time integration schemes, and

generalized treatment of boundary conditions. Additionally,

some numerical demonstrations compared with the conven-

tional MPS solutions show drastic improvement of accuracy

and stability.

2 Preliminary

2.1 Notation

In order to expedite the presentation, we introduce some pre-

liminaries for notations. Throughout this paper, the letter d is

a positive integer and denotes the spatial dimension. Ω ⊆ Rd

is a nonempty, open, bounded, and connected set. ∂Ω denotes

the boundary of Ω , and ∂Ω is assumed to be Lipschitz con-

tinuous or smoother, as the case may be.

N0 denotes the set of non negative integers. If

α := (α1, α2, . . . , αd) ∈ Nd
0 (1)

is an d-tuple of non negative integers, we call α a multi-index.

Then, the quantity

|α| :=
d∑

i=1

αi , (2)

is defined to be the length of α. We also use the following

conventions:

α! := α1! . . . αd !, ∀α ∈ Nd
0 . (3)

If α,β ∈ Nd
0 , we say β ≤ α provided

1 ≤ ∀i ≤ d, βi ≤ αi . (4)

By the same token,

(
α

β

)
:= α!

β!(α − β)! =
(

α1

β1

)
. . .

(
αd

βd

)
. (5)

If x := (x1, . . . , xd)T ∈ Rd and α ∈ Nd
0 , then xα is

defined as follows:

xα := x
α1

1 · · · x
αd

d . (6)

If f (x) is a real valued function on an open subset of Rd , α ∈
Nd

0 and smoothness of f is assumed enough, then Dα
x f (x)

denotes the αth order Fréchet derivative of f as follows:

Dα
x f (x) := ∂ |α| f (x)

∂x
α1

1 · · · ∂x
αd

d

. (7)
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If x = (x1, . . . , xd)T is an arbitrary point of Rd , then

‖x‖2 =

√√√√
d∑

i=1

x2
i (8)

denotes the Euclidian norm of x, and we usually use ‖x‖ as

abridged notation.

2.2 Consistency, completeness, reproducing condition, and

the partition of unity

In order to advance concrete discussions on the study of con-

vergence, according to Belytschko et al. [12], three terms are

frequently used: (i) Consistency [90] : a property of the dis-

cretization schemes for partial differential equations, which

is usually utilized in Finite Difference approximations, (ii)

Reproducing conditions [64,65]: the ability of the approxi-

mation to reproduce specified functions, which are usually

polynomials, (iii) Completeness [37]: polynomial complete-

ness or completeness , which is usually discussed in the FEM.

2.2.1 Consistency

Strikwerda [90] defines the consistency condition of partic-

ular operators for approximating derivatives as follows:

Theorem 2.1 (Consistency [12,90]) A scheme Lhu = f

that is consistent with the differential equation Lu = f is

accurate (consistent) of order p if for any sufficiently smooth

function v

Lv − Lhv = O(h p) (9)

In the above definition, a parameter h denotes the refinement

of mesh/grid and p refers to the order of consistency. Obvi-

ously, it is necessary for convergence that p > 0, and we

require that p ≥ 1 for the efficient numerical calculation.

According to the well-known Lax-Richtmyer equivalence

theorem [51], a consistent finite difference scheme for a well-

posed partial differential equation is convergent if and only

if it is stable. Consequently, any discretization scheme must

satisfy the pth order (p > 0) consistency condition to obtain

convergence. The consistency is straightforward to verify and

stability is typically much easier to show than convergence;

therefore, the convergence is usually studied via the Lax-

Richtmyer equivalence theorem.

2.2.2 Completeness, reproducing condition, and the

partition of unity–nullity

Since ascertaining whether meshfree interpolants are consis-

tent for irregularly distributed nodes is significantly more dif-

ficult than examining whether finite difference schemes for

a uniform structured grid, the completeness or reproducing

conditions which play the same role [12] as the consistency

conditions1 are explored, instead.

The reproducing conditions or the completeness are the

ability of the approximation to reproduce specified functions

which are usually polynomials. One can say that an approxi-

mation f h(x) is complete to order p if any given polynomial

up to order p can be reproduced exactly. If an approximation

f h(x) is given by

f h(x) =
∑

i

Φi (x) f (xi ), (10)

where {Φi (x)}1≤i≤N are the interpolant functions and

{ f (xi )}1≤i≤N are given nodal values for the set of nodes

{xi }1≤i≤N , then the completeness or the reproducing condi-

tions can be defined as follows:

Theorem 2.2 (pth order completeness/reproducing condi-

tion) For a multi index α ∈ Nd
0 : 0 ≤ |α| ≤ p, an interplant

function Φi (x) ∈ R holds the pth order polynomial com-

pleteness/reproducing condition if it satisfies:
∑

i

(x − xi )
αΦi (x) = δα0, (11)

or equivalently,
∑

i

xα
i Φi (x) = xα. (12)

Some meshfree discretization schemes are formulated to

satisfy alternatives, the differential completeness or the dif-

ferential reproducing conditions which are requirement that

the derivatives of a polynomial field be reproduced correctly.

They can be defined directly from Theorem 2.2 by taking

derivatives of Eqs. (11) and (12), i.e.

Theorem 2.3 (pth order differential completeness/

reproducing condition) Let an interplant function Φi (x) ∈
Ck(Rd). For multi indicies α,β ∈ Nd

0 : 0 ≤ |α| ≤ p, 0 ≤
|β| ≤ k(≤ p), an interplant function Φi (x) holds the pth

order differential completeness/reproducing condition if it

satisfies:
∑

i

(x − xi )
α D

β
x Φi (x) = (−1)|β|α!δαβ , (13)

or equivalently,

∑

i

xα
i D

β
x Φi (x) = α!

(α − β)!xα−β . (14)

It should be noted that the Theorem 2.2 and 2.3 are simi-

lar to pth order consistency condition and pth order differen-

tial consistency condition for RKPM shape function [55,65],

respectively.

1 pth order polynomial completeness conditions or reproducing condi-

tions is sufficient condition of pth order consistency.
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If α = 0, Eqs. (11) and (12) become

∑

i

Φi (x) = 1, (15)

and if α �= 0, Eq. (11) does

∑

i

(x − xi )
αΦi (x) = 0. (16)

These are the origin of the name “The Partition of Unity”,

and “The Partition of Nullity”. These properties are closely

related with not only meshfree interpolant [65] but also

mesh-based one. Obviously, since FEM interpolant func-

tions, called shape functions satisfy the Kronecker delta prop-

erty, they are constructed based on the partition of unity–

nullity. Moreover, weighting coefficients of linear combina-

tion on the finite difference schemes are built on the partition

of unity–nullty to obtain certain order of consistency.

Interestingly, Liu et al. [65] showed that least squares

based interpolants provide achievement of polynomial com-

pleteness/reproducing conditions, or so-called the partition

of unity–nullity—vice versa, corrected interpolant formulae

to fulfill the polynomial completeness/reproducing condi-

tions are quite identical to the production derived from least

squares procedures. Chakravarthy [17] showed the funda-

mental concept of the finite difference schemes that to deter-

mine unknowns emerged from Taylor expansion or poly-

nomial approximation is generalization of finite difference

operator. Also, it yields normal equations which is the very

idea of the linear least squares approaches.

With focusing attention to a close relationship of consis-

tency, completeness/reproducing conditions, and the parti-

tion of unity–nullity, and leveraging the fact that the least

squares schemes contribute achievement of arbitrary high-

order consistency conditions for meshfree spatial discretiza-

tion schemes, we develop new formulae in the next section.

3 Meshfree spatial discretization schemes

3.1 An overview of the existing meshfree spatial

discretization schemes

As mentioned it in the introduction, various meshfree and/or

particle methods have been sought, in order to discretize a

domain without mesh/grid constraints. There are a lot of dis-

cretization schemes for meshfree interpolants and meshfree

finite difference. One of the most prevalent particle meth-

ods is the SPH method which discretizes partial differential

equations by a integral representation collocation technique.

Even though the SPH method has achieved a lot of success

in computational mechanics, it has not been viewed as an

accurate mathematical computation which stems from the

fact that it lacks a rigorous convergence theory as well as a

successive refinement procedure [81].

The early SPH interpolants do not satisfy the discrete par-

tition of unity and nullity [63] except under very limited con-

ditions. This means the defection of SPH interpolants 0th or

higher order completeness/reproducing conditions in general

particle distribution, which results in incapability of repre-

senting rigid body motion correctly, even though it is Galilean

invariant (rigid body translation only). Also, the primal SPH

gradient operator and Laplace operator generally have analo-

gous problem. In order to solve this matter, several correction

schemes have been proposed, for example, Monaghan’s sym-

metrization on derivative approximation [70,71], Johnson–

Beissel correction [41], Randles–Libersky correction [82],

Krongauz–Belytschko correction [12], Chen–Beraun cor-

rection [18–20], Bonet-Kulasegaram integration correction

[16], Aluru’s collocation RKPM [1], Zhang–Batra correction

[99,100]. They correct SPH kernel interpolant to satisfy com-

pleteness/reproducing condition in the interpolation field, or

equivalently, to modify SPH derivative approximation oper-

ators directly to meet derivative completeness/reproducing

condition in the derivative of the interpolants. It must be men-

tioned that almost all 1st or higher order consistent corrected

formulae as listed above are based on the least squares meth-

ods, for instance, the most widely used 1st order consistent

gradient approximation operator for the SPH method devel-

oped by Randles–Libersky [82] is one of the least squares

based discretizations.

Least squares procedures are excellent with meshfree

interpolants or meshfree finite difference schemes. Liu et

al. [65] demonstrate that moving least squares (MLS) [50]

approximation is equivalent to reproduced Kernel (RK)

interpolant [65] which are corrected kernel approximation

based on the reproducing conditions. MLSRK interpolant

can provide arbitrary high order consistency condition, and

is the contemporary version of the classical MLS one since

the basic concept of reproducing kernel, or more gener-

ally speaking, the fundamentals of the partition of unity–

nullity incubates various derivation of meshfree interpolants

[54,61,62] . With taking particular note of the SPH kernel

interpolant inconsistency, Dilts [24,25] utilizes MLS inter-

polant [50] to improve the accuracy of the SPH kernel approx-

imation, so-called moving least squares particle hydrody-

namics (MLSPH). Since MLS can construct sufficiently

smoothed interpolation globally with optional order of poly-

nomial completeness/reproducing conditions, it is widely

used in meshfree/particle methods, such as various Galerkin

meshfree approach listed in Introduction (e.g. DEM, EFGM,

RKPM, etc. ).

Since the early MPS gradient operator and Laplace oper-

ator [49] generally lack 1st or higher order differential com-

pleteness/reproducing condition except under very limited

conditions (e.g. regular particle distribution is assumed),
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varied correction techniques have been proposed in order

to enhance the accuracy of the MPS method. For instance,

Khayyer–Gotoh gradient operator anti-symmetrization [42],

Khayyer–Gotoh divergence operator correction [43],

Khayyer–Gotoh Laplace operator correction [44], Khayyer–

Gotoh gradient operator correction [45], and Suzuki gradi-

ent operator correction [39,91] are proposed. Only Suzuki

method based on weighted least squares technique can

achieve 1st order consistency for gradient operator; however,

others do not hold differential completeness/reproducing

conditions in general case. In other words, they are far

from satisfaction of high order accuracy. Of course, sim-

ilar to adopting least squares approach into SPH method,

least squares based formulae can be introduced to the MPS

method. Koh et al. [46] utilize two dimensional second

order generalized finite difference schemes [57,59] based

on weighted least squares to the MPS method. Tamai et al.

