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Abstract-It has long been realized that in pulse-code modulation 
(PCM), with a given ensemble of signals to handle, the quantum values 
should be spaced more closely in the voltage regions where the signal 
amplitude is more likely to fall. It has been shown by Panter and Dite that, 
in the limit as the number of quanta becomes infinite, the asymptotic 
fractional density of quanta per unit voltage should vary as the one-third 
power of the probability density per unit voltage of signal amplitudes. In 
this paper the corresponding result for any finite number of quanta is 
derived; that is, necessary conditions are found that the quanta and 
associated quantization intervals of an optimum finite quantization scheme 
must satisfy. The optimization criterion used is that the average quantiza- 
tion noise power be a minimum. It is shown that the result obtained here 
goes over into the Panter and Dite result as the number of quanta become 
large. The optimum quantization schemes for 26 quanta, b = 1,2, t ,7, are 
given numerically for Gaussian and for Laplacian distribution of signal 
amplitudes. 

I. INTRODUCTION 

T HE BASIC IDEAS in the pulse-code modulation 
(PCM) system [ 11, [2, ch. 191 are the Shannon-Nyquist 

sampling theorem and the notion of quantizing the sample 
values. 

The sampling theorem asserts that a signal voltage s(t), 
- 00 < t < cc, containing only frequencies less than W 

cycles/s can be recovered from a sequence of its sample 
values according to 

s(t) = f$ s(tj)K(t - t,), -ccoOttm, (1) 
jz-00 

where s(tj) is the value of s at thejth sampling instant 

t,=&k -coCj-Co3, 

and where 

sin2rWt 
K(t) = 2mJ,J,7t T -KloOttco, (2) 

is a “sin t/t ” pulse of the appropriate width. 
The pulse-amplitude modulation (PAM) system [2, ch. 

161 is based on the sampling theorem alone. One sends 
over the system channel, instead of the signal values s(t) 
for all times t, only a sequence 

. . . > s(t-I>, &), s(t*>, * * - (3) 

of samples of the signal. The (idealized) receiver constructs 
the pulses K(t - tj) and adds them together with the 
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received amplitudes s!i’), as in (1), to produce an exact 
reproduction of the ongmal band-limited signal s. 

PCM is a modification of this. Instead of sending the 
exact sample values (3), one partitions the voltage range of 
the signal into a finite number of subsets and transmits to 
the receiver only the information as to which subset a 
sample happens to fall in. Built into the receiver there is a 
source of fixed representative voltages-“quanta’‘-one 
for each of the subsets. When the receiver is informed that 
a certain sample fell in a certain subset, it uses its quantum 
for that subset as an approximation to the true sample 
value and constructs a band-limited signal based on these 
approximate sample values. 

We define the noise signal as the difference between the 
receiver-output signal and the original signal and the noise 
power as the average square of the noise signal. The prob- 
lem we consider is the following: given the number of 
quanta and certain statistical properties of the signal, de- 
termine the subsets and quanta that are best in minimizing 
the noise power. 

II. QUANTIZATION 

Let us formulate the quantization process more ex- 
plicitly. A quantization scheme consists of a class of sets 

{Q,, Qz>. . -> Q,} and a set of quanta {q,, q2;. -,q,}. The 
{Q,} are any v disjoint subsets of the voltage axis which, 
taken together, cover the entire voltage axis. The {qa} are 
any v finite voltage values. The number v of quanta is to be 
regarded throughout as a fixed finite preassigned number. 

We associate with a partition (Q,} a label function y(x), 
- 00 < x < co, defined for all (real) voltages x by 

y(x) = 1 if x liesin Q,, 

y(x) =2 if x liesin Q2, (4) 

y(x) = v if x liesin Q,. 

If s(t,) is the jth sample of the signal s, as in Section I, 
then we denote by aj the label of the set that this sample 
falls in: 

aj = Y(s(tj)), -m<j<co. 

In PCM the signal sent over the channel is (in some code 
or another) the sequence of labels 

. . . ,a-,,a,,q;~~, (5) 

each aj being one of the integers { 1,2,. . +, v}. The technol- 
ogy of this transmission does not concern us, except that 
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we assume that such a sequence can be delivered to the 
receiver without error. 

