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Abstract

This paper introduces a novel declipping algorithm based on
constrained least-squares minimization. Digital speech signals
are often sampled at 16 kHz and classic declipping algorithms
fail to accurately reconstruct the signal at this sampling rate
due to the scarcity of reliable samples after clipping. The Con-
strained Blind Amplitude Reconstruction algorithm interpolates
missing data points such that the resulting function is smooth
while ensuring the inferred data fall in a legitimate range. The
inclusion of explicit constraints helps to guide an accurate in-
terpolation. Evaluation of declipping performance is based on
automatic speech recognition word error rate and Constrained
Blind Amplitude Reconstruction is shown to outperform the
current state-of-the-art declipping technology under a variety
of conditions. Declipping performance in additive noise is also
considered.

Index Terms: nonlinear distortion, declipping, robust speech
recognition, speech enhancement, constrained optimization

1. Introduction

Signal clipping is a common form of dynamic range compres-
sion (DRC) in which the peaks of a signal exceeding a certain
amplitude threshold are lost, or clipped. Clipping is a non-
invertible, many-to-one mapping. Clipping typically occurs in
one of three ways: (1) during signal recording, as a result of
exceeding the dynamic range limitations of an analog-to-digital
(A/D) converter (e.g., by yelling loudly into a microphone and
not properly adjusting the pre-amplifier gain), (2) as a result of
writing audio data to a file, where the audio has not been prop-
erly normalized in amplitude (e.g., MATLAB’s wavwrite
function requires values in the range [—1, 1]), or (3) on pur-
pose, to achieve some desirable perceptual characteristic and/or
reduce the signal’s dynamic range (e.g., for mastering music).

In this paper, clipping is simulated using the following
transformation.

o] = {m[n] if [z[n]] < 7 o

T-sgnzn] if |z[n]| > 7

In Equation 1, z[n] is an unclipped waveform, and z.[n] is
the clipped output. Clipping is parameterized by the clipping
threshold, 7, which will be expressed in terms of percentiles of
the absolute value of the unclipped speech, z[n]. Expressing 7
in this way causes the clipping transformation to be independent
of the scaling of the input waveform, and allows for a more
controlled experiment. The X *" percentile will be denoted Px.
Note that if 7 = Px then (1 — Px )% of the signal samples
have been lost due to clipping.

Figure 1 depicts one pitch period of voiced speech, sampled
at 16 kHz, that has been clipped at an amplitude of 7 = Prs,
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Figure 1: 16 kHz speech signal before and after clipping. The
reliable samples after clipping are shown in blue, those that are
clipped are shown in black. The original, unclipped signal is
shown in grey.

in this case corresponding to 0.0631. The original unclipped
speech is shown in grey. The clipped signal is overlaid as a stem
plot; the black samples are clipped, the blue samples remain re-
liable after clipping. There is a clear scarcity of reliable samples
in the regions where the original signal has a large amplitude.
An ideal declipping algorithm will recover the original (gray)
unclipped signal from the observed (black and blue) samples.

A large number of declipping techniques have been pro-
posed over the years. One of the most common themes is the
use of an autoregressive (AR) model to predict the missing sam-
ples, e.g., as in linear predictive coding (LPC) [1]. Perhaps the
most widely-cited work using AR modeling is by Janssen et al.
[2], in which LP coefficients are recursively estimated from the
clipped speech using an EM-like algorithm. Work by Fong and
Godsill utilizes AR modeling, but not directly, instead using AR
as the underlying statistical model of a particle filter from which
an interpolating sequence of samples is drawn [3]. Selesnick
proposed a declipping approach based on minimizing the third
derivative of the reconstructed signal [4]. Other more recent
approaches include reconstructions based on sparsity ([5], [6])
and recursive vector projection [7]. The work by Kitic et al. is
particularly successful and motivates some of the techniques in
this paper.

The remainder of the paper is organized as follows. Section
2.1 outlines the effect of clipping on automatic speech recog-
nition (ASR) performance. Section 2.2 analyzes what causes



Recognition of clipped speech

)

—_
o
S

D X
oS O

Word error rate (%
[\ &
(e (e

o

15 100

35 55 75 95
T, threshold (percentile)

Figure 2: Word error rates for recognition of clipped speech
using the CMU Sphinx-III ASR trained on clean, unclipped
speech. Note that 7 = Pio is no clipping.

classic declipping algorithms to fail. Section 3 introduces Con-
strained Blind Amplitude Reconstruction, or cBAR, a novel de-
clipping algorithm motivated by the principles outlined in Sec-
tion 2.2. Finally, Section 4 compares the performance of the
cBAR algorithm to current state-of-the-art declipping technol-

ogy.

2. Motivation
2.1. Effect of clipping on automatic speech recognition

Clipping has an unsurprisingly deleterious effect on ASR per-
formance. Figure 2 shows results of decoding speech that has
been clipped at various clipping thresholds'. Note that an ap-
proximately linear relationship between threshold and word er-
ror rate (WER) is observed.