[93] formulate generalized finite difference schemes based

on the weighted least squares for the MPS method, which

provides arbitrary high order consistency and can be applied

for arbitrary dimension.

Consistent least squares based spatial discretization finite

difference schemes [46,57,59,91,93] resolve the rack of

polynomial completeness/reproducing conditions on the

MPS method so that high order consistency conditions

are fulfilled and absolute enhancement of accuracy would

be given; however, utilizing least squares based scheme

raise a new problem—normal equations derived from the

least squares procedures will be ill-conditioned problems

which results in either serious deterioration in numerical

accuracy and stability or termination of the computation.

Selecting neighborhood stenciles [59] to circumvent this ill-

conditioned problems is proposed; however, this technique

can not be the fundamental solution since the condition num-

bers of coefficient matrices derived from the least squares,

so-called the “moment matrices”, are not independent from

characteristic length of calculation points spacing.

In order to overcome the weakness of the least squares

based spatial discretization schemes that normal equations

shall be ill-conditioned and to obtain high order consistency

conditions from them, we reformulate the least squares based

schemes in the next section.

3.2 A new meshfree spatial discretization schemes based on

the weighted least squares procedure

3.2.1 Stone–Weierstrass theorem of locally compact version

Let f : Rd → R be a sufficiently smooth function2 that is

defined on a simply connected open set Ω ⊆ Rd . Accord-

ing to the Stone-Weirestrass theorem of locally compact ver-

2 At least, f (x) ∈ C0(Ω̄).

sion [84,88,89], for a fixed point x̄ ∈ Ω̄ , one should always

be able to approximate f (x) by a polynomial series locally.

Thus, we can define a local function

f l(x, x̄) :=
{

f (x), ∀x ∈ B(x̄),

0, ∀x �∈ B(x̄),
(17)

where

B(x̄) :=
{

x

∣∣∣ ‖x − x̄‖ < re, x ∈ Rd
}

. (18)

If the function f (x) is smooth enough as assumed, there

exists a local operator L x̄ : C0(B(x̄)) → C p(B(x̄)) s.t.

f l(x, x̄) ≈ L x̄ f (x) := p̂T (x)a(x̄), (19)

where

p̂(x) :=
{

xα
∣∣∣ 0 ≤ |α| ≤ p

}
, (20)

is pth order complete polynomial basis, and a(x̄) is coef-

ficient vector. Utilizing Taylor expansion of approximated

polynomial function around xi with nearby point x j ∈ B(x̄)

yields

p∑

|α|=1

[
1

α!
(
x j − xi

)α
Dα

x f h(xi )

]

− { f (x j ) − f (xi )} = R
p+1
i j , (21)

where

R
p+1
i j := L x̄ f (x) − f l(x), (22)

is the residual of local polynomial approximation. Equation

(21) is a well-known form of Taylor expansion, and we use

it several times in this paper without special note again.

3.2.2 Weight function

We use the weighted least squares procedures for new spatial

discretization schemes formulae, then the weight(window)

function which satisfy the following conditions is defined.

w(x, re) ∈ Ck
0 (Rd), 1 ≤ k, (23)

∀x ∈ Rd , 0 ≤ w(x, re) ≤ Cw < ∞, (24)

‖x‖ ≥ re ⇐⇒ w(x, re) = 0, (25)

‖x‖ < ‖y‖ ≤ re �⇒ w(x, re) > w(y, re), (26)
∫

Rd

w(x, re)dx=C =(Const.), (Typically, C =1), (27)

where re is the dilation parameter and the radius of com-

pact support of the weight function. In the LSMPS method,

singular weight function like
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w(x, re) =

⎧
⎨
⎩

re

‖x‖ − 1, 0 ≤ ‖x‖ < re,

0, re ≤ ‖x‖,
(28)

which is usually used in the MPS method, could be applied;

therefore, the condition of non-singularity (Eq. 24) is not nec-

essarily for the weight function. For obtaining stable calcula-

tion, however, application of non-singular weight functions

is highly recommended.

3.2.3 Standard scheme type-A

We define new meshfree spatial discretization schemes with

arbitrary high order consistency conditions.

Definition 3.1 (Standard LSMPS scheme, Type-A) Let

f : Rd → R be a sufficiently smooth function on a

simply connected open set Ω ⊂ Rd . Standard LSMPS

schemes type-A are defined as follows:

Dx f h(xi ) := Hrs

[
M−1

i bi

]
(29)

where

Dx :=
{

Dα
x | 1 ≤ |α| ≤ p

}
, (30)

Hrs := diag

{{
rs

−|α|α!
}

1≤|α|≤p

}
, (31)

Mi :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)

p

(
x j − xi

rs

)
pT

(
x j − xi

rs

)]
,

(32)

bi :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)

p

(
x j − xi

rs

)
{ f (x j ) − f (xi )}

]
,

(33)

p (x) :=
{
xα | 1 ≤ |α| ≤ p

}
, (34)

Λi :=
{

j

∣∣∣ 0 ≤ ‖x j − xi‖ < re

}
(35)

re : dilation parameter (0 < re),

rs : scaling parameter (0 < rs ≤ re).

p : order of polynomial basis

Derivation:

According to the Stone–Weierstrass theorem discussed in

the Sect. 3.2.1, and utilizing Taylor expansion of local poly-

nomial approximation, one can obtain

p∑

|α|=1

[
1

α!
(
x j −xi

)α
Dα

x f h(xi )

]
−{ f (x j )− f (xi )}= R

p+1
i j .

(36)

If we use weighted least squares technique to minimize

weighted squared residuals

∑

j∈Λi

wi j

(
R

p+1
i j

)2
,

associated with the residual R
p+1
i j and weight function wi j ,

normal equations equivalent to the existing spatial dis-

cretization formulae [59,93] based on the weighted least

squares procedure are provided; however, they must be ill-

conditioned if p ≥ 2 as discussed in Sect. 3.1. In order to fix

this issue, we now introduce adroit variable transformation

for unknowns s.t.

Dα
x f h(xi ) −→ r

|α|
s

α! Dα
x f h(xi ), (37)

where rs : 0 < rs ≤ re is the scaling parameter, then Eq.

(36) can be equivalently transformed into

p∑

|α|=1

[{(
x j − xi

)α

r
|α|
s

}{
r
|α|
s

α! Dα
x f h(xi )

}]

−{ f (x j ) − f (xi )} = R
p+1
i j . (38)

One can transliterate this equation with symbols Dx, Hrs ,

p(x) defined by Eqs. (30), (31), and (34),

pT

(
x j −xi

rs

){
H−1

rs
Dx f h(xi )

}
−{ f (x j )− f (xi )} = R

p+1
i j ,

(39)

and applicate the weighted least squares procedures. If we

define a discrete functional associated with R
p+1
i j ,

J (H−1
rs

Dx f h(xi ))

:=
∑

j∈Λi

w

(‖x j − xi‖
re

)(
R

p+1
i j

)2
(40)

=
∑

j∈Λi

w

(‖x j − xi‖
re

)

[
pT

(
x j −xi

rs

){
H−1

rs
Dx f h(xi )

}
−{ f (x j )− f (xi )}

]2

,

(41)
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normal equations can be provided by minimizing functional

J , i.e.

⎡
⎣∑

j∈Λi

w

(‖x j − xi‖
re

)
p

(
x j − xi

rs

)
pT

(
x j − xi

rs

)⎤
⎦

·
{

H−1
rs

Dx f h(xi )
}

=

⎡
⎣∑

j∈Λi

w

(‖x j − xi‖
re

)
p

(
x j − xi

rs

)
( f (x j ) − f (xi ))

⎤
⎦ .

(42)

One can transliterate the above with symbols Mi , bi

defined by Eqs. (32) and (33),

Mi

{
H−1

rs
Dx f h(xi )

}
= bi . (43)

Thus, if the moment matrix Mi is not singular, solutions

H−1
rs

Dx f h(xi ) are uniquely determined by solving normal

equations,

H−1
rs

Dx f h(xi ) = M−1
i bi . (44)

Finally, since the scaling matrix HrS
defined by Eq. (31) is

always non-singular and invertible, we can obtain the Stan-

dard LSMPS scheme formulae type-A,

Dx f h(xi ) = Hrs [M−1
i bi ]. (45)

Remark 3.2 Introducing scaling for the basis is not a brand

new technique since MLSRK interpolant [65] already

installed it; however, it must be mentioned that there exists a

concrete difference. MLSRK basis utilizes dilation parame-

ter ̺(= re) for scaling the basis. On the other hand, LSMPS

formulae employs another parameter rs : 0 < rs ≤ re = ̺

for scaling. This minor change results in major alteration

in the condition number of moment matrices, which will be

investigated in later.

Since the standard LSMPS schemes type-A are derived

from the weighted least squares method, heritages from the

past studies related to the least squares one could be applied.

Definition 3.3 ((re, p)-regularity on the standard LSMPS

scheme type-A) A family of particle distribution {xi }1≤i≤N

is said to be (re, p)-regular, if there exists a constant C s.t.

∀xi ∈ Ω, max
xi ∈Ω

‖M−1
i ‖ ≤ C (46)

When {xi }1≤i≤N is (re, p)-regular, the condition number

of Mi , which is equal to ‖Mi‖‖M−1
i ‖ will be uniformly

bounded. It must be mentioned that the definition of (re, p)-

regularity above is nearly accordance with the concept of

(̺, p)-regularity, which has been introduced by Han and

Meng [34] for the RKPM.

Definition 3.4 (Admissible particle distribution on the stan-

dard LSMPS scheme type-A) For a given particle distribution

{xi }1≤i≤N , let B̄(x, r) :=
{
x′ ∈ Rd | ‖x − x′‖ ≤ r

}
, fill dis-

tance : hx,Ω := sup
x∈Ω

min
1≤i≤N

‖x − xi‖, and separation distance

: ηx := 1
2

min
j �=i

‖x j −xi‖, then admissible particle distribution

on the standard scheme type-A is defined as follows:

Ω ⊂
N⋃

i=1

B̄(xi , hx,Ω/2), (47)

card
{
xα
∣∣ 1 ≤ |α| ≤ p

}

≤ card
{

j
∣∣ x j ∈ B̄(xi , chx,Ω)

}
, c ≥ 1,∀ i, (48)

∃δ > 0 s.t. ηx ≤ hx,Ω ≤ δηx. (49)

Theorem 3.5 (Consistency of the Standard LSMPS scheme

type-A) Let f : Rd → R be a sufficiently smooth function

that is defined on a open set Ω ⊂ Rd , and assume that

f (x) ∈ C p+1(Ω). For multi-index α : 1 ≤ |α| ≤ p, there

exists a constant C : 0 ≤ C < ∞, then Standard LSMPS

scheme type-A holds the following consistency condition.

|Dα
x f (x) − Dα

x f h(x)| ≤ Cr
p+1−|α|
e | f (x)|C p+1(Ω) (50)

Proof Utilizing Taylor expansion of f (x) ∈ C p+1(Ω)

yields

f (x j ) =
p∑

|α|=0

[
1

α!
(
x j − x

)α
Dα

x f (x)

]

+
∑

|β|=p+1

[
(x j − x)β Rβ(x)

]
, (51)

where

Rβ(x) := |β|
β!