The receiver uses the fixed voltage 4, as an approxima- 
tion to all sample voltages in Q,, (Y = 1,2,. * *, v. That is, 
the receiver, being given the value of uj in the sequence (5), 
proceeds as if the jth sample of s had value q, and 
produces the receiver-output signal 

r(t) = 5 q,K(r - tj)P -co<ttoQ. 

j=-* 

To put it another way, the system mutilates an actual 
sample voltage value x to the quantized value y(x) given 

by 

Y(X) = 4U(X)’ -cQcx)xxcc, (6) 

and we may express the receiver output in terms of this as 

r(t) = g y(s(tj))K(t - tj)9 -03~<~<. 

jz-03 

(7) 

Hence the noise signal, defined as 

n(t) = r(t) - s(t), -m<ttcc, 

is given by 

n(t) = 5 z(s(t,))K(t - t,), -co~tt<, 
jz-00 

(8) 

where 

z(x) =y(x> - x, -Mexico, (9) 

may be regarded as the quantization error added to a 
sample which has voltage value x. 

Note that we assume that the receiver uses the nonrealiz- 
able pulses (2). If other pulses are used (e.g:, step functions 
or other realizable pulses) there will be sampling noise, in 
general, even without quantization [3]. Our noise (8) is due 
strictly to quantization. 

Finally we must emphasize that we assume that the {Q,} 
and {q,) are constant in time. In deltamodulation and its 
refinements the {Q,} and {q,} change from sampling 
instant to sampling instant, depending on the past behav- 
ior of the signal being handled. Such systems are very 
difficult to treat theoretically. 

III. NOISE POWER 

Instead of working with a particular band-limited signal, 
we assume that there is given a probabilistic family of such 
signals. That is, the s of the preceding sections and hence 
the various signals derived from it are to be regarded as 
stochastic processes [4]. We denote the underlying proba- 
bility measure by P{ .} and averages with respect to this 
measure (expectations) by E{ . }. 

We use the following results of the probabilistic treat- 
ment. We assume that the s process is stationary, so that 
the cumulative probability distribution function of a sam- 

ple, 

F(x) = P{s( t) 5 X}) -@3(x<m, 

is independent of t, - 00 < t -C 00, as indicated by the 
notation. Then the average power of the s process, assumed 
to be finite, is constant in time: 

S = E{s’(t)} =/:mxzdF(x), -co ==c t < co. 

w-9 

Moreover, the r and n processes have this same property; 
the average receiver-output power R is given by 

R = E{r2(t)} =I-Ly’(x) dF(x), -00 < t < 00, 

(11) 

where y(x) is defined in (6), and the noise power N is 

N = E{n2(t)} =J-tz2(x)dF(x), -00 <t < co, 

(1-a 

with z(x) as in (9). (Detailed proofs of these statements, 
together with further assumptions used, are given in Ap- 
pendix A.) The stochastic process problem is thus reduced 
to a problem in a single real variable: choose the {Q,} and 
{q,} so that the rightmost integral in (12) is as small as 
possible. 

IV. THE BEST QUANTA 

We consider first the problem of minimizing N with 
respect to the quanta {qa} when the {Q,} are fixed preas- 
signed sets. 

The dF integral in (12) may be written more explicitly as 

N= i ( (q,-x)2dF(x). (13) 

(The sets {Q,} must be measurable [dF] if (1 l)-( 13) are to 
have meaning, and we assume always that this is the case.) 
If we regard the given F as describing the distribution of 
unit probability “mass” on the voltage axis [5, p. 571, then 
(13) expresses N as the total “moment of inertia” of the 
sets {Q,} around the respective points (4,). It is a classical 
result that such a moment assumes its minimum value 
when each {q,} is the center of mass of the corresponding 
{Q,} (see, e.g., [5, p. 1751). That is, 

JQ, 
4a = a = 1,2;**,v > (14 

/ Q dF(x) ’ 
n 

are the uniquely determined best quanta to use with a 
given partition {Q,}. 

To avoid the continual mention of trivial cases we as- 
sume always that F is increasing at least by v + 1 points, 
so that the quantization noise does not vanish. Then none 
of the denominators in (14) will vanish, at least in an 
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optimum scheme. For if Q, has vanishing mass it can be 
combined with some set Q, of nonvanishing mass (dis- 
carding q,) to give a scheme with v - 1 quanta and the 
same noise. Then one of the sets of this scheme can be 
divided into two sets and new quanta assigned to give a 
scheme with v quanta and noise less than in the original 
scheme. (We omit the details.) 

If the expression on the right in (14) is substituted for q, 

in (13), there results 

N = S - ji 
LY=l 

q:lQ dF(x), 
a 

where the {q,} here are the optimum ones of (14). The sum 
on the right is the receiver-output power from (11). Hence 
when the {q,} are centers of mass of the {Q,}, optimum or 
not, then S = R + N, which implies that the noise is 
orthogonal to the receiver output. One expects this in a 
least squares approximation, of course. 

V. THE BEST PARTITION 

Now we find the best sets {Q,} to use with a fixed 
preassigned set of quanta (4,). The considerations of this 
section are independent of those of the preceding section. 
In particular, the best {Q,} for given {q,} may not have 
the {q,} as their centers of mass. 