2.2. What makes current declipping algorithms fail?

An effective declipping algorithm that can blindly reconstruct
data from a clipped observation could serve to significantly
improve the robustness of ASR systems that process clipped
speech. Many classic methods fail to accurately reconstruct
the clipped signals for all but the most benign clipping thresh-
olds. To illustrate, the following techniques will be considered
in more detail:

1. Janssen-AR: This classic algorithm proposed by Janssen
et al. [2] models the clipped observation as an AR pro-
cess. The per-frame linear prediction coefficients are es-
timated from the clipped observation using an iterative
EM-like algorithm. Given the estimated coefficients, the
missing data are interpolated using linear prediction.

2. Selesnick-LS: This unpublished technique interpolates
the missing data such that the third derivative of the

! All speech recognition experiments are run using CMU Sphinx-III
[8], trained on the clean RM1 database [9], with Mel-Frequency Cep-
stral Coefficient (MFCC) features. The RM1 database is sampled at 16
kHz and contains 1600 training utterances and 600 test utterances. A
standard bigram language model and 8-component GMM-based acous-
tic model were used. Sphinx-IIT is an HMM-based system. The MFCC
features use a 40-band Mel-spaced triangular filter bank between 133
Hz and 6855 Hz. Windowing of 25.625 ms duration is performed at
100 frames per second using a Hamming window. Utterance-level cep-
stral mean subtraction is performed before training and decoding.
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(a) Janssen-AR reconstruction. All reconstructions are illegitimate
because they fall within the positive and negative clipping thresh-
olds.
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(b) Selesnick-LS reconstruction. The first two reconstructions are
illegitimate because they fall within the positive and negative clip-
ping thresholds.
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(¢) Kitic-IHT reconstruction.
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(d) Constrained BAR reconstruction.

Figure 3: Comparison of current declipping algorithms.
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Figure 4: Word error rates for recognition of declipped speech
using the CMU Sphinx-III ASR, which had been trained on
clean, unclipped speech. The speech was declipped using three
standard techniques. Kitic-IHT is the only algorithm that is gen-
erally effective. Note that 7 = Pjqg is no clipping.

resulting signal is minimized in the least-squares sense
[4]. Minimization of the third derivative encourages
the interpolated data points to take on a parabolic shape
(i.e., because the third derivative of a parabola is zero).
A closed-form solution is possible; consequently, this
method is typically much faster than the more typical
iterative techniques.

3. Kitic-IHT: This recently published algorithm is the cur-
rent state-of-the-art in declipping technology. Contin-
uing with the recent trend toward sparsity-based al-
gorithms, Kitic-IHT uses Iterative Hard Thresholding
(IHT) to learn a sparse representation of the incoming
clipped speech in terms of Gabor basis vectors [6]. The
sparse representation is then used to reconstruct the sig-
nal on a frame-by-frame basis.

Figures 3a, 3b, and 3c depict the reconstruction of the sig-
nal from Figure 1 for each of the three previously-described al-
gorithms, respectively. Similarly, Figure 4 shows WER results
of decoding speech after application of the corresponding de-
clipping algorithm. Note that the Kitic-IHT algorithm yields an
obviously more accurate reconstruction, both graphically and in
terms of WER. The difference between Janssen-AR, Selesnick-
LS, and Kitic-IHT is that the former two algorithms do not im-
pose any constraints on the reconstructed data, consequently
their interpolations are routinely illegitimate, as seen in Figure
3. In general, when declipping, the interpolated data must fall
above the clipping threshold, 7, in the absolute sense; more-
over, the sign of the interpolated data points should agree with
the sign of the observed signal in the same region.

In all results reported in this paper, it is assumed that the
value of 7 is known a priori and that clipped samples can be
precisely identified.

3. Constrained blind amplitude
reconstruction

The Constrained Blind Amplitude Reconstruction, or cBAR, al-
gorithm combines the least squares approach to declipping, mo-
tivated by Selesnick-LS, with the incorporation of explicit con-
straints on the values of the interpolated samples, motivated by

Kitic-IHT. The cBAR algorithm is described as follows.

Define  to be a column vector of length N which contains
all the samples of a frame of clipped speech. Suppose there are
M reliable samples contained in the vector . and K = N—M
clipped samples contained in the vector x.. Let S, be the M
x N matrix obtained from the identity matrix by removing all
rows corresponding to a clipped sample. Similarly, let S. be the
K x N matrix obtained from the identity matrix by removing all
rows corresponding to reliable samples. Finally, let Do repre-
sent the second derivative, a linear operator. Note the following
relationship is true [4]:

z =Sz, +Slz. @)

Declipping can be achieved by solving the following non-
linear constrained optimization problem:

minimize ||D2 (S?mr + Sfmc) ||§
= 3)
subjectto x.osgnSc.x > +71

In the constraint term of Equation 3, the o represents the
Hadamard (elementwise) product of two vectors or matrices.
This particular choice of constraint simultaneously ensures that
the interpolated data points will be greater than 7 in the abso-
lute sense, and of the correct sign with respect to the observed
signal.

