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Abstract Least-squares variance component estimation
(LS-VCE) is a simple, flexible and attractive method for the
estimation of unknown variance and covariance components.
LS-VCE is simple because it is based on the well-known
principle of LS; it is flexible because it works with a user-
defined weight matrix; and it is attractive because it allows
one to directly apply the existing body of knowledge of LS
theory. In this contribution, we present the LS-VCE method
for different scenarios and explore its various properties. The
method is described for three classes of weight matrices: a
general weight matrix, a weight matrix from the unit weight
matrix class; and a weight matrix derived from the class
of elliptically contoured distributions. We also compare the
LS-VCE method with some of the existing VCE methods.
Some of them are shown to be special cases of LS-VCE. We
also show how the existing body of knowledge of LS theory
can be used to one’s advantage for studying various aspects of
VCE, such as the precision and estimability of VCE, the use
of a-priori variance component information, and the prob-
lem of nonlinear VCE. Finally, we show how the mean and
the variance of the fixed effect estimator of the linear model
are affected by the results of LS-VCE. Various examples are
given to illustrate the theory.
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1 Introduction

The second-order central moments of the entries of a random
vector are described by the entries of its variance matrix. For
many applications, it is of importance to have information
available on the variance matrix of an observable random vec-
tor. Such information allows one to study the different con-
tributing factors of the errors in observations, to describe the
precision of random vectors, or functions thereof, by means
of an application of the variance propagation law, or to obtain
minimum variance estimators of the parameters in a linear
model. Often, however, the variance matrix of the observ-
ables is only partly known, as a consequence of which the
unknown part needs to be estimated from the data. The esti-
mation of these unknown components of a variance matrix
is generally referred to as variance component estimation
(VCE).

Incomplete knowledge of the variance matrix of the
observables occurs in many modern geodetic applications.
In the case of Global Navigation Satellite Systems (GNSS),
for instance, our knowledge of the stochastic model is still
at a rather rudimentary level. This is in contrast to the GNSS
functional model (i.e., observation equations), which is suffi-
ciently known and well-documented in the many GNSS text-
books available. Various VCE studies have been conducted
to improve our knowledge of the GNSS stochastic model.
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Examples of earlier studies are Euler and Goad (1991);
Gerdan (1995); Gianniou (1996), and Jin and de Jong (1996),
who studied the elevation dependence of the observation
variances; Jonkman (1997); Tiberius (1998); Wang et al.
(1998), and Tiberius et al. (1999), who also considered time
correlation and cross-correlation of the code pseudoranges
and carrier phases; and Schaffrin and Bock (1988); Bock
(1998); Teunissen (1998), and Brunner et al. (1999), who
considered the inclusion of atmospheric uncertainties.

Examples showing that improved stochastic modelling
indeed pays off in terms of an increased success rate for
GNSS ambiguity resolution, can be found in e.g., Jonkman
(1997) and Teunissen et al. (1998). More recent exam-
ples of VCE studies dealing with the GNSS stochastic
model are Tiberius and Borre (2000); Tiberius and Kenselaar
(2000); Tiberius and Kenselaar (2003); Bona (2000); Wang
et al. (2002); Satirapod et al. (2002); Radovanovic et al.
(2004); Bischoff et al. (2005, 2006), and Amiri-Simkooei and
Tiberius (2007). Also in the GNSS position domain, similar
studies are ongoing. Examples are Zhang et al. (1997); Mao
et al. (1999); Williams et al. (2004), and Amiri-Simkooei
et al. (2007), who studied the noise characteristics (e.g., white
noise, random walk and flicker noise) in daily GPS coordi-
nate time-series of permanent networks.

VCE is also an important issue in other geodetic fields
of application, in particular in applications where heteroge-
neous data needs to be combined. Examples are Koch and
Kusche (2002) and Kusche (2003), who studied the rela-
tive weighting of heterogeneous data for gravity field model-
ling; Fotopoulos (2003, 2005), who considered the combined
adjustment of ellipsoidal, orthometric and geoid heights;
Chen et al. (1990), who studied the combination of elec-
tronic distance measurements and GPS for monitoring tec-
tonic activity; and Sahin et al. (1992) and Lucas and Dillinger
(1998), who applied VCE to satellite laser ranging and very
long baseline interferometry, respectively.