We assume that the given {q,} are distinct since it will 
never happen in an optimum scheme that q, = qP for some 
(Y # p. For if q, = qp, then Q, and QB are effectively one 
set Q, U Qp as far as the noise is concerned (13), and this 
set can be redivided into two sets and these two sets can be 
given distinct quantum values in such a way as to reduce 
the noise. (We omit the details.) 

Consider the probability mass in a small interval around 
voltage value x. According to (13) any of this mass which is 
assigned to q, (i.e., which lies in Q,) will contribute to the 
noise at rate (q, - x)~ per unit mass. To minimize the 
noise, then, any mass in the neighborhood of x should be 
assigned to a qa for which (qa - x)~ is the smallest of the 
numbers (q, - x)~, (q2 - ~)~;..,(q~ - x)~. In other 
words, 

Q, > [X : (q, - x)’ < ( qp - x)’ for all /3 # a>, 

a = l,,..‘,V, 

modulo sets of measure zero [ dF].’ This simplifies to 

Q, 1 {x:(qp - q&x - f(q, + qp)) <OforallP+a), 

a = 1,2;**,v. 05) 

It is straightforward that the best {Q,} are determined by 
(15) as the intervals whose endpoints bisect the segments 
between successive {q,}, except that the assignment of the 
endpoints is not determined. To make matters definite we 
let the {Q,} be left-open and right-closed, so that the best 

‘If C(x) is a condition on x, then {x: C(x)} denotes the set of all x 
which satisfy C(x). 

partition to use with the given quanta is 

Q, = {x: - 00 <XIX,) 

Q,= {X:X<XIX~} 

(16) 

Qv-, = {x:x,-2(xIx,-,} 
Q,= {x:x,~~~x~co}, 

where the endpoints {x~} are given 

Xl = &I, + q2) 

x2 = 5(42 f q3) 07) 

X,-I = tkv-1 + 4,). 
We have assumed, as we shall hereafter, that the indexing 
is such that q, -C q2 < . . * -C q,. 

VI. QUANTIZATION PROCEDURES 

From Sections IV and V we know that we may confine 
our attention to quantization schemes defined by 2v - 1 
numbers 

ql<x, <q,<x,< -..<qv-,<xp-,(qy, (18) 

where the {x~} are the endpoints of the intervals {Q,}, as 
in (16), and the { qa} are the corresponding quanta. We will 
regard such a set of numbers as the Cartesian coordinates 
of a point 

in (2v - 1)-dimensional Euclidean space E2y-I. The noise 
as a function of p has the form 

N(p) =Jx’ (ql - x)‘dF(x) +jx2(q2 - x)‘dF(x) + .a. 
-cc 

+,-‘;, - x)‘dF(x). (19) 
h-1 

In an optimum scheme the {qa} will be centers of mass 
of the corresponding {Q,}, (14), and the ( xa} will lie 
midway between adjacent {q,}, (17). From the derivations 
these conditions are sufficient that N(p) be a minimum 
with respect to variations in each coordinate separately and 
hence are necessary conditions at a minimum of N(p). As 
it turns out, however, they are not sufficient conditions for 
a minimum of N(p). Points at which (14) and (17) are 
satisfied, which we term stationary points, while never local 
maxima, may be saddle points of N(p). Moreover, among 
the stationary points there may be several local minima, 
only one of which is the sought absolute minimum of N(p). 
These complications are discussed further in Appendix B. 
The author has not been able to determine sufficient 
conditions for an absolute minimum. 

The derivations suggest one trial-and-error method for 
finding stationary points. A trial point p(l) in E2”-, is 



132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-28, NO. 2, MARCH 1982 

chosen as follows. The endpoints 

-00 <xp<xp< . . . <xp, < CQ 

are chosen arbitrarily except that each of the resulting 
{Qt)} should have nonvanishing mass. Then the centers of 
mass of these sets are taken as the first trial quanta {q:‘)}. 

These values will not satisfy the midpoint conditions 
(17), in general, so that the second trial point pc2) is taken 
to be 

qL2’ = q;‘), a = 1,2;. ‘,V 

,@) = i(q’2’ + q’?,), a a a a = 1,2;-*,v - 1, 

with appropriate modifications if any of the resulting { QL2)} 
have vanishing mass. This step does not increase the noise, 
in view of the discussion in Section V; that is, N(pc2)) 5 
N( p”)). 

The new {qf)}, centers of mass (c.m.) of the old {Q$}, 
will not be centers of mass of the new {QL2)}, in general; 
trial point pc3) is determined by 

x(3) = .(2) 

,a, = (a ’ 

ff = 1,2,*.*,v - 1, 

c.m. of Qi3)), a = 1,2;*.,v. 