The nonlinear optimization problem can be solved using
a line search algorithm [10]. A line search is an iterative al-
gorithm that minimizes an objective function, in this case the
one defined by Equation 3, by computing a descent direction
followed by a step size on each iteration. In our implementa-
tion, the descent direction is computed using the quasi-Newton
method, the benefit of which is that a full second-order deriva-
tive Hessian matrix does not need to be computed. The line
search method is an active-set method because, on each itera-
tion, the current “active” constraints (i.e., the points which lie
on the constraint boundary) are maintained. Knowledge of these
points allows one to determine the largest possible step size on
each iteration.

We refer to the process of sequentially solving Equation 3
on a frame-by-frame basis as Constrained Blind Amplitude Re-
construction or cBAR. In the current implementation, we have
set the frame length, N, equal to 80 samples. No frame over-
lap is used. When the frame boundary falls on a clipped sample
point, the length of that particular frame is incremented until the
boundary falls on an unclipped sample. Pilot results indicate
that a shorter frame length decreases the run time of the algo-
rithm at the expense of a less smooth reconstruction. Further,
any derivative (or combination of derivatives) can be minimized
in searching for the optimal reconstruction vector. Our prelimi-
nary results show that minimizing the second derivative is best;
further implications of varying the algorithm’s parameters is in-
tended for future research.

4. Results
4.1. Speech recognition performance

In all of the previous literature, the efficacy of declipping algo-
rithms has been measured in terms of mean-squared reconstruc-
tion error, or in terms of perceptual listening experiments ([2],
[6]). While the results of perceptual listening experiments are
very important for pure speech enhancement, the primary aim
of this research is to improve the performance of ASR systems.
Figure 5 shows comparisons of the WER achieved by recog-
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Figure 5: Word error rates for recognition of declipped speech
using the CMU Sphinx-III ASR, which had been trained on
clean, unclipped speech. This graph indicates that the cBAR
algorithm universally improves ASR performance on clipped
speech, and further, cBAR outperforms the Kitic-IHT method
in 4 of the 5 test cases considered. Note that 7 = Pjg is no

clipping.

nizing clipped speech that has been processed by Kitic-IHT and
cBAR. The cBAR algorithm outperforms Kitic-IHT in 4 of the 5
clipping thresholds considered and provides relative WER im-
provements of up to 56% (at 7 = Py5) over recognition with
no declipping, and up to 24% (also at 7 = Prs5) over recog-
nition with Kitic-IHT. A full overview of relative performance
improvements is presented in Figure 6. The cBAR algorithm is
particularly effective at midrange thresholds of Pss and Prs.

4.2. Robustness of cBAR

In any practical telecommunications system, some degree of in-
dependent additive channel noise is to be expected. This situ-
ation is modeled by a system that layers additive white Gaus-
sian noise (AWGN) on top of a clipped speech signal, z.[n].
To evaluate the algorithms’ performance in noise, we again as-
sume that the indices of the clipped samples are able to be pre-
cisely identified. The noisy estimation of 7 and identification of
clipped samples in noise is intended for future research. In the
experimental results shown in Figure 7, the SNR is measured
with respect to the clipped signal, z.[n], and is set equal to 15
dB. Figure 7 shows that both cBAR and Kitic-IHT are generally
robust to additive noise, with Kitic-IHT slightly more so.

Note that both ¢cBAR and Kitic-IHT lower the WER at
T = Pos below its 7 = Pigo value, and the WER for Kitic-
IHT at 7 = Py5 is lower than at 7 = Pys. This may occur due
to the fact that both algorithms tend to generate a smooth re-
construction, which helps to simultaneously reduce the impact
of the additive noise.

5. Conclusions

This paper introduced a novel declipping algorithm based on
constrained least-squares minimization. It is clear that at a low
sampling rate such as 16 kHz, the explicit use of constraints in
the declipping process helps to guide a more accurate interpola-
tion. We have shown that the cBAR algorithm outperforms the
current state-of-the-art in declipping technology by as much as
24%. The cBAR algorithm is also reasonably robust to addi-
tive noise. Future work includes optimization of the parameters
that control cBAR (i.e., the window length and the derivative or
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Figure 6: Relative decrease in WER using Constrained BAR.
These percentages are derived from the underlying word error
rates in Figure 5.
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Figure 7: Word error rates for recognition of declipped speech
in additive white noise. The SNR with respect to the clipped
signal, z.[n], is 15dB. As before, the ASR had been trained
on clean, unclipped speech. Note that 7 = Py is unclipped
speech in noise. The smoothness of the reconstructions may
help to reduce the additive noise and explain why the WERs for
Kitic-IHT and cBAR are lower at 7 = Pos than at 7 = Pjqo.

combination of derivatives used in the objective function), de-
velopment of a more robust variation of cBAR, and researching
methods to accurately estimate clipped samples when additive
noise is layered on top of the clipped signal.
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