Many different methods exists for VCE. These methods
differ in the estimation principle employed, as well as in
the distributional assumptions that need to be made. Most
methods have been devised for the linear model, for which
one assumes that the variance matrix of the observables
can be written as an unknown linear combination of known
cofactor matrices. The coefficients of this linear combina-
tion are then the unknown (co)variance components. Of the
different variance component estimators, we mention the
minimum norm quadratic unbiased estimator (MINQUE),
the best invariant quadratic unbiased estimator (BIQUE),
the least-squares variance component estimator (LS-
VCE), the restricted maximum likelihood estimator (REML)
and the Bayesian approach to VCE.

The MINQUE method (Rao 1971) is probably still one
of the more commonly used methods for VCE. This method
does not require any distributional assumptions, apart from

the first- and second-order moments of the observables.
BIQUE, however, does require knowledge of some of the
higher-order moments. This minimum variance quadratic
estimator has been derived and studied, under the assumption
of normally distributed observables, by e.g., Koch (1978);
Caspary (1987); Yu (1992).

The LS-VCE method is based on the least-squares
principle and works with a user-defined weight matrix
(Teunissen, 1988). The method has been applied to study
the stochastics of GPS code and carrier-phase data, and
GPS coordinate time-series, respectively, by Tiberius and
Kenselaar (2000); Tiberius and Kenselaar (2003); Teunis-
sen and Amiri-Simkooei (2006); Amiri-Simkooei (2007) and
Amiri-Simkooei et al. (2006, 2007). The REML method and
the Bayesian approach, both require, in contrast to the pre-
vious methods, complete information about the probability
density function of the observables. Using the normal distri-
bution, maximum likelihood estimators and Bayesian esti-
mators have been derived and studied by, e.g., Koch (1987);
Ou (1991); Yu (1996). For a review and comparison of some
of the VCE methods, we refer to, e.g., Grafarend (1985);
Crocetto et al. (2000); Fotopoulos (2003).

In the present contribution, we further study the LS-VCE
method. Although the method is probably one of the lesser
known VCE methods, we will show that it is a simple, flexible
and attractive method for the estimation of unknown variance
and covariance components. Being a least-squares estimator,
the LS-VCE automatically inherits all the well-known prop-
erties of a least-squares estimator. To illustrate the theory, we
have included various VCE-examples, some of which are of
interest in their own right.

This contribution is organised as follows. In Sect. 2, we
introduce the principle of weighted least-squares estimation
for the estimation of unknown (co)variance components. We
formulate the linear (co)variance component model, define
the least-squares variance component estimator and deter-
mine its mean and variance. We also show how LS-VCE
can be turned into a minimum variance VCE. In Sect. 3, we
show how the existing body of knowledge of least-squares
theory can be used to one’s advantage for studying and solv-
ing various aspects of the VCE problem. Topics that are
addressed are: measures of inconsistency, the use of a-priori
variance component information, estimability of variance
components, nonlinear variance component estimation, and
robust and non-negative variance component estimation.

In Sects. 4 and 5, we consider the LS-VCE method
for two special classes of weight matrices. In Sect. 4, we
introduce the unit weight matrix class and show how the
LS-VCE simplifies accordingly. In Sect. 5, we use a weight
matrix derived from the class of elliptically contoured dis-
tributions. The corresponding LS-VCE, which is of min-
imum variance, is worked out accordingly. The class of
elliptically contoured distributions includes the multivariate
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normal distribution and the multivariate Student distribution
as special cases.

In Sect. 6, we show how the mean and the variance of
the fixed effect estimator of the linear model is affected by
the results of LS-VCE. This will allow one to judge by how
much the precision of the weighted least-squares estimator
of the fixed effects is degraded when the estimated variance
matrix is used as inverse weight matrix, instead of the true,
but unknown, variance matrix. Finally, in Sect. 7, a compari-
son is made with some of the existing VCE methods, such as
MINQUE, BIQUE and REML. It is shown that each of these
variance component estimators can be reproduced with the
LS-VCE method by using a suitable choice of weight matrix.

2 Weighted least-squares estimation of (co)variance
components

2.1 The linear (co)variance component model

First, we will show how one can formulate a linear system
of observation equations for the unknown (co)variance com-
ponents. We start from the linear model

E{y} = Ax, D{y} = Qyy (1)

with

Qyy = Q0 +
p∑

k=1

σk Qk (2)

and where E{.} and D{.} denote the mathematical expectation
operator and dispersion operator, respectively. The model in
Eq. (1) contains two sets of unknowns: the parameter vector
x and the (co)variance components σk , k = 1, . . . , p.

It is the goal of VCE to construct an estimator for the
unknown (co)variance components. The m × n matrix A is
assumed known and to be of full column rank. Also the cofac-
tor matrices Qk , k = 0, . . . , p, are assumed known and their
weighted sum Q0 + ∑p

k=1 σk Qk is assumed to be positive
definite. Matrix Q0 is the known part of the variance matrix
Qyy .