1∫

0

(1 − θ j )
|β|−1 D

β
x f

(
x+θ j

(
x j −x

))
dθ j ,

(52)

then one can obtain
p∑

|α|=1

[
1

α!
(
x j − x

)α
Dα

x f (x)

]

=
{

f (x j ) − f (x)
}

−
∑

|β|=p+1

[
(x j − x)β Rβ(x)

]
. (53)

Now we can transliterate the above equation with symbols

Dx, Hrs , p(x) defined by Eqs. (30), (31), and (34)

pT

(
x j − x

rs

)[
H−1

rs
Dx f (x)

]

=
{

f (x j ) − f (x)
}

−
∑

|β|=p+1

[
(x j − x)β Rβ(x)

]
. (54)

123



284 Comp. Part. Mech. (2014) 1:277–305

Multiplying p
(
(x j − x)/rs

)
to lead normal equations pro-

vides

[
p

(
x j − x

rs

)
pT

(
x j − x

rs

)] [
H−1

rs
Dx f (x)

]

= p

(
x j − x

rs

){
f (x j ) − f (x)

}

− p

(
x j − x

rs

) ∑

|β|=p+1

[
(x j − x)β Rβ(x)

]
, (55)

and multiplying compactly supported weight function w :
Rd → R and taking summation of index j : j ∈ B(x̄)

makes

⎡
⎣ ∑

j∈B(x̄)

w

(
x j − x

re

)

p

(
x j − x

rs

)
pT

(
x j − x

rs

)] [
H−1

rs
Dx f (x)

]

=
∑

j∈B(x̄)

w

(
x j − x

re

)
p

(
x j − x

rs

){
f (x j ) − f (x)

}

−
∑

j∈B(x̄)

w

(
x j − x

re

)
p

(
x j − x

rs

)

×
∑

|β|=p+1

[
(x j − x)β Rβ(x)

]
. (56)

Hence, if (re, p)-regularity is assumed,

[
H−1

rs
Dx f (x)

]

=

⎡
⎣ ∑

j∈B(x̄)

w

(
x j − x

re

)
p

(
x j − x

rs

)
pT

(
x j − x

rs

)⎤
⎦

−1

⎧
⎨
⎩
∑

j∈B(x̄)

w

(
x j − x

re

)
p

(
x j − x

rs

){
f (x j ) − f (x)

}
⎫
⎬
⎭

−

⎡
⎣ ∑

j∈B(x̄)

w

(
x j − x

re

)
p

(
x j − x

rs

)
pT

(
x j − x

rs

)⎤
⎦

−1

⎧
⎨
⎩
∑

j∈B(x̄)

w

(
x j − x

re

)
p

(
x j − x

rs

)

∑

|β|=p+1

[
(x j − x)β Rβ(x)

]
⎫
⎬
⎭ . (57)

Consequently,

|Dα
x f (x) − Dα

x f h(x)|

≤ C1r−|α|
s α!

∣∣∣∣∣∣
∑

|β|=p+1

[
(x j − x)β

|β|
β! (58)

1∫

0

(1 − θ j )
|β|−1 D

β
x f
(
x + θ j

(
x j − x

))
dθ j

⎤
⎦
∣∣∣∣∣∣

≤ C2r−|α|
e

∑

|β|=p+1

∣∣∣∣(x j − x)β
|β|
β!

1∫

0

(1 − θ j )
|β|−1 D

β
x f

(
x + θ j

(
x j − x

))
dθ j

∣∣∣∣∣∣
(59)

≤ C3r
p+1−|α|
e

∑

|β|=p+1

∣∣∣∣∣∣
|β|
β!

1∫

0

(1 − θ j )
|β|−1 D

β
x f

(
xi + θ j

(
x j − x

))
dθ j

∣∣∣∣∣∣
(60)

≤ C4r
p+1−|α|
e

∑

|β|=p+1

[
1

β! max
|β|

{
ess. sup

x∈B̄(x)

∣∣∣Dβ
x f (x)

∣∣∣
}]

(61)

≤ C5r
p+1−|α|
e max

|β|=p+1

{
‖D

β
x f (x)‖L∞(B̄(x))

}
(62)

= C5r
p+1−|α|
e | f (x)|C p+1(B̄(x)). (63)

As a result,

|Dα
x f (x) − Dα

x f h(x)| ≤ Cr
p+1−|α|
e | f (x)|C p+1(Ω). (64)

⊓⊔

3.2.4 Standard scheme type-B

We can derive another meshfree spatial discretization scheme

with slight change from the standard schemes type-A, as

named Standard LSMPS schemes type-B which satisfies

arbitrary high order consistency conditions.

123



Comp. Part. Mech. (2014) 1:277–305 285

Definition 3.6 (Standard LSMPS scheme, Type-B) Let

f : Rd → R be a sufficiently smooth function on a

simply connected open set Ω ⊂ Rd . Standard LSMPS

schemes type-B are defined as follows:

D̂x f h(xi ) := Ĥrs

[
M̂i

−1
b̂i

]
(65)

where

D̂x :=
{

Dα
x | 0 ≤ |α| ≤ p

}
, (66)

Ĥrs := diag

{{
rs

−|α|α!
}

0≤|α|≤p

}
, (67)

M̂i :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)

p̂

(
x j − xi

rs

)
p̂T

(
x j − xi

rs

)]
,

(68)

b̂i :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)
p̂

(
x j − xi

rs

)
f (x j )

]
,

(69)

p̂ (x) :=
{
xα | 0 ≤ |α| ≤ p

}
, (70)

Λi :=
{

j

∣∣∣ 0 ≤ ‖x j − xi‖ < re

}
(71)

re : dilation parameter (0 < re),

rs : scaling parameter (0 < rs ≤ re)

p : order of polynomial basis

Derivation:

Similar to the derivation of the standard scheme type-A,

according to the Stone–Weierstrass theorem discussed in the

Sect. 3.2.1, and with utilizing Taylor expansion of local poly-

nomial approximation, one can obtain

p∑

|α|=0

[
1

α!
(
x j − xi

)α
Dα

x f h(xi )

]
− f (x j ) = ̂

R
p+1
i j . (72)

In order to resolve the problem that normal equations

derived from the least squares procedure shall be ill-

conditioned, we introduce astute variable transformation for

unknowns s.t.

Dα
x f h(xi ) −→ r

|α|
s

α! Dα
x f h(xi ), (73)

where rs : 0 < rs ≤ re is the scaling parameter, then Eq.

(72) can be equivalently transformed into

p∑

|α|=0

[{(
x j − xi

)α

r
|α|
s

}{
r
|α|
s

α! Dα
x f h(xi )

}]
− f (x j ) = ̂

R
p+1
i j .

(74)

One can transliterate this equation with symbols D̂x, Ĥrs ,

p̂(x) defined by Eq. (66), (67), and (70),

p̂T

(
x j − xi

rs

){
Ĥrs

−1
D̂x f h(xi )

}
− f (x j ) = ̂

R
p+1
i j , (75)

and adopt the weighted least squares procedures. If we define

a discrete functional associated with
̂
R

p+1
i j ,

Ĵ (Ĥrs

−1
D̂x f h(xi ))

:=
∑

j∈Λi

w

(‖x j − xi‖
re

)(
̂
R

p+1
i j

)2

(76)

=
∑

j∈Λi

w

(‖x j − xi‖
re

)

[
p̂T

(
x j − xi

rs

){
Ĥrs

−1
D̂x f h(xi )

}
− f (x j )

]2

, (77)

normal equations can be provided by minimizing functional

J , i.e.

⎡
⎣∑

j∈Λi

w

(‖x j − xi‖
re

)
p̂

(
x j − xi

rs

)
p̂T

(
x j − xi

rs

)⎤
⎦

·
{

Ĥrs

−1
D̂x f h(xi )

}

=

⎡
⎣∑

j∈Λi

w

(‖x j − xi‖
re

)
p̂

(
x j − xi

rs

)
f (x j )

⎤
⎦ . (78)

One can transliterate the above with symbols M̂i , b̂i

defined by Eq. (68) and (69),

M̂i

{
Ĥrs

−1
D̂x f h(xi )

}
= b̂i . (79)

Thus, if the moment matrix M̂i is not singular, solutions

Ĥrs

−1
D̂x f h(xi ) are uniquely determined by solving normal

equations, then

Ĥrs

−1
D̂x f h(xi ) = M̂i

−1
b̂i . (80)
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Finally, since the scaling matrix Ĥrs defined by Eq. (67)

is always non-singular, we can obtain the standard LSMPS

scheme formulae type-B,

D̂x f h(xi ) = Ĥrs [M̂i
−1

b̂i ]. (81)

Remark 3.7 The difference between the standard scheme

type-A and type-B is degree of freedoms of a linear system

derived from the weighted least squares method. The stan-

dard scheme type-B can provide interpolation of function f

on each point xi . Obviously, interpolated f h(xi ) is not equal

to a value f (xi ) which calculation point xi holds in general.

Additionally, standard LSMPS scheme type-B is a special

case of the moving least squares formulae [50] with intro-

ducing scaling parameter for the basis. Consequently, we can

get some modification of MLS interpolant as the following.

Definition 3.8 (Modified Moving Least Squares interpolant

(Continuous form)) Let f : Rd → R be a sufficiently smooth

function3 that is defined on a simply connected open set Ω ⊂
Rd . There exists a global mapping operator G : C0(Ω) →
C p(Ω) s.t.

G f (x) := p̂(0)M̂−1(x)
⎧
⎨
⎩

∫

Ω

p̂

(
y − x

rs

)
f (y)w(y − x, ̺)dΩy

⎫
⎬
⎭ (82)

M̂(x) :=
∫

Ω

p̂

(
y − x

rs

)
p̂T

(
y − x

rs

)
w(y − x, ̺)dΩy

(83)

Definition 3.9 (Modified Moving Least Squares interpolant

(Discrete form)) Let f : Rd → R be a sufficiently smooth

function that is defined on a simply connected open set Ω ⊂
Rd . There exists a global mapping operator G : C0(Ω) →
C p(Ω) s.t.

G f (x) := p̂(0)M̂−1(x)
⎧
⎨
⎩
∑

j∈Λ

p̂

(
x − x j

rs

)
f (x j )w(x − x j , ̺)

⎫
⎬
⎭ (84)

M(x) :=
∑

j∈Λ

p̂

(
x − x j

rs

)
p̂T

(
x − x j

rs

)
w(x − x j , ̺)

(85)

Definition 3.10 (Modified Moving Least Squares Reproduc-

ing Kernel interpolant (Discrete form)) Let f : Rd → R be

a sufficiently smooth function that is defined on a simply

connected open set Ω ⊂ Rd . There exists a global mapping

operator G : C0(Ω) → C p(Ω) s.t.