For the resulting noise we have N(pC3)) 5 N(pc2)). 
We continue in this way, imposing conditions (14) and 

(17) alternately. There results a sequence of trial points 

p”’ p’2’ . . . 
9 7 (20) 

such that 

N( p(“) r N( p’“)) L . . . . 

The noise is nonnegative, so that lim,N( pcm)) will exist, 
and we might hope that the sequence (20) had as a limit a 
local minimum of N(p). 

If the sequence (20) has no limit points then some of the 
{xLm)} must become infinite with m; this corresponds to 
quantizing into fewer than v quanta. Since we have as- 
sumed that F increases at least by v -t 1 points there will 
be quantizing schemes with v quanta for which the result- 
ing noise is less than the optimum noise for v - 1 quanta, 
obviously. If p(” is such a scheme then (20) will have limit 
points, using the property that N(p(“)) is a decreasing 
sequence.2 

Suppose p(“) is such a limit point. If each of the coordi- 
nate values {x&m)} of p(“’ is a continuity point of F then it 
is easy to see that the coordinates of p(“) will satisfy both 
(14) and (17). In particular, if N(p) has a unique stationary 
point p,, (which is the minimum sought), then the sequence 
(20), unless it diverges, will converge to p,,. 

Note, by the way, that at a local minimum of N(p) the 
numbers {xa} are necessarily continuity points of F. Sup- 
pose to the contrary that there is a nonvanishing amount of 
mass concentrated at one of the,endpoints {x0>, and that 
the adjacent sets Q, and Q,,, are as in (16), so that the 
mass at x, belongs to Q,. The centers of mass q, and qa+ 1 

21t seems likely that this condition A’( p(‘)) 5 (optimum noise for Y - 1 
quanta) is stronger than necessary for the nondivergence of (20). 

will lie equidistant from x, (17), and from (19) the noise 
will not change if we reassign the mass at x, to Q,, 1, 
retaining the given (4,) as quanta. But q, and qa+ , are 
definitely not centers of mass of the corresponding mod- 
ified sets, and the noise will strictly decrease as qa and qa+ 1 
are moved to the new centers of mass. Thus the given 
configuration is not a local minimum, contrary to assump- 
tion. From this result and (19) we see that N(p) is continu- 
ous in a neighborhood of a local minimum. We have 
proved also that there is no essential loss of generality in 
assuming the form (16) for the {Q,}. 

We refer to the above trial-and-error method as Method 
I. Another trial-and-error method is the following one, 
Method II. To simplify the discussion we assume for the 
moment that F is continuous and nowhere constant. We 
choose a trial value ql satisfying 

41 < (” xdF(x). 
J-cc 

The condition that q, be the center of mass of Q, de- 
termines x1 as the unique solution of 

/ 
x’ xdF(x) 

41= /:: dF(x) . 

-00 

The quantities q, and x1 now being known, the first of 
conditions (17) determines q2 as 

q2 = 2x1 - 41. 

If this q2 lies to the *right of the center of mass of the 
interval (x,, co) then the trial chain terminates, and we 
start over again with a different trial value q,. Otherwise, 
x1 and q2 being known, the second of conditions (14): 

serves to determine x2 uniquely. Now the second of condi- 
tions (17) gives 

cl3 = 2x2 - q2. 

We continue in this way, obtaining successively 

41, Xl, * . .,q,- ,, x,,- ,, q,; the last step is the determination 
of q, according to 

4, = 2x,-, - 4,-l. (21) 

However in this procedure we have not used the last of 
conditions (14): 

J 
co xdF(x) 

4, = yz dF(x) ? (22) 

X,-I 

and the q, obtained from (21) will not satisfy (22) in 
general. The discrepancy between the right members of 
(21) and (22) will vary continuously with the starting,value 
q,, and the method consists of running through such chains 
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using various starting values until the discrepancy is re- 
duced to zero. 

This method is applicable to more general F, with some 
obvious modifications. When F has intervals of constancy 
the {xJ may not be uniquely determined by conditions 
(14), and a trial chain may involve several arbitrary param- 
eters besides q,. Discontinuities of F will cause no real 
trouble, since we know that the {xu} of an optimum 
scheme are continuity points of F, a trial chain that does 
not have this property is discarded. We note that Method 
II may be used to locate all stationary points of N(p). 