We now introduce a one-to-one transformation of the vec-
tor of observables y, such that Eq. (1) takes a simplified form.
Let B be a basis matrix of the null space of AT . Thus, B is an
m × (m − n) matrix of which the m − n linear independent
columns span the null space of AT : AT B = 0 or BT A = 0.
Then the following one-to-one correspondence between y
and (x̂ T , t T )T exists:
[

x̂
t

]
=

[
Qx̂x̂ AT Q−1

yy
BT

]
y ⇐⇒

y = [A, Qyy B Q−1
t t ]

[
x̂
t

]
(3)

with Qx̂x̂ = (AT Q−1
yy A)−1 and Qtt = BT Qyy B. If we apply

this one-to-one transformation to Eq. (1), we obtain the linear
model

E
{[

x̂
t

]}
=

[
x
0

]
,

D
{[

x̂
t

]}
=

[
(AT Q−1

yy A)−1 0
0 BT Qyy B

]
(4)

Note the decoupling between x̂ and t . We recognize the
n-vector x̂ as the best linear unbiased estimator (BLUE) of
x . The zero-mean (m − n)-vector t is the redundancy vec-
tor of misclosures. It consists of the misclosures that follow
from using the model of condition equations, BT E{y} = 0.
The redundancy of the linear model in Eq. (1) is defined as
b = m − n. The vector of misclosures t exists on account
of redundancy (b > 0). The two random vectors x̂ and t are
uncorrelated. They are independent if y is normally distrib-
uted.

From Eqs. (2) and (4), it follows, since E{t} = 0 and
D{t} = E{t t T } = BT Qyy B, that E{t t T − BT Q0 B} =∑p

k=1 σk BT Qk B. This equation can be seen as a matrix
observation equation for the unknown (co)variance compo-
nents. The matrix equation consists of b2 scalar observation
equations. We can bring the matrix observation equation into
the familiar vector-matrix form, if we stack the b number of
b×1 column vectors of E{t t T −BT Q0 B} into a b2×1 obser-
vation vector. This is achieved by the so-called vec-operator.

However, since the observation matrix t t T − BT Q0 B is
symmetric, we should only consider the 1

2 b(b+1) entries on
and below the diagonal of the observation matrix. Otherwise
an unwanted duplication of the data occurs. This implies that
we should use the vh operator, instead of the vec operator
(for a definition and properties of the vec and vh operators,
we refer to Appendix A). The use of the vh operator, instead
of the vec operator, also avoids the problem of having to
work with a singular variance matrix (see Sect. 5.1). The
variance matrix of vec(t t T ) is singular due to the duplica-
tion that occurs in the entries of t t T . With the vh operator,
we can bring the matrix observation equation in the familiar
vector-matrix form of linear observation equations

E{yvh} = Avhσ (5)

where yvh = vh(t t T − BT Q0 B), Avh = [vh(BT Q1 B), . . . ,
vh(BT Q p B)], and σ = [σ1, . . . , σp]T .

The linear model of Eq. (5) will form the basis of our least-
squares (co)variance component estimation. The 1

2 b(b + 1)
vector yvh = vh(t t T −BT Q0 B) plays the role of the observa-
tion vector. Thus, we have 1

2 b(b+1) observation equations in
the p unknown parameters σk , k = 1, . . . , p. We will assume
that the design matrix of Eq. (5) has full column rank p. The
redundancy of the above model is then 1

2 b(b + 1)− p.
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2.2 The weighted least-squares (co)variance component
estimator

Now that we have the above linear model available, we can
immediately determine the weighted least-squares solution
for the unknown (co)variance components.

Theorem 1 (weighted LS-VCE) Let

E{yvh} = Avhσ (6)

be the linear (co)variance component model and define the
weighted LS-VCE of σ as σ̂ = arg minσ (yvh − Avhσ)

T

Wvh(yvh − Avhσ), where Wvh is the weight matrix. Then

σ̂ = (AT
vhWvh Avh)

−1 AT
vhWvh yvh (7)

Proof Follows from standard least-squares theory.
The weighted LS-VCE σ̂ has many attractive features.

Since σ̂ is a least-squares estimator, we can make a direct
use of the existing body of knowledge of least-squares the-
ory. This holds true for the numerical aspects (e.g., use can be
made of standard least-squares software packages), as well
as for many of the statistical aspects.

First we give, for later use, two different but equivalent
expressions for the LS-VCE system of normal equations.