3 At least, f (x) ∈ C0(Ω).

G f (x) := p̂(0)M̂−1(x)
⎧
⎨
⎩
∑

j∈Λ

p̂

(
x − x j

rs

)
f (x j )w(x − x j , ̺)∆V j

⎫
⎬
⎭ (86)

M(x) :=
∑

j∈Λ

p̂

(
x − x j

rs

)
p̂T

(
x − x j

rs

)
w(x − x j , ̺)∆V j

(87)

Definition 3.11 ((re, p)-regularity on the standard LSMPS

scheme type-B) A family of particle distribution {xi }1≤i≤N

is said to be (re, p)-regular, if there exists a constant C s.t.

∀xi ∈ Ω, max
xi ∈Ω

‖M̂i
−1‖ ≤ C (88)

Definition 3.12 (Admissible particle distribution on the

standard LSMPS scheme type-B) For a given particle distri-

bution {xi }1≤i≤N , let B̄(x, r) :=
{
x′ ∈ Rd | ‖x − x′‖ ≤ r

}
,

fill distance : hx,Ω := sup
x∈Ω

min
1≤i≤N

‖x − xi‖, and separation

distance : ηx := 1
2

min
j �=i

‖x j − xi‖, then admissible particle

distribution on the standard scheme type-B is defined as fol-

lows:

Ω ⊂
N⋃

i=1

B̄(xi , hx,Ω/2), (89)

card
{
xα
∣∣ 0 ≤ |α| ≤ p

}

≤ card
{

j
∣∣ x j ∈ B̄(xi , chx,Ω)

}
, c ≥ 1,∀ i, (90)

∃δ > 0 s.t. ηx ≤ hx,Ω ≤ δηx. (91)

Theorem 3.13 (Consistency of the Standard LSMPS scheme

type-B) Let f : Rd → R be a sufficiently smooth function

that is defined on a open set Ω ⊂ Rd , and assume that

f (x) ∈ C p+1(Ω). For multi-index α : 1 ≤ |α| ≤ p, there

exists a constant C : 0 ≤ C < ∞, then Standard LSMPS

scheme type-B holds the following consistency condition.

|Dα
x f (x) − Dα

x f h(x)| ≤ Cr
p+1−|α|
e | f (x)|C p+1(Ω). (92)

Proof Since proof of this theorem can be demonstrated with

almost the same strategy as the theorem 3.5 for the standard

scheme type-A, we will omit it. ⊓⊔

3.2.5 Meshfree compact scheme

In the FDM, spatial discretization schemes can be catego-

rized as explicit schemes or implicit schemes so-called com-

pact schemes [53]. The former can be expressed as linear

combination of functional value, i.e. αth order derivative of

sufficiently smooth function f is approximated by

f (α) ≈
∑

j

C j f j , (93)
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where coefficient C j is determined by the partition of unity–

nullity to achieve a certain order of consistency condition.

On the other hand, the later schemes so-called compact

schemes utilize not only functional value but also derivatives

to approximate derivatives; therefore, αth order derivative of

sufficiently smooth function f is approximated by

f (α) ≈
∑

k

∑

j

C j,k f
(k)
j , (94)

where coefficient C j,k is also determined by the partition

of unity–nullity to achieve a certain order of consistency

condition. Noteworthy characteristics of compact schemes

is achievement of higher accuracy and resolution com-

pared with the same order accurate explicit finite difference

schemes. Although compact schemes require solving a linear

system, their higher accuracy and resolution provide reduc-

tion of total calculation cost. Various higher order accurate

schemes with higher resolution have been sought to obtain

both more accurate solutions and retrenchment of calculation

cost [10,53].

Since the compact schemes utilized in the FDMs are

designed for one dimensional uniform structured grid, they

cannot be applied for arbitrary unstructured gird or mesh-

free framework. Hence, we develop novel arbitrary high

order accurate compact schemes that can be applied for arbi-

trary unstructured grids and meshfree framework in optional

dimensions.

Definition 3.14 (Meshfree compact schemes) Let f :
Rd → R be a sufficiently smooth function on a sim-

ply connected open set Ω ⊂ Rd . Meshfree compact

schemes are defined as follows:

D̂x f h(xi ) := Ĥ ′
rs

[
̂
M−1

i b̂′
i

]
(95)

where

D̂x :=
{

Dα
x | 0 ≤ |α| ≤ p

}
, (96)

Ĥ ′
rs

:= diag

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

⎧
⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

∑

β: 0≤|β|≤q
β≤α

C(β, p, q)

(α − β)!

⎞
⎟⎟⎠

−1

rs
−|α|

⎫
⎪⎪⎬
⎪⎪⎭

0≤|α|≤p

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

,

(97)

M̂i :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)
(98)

p̂

(
x j − xi

rs

)
p̂T

(
x j − xi

rs

)]
, (99)

b̂′
i :=

q∑

|β|=0

∑

j∈Λi

[
w

(‖x j − xi‖
re

)
p̂

(
x j − xi

rs

)

×C(β, p, q)(x j − xi )
β D

β
x f (x j )

]
,

(100)

p (x) :=
{
xα | 0 ≤ |α| ≤ p

}
, (101)

C(β, p, q) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)|β| |β|!
β!

p!
(p + q)! (|β| = q)

(−1)|β| |β|!
β!

q(p + q − |β|)!
(p + q)! (0 < |β| < q)

1 (|β| = 0)

(102)

Λi :=
{

j

∣∣∣ 0 ≤ ‖x j − xi‖ < re

}
(103)

re : dilation parameter (0 < re),

rs : scaling parameter (0 < rs < re),

p : order of polynomial basis,

q : maximum order of derivatives to use (0 ≤ q ≤ p)

Derivation:

According to the Stone–Weierstrass theorem discussed in

the Sect. 3.2.1, and utilizing Taylor expansion of p + qth

order local polynomial approximation, one can obtain

p∑

|α|=0

[
1

α!
(
x j − xi

)α
Dα

x f h(xi )

]

+
p+q∑

|α|=p+1

[
1

α!
(
x j − xi

)α
Dα

x f h(xi )

]
− f (x j )

= ̂
R

p+q+1
i j,0 . (104)

For a multi index β : 0 ≤ |β| ≤ q, if D
β
x f (x) ∈ C0(Ω) is

assumed, one can define p+q −|β|th order local polynomial

approximation of D
β
x f (x) with the Stone–Weierstrass theo-

rem. Due to this, utilizing Taylor expansion for approximated

L x̄ D
β
x f (x) yields
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p+q−|β|∑

|γ |=0

[
1

γ !
(
x j − xi

)γ
D

γ
x D

β
x f h(xi )

]
− D

β
x f (x j )

= ̂
R

p+q+1−|β|
i j,β

. (105)

Now, we try to eliminate the second summation in the Eq.

(104)

p+q∑

|α|=p+1

[
1

α!
(
x j − xi

)α
Dα

x f h(xi )

]

by utilizing linear combination of Eq. (105), in order to

achieve an extra higher order truncation limits than stan-

dard explicit schemes. This is the fundamental concept of

the compact schemes that additional degrees of freedom of

derivatives are utilized to cancel out higher order truncation

errors. Specifically, for multi indices α : 0 ≤ |α| ≤ p,β :
1 ≤ |β| ≤ q ≤ p, the identity of Dα

x f h(xi ) s.t.

p+q∑

|α|=p+1

[
1

α!
(
x j − xi

)α
Dα

x f h(xi )

]
(106)

−
q∑

|β|=0

C(β, p, q)(x j − xi )
β

×
p+q−|β|∑

|γ |=0

[
1

γ !
(
x j − xi

)γ
D

γ
x D

β
x f h(xi )

]
= 0 (107)

completes the purpose. Solving the above identity provides

coefficients C(β, p, q), s.t.

C(β, p, q)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)|β| |β|!
β!

p!
(p + q)! , (|β| = q),

(−1)|β| |β|!
β!

q(p + q − |β|)!
(p + q!) , (0 < |β| < q),

1, (|β| = 0).

(108)

Multiplying this coefficient to Eq. (105) and taking sum-

mation for multi-index β : 0 ≤ |β| ≤ q yields

q∑

|β|=0

p+q−|β|∑

|γ |=0

C(β, p, q)(x j − xi )
β (109)

×
[

1

γ !
(
x j − xi

)γ
D

γ
x D

β
x f h(xi )

]

−
q∑

|β|=0

C(β, p, q)(x j − xi )
β D

β
x f (x j )

=
q∑

|β|=0

C(β, p, q)(x j − xi )
β ̂

R
p+q+1−|β|
i j,β

, (110)

:=
q∑

|β|=0

˜
R

p+q+1

i j,β
, (111)

where C(β, p, q)(x j − xi )
β ̂

R
p+q+1−|β|
i j,β

:= ˜
R

p+q+1

i j,β
is the

residuals of polynomial approximation which satisfy ∀β :
0 ≤ |β| ≤ q,

̂
R

p+q+1

i j,β
= O(‖x j − xi‖p+q+1). One

can transliterate this equation with symbols Ĥ ′
rs

, D̂x, p̂(x)

defined by Eq. (96), (97) and (101),

[
p̂T

(
x j − xi

rs

)[
̂
H

′−1
rs

D̂x f h(xi )

]]

−
q∑

|β|=0

[
C(β, p, q)(x j − xi )

β D
β
x f (x j )

]
=

q∑

|β|=0

˜
R

p+q+1

i j,β
,

(112)

and adopt the weighted least squares procedures. If we define

a discrete functional associated with
˜

R
p+q+1

i j,β
,

J ′(̂Hrs
′−1

D̂x f h(xi ))

:=
∑

j∈Λi

q∑

|β|=0

[
w

(‖x j − xi‖
re

)(
˜

R
p+q+1

i j,β

)2
]

(113)

=
∑

j∈Λi

q∑

|β|=0

[
w

(‖x j − xi‖
re

)

[
p̂T

(
x j − xi

rs

)[
Ĥ ′

rs

−1D̂x f h(xi )

]
(114)

− C(β, p, q)(x j − xi )
β D

β
x f (x j )

]2]
(115)

normal equations can be provided by minimizing functional

J ′, i.e.

∑

j∈Λi

[
w

(‖x j − xi‖
re

)
p̂

(
x j − xi

rs

)
p̂T

(
x j − xi

rs

)]

·
[

Ĥ ′
rs

−1D̂x f h(xi )

]

=
∑

j∈Λi

q∑

|β|=0

[
w

(‖x j − xi‖
re

)
p̂

(
x j − xi

rs

)

×C(β, p, q)(x j − xi )
β D

β
x f (x j )

]
. (116)

One can transliterate the above with symbols M̂i , b̂′′
i

defined by Eq. (98), and (100),

M̂i

[
Ĥ ′

rs

−1D̂x f h(xi )

]
= b̂′

i . (117)
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Thus, if the moment matrix M̂i is not singular, solutions

Ĥ ′
rs

−1
D̂x f h(xi ) are uniquely determined by solving normal

equations, so

Ĥ ′
rs

−1
D̂x f h(xi ) = ̂

M−1
i b̂′

i . (118)

Finally, since the scaling matrix Ĥ ′
rs

defined by Eq. (97)

is always non-singular, we can obtain the meshfree compact

schemes formulae,

D̂x f h(xi ) = Ĥ ′
rs

[
̂
M−1

i b̂′
i

]
. (119)

Remark 3.14 Although we defined two types of standard

schemes, meshfree compact scheme are limited to only a

type-B formulation if the condition p = q is satisfied. This

is attributed to rank deficiency of scaling matrix for type-A

formulae, s.t.