VII. EXAMPLES 

In all of the examples we now consider, the distribution 
of sample values is absolutely continuous with a sample 
probability density f = F’, which is an even function. If 
N(p) has a unique stationary point, which we assume to be 
the case in the examples treated, then the optimum {qa} 
and {xa} will clearly be symmetrically distributed around 
the origin. In applications we are usually interested in 
having an even number of quanta, v = 2~~ so we renumber 
the positive endpoints and quanta according to 

O=xo<q,<x,< . ..<q.-,<x,-,<q,; (23) 

the endpoints and quanta for the negative half-axis .are the 
negatives of these. 

We normalize to unit signal power S = 1. The {q,} and 
{x~} for other values of S are to be obtained by multiply- 
ing the numbers in the tables by \rs. 

The simplest case is the uniform distribution: 

Method II of the preceding section shows that N(p) in this 
case has a unique stationary point, which is necessarily an 
absolute minimum. The optimum scheme is the usual one 
with v equal intervals of width l/(2&) each; the quanta 
being the midpoints of these intervals. The minimum value 
of the noise is the familiar N = l/v*. 

Another case of possible interest is the Gaussian: 

-cQ~x-=c<. 

TABLE I 
GAUSSIAN,Y = 2 

a 40 x, 

1 0.7919 co 

TABLE II 
GAUSSIAN,~ = 4 

a 4a X, 

1 0.4528 0.9816 
2 1.5104 w 

TABLE III 
GAUSSIAN,Y = 8 

a 4a X, 

1 0.245 1 0.5006 
2 0.7560 1.0500 
3 1.3439 1.7480 
4 2.1520 co 

TABLE IV 
GAUSSXAN,~ = 16 

a 
1 0.7584 0.%82 
2 0.3880 0.5224 
3 0.6568 0.7996 
4 0.9423 1.0993 
5 1.2562 1.4371 
6 1.6181 1.8435 
7 2.0690 2.4008 
8 2.1326 co 

TABLE VIII 
GAUSSIAN;OPTIMUMNOISEFORVARIOUSVALUES OF Y 

Y N Y2N YXl 

2 0.3634 1.452 
4 0.1175 1.880 3.93 
8 3.455 x 10-2 2.205 4.00 

16 9.500 x 10-3 2.430 4.13 
32 
64 

128 

(03) (0) (2.72) (4.34) 

For speech signals a distribution which has been found 
useful empirically is the Laplacian: 4 

-lxl!h f(x) = c-.- 
6 ’ 

-m<xX<. 
The optimum quantizing schemes for this distribution for 

The optimum schemes for v = 2’, b = 1,2,. . . ,7, are given 
v=2b,b= 1,2,-e. ,7, are given in Tables IX-XV, respec- 

in Tables I-VIL3 respectively. The corresponding noise tively. The corresponding N, v*N, and vx, values are given 

values appear in Table VIII together with the quantities 
in Table XVI; again, we notice certain regularities. 

v*N and vx,. The behavior of these latter with increasing v VIII. ASYMPTOTIC PROPERTIES 
hint at the existence of asymptotic properties; we examine 
this question in the next section. Let us assume that the distribution F is absolutely con- 

tinuous with density function f = F’, which is itself dif- 

‘Since some of the tables were never completed, those tables although 
mentioned in text are not included in this paper. 

4The author is indebted to V. Vyssotsky of the Acoustics Research 
Group for this information (private communication). 
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ferentiable, and that for each v there is a unique optimum 
quantization scheme. We revert to our original numbering 

(10 
Let the quantities {h,} be defined by 

ha = x, - 4, = qa+l - x,, a = 1,2 “‘,V - 1 7 , 

so that, for a = 2,3,-a. ,v - 1, Q, consists of an interval 
of length h, to the right of q, together with an interval of 
length ha-, to the left of qa. We have already imposed the 
optimizing conditions (17) in the very definition of the 
{h,}. The center of mass conditions (14) (except for the 
first and last) may be written as 

qa+ha 
s, -h -,( 

x - q&(x) dx = 0, a = 2,3;..,v - 1. 
OL a 

If we expand f here in Taylor’s series around q,, the 
integration gives 

t(hi - hit-,)fk,) + +@‘a + hi-,)f’(d 

= o( h3,) + o( hi-,), a = 2,3;*.,v - 1. (24) 

The numbers in Tables VIII and XVI suggest the ex- 
istence of an asymptotic fractional density of quanta. 
Accordingly, we define the function g,(x), - cc < x < cc, 

by 

d-4 = 09 -cQooxxq, 

1 II- 
2vh, ’ 4, <x 5 q&+1, 

(25) 

a = 1,2,-a-,v - 1, 
= 0, q,<x<m. 