Corollary 1 (LS-VCE normal equations)
Let the system of normal equations of the LS-VCE of

Eq. (7) be given as

N σ̂ = r (8)

with normal matrix N = (AT
vhWvh Avh) and right-hand side

r = AT
vhWvh yvh. Then the entries nkl of the normal matrix N

and the entries rk of the right-hand side vector r , are given
as

nkl = vec(BT Qk B)T [D+T Wvh D+]vec(BT Ql B)

=
p∑

i=1

p∑

j=1

cT
i BT Qk B[D+T Wvh D+]i j BT Ql Bc j (9)

and

rk = vec(BT Qk B)T [D+T Wvh D+]vec(t t T − BT Q0 B)

=
p∑

i=1

p∑

j=1

cT
i BT Qk

×B[D+T Wvh D+]i j [t j t − BT Q0 Bc j ] (10)

with D the duplication matrix, D+ its pseudo-inverse, ci

the canonical unit vector having a one as its i th entry, and
D+T Wvh D+ = ([D+T Wvh D+]i j ), i, j = 1, . . . , b (for a
definition of the Kronecker product and duplication matrix
and their relations with the vec and vh operator, we refer to
Appendix A).

Proof From nkl = vh(BT Qk B)T Wvhvh(BT Ql B) and
vh(.) = D+vec(.) the first part is trivial. One can now
rewrite the b2 × b2 matrix D+T Wvh D+ as the sum

∑p
i=1∑p

j=1 ci cT
j ⊗ [D+T Wvh D+]i j with [D+T Wvh D+]i j

the appropriate b × b submatrices. Substitution
of this expression gives nkl = ∑p

i=1

∑p
j=1 tr([D+T

Wvh D+]i j BT Ql Bc j cT
i BT Qk B) = ∑p

i=1

∑p
j=1 cT

i BT Qk

B[D+T Wvh D+]i j BT Ql Bc j . In a similar way, the right-hand
side rk is obtained.

To see the weighted LS-VCE at work, consider the fol-
lowing two simple examples.

Example 1 (An unbiased estimator of the variance factor)
Let Qyy = σ 2 Q, with matrix Q known and scalar σ 2

unknown. Thus we have one unknown variance component
(the variance factor of unit weight): Q0 = 0 and p = 1, with
σ1 = σ 2. As a weight matrix, we take Wvh = DT D, with
D the duplication matrix. Then, since [D+T Wvh D+] =
D+T DT DD+ and DD+vec(.) = vec(.), the normal scalar
reads n = vec(BT Q B)T [D+T Wvh D+]vec(BT Q B) = tr
(BT Q B BT Q B) and the right-hand side as r = vec
(BT Q B)T [D+T Wvh D+]vec(t t T ) = tr(BT Q BttT ) =
t T BT Q Bt . Hence, the weighted LS-VCE follows as

σ̂ 2 = r

n
= t T BT Q Bt

tr(BT Q B BT Q B)
(11)

Note that this is an unbiased estimator of σ 2. ��
Example 2 (A natural variance matrix estimator) Let y be
a zero mean random m-vector, with variance matrix Qyy

of which all the entries are unknown. Hence, matrix A of
Eq. (1) is zero, and therefore B = I and t = y. There are
p = 1

2 m(m + 1) unknown (co)variance components and as
many observation equations in E{yvh} = Avhσ . Thus σ̂ =
A−1

vh yvh = A−1
vh vh(yyT ), provided the square matrix Avh is

invertible.
To determine Avh, we write the variance matrix of y in the

unknown (co)variance components as Qyy = ∑p
k=1 σk Qk ,

where the cofactor matrices Qk are of form ci cT
i , for the

variances, or of the form ci cT
j + c j cT

i , for the covariances,
with ci being the canonical unit vector having a one as its
i th entry. From this, it follows that Avh = Im(m+1)/2. We
therefore have σ̂ = A−1

vh vh(yyT ) = vh(yyT ), and thus

Q̂yy = yyT (12)

This shows that, in the absence of redundancy in the stochas-
tic model (p = 1

2 m(m + 1)), the LS-VCE reduces to the
natural estimator of Qyy . ��
Since σ̂ is a least-squares estimator, its mean and variance
matrix follow from Eq. (7).

Corollary 2 (LS-VCE mean and variance) The mean of the
LS-VCE σ̂ is given as E{σ̂ } = σ and its variance matrix is
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Qσ̂ σ̂ = N−1 M N−1 (13)

with M = AT
vhWvh QvhWvh Avh and Qvh the variance matrix

of yvh.

Proof E{σ̂ } = σ follows from taking the expectation of
Eq. (7), knowing that E{yvh} = Avhσ . The variance matrix
follows from applying the variance propagation law to
Eq. (7).