H ′
rs

:= diag

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

⎧
⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

∑

β: 0≤|β|≤q
β≤α, β �=α

C(β, p, q)

(α − β)!

⎞
⎟⎟⎠

−1

rs
−|α|

⎫
⎪⎪⎬
⎪⎪⎭

1≤|α|≤p

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

,

(120)

C(β, p, q) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)|β| |β|!
β!

p!
(p + q)! , (|β| = q),

(−1)|β| |β|!
β!

q(p + q − |β|)!
(p + q)! , (0 < |β| < q),

1, (|β| = 0).

(121)

If p = q,

∃α ∈ Nd
0 : 1 ≤ |α| ≤ p, s.t.

∑

β: 0≤|β|≤q
β≤α, β �=α

C(β, p, q)

(α − β)! = 0,

(122)

thereby, rank deficiency of scaling matrix H ′
rs

occurs. If

q < p, this problem for type-A formulation does not arise;

however, a condition p = q provides the highest 2pth

order consistency with pth order polynomial basis. In conse-

quence, we defined only type-B formulae of meshfree com-

pact schemes since rank deficiency of scaling matrix for type-

B defined by Eq. (97) does not happen. This mean that

0 ≤ ∀q ≤ p,∀α ∈ Nd
0 : 0 ≤ |α| ≤ p,

∑

β: 0≤|β|≤q
β≤α

C(β, p, q)

(α − β)! �= 0, (123)

thus, the scaling matrix Ĥ ′
rs

is always invertible.

Theorem 3.15 (Consistency of the meshfree compact

scheme) Let f (x) ∈ C p+q+1(Ω) that is defined on a simply

connected open set Ω ⊂ Rd . For multi-index α : 1 ≤ |α| ≤

p, there exists a constant C : 0 ≤ C < ∞, then meshfree

compact scheme holds the following consistency condition.

|Dα
x f (x) − Dα

x f h(x)| ≤ Cr
p+q+1−|α|
e | f (x)|C p+q+1(Ω).

(124)

Proof Since proof of this theorem can be demonstrated with

almost the same strategy as the standard scheme type-A and

type-B, it will not be discussed.

Similar to the relationship between the standard schemes

type-B and the MLS interpolant, meshfree compact schemes

can provide MLS-like interpolant function. Since utilizing

derivatives for interpolant is based on the Hermite interpola-

tion technique, we can define Hermite-type MLS interpolant

function as follows:

Definition 3.16 (Hermite-type Moving Least Squares inter-

polant (Discrete form)) Let f : Rd → R be a suffi-

ciently smooth function that is defined on a simply connected

open set Ω ⊂ Rd . There exists a global mapping operator

G : C0(Ω) → C p(Ω) s.t.

G f (x) := p̂(0)
̂
M−1

i b̂′
i . (125)

Note that this interpolant function is completely different

from the Generalized MLS(GMLS) [2], since GMLS formu-

lae cannot achieve an extra higher order truncation limit than

the order of polynomial basis.

3.3 Numerical demonstrations

In this section, we would like to show the advantages of new

schemes.

3.3.1 Calculation conditions

In order to compare accuracy and convergence rates of

schemes, derivatives of the following non-linear function

[29,30]

f (x, y) =3

4
exp

{
− (9x − 2)2

4
− (9y − 2)2

4

}

+ 3

4
exp

{
− (9x + 1)2

49
− (9y + 1)2

10

}

+ 1

2
exp

{
− (9x − 7)2

4
− (9y − 3)2

4

}

− 1

5
exp

{
−(9x − 4)2 − (9y − 7)2

}
(126)

defined on a domain Ω := {(x, y) ∈ R2 | [0, 1] ×
[0, 1]}, is calculated. A set of calculation points {xi }1≤i≤N

is distributed quasi-randomly by the following genera-

tion process; (i) : distribute nodal points {x′
i }1≤i≤N on
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the two dimensional uniformly structured square lattice

with width h, (ii) : give relative perturbation {δxi }1≤i≤N

by two dimensional normal distribution with parameters

µ = 0, σ = 0.10, where µ, σ denote the expecta-

tion of the distribution and the standard deviation, respec-

tively. Consequently, positions of irregularly arranged cal-

culation points {xi }1≤i≤N = {x′
i + δxi }1≤i≤N . As a mea-

sure of accuracy, discrete relative nodal supreme error

norm

eα
∞ :=

max
xi ∈Ω

|Dα
x f h(xi ) − Dα

x f (xi )|

max
x∈Ω

|Dα
x f (x)| (127)

is utilized. Furthermore, in order to confirm an effectiveness

of introducing scaling parameter rs to resolve ill-conditioned

system, the maximum condition number of moment matri-

ces

κ∞ := max
xi ∈Ω

{cond(Mi )} (128)

and averaged condition number of moment matrices

κave := 1

N

∑

xi ∈Ω

{cond(Mi )} (129)

are exploited. In this analysis, MLS interpolant [50] with

consistent derivative, MLSRKPM interpolant [65] with con-

sistent derivative, standard LSMPS scheme type-A, stan-

dard LSMPS scheme type-B, and meshfree compact scheme

are appropriated. On the least squares based schemes, 2nd

order, 3rd order, and 4th order polynomial basis are used,

respectively. 4th order spline function (w ∈ C2
0 (Rd))

is chosen as a weight function for all schemes. Dilation

parameters and scaling parameters used in this numerical

tests are shown in Table 1. Note that numerical exper-

iments performed by Tamai et al. [93] showed that a

gradient operator and a Laplace operator of the existing

MPS method [49] do not converge with constant dilation

parameter for the compact support of the weight func-

tions.

3.3.2 Calculation results

Convergence rates of e
(1,0)
∞ , e

(0,1)
∞ 4 are shown in Figs. 1 and

2, and comparison of condition numbers of moment matri-

ces are displayed in Figs. 3, 4, 5, 6, 7, and 8. Figures 1 and 2

show that the existing MLS, MLSRKPM, and present stan-

dard LSMPS schemes type-A/B achieve almost the same

accuracy and convergence rate with the same order poly-

nomial basis up to certain order p; however, it is notable that

standard LSMPS schemes do not require complicated dif-

ferentiation of interpolant functions since standard LSMPS

4 e
(1,0)
∞ , e

(0,1)
∞ mean eα

∞|α=(1,0), eα
∞|α=(0,1), respectively.

Table 1 Dilation parameter re and scaling parameter rs . (p: Order

of basis, q: maximum order of derivative to use for meshfree compact

scheme, re: Dilation parameter, and rs : scaling parameter, respectively.)

Type of scheme p re rs

MLS 2 3.5h

MLS 3 4.1h

MLS 4 4.7h

MLSRKPM 2 3.5h 3.5h

MLSRKPM 3 4.1h 4.1h

MLSRKPM 4 4.7h 4.7h

Standard LSMPS-A 2 3.5h 1.3h

Standard LSMPS-A 3 4.1h 1.35h

Standard LSMPS-A 4 4.7h 1.5h

Standard LSMPS-B 2 3.5h 0.7h

Standard LSMPS-B 3 4.1h 0.7h

Standard LSMPS-B 4 4.7h 0.7h

4th order meshfree compact scheme (q = 2) 2 3.5h 1.3h

Fig. 1 Convergence rates of e
(1,0)
∞ (MLS, MLSRKPM, Standard

LSMPS-A/B schemes, and 4th order meshfree compact scheme)

schemes calculate derivatives directly. For this reason, stan-

dard LSMPS schemes provide reduction of calculation cost

for strong-form meshfree spatial discretization with arbitrary

high order accuracy. Standard LSMPS schemes type-A and

type-B are equally matched in terms of accuracy and con-

vergence rate, whereas calculation waits of them are clearly

different. Since number of unknowns in normal equations

of type-A formulation is just one less than type-B, from a

perspective of calculation cost we can conclude that type-A

formulae are preferable to type-B. Incidentally, inversion of

accuracy between schemes p = 3 and p = 4 occurs partially.

This phenomena is attributed to choice of dilation parameter.

On the explicit spatial discretization schemes, a larger dila-

tion parameter is required for higher order approximation

which results in increase of calculation time.
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Fig. 2 Convergence rates of e
(0,1)
∞ (MLS, MLSRKPM, Standard

LSMPS-A/B schemes, and 4th order meshfree compact scheme)

Fig. 3 Averaged condition number of moment matrices (MLS,

MLSRKPM, LSMPS) (p = 2)

Fig. 4 Averaged condition number of moment matrices (MLS,

MLSRKPM, LSMPS) (p = 3)

Fig. 5 Averaged condition number of moment matrices (MLS,

MLSRKPM, LSMPS) (p = 4)

Fig. 6 Maximum condition number of moment matrices (MLS,

MLSRKPM, LSMPS) (p = 2)

Fig. 7 Maximum condition number of moment matrices (MLS,

MLSRKPM, LSMPS) (p = 3)
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Fig. 8 Maximum condition number of moment matrices (MLS,

MLSRKPM, LSMPS) (p = 4)

Worthy of special mention is excellent accuracy of mesh-

free compact scheme. Drawing a comparison between 2nd-

order explicit schemes and 4th-order meshfree compact

scheme with the same dilation parameter and the same order

basis demonstrates higher accuracy of the compact scheme,

and it beyonds comparison. Moreover, comparing between

4th-order explicit schemes and 4th-order meshfree compact

scheme shows the advantage of meshfree compact scheme

from the standpoint of accuracy. Note that if 4th-order poly-

nomial basis is utilized for least squares approximation,

meshfree compact scheme can achieve up to 8th order con-

sistency for the first derivatives. Although meshfree compact

schemes require several times iterative procedure, they can

contribute astonishingly higher accuracy and higher order

convergence rate than existing explicit meshfree spatial dis-

cretization schemes.