The definition is arranged so that (for given v) the sets 

Q2, Q3,. . -,Q,-, subtend equal areas of l/v each under 
the graph of g,(x) versus x. We will proceed as if a limiting 
density, 

g(x) = p~&)~ -caooxx<, 

existed. 
We wish to express g in terms of the given sample 

density function f. To do this we will use conditions (24), 
together with the following further assumptions. We as- 
sume that g has a derivative, and we assume that for given 
x and k the difference c”(x) = g,(x) - g(x), -cc < x ( 
co, has the property’ 

In (24), then, we may approximate h, - ha-, by 

ha - ha-, 

1 1 

i&z, + ha) - dqa - ha-,) 1 

g’(qJ 
= - 2v2g3(qa) 

a = 2,3;..,v - 1, 

5Thenotationu(v) = O(Z)(Y)) meansinourcaselim,,,u(v)/o(v) = 0. 60ther derivations of (27)-(28) are given in [6] and [7]. 

TABLE XVII 
APPROXIMATE LASTENDPOINT 
FROMASYMPTOTICFORMULA 

Gaussian Laplacian 
” b” bv 

2 0 
4 1.168 
8 1.992 

16 2.657 
32 
64 

128 

and we find that the left-hand member of (24) is indeed 
o(h3) = o(l/v3) provided that 

g’(x) - f’b> --- 
g(x) 3fb) ’ 

-09~x~co. (26) 

The normalized solution of (26) is 

g(x) = f 1’3(x) 
(” fl/3(x,)dx” --ooxx~oo, (27) 

J-cc 

provided that the integral in the denominator exists. 
The noise power becomes 

N=I 
12v2 

=‘[I^ f1i3(x)dx]3+o(f), 
12v2 --oo 

(28) 

neglecting the contributions from the end quanta.6 For the 
Gaussian example then, the numbers v*N of Table VIII 
should have a limit easily evaluated from (28) as 
v*N + no/2(= 2.72), and in the Laplacian case, Table 
XVI, we find v*N --) 9/2. 

The quantities denoted by vx, in Tables VIII and XVI 
should have the limiting value 

lim v( ha- 1 + h,) = -!- 
v-m 
400 

g(O) ’ 

comparing with (25). In the Gaussian example we find 
l/g(O) = G(= 4.34), and for the Laplacian: l/g(O) = 
3a( = 4.24). 

For large values of v the sets {Q,} should subtend 
approximately equal areas of l/v each under the graph of 
g(x) versus x, so that the number b, defined by 

$ = Jbmd:) dx 
Y 

might be expected to be near the rightmost division point. 
Comparing Table XVII with Tables I-VII and IX-XVI we 
see that the approximation is surprisingly good, at least in 
the examples considered. 
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Analysis and Digital Processes Group; the programming of 
Method I for the IBM-650 electronic computer was done 
by Miss C. A. Conn. 

After substantial progress had been made on the work 
described here there appeared in [ 1 l] a review of a paper 
by J. Lukaszewicz and H. Steinhaus on optimum go/no-go 
gauge sets. The present author has not been able to obtain 
a copy of this paper, but it seems likely that these authors 
have treated a problem similar or identical to the one 
discussed in Sections IV-VI. M. P. Schtitzenberger in [12] 
examines the quantization problem in the case where v = 2 
and where F increases at 3 or 4 points. 

S(X) =/lily,(h) 
= e2niXt 

= ,,+ 

-w<x< w, 

A= -cw, 

from [8]. Hence, using the representation (30) for the samples, the 
sampling series 

i(t) = g s(t,)K(t - t,) (31) 
j=-m 

converges (in stochastic mean square) to 

J”(t) = 1;i.z. / w+” S,(X) G(X) 
- -w-o 

/ 
w-o Z PiA,, + 26, cos2?rWt (32) 

- w+o 

= s(t) + 26,sin27rWt, -w<t<w, 

APPENDIX A from [4, p. 4291. (The corresponding result for deterministic 

Suppose s(t), - w < t < co, is a continuous parameter sto- 
functions is given in [9].) Since the orthogonal increments prop- 

chastic process, real, separable, measurable, stationary, and of 
erty of 5 requires E{ 6 ,S,} = 0 together with 

finite power: E= (8:) =E{8;} =+E{)[(‘W+O)-+W-O)12}, 

S=E{s2(t)} =jm 2dF(x)<w, -w<t<co, 
-cc 

(where F is the first-order distribution of the process, Section III). 
Then s has a spectral representation 

s(t) = jm e2*iAtdS(A), -co<t<w, (29) 
--m 

where the spectral process [(A), - cc < X < co, has orthogonal 
increments [4, p. 5271. To say that s is band-limited to the 
frequency band - W 5 X 5 W is to say that the [ process has 
vanishing increments outside of this band with probability one, 
and (29) becomes 

we see from (32) that the sampling series (31) represents s with 
probability 1, if and only if, the [ process has no power con- 
centrated at the band edges, 

E(J[()W+O)-[(“W-0)\2} =O. 