This result shows that σ̂ is an unbiased estimator for any
choice of the weight matrix Wvh. This property is a direct con-
sequence of the fact that σ̂ is a linear least-squares estimator
of σ with respect to the linear model E{yvh} = Avhσ . The
LS-VCE σ̂ is linear in yvh and therefore a quadratic function
of y. It is now easily verified that σ̂ is a quadratic unbiased
estimator of σ with respect to the model of Eqs. (1) and (2).
For the conditions that a quadratic unbiased estimator needs
to fulfill, we refer to Rao and Kleffe (1988).

The above corollary also gives us readily a precision
description of the (co)variance component estimator σ̂ . In
order to be able to evaluate this expression, we need to know
the variance matrix of yvh and thus of vh(t t T ). Note, how-
ever, that both the property of unbiasedness as well as the
variance expression of Eq. (13), hold true for any probability
distribution that yvh or t might have.

Equation (13) shows how the precision of σ̂ changes
for different choices of the weight matrix Wvh. From least-
squares theory, we know that the least-squares estimator
becomes identical to the BLUE if the weight matrix is chosen
as the inverse of the variance matrix of the observables. In
that case, the estimator will have the smallest possible vari-
ance. This property can be directly applied to our weighted
LS-VCE.

Corollary 3 (LS-VCE as minimum variance estimator) Let

E{yvh} = Avhσ, D{yvh} = Qvh (14)

Then

σ̂ = (AT
vh Q−1

vh Avh)
−1 AT

vh Q−1
vh yvh (15)

with variance matrix

Qσ̂ σ̂ = (AT
vh Q−1

vh Avh)
−1 (16)

is the BLUE of σ .

Proof Follows from standard least-squares theory.
The minimum variance property is attained in the class of

linear unbiased functions of yvh. Thus, since yvh is quadratic
in t , the minimum variance property is attained in the class
of quadratic unbiased functions of t . The minimum variance
property is independent of the particular distribution that yvh

or t might have. In Sect. 5, we will consider the class of
elliptically contoured distributions, of which the normal dis-
tribution is a special case.

Example 3 (A minimum variance estimator of the variance
factor) Let E{t} = E{BT y} = E{y} = 0. Thus, B = I and
A = 0. Further let the m entries of y be independent and iden-
tically distributed. The distribution, however, is assumed to
be unknown. Then Qyy = σ 2 I , with σ 2 being the unknown
variance component. We will now apply Corollary 3 and
determine the minimum variance estimator of σ 2.

First, we need to determine the variance matrix Qvh. The
only non-zero central moments (up to degree four) are given
by

E{y2
i } = µ2, E{y4

i } = µ4, E{y2
i y2

j } =
{
µ4 if i = j
µ2

2 if i �= j

(17)

From this, it follows that Qvh is given by the diagonal matrix

Qvh =diag(µ4−µ2
2, Dm−1, µ4−µ2

2, Dm−2, . . . , µ4−µ2
2)

(18)

with the i × i diagonal matrix Di = diag(µ2
2, . . . , µ

2
2).

Furthermore we have, since B = I and Qyy = σ 2 I , that
Avh = vh(I ). Hence, the elements of the normal equation
are

N = n11 = m

µ4 − µ2
2

, r = r1 = yT y

µ4 − µ2
2

(19)

from which the minimum variance LS-VCE of σ 2 follows as

σ̂ 2 = yT y

m
(20)

Note that we did not need to specify the distribution of the yi

to determine this estimator. The variance of the estimator is
given as σ 2

σ̂ 2 = N−1 = n−1
11 , for which we need the second

and fourth central moments. ��

3 Application of least-squares theory to LS-VCE

In this section, we show some of the attractive features of
the LS-VCE method. We illustrate how the existing body
of knowledge of least-squares theory can be used to one’s
advantage for studying and solving various aspects of the
VCE problem.

3.1 Measures of inconsistency

Existing methods of VCE provide means of estimating σ ,
but do not generally provide the user with measures to infer
how well the data supports the chosen (co)variance compo-
nent model. Since our approach is based on the least-squares
principle, such measures of inconsistency, or lack of model
fit, are readily available for the LS-VCE.