Figures 3, 4, 5, 6, 7, and 8 demonstrate that the effects of

introducing scaling parameter rs for the basis of the weighted

least squares method are significant. Condition numbers of

MLS moment matrix are not bounded, in other words, smaller

calculation point spacing makes larger condition number of

moment matrix.5 This is extremely dangerous case in numer-

ical calculation. On the other hand, maximum condition

numbers of MLSRK moment matrces and LSMPS moment

matrices are uniformly bounded; however, condition num-

bers of MLSRK moment matrixces are certainly larger than

LSMPS’s. As discussed in Remark 3.2, introducing scaling

parameter rs instead of dilation parameter re is a slight change

from the idea of MLSRK basis; however, it makes an enor-

mous difference for the condition number. Lower condition

number provided by the present technique yields avoidance

5 Order of MLS moment matrix’s condition number is evaluated as

O(r
−2p
e ), see [92]

of ill-conditioned problem which results in enhancement of

stability and accuracy in practical numerical calculations.6

4 Time integration scheme and boundary conditions

4.1 The rotational pressure-correction projection method

The classical projection scheme of Chorin [22] based on the

Helmholtz decomposition theorem and its derivations are

commonly utilized for numerical analyses of incompress-

ible flow. Consider the incompressible flow governed by the

Navier–Stokes equations and the mass conservation

∇ · u = 0, (130)

Du

Dt
= − 1

ρ
∇ P + ν∇2u + f, (131)

where u, ρ, ν, P, f denotes velocity vector, density, kine-

matic viscosity, pressure, and body force, respectively. There

are a lot of derivations of projection scheme. For instance,

assume that u be a sufficiently smooth function, the pressure-

correction schemes can be written into the following gener-

alized form [33]:

1st Step :

βs ũ −
s−1∑

j=0

β j u
k− j

∆t
= ν∇2ũ − 1

ρ
∇ P⋆ + f(tk+1), (132)

with boundary condition

ũ

∣∣∣
Γ

= 0. (133)

2nd Step :

βs

∆t

(
uk+1 − ũ

)
= − 1

ρ
∇φk+1, (134)

with boundary conditions

∇ · uk+1 = 0, (135)

uk+1 · n

∣∣∣
Γ

= 0, (136)

6 In practical numerical analyses, there exist not only round-off errors

of floating-point arithmetics but also numerical errors. In this numer-

ical convergence study, exact functional values { f (xi )}1≤i≤n are sub-

stituted into the right hand side vectors {b(xi )}1≤i≤n , then they contain

only round-off errors; however, in practical simulation of continuum,

the right hand side vectors must have numerical errors (e.g. numeri-

cal errors of pressure, velocity.). Ill-conditioned problems will enlarge

these errors; therefore, keeping linear systems to be well-conditioned

with lower condition number is crucially important.
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∂φk+1

∂n

∣∣∣∣
Γ

= 0, (137)

where Γ denotes the boundary of a domain, and modified

pressure φ is defined as follows:

φk+1 = Pk+1 − P⋆ + χµ∇ · ũ, (138)

P⋆ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, (r = 0),

Pk, (r = 1),

2Pk − Pk−1, (r = 2),

... (r ≥ 3).

(139)

Although sth order backward difference formulae that

approximate Du/Dt are applied in the above equations,

other consistent time discretization schemes are perfectly

acceptable.7 χ is a user-defined coefficient that equal to

0 or 1. The choice χ = 0 yields the standard pressure-

correction projection schemes, whereas χ = 1 gives the

rotational pressure-correction schemes. An important differ-

ence between the standard pressure-correction schemes and

the rotational forms appear in the Neumann boundary condi-

tion for pressure Poisson equations. The former enforce the

homogeneous Neumann boundary condition, s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Pk+1

∂n

∣∣∣∣
Γ

= 0, (r = 0),

∂ Pk+1

∂n

∣∣∣∣
Γ

− ∂ Pk

∂n

∣∣∣∣
Γ

= 0

�⇒ ∂ Pk+1

∂n

∣∣∣∣
Γ

= ∂ Pk

∂n

∣∣∣∣
Γ

= · · · = ∂ P0

∂n

∣∣∣∣
Γ

, (r = 1),

... (r ≥ 2),

(140)

this non-physical inconsistent Neumann boundary condi-

tions enforced on the pressure introduces the numerical

boundary layer which limits the accuracy of time integra-

tion schemes [33,83]. The later, the rotational schemes, how-

ever, enforce the non-homogeneous Neumann boundary con-

dition, s.t.

∂ Pk+1

∂n

∣∣∣∣
Γ

=
[
−µ∇ × ∇ × uk+1 + ρf(tk+1)

]
· n

∣∣∣∣
Γ

, (141)

which, unlike Eq. (140), is a consistent pressure bound-

ary condition derived from a velocity boundary condition

u · n|Γ . This is the origin of the name of “rotational” projec-

7 For instance, in our experience, The well-known Crank–Nicolson

scheme provides excellent results in terms of calculation cost and

numerical accuracy.

tion method.8 Therefore, we adopt the rotational pressure-

correction projection scheme in order to obtain consistent

time integration for LSMPS method.

Since LSMPS method will treat incompressible flow with

free surfaces and boundary walls, we now modify and refor-

mulate the rotational pressure-correction schemes as follows:

Definition 4.1 (LSMPS pressure-correction scheme

based on the rotational form projection method)

Moving Particle Step(Predictor):

xk+1 = xk + ∆tuk (142)

1st Step(Predictor):

βs ũ −
s−1∑

j=0

β j u
k− j

∆t
= ν∇2ũ − 1

ρ
∇ P⋆ + f(tk+1),

(143)

with boundary conditions

ũ

∣∣∣
ΓD

= uΓD
, (144)

µ
{
∇ũ + ∇ũT

}
· n

∣∣∣
Γ ′

D

= 0. (145)

2nd Step(Corrector, projection) :

βs

∆t

(
uk+1 − ũ

)
= − 1

ρ
∇φ, (146)

with boundary conditions

∇ · uk+1
∣∣∣
Ω

= 0, (147)

uk+1 · n

∣∣∣
ΓD

= uΓD
· n, (148)

∂φk+1

∂n

∣∣∣
Γ ′

N

= 0, (149)

φk+1
∣∣∣
Γ ′

D

= 0, (150)

8 Note that the identity µ∇2uk+1 = −µ∇ × ∇ × uk+1 is used.
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where modified pressure φ is defined as follows:

φk+1 = Pk+1 − P⋆ + µ∇ · ũ. (151)

Moving Particle Step(Corrector, if needed) :

xk+1 = xk + ∆t

2

(
uk+1 + uk

)
(152)

In Definition 4.1, ΓD, Γ ′
D, Γ ′

N denotes Dirichlet bound-

ary (boundary wall) on the velocity, Dirichlet boundary (free

surface) on the pressure, and Neumann boundary (bound-

ary wal) on the pressure, respectively. Taking divergence of

Eq. (146) and utilizing divergence free condition of the veloc-

ity ∇ · uk+1 = 0 yield modified pressure Poisson equations,

s.t.

∇2φk+1 = βs

ρ

∆t
∇ · ũ, (153)

with boundary conditions

φk+1
∣∣∣
Γ ′

D

= 0, (154)

∂φk+1

∂n

∣∣∣
Γ ′

N

= 0. (155)

It should be noticed that if Dirichlet boundary condition on

the pressure Pk+1|Γ ′
D

= 0 were enforced, Dirichlet boundary

condition on the modified pressure would be φk+1|Γ ′
D

= µ∇·
ũ. On the free surfaces, incompressible condition ∇ · ũ = 0

must be satisfied, then Dirichlet boundary condition on the

modified pressure would be φk+1|Γ ′
D

= 0. Note that solving

modified pressure Poisson equation (153) is equivalent to

calculating consistent pressure Poisson equations s.t.

∇2 Pk+1 = ∇2 P⋆ − µ∇2(∇ · ũ) + βs

ρ

∆t
∇ · ũ, (156)

with consistent non-homogeneous Neumann boundary con-

dition. One can observe from Eq. (153) and (156) that source

term of consistent Poisson equation is simplified by the intro-

duction of the rotational forms.

Note that time discretization schemes applied on the mov-

ing particle steps and the velocity evolution steps can be

replaced any other higher order time discretization schemes.

4.2 Generalized Neumann boundary conditions

enforcement

In numerical calculations, treatment of boundary conditions

plays a role as important as consistency and stability of dis-

cretization schemes. In order to consummate LSMPS method

as a numerical method for solving partial differential equa-

tions, we have to consider both Dirichlet and Neumann

boundary conditions on the velocity or the pressure.

Since LSMPS method is based on the strong-form formu-

lations, Dirichlet boundary conditions can be easily treated

by substitutiing of boundary values. On the other hand, Neu-

mann boundary condition enforcing is relatively difficult.

This seems to be commonality in the strong-form numeri-

cal methods. For instance, in the FDM, utilizing higher order

spatial discretization schemes yields more complicated for-

mulations of “one-sided finite difference schemes” to enforce

Neumann boundary conditions. This problem is a remarkable

tendency in two or three dimensional analysis which results

in difficulty of programming code implementation and main-

tenance.

In the existing particle method with semi-implicit algo-

rithm for incompressible fluid such as projection SPH method

[23], incompressible SPH method [85], and MPS method

[49], “dummy particle” approach for boundary walls is usu-

ally applied, and homogeneous pressure Neumann boundary

condition is implemented with modification procedures of

coefficient matrix for the discretized Laplace operator of the

pressure Poisson equations; however, they are inconsistent

as long as their discrete Laplace operator schemes and the

homogeneous pressure boundary condition enforcement are

inconsistent.

In order to construct a generalized procedure to enforce

consistent Neumann boundary conditions, we define a new

constrained scheme based on the weighted least squares

method.

Recall that we introduced variable transformations to

avoid ill-conditioned linear system derived from the least

squares procedures s.t.

Dα
x f h(x) −→ r

|α|
s

α! Dα
x f h(x)

to formulate Standard LSMPS schemes type-A/B, and

assume that outer normal unit vector n is uniquely defined

on the boundary of the domain Γ and Neumann boundary

condition of sufficiently smooth function f is given by

∂ f (x)

∂n
= gN (x). (157)

This Neumann boundary condition can be rewritten equiva-

lently as

∂ f (x)

∂n
= gN (x) (158)

⇐⇒
∑

|α|=1

nα Dα
x f (x) = gN (x) (159)
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⇐⇒
∑

|α|=1

nα

{
r
|α|
s

α! Dα
x f (x)

}
= rs gN (x) (160)

⇐⇒pT
N (x)

[
H−1

rs
Dx f (x)

]
= rs gN (x) (161)

⇐⇒p̂N
T (x)

[
Ĥrs

−1
D̂x f (x)

]
= rs gN (x) (162)

where

pN (x) :=

⎛
⎝n

∣∣∣
x
, 0, · · · , 0︸ ︷︷ ︸

σ times

⎞
⎠ , (163)

p̂N (x) :=

⎛
⎝0, n

∣∣∣
x
, 0, · · · , 0︸ ︷︷ ︸

σ times

⎞
⎠ , (164)

σ :=
(

p + d

d

)
− (d + 1), (165)

and rs > 0 is the scaling parameter. Equations (161) and

(162) can be viewed as one of the equations that constructs

normal equations derived from the weighted least squares

method since unknowns are common. Thus, if we define a

discrete functional associated with R
p+1
i j ,

̂
R

p+1
i j , Eqs. (161)

and (162), s.t.