(Other proofs of this result appear in [3] and in [lo].) 
Let s be as above and suppose q(x), - 00 < x < co, is a Bake 

function. Then the random variables 

. . . ? d4-,)), cpMGd)~ cp(4~1))> ... (33) 

constitute a stationary discrete-parameter stochastic process. If 
the number 

s(t) =j-w;Joe2”i”tdt(A). -w<t<w. (30) @ = E{q2(+,))} =j_m_lp’(x) dF(x), -co <j< cc), 

Since we are particularly concerned with the behavior of & at the is finite then the process (33) admits a spectral representation 
band edges, we rewrite (30) as 

s(t) = jpw~~oe 2rfxtd6(X) + 26,cos2aWt - 26,sin2mWt, 
Q+(t,)) =j-wwe2”ilh/(2W’d$(h), -co cjc co, 

-w~t~w, 

where the n process has orthogonal increments ([4, p. 4811, with a 
change of scale). 

where the real random variables 6, and 6, describe the jumps of 6 A certain continuous parameter stochastic process e(t), -cc 

at the band edges: < t < co, may be defined in terms of the n process by 

~(*W+O)-[(*W-O)=6,-Ci8,. e(t) =/-wwe2”‘x’dq(A), -co <t < co. 

For fixed t, the function e2”jx’, - WI X I W, has Fourier 
coefficients 

This process is stationary in the wide sense and has the given 
process (33) as its samples, clearly 

1 
/ 

w e-2Tijh/(2W)e277ihrd~ 

‘I = 2~ _ w e(t,) = cp(S(l,)), -al <j -=c co. 

= sin2mW(t -j/ (2W)) 
Moreover, 

29rW(t - j/ (2W)) E{e’(i)} = j~ww~{ldd~~ I’} = j~mv2(x)df’(x), 

= K(t - tj), -wCj<w, -w<t~co. 

in the notation of Section I. This function is of bounded varia- 
The 0 process is represented by the sampling series 

tion, so that the partial sums 

ax) = i 
pwwq f - t,), 

e(i)=j=~ciP(s(~,))K(i-4), -woOttwoO, (34) 

- w 5 x 5 w, 

jzz -[ if and only if, the spectral process q has no power concentrated at 
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the band edges. The arguments are identical to those given above 
for the s process itself. 

The I and n processes of Sections II and III are of the form just 
described, since the functions y(x), (6), and z(x), (9), will differ 
from certain Baire functions only on sets of measure zero [dF] 

when we assume, as we do, that the sets {Q,} are measureable 

[W. 
The well-known mean-erogodic property, 

m” (-l)'cP(s(tj)) 
1.i.m. 2 

mf~--m~-m j=mj m II-m'+1 

=Tj(W+O)-q(w-0)+q(-w+0)-l)(-W-O) 

=2Re[q(‘W+O)--(tW-0)], 

([4, p. 4911) shows that the requirement that 9 have no power at 
the band edges is equivalent to the condition 

Finally we note that if the .$ process has a discrete component 
at frequencies *A,, then depending on the form of cp, the 
derived n process is likely to have discrete components at all of 
the harmonic frequencies krnh, (modulo 2W) of A,, m = 

1,2;.. . In particular, if A, is rational then the n process may 
have a discrete component at the band edges, a possibility which 
must be excluded if (34) is to hold. 

APPENDIX B 

A simple example shows that the conditions (14) and (17) are 
not sufficient for an absolute minimum of N. Suppose F is 
absolutely continuous, with a density f = F’ as shown in Fig. 1, 
where c,(b, - b,) + c2(b4 - b,) = 1. If Y > 1 quanta are de- 
sired, let v,, v2 > 0 be any integers such that v, + v2 = v, and 
divide the interval (b,, b2) into v, equal intervals and (b,, b4) 
into v2 equal intervals; let the quanta be the midpoints of these v 
intervals. If we suppose that b, < +(b, + b,) and b, > &(b2 + b4) 
then the division point which separates the right-hand {Q,} in 
(h, , b2) and the left-hand {Q,) in (b,, b4) will lie in the interval 
(h,, b3), so that the conditions (14) and (17) will be satisfied. 
Thus we have v - 1 distinct local minima of N. (If c,, respec- 
tively c2, is small enough there may even be another minimum, 
corresponding to v, = 0, respectively v2 = 0.) Which of these is 
the true minimum depends on the values of the parameters. 
(Explicitly, the noise has the value 