One such measure is given by the weighted sum
of squared least-squares residuals, êT

vhWvhêvh, in which
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êvh = yvh − Avhσ̂ = P⊥
Avh

yvh, with the orthogonal projector

P⊥
Avh

= I − Avh(AT
vhWvh Avh)

−1 AT
vhWvh. For an arbitrary

weight matrix Wvh, the quadratic form of residuals works
out as

êT
vhWvhêvh = vh(t t T − BT Q0 B)T

×[Wvh − Wvh Avh(A
T
vhWvh Avh)

−1 AT
vhWvh]

× vh(t t T − BT Q0 B) (21)

By using the analogy with hypothesis testing in linear
models, other statistics can be derived. In order to be able
to judge the significance of the inconsistency, we need to
have some information on the distributional properties of the
statistics. This is a nontrivial problem, because of the com-
plicated nature in which they depend on t . In some special
cases, depending on the distribution of t and the structure
of B and Qyy , it is possible to determine the exact distri-
bution of Eq. (21), see e.g., Kuhri et al. (1998). In general,
however, one will have to rely on alternative computer-based
techniques, such as Monte Carlo simulation or bootstrapping,
e.g., Efron and Tibshirani (1993).

3.2 The use of a-priori variance component information

In many applications, one already has some fair idea about
the variance matrix Qyy or parts thereof. In this case, one
often would like the a-priori information to be included
and weighted accordingly. The LS-VCE method is easily
adapted to accommodate such a-priori information. Here, one
can work with the extended linear (co)variance component
model,

E
{[

yvh

σ0

]}
=

[
Avh

CT
0

]
σ (22)

Thus, the original model is then simply extended with addi-
tional (co)variance component observation equations. Let
σ̂ and ˆ̂σ be the LS-VCE of σ based on the original and
extended observation equations, respectively, and let N =
AvhWvh Avh. The weighted LS-VCE ˆ̂σ of σ follows then as

ˆ̂σ = σ̂ + N−1C0(C
T
0 N−1C0 + W −1

0 )−1(σ0 − CT
0 σ̂ ) (23)

in which W0 is the weight matrix for σ0.
Note that the contribution of the a-priori information is

described by the second term on the right-hand side of
Eq. (23). Also note that if the weight matrix is set such that
W −1

0 = 0, then the solution is obtained that corresponds to
using the hard constraints σ0 = CT

0 σ . Finally note that if one
has a-priori information on all the (co)variance components,
one can set the design matrix such that C0 = Ip, in which
case Eq. (23) simplifies to

ˆ̂σ = σ̂ + N−1(N−1 + W −1
0 )−1(σ0 − σ̂ )

= σ0 + (N + W0)
−1 N (σ̂ − σ0) (24)

3.3 Estimability of the variance components

So far, the design matrix Avh = [vh(BT Q1 B), . . . ,
vh(BT Q p B)] of the variance component model was
assumed to be of full column rank, see Eq. (6). The full
column rank of Avh or the possible lack thereof, touches the
estimability problem of variance components.

Let us first recall the definition of estimability, phrased
with respect to the linear model of Eq. (6): a linear function
of the variance components, say f T σ , is said to be unbiased
estimable if a linear function of the data vector exists, say
lT yvh, such that f T σ = E{lT yvh} for all σ . From this defi-
nition, it follows that f T σ is unbiased estimable if and only
if f lies in the row space of Avh, i.e., if an l exists such that
f = AT

vhl. It will be clear that this condition is satisfied for
any f if Avh has full column rank, rank(Avh) = p. In this
case, every linear function of σ is unbiased estimable. For
this to be true, the column vectors vh(BT Qk B) of Avh need
to be linear independent.

This shows that the linear independence of the cofactor
matrices Qk , k = 1, . . . , p, in the variance matrix Qyy =
Q0 + ∑p

k=1 σQk , is a necessary condition for estimability.
It is, however, not a sufficient condition. To ensure estima-
bility, one also has to take the interaction between matrix B
and the cofactor matrices into account. Since B is a basis
matrix of the null space of AT (AT B = 0), it is here where
the interaction between the functional model E{y} = Ax and
the stochastic model D{y} = Qyy takes place, see Eq. (1).

Let us now assume that Avh fails to be of full column
rank and, thus, that not all variance components are unbiased
estimable. In this case, one can follow the same approach as
is used when solving rank-deficient least-squares problems.
That is, for solving the rank-deficient system of normal equa-
tions (AT

vhWvh Avh)σ̂ = AT
vhWvh yvh, one can either apply the

theory of generalized inverses (e.g., Rao and Mitra, 1971), or
one can apply the theory of S-transformations (Baarda, 1973;
Teunissen, 1985). As a result one will obtain a solution that
can be interpreted again as being an estimable linear function
of σ .