JN (H−1
rs

Dx f h(xi )) (166)

:=
∑

j∈Λi

w

(
x j − xi

re

)(
R

p+1
i j

)2

+ wN (xi , re)

[
pT

N

∣∣∣
xi

[
H−1

rs
Dx f h(xi )

]
− rs gN (x)

]2

,

(167)

ĴN (Ĥrs

−1
D̂x f h(xi ))

:=
∑

j∈Λi

w

(
x j − xi

re

)(
̂
R

p+1
i j

)2

+ wN (xi , re)

[
p̂N

T
∣∣∣
xi

[
Ĥrs

−1
D̂x f h(xi )

]
− rs gN (x)

]2

,

(168)

they provide normal equations. The choice of weight wN

(xi , re) for Neumann boundary condition enforcement is

arbitrary. In this study, we utilize the following:

wN (xi , re) := max
x∈Rd

w(x, re). (169)

Note that this choice requires non-singular weight func-

tion usage. Then, if moment matrices of normal equations

provided by minimizing Eqs. (166) and (168) are non-

singular, we can obtain constraint LSMPS schemes type-

A/B to enforce arbitrary Neumann boundary condition as

follows:

Definition 4.2 (Constraint LSMPS scheme, Type-A)

Let f : Rd → R be a sufficiently smooth function on

a simply connected open set Ω ⊂ Rd and assume that

outer normal unit vector n ∈ Rd is uniquely defined on

the boundary of domain ΓN , Γ ′
N , and Neumann bound-

ary condition ∂ f (x)/∂n|ΓN ,Γ ′
N

= gN (x) is given. Con-

straint LSMPS schemes Type-A are defined as follows:

Dx f h(xi ) := Hrs

[
[Mi + Ni ]

−1 {bi + ci }
]

(170)

where

Dx :=
{

Dα
x | 1 ≤ |α| ≤ p

}
, (171)

Hrs := diag

{{
rs

−|α|α!
}

1≤|α|≤p

}
, (172)

Mi :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)

p

(
x j − xi

rs

)
pT

(
x j − xi

rs

)]
,

(173)

Ni := wN

(‖xi‖
re

)
pN (xi ) pT

N (xi ) , (174)

bi :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)
(175)

p

(
x j − xi

rs

)
{ f (x j ) − f (xi )}

]
, (176)

ci := wN

(‖xi‖
re

)
pN (xi ) rs gN (xi ), (177)

p (x) :=
{
xα | 1 ≤ |α| ≤ p

}
, (178)

pN (x) :=

⎛
⎝n

∣∣∣
x
, 0, · · · , 0︸ ︷︷ ︸

σ times

⎞
⎠ , (179)

σ :=
(

p + d

d

)
− (d + 1), (180)

wN

(‖xi‖
re

)
= max

x∈Rd
w(x, re) (181)

Λi :=
{

j

∣∣∣ 0 ≤ ‖x j − xi‖ < re

}
(182)

re : dilation parameter (0 < re),

rs : scaling parameter (0 < rs ≤ re).

p : order of polynomial basis
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Definition 4.3 (Constraint LSMPS scheme, Type-B)

Let f : Rd → R be a sufficiently smooth function on

a simply connected open set Ω ⊆ Rd and assume that

outer normal unit vector n ∈ Rd is uniquely defined on

the boundary of domain ΓN , Γ ′
N , and Neumann bound-

ary condition ∂ f (x)/∂n|ΓN ,Γ ′
N

= gN (x) is given. Con-

straint LSMPS schemes Type-B are defined as follows:

D̂x f h(xi ) := Ĥrs

[[
M̂i + N̂i

]−1 {
b̂i + ĉi

}]
(183)

where

D̂x :=
{

Dα
x | 0 ≤ |α| ≤ p

}
, (184)

Ĥrs := diag

{{
rs

−|α|α!
}

0≤|α|≤p

}
, (185)

M̂i :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)
(186)

p̂

(
x j − xi

rs

)
p̂T

(
x j − xi

rs

)]
, (187)

N̂i := wN

(‖xi‖
re

)
p̂N (xi ) p̂N

T (xi ) , (188)

b̂i :=
∑

j∈Λi

[
w

(‖x j − xi‖
re

)
p̂

(
x j − xi

rs

)
f (x j )

]
,

(189)

ĉi := wN

(‖xi‖
re

)
p̂N (xi ) rs gN (xi ), (190)

p̂ (x) :=
{
xα | 0 ≤ |α| ≤ p

}
, (191)

p̂N (x) :=

⎛
⎝0, n

∣∣∣
x
, 0, · · · , 0︸ ︷︷ ︸

σ times

⎞
⎠ , (192)

σ :=
(

p + d

d

)
− (d + 1), (193)

wN

(‖xi‖
re

)
= max

x∈Rd
w(x, re) (194)

Λi :=
{

j

∣∣∣ 0 ≤ ‖x j − xi‖ < re

}
(195)

re : dilation parameter (0 < re),

rs : scaling parameter (0 < rs ≤ re).

p : order of polynomial basis

Remark 4.4 Since moment matrices of linear systems are

changed with additional terms Ni , N̂i , the conditions of

moment matrix invertibility are relaxed. In other words, adsc-

ititious outer normal vector n for the moment matrix acts as

the position of the additive virtual calculation point. More-

over, it moves “the center of gravity of particles”, minifies

the condition number of moment matrix, and provides an

improvement of accuracy near the domain boundary.

4.3 Surface boundary particle detection algorithm

In order to run analyses of fluid flow with free surfaces with

Lagrangian description, dynamic algorithm to detect surface

boundary particles is required. In the MPS method [49], a

very simple algorithm is utilized. Let ni be a parameter called

“particle number density”9 of particle xi defined by

ni :=
∑

j �=i

w(x j − xi , re), (196)

and n∗
i , n0 denotes a particle number density pre-solving

pressure Poisson equations and a reference particle number

density, respectively. The MPS surface boundary detection

algorithm is that, if a particle xi satisfies

n∗
i < βn0, (197)

then it will be judged as a particle on the surface boundary;

otherwise, it will be treated as a particle in interior of domain.

β is a user-defined tuning parameter, and is usually chosen

to be in the range of β = 0.80−0.97. Very similar algorithm

is introduced for incompressible SPH method [85] that the

condition is

ρ∗
i < βρ0, (198)

where ρ denotes the density that is defined by

ρi :=
∑

j

mw(x j − xi , re). (199)

These algorithm are very simple, however, erroneous deci-

sion of surface boundary particle, which yields unphysical

oscillation of pressure fields, often occurs. Various proposal

to solve this problem have been sought, for instance, alter-

native or additive conditions such as usage of the center of

gravity of the particles [32], gradient of the particle num-

ber density [40], and divergence of particle position [52] are

introduced; however, incorrect judgements remains.

Boundary detection algorithm based on the particular geo-

metrical conditions are also proposed, for example, “Arc

method” for the MLSPH method [24,25] provides excel-

lent results. Koh et al. also utilize Arc method for the MPS

method [46]; however, it has a deal killer that extension of the

algorithm for three dimensional surface boundary detection

9 It should be called “weight function density” for more accurate

description.
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must be severely complex. Actually, Haque and Dilts con-

structed the methodology of three dimensional arc method

[35]; however, it is exceedingly complicated and requires

high computational cost.

Under these circumstances, we propose a new precisive

surface boundary particle detection algorithm with unified

simple implementation for arbitrary dimension. A new one

consists of three steps.

First step is similar to the existing MPS algorithm. If a par-

ticle xi satisfies the condition governed by Eq. (197), then a

particle get the next step decision. Otherwise, a particle xi

will be treated as one in the interior of domain and the second

or the final steps are skipped. It should be noticed that, unlike

the MPS method, LSMPS particle number density is defined

by

ni :=
∑

Λi

w(x j − xi , re), (200)

where Λi := { j | 0 ≤ ‖x j − xi‖ < re}, since non-singular

weight functions are utilized for LSMPS method.

On the second step, for particles xi , eigenvalues λk; 1 ≤
k ≤ d of 1st order moment matrix defined by

M1,i

:=
∑

j∈Λi

[{
1

ni

w

(‖x j − xi‖
re

)}
(x j − xi )

‖x j − xi‖
(x j − xi )

T

‖x j − xi‖

]

(201)

are utilized for the surface boundary screening. If a condition

min
1≤k≤d

λk ≤ β1 (202)

is satisfied, then a particle xi is located on the surface bound-

ary of the domain, and the final step will be omitted. If a

condition

β1 < min
1≤k≤d

λk ≤ β2 (203)

is fulfilled, then a particle xi goes to the final judgement. If

a condition

β2 < min
1≤k≤d

λk (204)

is held, then a particle xi lies in the interior of the domain.

The reason to utilize the minimum eigenvalue of 1st order

moment matrix10 is that near or on the surface boundary,

10 Note that linear transformation
(x j − xi )

‖x j − xi ‖
(x j − xi )

T

‖x j − xi ‖
is the

orthogonal projection matrix onto the relative particle position

(x j − xi )/‖x j − xi ‖; therefore, 1st order moment matrices defined by

Eq. (201) are also “averaged orthogonal projection matrices” and their

eigenvector associated with the minimum eigenvalue face in the direc-

tion that particle distribution around xi is poor.

e1

e2

n

: Filtered particle

: Neighboring particles

: Searching region

Fig. 9 Schematic diagram of final-stage judgement algorithm to detect

particles on the free surface

the minimum eigenvalue of 1st order moment matrix will be

smaller, on the other hand, in the interior of the domain, it

will be closer to 1. Obviously, if particle distribution is on

the uniform structured grid, the minimum eigenvalue of 1st

order moment matrix is 1. β, β1, β2 are user-defined tuning

parameters, and β = 0.90, β1 = 0.20, β2 = 0.80 are chosen

in this study, respectively.

On the final judgement, only particular geometrical infor-

mations of particle distribution are capitalized; therefore, no

tuning parameter is utilized. The final decision whether a par-

ticle xi is on the free surface boundary or not is performed by

searching other particle or particles in the scanning region.

Schematic diagram of the final-step is showed in Fig. 9, and

definition of the searching region is displayed in Fig. 10. If

conditions

∃ j ∈ Λi , s.t.

⎧
⎪⎨
⎪⎩

‖x j − xi‖ ≥
√

2l0

and

‖(xi + l0n) − x j‖ < l0

(205)

or

∃ j ∈ Λi , s.t.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

‖x j − xi‖ <
√

2l0

and
x j − xi

‖x j − xi‖
· n >

1√
2

(206)

are satisfied, a particle xi is judged to be in the interior of the

domain; otherwise, it is considered to be on the free surface

boundary. In the above conditions, l0 denotes the averaged

particle distance at the initial state, and n is a normalized

eigenvector associated with the minimum eigenvalue, which
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n

τ

√

2l0

l0 l0

l0

Fig. 10 Geometric diagram definition of searching region for final-

stage judgement algorithm to detect particles on the free surface

plays the same role as an outer unit normal vector near or

on the free surfaces since an eigenvector associated with the

minimum eigenvalue face in the direction that particle distri-

bution is poor. Hence, we can get outer unit normal vectors n

as a byproduct of the second step of the present algorithm and

this reduces calculation cost. Note that a portion of searching

region

{
x ∈ Ω

∣∣∣ ‖x − xi‖ ≥
√

2l0, and ‖(xi + l0n) − x‖ < l0

}

is important to avoid fallacious decision that “two layers” of

surface boundary is produced.

The advantages of present methodology are simplicity

of implementation, unified formulae for arbitrary number

of dimension, and an exclusion of tuning parameter in

the final step. Although this technique utilizes geometri-

cal information of particle distribution, unlike arc method

[24,25,35], three dimensional surface boundary detection

algorithm never becomes complicated.