N = c,(b2 - bJ3 + c2(h‘l - b313 

12v: 12v; ’ 

and the v2/v, for which this is a minimum is given by 

v2/ (h - b3) c2 “3 

v,/(b2-b,)= ; ’ ( 1 

agreeing with (27).) 
The following interesting example is due to J. L. Kelly, Jr., of 

the Visual Research Group. Let the density f be as in Fig. 2, with 
c2 > c,, c, + c2 = 1. The signal power is S = l/3, independently 
of c, and c2. Suppose v = 2. One configuration for which condi- 
tions (14) and (17) are satisfied is q, = - 4, x, = 0, q2 = 4, 
clearly, and the resulting noise in N = l/ 12. When c2 > 3c, ; 
however, there is another solution-it is the one which in the 
limit c, = 0, c2 = 1 goes into the scheme where (0,l) is divided 

b 

T CP 

Cl 

b, b2 0 b3 b, x- 

Fig. 1. The density f(x) vanishes outside of the intervals (b,, b2), 
(ha bd 

-I O I I X- 
XI 

Fig. 2. The density f( x) vanishes outside of the interval (- 1,l). 

into two equal parts and (- 1,O) is ignored. The parameters for 
this configuration work out to be 

c2 - 9c, 
41=4c, 

2 

c2 - 3c, 
Xl =T, 

3(c2 - cl) 
q2 = 4c2 9 

NE&- (c2-3c~)3 
16~; 

Hence if this configuration exists then it is better than the one 
first mentioned. We note, by the way, that method I of Section 
VI will converge to the (- l/2, 0, l/2) configuration, if the 
starting value xl’, is negative; if c2 > 3c,, however, this config- 
uration is only a saddle point of N. 

Author’s Note 1981: 

This is nearly a verbatim reproduction of a draft 
manuscript, which was circulated for comments at Bell 
Laboratories; the Mathematical Research Department log 
date is July 3 1, 1957. I wish to thank the editors for their 
invitation to publish this antique samizdat in the present 
issue. 

The main reason the paper was not submitted for publi- 
cation previously was that the numerical calculations were 
never completed. The Gaussian v = 32 case was done on 
the IBM 650 card programmable calculator; the Laplacian 
cases were done only for v = 2. Some time later the 650 
was replaced by an IBM 701 electronic computer, but no 
quantizing program was written for it. 

I was not satisfied with not having conditions for a 
unique minimum but would have published the paper 
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without this. Later, P. E. Fleischer of Bell Laboratories 
gave a neat sufficient condition in his paper [ 131. 

In the examples of Appendix B, the direct current can be 
[41 
[51 

removed by changing the origin; the noise is not affected. 
The results of the paper are valid for the uncentered 
processes used. 
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The Hexagon Theorem 

DONALD J. NEWMAN 

A k&act- We wish to minimize ls 1 2 - f( 2) I’, S the unit square, over 
all choices off(Z) which take just n values. For large n it is shown that 
f(Z) approaches that function which on each face of a “hexagonal mesh” 
has the value of the centroid of that face. This problem in the design of 
quantizers for a pulse-code modulation (PCM) system arose in which pairs 
of adjacent samples are quantized in an effort to capitalize on the correla- 
tion between samples and on the geometry of the plane. 

W E WISH TO MINIMIZE /s 1 Z - f(Z) 12, S the unit 
square, over all choices of f(Z) which take just n 

values. For any fixed n this seems a hopelessly complicated 
problem. For n large, A. J. Goldstein has conjectured that 
the minimizingf( Z) approaches a “hexagonal mesh” func- 
tion. Indeed, if S, , S,, . . . , S,, are the usual tessellation of S 
into equal regular hexagons and some boundary pieces, 
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The author was with Bell Laboratories as a consulting engineer. He is 

now with the Mathematics Department, Temple University, Philadelphia, 
PA, 19122. 

Editor’s Note: This paper first appeared as a Bell Laboratories Techni- 
cal Memorandum in May 1964. The principal theorem of this paper was 
first proved by L. Fejes Toth in his book Lagerungen in der Ebene, auf der 
Kugel und im Raum, Springer-Verlag, Berlin, 1953. Newman’s paper 
provided the first exposition in English of the result and a new and simple 
proof. 

and f(Z) = centroid of S, for Z E Si then 

where 

5 (JXZ- 
18fi . 

This fact and the following theorem verify Goldstein’s 
conjecture in a very sharp way. 

Theorem: If S is the unit square and f( Z) is any (measura- 
ble complex valued) function on S, which takes only n 
distinct values, then 

p - f(Z)12 > f 
where 

5 

u=iip. 

Proof: Let f*(Z) be the actual minimizer. (Existence is 
trivial.) 
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