The simplest route using the theory of S-transformations
would be to eliminate as many columns of Avh as is necessary
to eliminate the rank deficiency. Thus, if rank(Avh) = p−q,
then q columns are eliminated, such that the resulting (p−q)
number of normal equations have a unique solution again. If
the entries of σ are ordered such that they are the last q
columns of Avh that are eliminated, then the solution of the
normal equations is the same as the solution one would obtain
when solving the rank-deficient least-squares problem with
the minimal constraints (0, Iq)σ = 0. Hence, the LS-VCE
of Qyy is then given as

Q̂yy = Q0 +
p−q∑

k=1

σ̂k Qk (25)
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A different, but equivalent, LS-VCE of Qyy is obtained
if another set of q minimal constraints is chosen. These
different, but equivalent, solutions can be transformed to one
another by means of an S-transformation.

It is not always clear-cut whether Avh is rank-deficient
or not. Matrix Avh could theoretically be of full rank, but
instead show a numerical near rank-deficiency. Such near
rank-deficiencies are indicators for poor estimability. They
can be traced by considering the singular value decomposi-
tion of Avh or the eigenvalue decomposition of the normal
matrix N = AT

vhWvh Avh. The eigenvectors corresponding to
the small singular values or the small eigenvalues are then the
linear functions of σ , which are prone to be poorly estimable.

The presence of small singular values or small eigenvalues
will inflate the entries of N−1 and therefore also the entries of
the LS-VCE variance matrix Qσ̂ σ̂ . To avoid such an inflation,
one can now follow the same route as one is used to when
solving least-squares problems with near rank-deficiencies.
For a discussion of such least-squares regularization proce-
dures, we refer to, e.g., Hansen (1998).

3.4 Nonlinear VCE

The LS-VCE method also lends itself to solving nonlinear
VCE problems. Such problems occur, for instance, in time-
series analysis when determining the parameters of nonlinear
covariance functions.

Let the variance matrix of y be given as Qyy = Q(σ ), in
which the entries of Q are nonlinear functions of the unknown
components of σ . The LS-VCE of σ is then defined as

σ̂ = arg min
σ

[yvh − Avh(σ )]T Wvh[yvh − Avh(σ )] (26)

with Avh(σ ) = vh(BT Q(σ )B). This nonlinear least-squares
problem can be solved by means of the Gauss–Newton iter-
ation method. It amounts to solving a linear least-squares
problem in each iteration step. Let σ i be an approximation
of σ and let Avh(σ ) be approximated as

Avh(σ ) ≈ Avh(σ
i )+ ∂σ Avh(σ

i )�σ i (27)

with Avh(σ
i )= vh(BT Q(σ i )B), ∂σ Avh(σ

i )= vh(BT ∂σ
Q(σ i )B) and �σ i = σ − σ i . Then the Gauss–Newton
iteration, which starts with an initial value σ 0, is given as

σ i+1 = σ i + arg min
�σ i

[�yi
vh − ∂σ Avh(σ

i )�σ i ]T Wvh (28)

×[�yi
vh − ∂σ Avh(σ

i )�σ i ] (29)

for i = 0, . . ., where �yi
vh = yvh − Avh(σ

i ). The Gauss–
Newton iteration is known to have a linear rate of conver-
gence. Its speed of convergence is dictated by the normal
curvature of the nonlinear manifold Avh(σ ), see Teunissen
(1990).

3.5 Robust estimation

The application of robust estimation techniques to the lin-
ear model of Eq. (6) can be important if one needs to be
guarded against outlying data. Various approaches exist for
implementing robust estimation. One is again based on the
least-squares principle, but now with an adaptable weight
matrix, which downplays the influence of outlying data, see
e.g. Myers (1986). One may also think of an L1 norm mini-
mization problem for which we refer to e.g. Amiri-Simkooei
(2003).

Example 4 (A robust estimation of variance factor) In Exam-
ple 3, one can apply the idea of L1 norm minimization prob-
lem. The stochastic model expressed in terms of a model of
observation equations reads

E{yvh} = vh(I )σ 2, Wvh = I (30)

The L1 norm principle states that the sum of the abso-
lute values of the ‘residual’ vector vh(yyT ) − vh(I )σ 2

should be minimized. Because m(m−1)
2 elements of vh(I )

are zeros, they do not affect the minimization problem.
Therefore, the L1 norm minimization problem is reduced to:∑m

i=1 |y2
i − σ 2| → min.