4.4 Modification of source term of the Poisson equation

As discussed in the Sect. 4.1, modified pressure Poisson equa-

tion

∇2φk+1 = βs

ρ

∆t
∇ · ũ (207)

should be solved in the LSMPS rotational pressure-correction

scheme. This is a consistent formulation if consistent spa-

tial discretization schemes are applied; however, this yields

accumulation of numerical errors derived from space-time

discretization error that appears in a long time numerical sim-

ulation. The reason comes from the fact that the source term

βs
ρ
∆t

∇ · ũ cannot reflect particle overcrowding and depopu-

lation. In other words, number of particles per typical volume

must be overlooked, though incompressibility manifested by

the divergence free condition of the velocity field ∇ · u = 0

is well satisfied. In contrast, in the existing MPS method and

Incompressible SPH method, the following pressure Poisson

equations are solved.

∇2 Pk+1 =

⎧
⎪⎪⎨
⎪⎪⎩

− ρ

∆t2

n∗
i − n0

n0
(MPS)

− ρ

∆t2

ρ∗
i − ρ0

ρ
(I-SPH)

(208)

On the MPS and Incompressible SPH source term formu-

lae, numerical errors of particle number density or density,

which means number of particles per typical volume, must

be estimated at every time step and never vanish; however,

this type of formulations yields overwhelming oscillation of

pressure fields. Thus, divergence free (DF) type source term

(Eq. 207) and density invariant (DI) type source term (Eq.

208) have their advantages and disadvantages.

In order to combine the advantages of DF-type and DI-

type source term formulations, mixed source term formu-

lae are developed. Tanaka and Masunaga [94] and Kondo

and Koshizuka [47] proposed two-term or three-term mixed

source term for the MPS method, respectively. Their proposal

could provide smoother pressure fields and keeping parti-

cle density to be constant; however, time-step (∆t) depen-

dent tuning parameters that restrict the use of variable time-

stepping and are difficult to chose in general are required.

Khayyer and Gotoh [45] also utilized three-term mixed

source term without time-step dependent tuning parameters;

however, their accuracy is 0th or less since they adopted non-

renormalized SPH divergence operator to approximate time

derivative of particle number density.

Our present approach is an improvement of Kondo and

Koshizuka’s [47] proposal without any access to the time-

step dependent tuning parameters that time derivatives of

density in Kondo and Koshizuka’s formulae are replaced by

divergence of velocity via continuity equation to enhance

accuracy. Note that particle number density and density esti-

mation defined by Eqs. (196) and (199) utilize the lack

of 0th order completeness/reproducing condition. Conse-

quently, the accuracy of particle number density or density

are 0th or less, in general. On the other hand, divergence

of velocity calculated with consistent spatial discretization

schemes can achieve arbitrary high order accuracy; there-

fore, we utilize divergence of intermediate velocity ũ as a

major component of source term and add feed-backing terms

of particle distribution error as follows:
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Definition 4.5 (LSMPS modified Pressure Poisson

equations and boundary conditions)

∇2φk+1 = βs

ρ

∆t
(∇ · ũ)

+ ρ

∆t

∣∣∣∣∣
nk − n̂0

n̂0

∣∣∣∣∣ (∇ · uk)

+ ρ

∆t

∣∣∇ · uk
∣∣
(

nk − n̂0

n̂0

) (209)

with boundary conditions

φk+1
∣∣∣
Γ ′

D

= 0 (210)

∂φk+1

∂n

∣∣∣
Γ ′

N

= 0 (211)

The second term of Eq. (208) is a error correction term

of divergence free condition, and |(nk − n̂0)/n̂0| is a non-

dimensional semi-positive coefficient. The third term is a

error adjustment term of particle number density invariant,

and |∇ · uk | is a semi-positive coefficient chosen to have

appropriate dimension. Note that successive refinement pro-

cedures of time-space subdivisions make ∇ · uk to be zero;

therefore, error correction terms must vanish when incom-

pressibility of the fluid is numerically satisfied. n̂0 is the mod-

ified reference of particle number density defined by

n̂0 = NFilled cell

NTotal cell

∫

Rd

w(x, re)dx (212)

In the above equation, the coefficient NFilled cell/NTotal cell is

a remediation factor for the lack of 0th to approximate parti-

cle number density defined by Eq. (196). Consider a uniform

structured local background cell with spacing l0. Schematic

diagram is shown in Fig.11. NTotal cell is the total number

of local background cells, which must be well-adopted for

the dilation parameter re and number of dimension d.11

NFilled cell is the number of local background cells occupied

by a particle or particles. NFilled cell count increment is differ-

ent for each particle types. Fluid particles in the interior of

the domain are counted with weight 1, and fluid particles on

the free surface boundary or wall boundary are enumerated

11 For example, if re = 3.1 ≈ 3 and d = 2 are chosen, NTotal cell =
(2×re)

2 ≈ 62 = 36. If re = 3.1 ≈ 3 and d = 3 are chosen, NTotal cell =
(2 × re)

3 ≈ 63 = 216. Determination of NTotal cell must be flexible for

the choice of dilation parameter.

: Fluid particle in interior domain

: Fluid particle on free surfaces

: Fluid and wall particle on wall

xi xi

: Fully filled cell

: Half filled cell

: Void cell

re

e1

e2

l0

l0

Fig. 11 Schematic diagram of particle number density modification

with utilizing temporary local background cell

with weight 1/2. If two or more particles exist in a cell, the

maximum count of this cell is limited to be 1. This simple

procedures should be perfumed not to all but particles that

includes boundary particle in their own support of weight

function. This present modification must enhance accuracy

of particle number density approximation dramatically near

or on the boundaries.

5 Numerical example

In order to demonstrate the advantage of the present LSMPS

method comparing with the existing MPS method, two

dimensional dam-collapse (dam-break) problem is chosen as

a benchmark problem. Since dam-collapse problem includes

free surfaces (Dirichlet boundary on the pressure and Neu-

mann boundary on the velocity), boundary wall (Dirichlet

boundary on the velocity and Neumann boundary on the pres-

0.8[m]

0.2[m]

0.4[m
]

0 .5[m
]

Gravity 9.8[m/s2]

Fig. 12 Schematic diagram of initial state of fluid and fixed boundary

wall for the two dimensional dam collapse problem
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Fig. 13 Calculation result of dam collapse problem with pressure con-

tour color map (Top Existing MPS method, Bottom Present LSMPS

method, t = 0.2)

sure), and topological changes and fragmentations of con-

tinuum, it is a comprehensive benchmark of incompressible

flow with free surfaces.

5.1 Calculation conditions

The governing equations are the Navier–Stokes equations

with gravity acceleration (Eq. 131) and the continuity equa-

tion (Eq. 130). Initial state (shape) of fluid and fixed solid

boundary wall is illustrated in Fig. 12. Physical parameters

are chosen as follows: density ρ = 1.0 × 103 kg/m3, kine-

matic viscosity ν = 1.0×10−6 m2/s, norm of gravity accel-

eration ‖g‖ = 9.8 m/s2, and the following numerical para-

meters are used: averaged particle spacing at the initial state

l0 = 5.0 × 10−3 m, dilation parameter re = 4.1l0, and scal-

ing parameter rs = 1.3l0. The following weight function is

utilized for both LSMPS and MPS methods.

Fig. 14 Calculation result of dam collapse problem with pressure con-

tour color map (Top Existing MPS method, Bottom Present LSMPS

method, t = 0.4)

w(x, re) =

⎧
⎪⎨
⎪⎩

(‖x‖
re

− 1

)2

, 0 ≤ ‖x‖ < re

0, re ≤ ‖x‖.
(213)

For the LSMPS method, the standard LSMPS scheme type-A

and the constrained LSMPS scheme type-A with 2nd order

polynomial basis is utilized for spatial discretization, and for

time integration scheme, (r, s) = (0, 1) is selected; therefore,

the order of LSMPS time integration scheme is similar to the

existing MPS one.12 It must be emphasized that no stabiliza-

tion techniques are introduced for the LSMPS calculation.

On the other hand, for the MPS method, some stabilization

procedures are adopted since calculation of the existing MPS

without stabilization results in terminating computation in

12 Of course, as would be expected empirically, high order time inte-

gration schemes provide more accurate numerical solution. There are a

lot of time discretization schemes, therefore, investigation of time inte-

gration schemes applied for LSMPS method would be interesting work

in future.
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Fig. 15 Calculation result of dam collapse problem with pressure con-

tour color map (Top Existing MPS method, Bottom Present LSMPS

method, t = 0.6)

early times of numerical simulation. In particular, stabiliza-

tion method such as collision model [47], gradient operator

modification [48], and pressure modification that negative

pressure is corrected to be zero, are introduced only for the

MPS method.

Fig. 16 Calculation result of dam collapse problem with pressure con-

tour color map (Top Existing MPS method, Bottom Present LSMPS

method, t = 0.8)

5.2 Calculation results

Snapshots of calculation results (t = 0.2, . . . , 1.2) with con-

tour plot of pressure fields are shown in Figs. 13, 14, 15, 16,

17, and 18, and the time evolutions of pressure observed

on a sampling points A and B are displayed in Figs. 19
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Fig. 17 Calculation result of dam collapse problem with pressure con-

tour color map (Top Existing MPS method, Bottom Present LSMPS

method, t = 1.0)

and 20. Figures 13, 14, 15, 16, 17, and 18 shows that the

existing MPS solutions suffered from unphysical pressure

oscillation. In contrast, LSMPS solutions provide smoother

pressure field without numerical oscillation. One can observe

from Figs. 13, 14, 15, 16, 17, and 18 that clarity of free

surface boundary is demonstrably different. Smoother pres-

sure field contributes to stable motions of particles, which

results in unambiguity of deformable fluid interfaces. More-

over, Figs. 19 and 20 demonstrate that LSMPS solutions pro-

duce smooth pressure evolution in both space and time. Now

Fig. 18 Calculation result of dam collapse problem with pressure con-

tour color map (Top Existing MPS method, Bottom Present LSMPS

method, t = 1.2)

Fig. 19 Time evolution of pressure on a sampling point A
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Fig. 20 Time evolution of pressure on a sampling point B

we can gain release from problem such as serious numerical

pressure oscillation.

The major differences between the MPS method and the

LSMPS method in this analysis are the order of spatial dis-

cretization schemes, pressure Neumann boundary condition,

pressure source term of Poisson equation, and surface bound-

ary particle detection algorithm. We have to mention that this

more accurate and stable calculation can be obtained only

by an introduction of the combination of new proposals. In

other words, implementation of one improvement would be

frustrated by a variety of factors. Since LSMPS formulae

presented in this study can achieve arbitrary high order accu-

racy, more accurate solution can be widely expected from an

application of higher order schemes.

6 Conclusion

In this paper, a new consistent meshfree-Lagrangian approach

for incompressible flow with free surfaces, named Least

Squares Moving Particle Semi-implicit (LSMPS) method is

developed. This methodology includes arbitrary high order

consistent meshfree spatial discretization schemes, time inte-

gration schemes with consistent boundary conditions, and

generalized treatment of Neumann boundary conditions.

Application of new proposals to benchmark problem demon-

strates conspicuous enhancement of stability and accuracy.

Excellent accuracy of new meshfree compact schemes gener-

alized for arbitrary dimension and high order of consistency

is worthy of special mention. They are applicable for not only

incompressible flows but also any targets governed by partial

differential equations in meshfree framework; therefore, this

new meshfree method can be utilized as one of the powerful

tools to obtain high order accurate numerical solutions.
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