This is very similar to the problem of measuring one
unknown quantity, where the observables are y2

i , i =
1, ...,m. It is known that the L1 norm minimization will lead
to the sample median as an estimator of the population mean
for repeated measurements of an unknown quantity. There-
fore, the variance component is estimated as the median of
the y2

1 , y2
2 , ..., y2

m , namely

σ̆ 2 = y2
(m+1)/2 (31)

whereas the least-squares gives the mean of y2
1 , y2

2 , ..., y2
m

(see Example 3). ��

3.6 Non-negative VCE

To ensure that the estimated variances are non-negative, one
can incorporate this information by adding non-negativity
constraints σ ≥ 0 to the linear model of Eq. (6). Such con-
straints will, of course, affect the unbiasedness of the variance
component estimator. On the other hand, without these con-
straints, one runs the risk, in particular when the estimators
lack good precision, to obtain estimates that are negative.

When the constraints are included, the LS-VCE becomes a
least-squares problem with inequality constraints. Such least-
squares problems are discussed in, e.g., Lawson and Hanson
(1974); Rao and Toutenburg (1995). An alternative approach,
suggested by Teunissen (1988), is to reparametrize the model
such that non-negativity of the variance components is auto-
matically ensured. For instance, if σk is such an unknown
variance, one can reparametrize it as

σk = exp(sk) (32)
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and solve for sk , instead of for σk . The solution σ̂k = exp(ŝk)

is then non-negative by definition. This approach turns a lin-
ear LS-VCE problem into a nonlinear LS-VCE problem.

4 LS-VCE for a special class of weight matrices

In this and the next section, we consider the LS-VCE method
for some important special cases. In the present section, we
consider a special class of weight matrices and show how the
weighted LS-VCE specializes accordingly. As an example,
we show that the unbiased empirical or sample covariance
function is a LS-VCE for a particular choice of weight matrix.

4.1 A special class of weight matrices

Consider the entries of the LS-VCE normal matrix, nkl =
vec(BT Qk B)T [D+T Wvh D+]vec(BT Ql B), see Eq. (9).
Note that if the weight matrix Wvh is chosen as Wvh = DT D,
then nkl = vec(BT Qk B)T [Ib ⊗ Ib]vec(BT Ql B), since
DD+vec(.) = vec(.). Hence, this choice corresponds to
using the unit matrix as the weight matrix for vec(t t T ). We
now define a class of weight matrices, which, by means of a
linear transformation of t , can always be transformed back
to the unit matrix case. This class of weight matrices will be
called the unit weight matrix class.

Definition 1 (Unit weight matrix class) Let W t
vh be the LS-

VCE weight matrix of vh(t t T ). Then W t
vh is said to be a

member of the unit weight matrix class, if it can be expressed
as

W t
vh = DT (Wt ⊗ Wt )D (33)

for some positive definite matrix Wt and with D the dupli-
cation matrix.

This definition is motivated as follows. Let Wvh be the weight
matrix used for the data vector yvh. Then, in order to obtain
the same LS-VCE solution, matrix T −T WvhT −1 should be
used as weight matrix, if T yvh (with matrix T invertible)
is used as data vector. Let us now assume that t is trans-
formed into s using the invertible b × b matrix R, i.e.,
s = Rt or t = R−1s. Then vec(t t T ) = vec(R−1ssT R−T ) =
(R−1⊗R−1)vec(ssT ), or, since vec(.) = Dvh(.) and vh(.) =
D+vec(.), with D the duplication matrix (see Appendix A),
vh(t t T ) = D+(R−1 ⊗ R−1)Dvh(ssT ) = T vh(ssT ).

With W t
vh = T −T W s

vhT −1, this gives W t
vh = DT (RT ⊗

RT )D+T W s
vh D+(R ⊗ R)D. Hence, if W s

vh = DT D, it fol-
lows, since DD+(R ⊗ R)D = (R ⊗ R)D, that

W t
vh = DT (RT ⊗RT )(R⊗R)D = DT (RT R ⊗ RT R)D

(34)

Thus, since R in s = Rt can be any invertible matrix, the
matrix Wt = RT R can be any positive definite matrix.

4.2 The normal equations

We are now in the position to show how the LS-VCE works
out for this special class of weight matrices.

Theorem 2 (LS-VCE for the unit weight matrix class) Let
the weight matrix of the LS-VCE σ̂ be given by Eq. (33). The
entries of the system of normal equations of Eq. (8) are then
given as

nkl = tr(BT Qk BWt BT Ql BWt ), k, l = 1, . . . , p (35)

and

rk = t T WtB
TQk BWt t−tr(BTQk BWtB

TQ0 BWt),

× k = 1, . . . , p (36)

respectively.

Proof Substitution of D+T Wvh D+ = D+T DT (Wt ⊗
Wt )DD+ into Eq. (9), gives (since DD+vec(.) =
vec(.)) nkl = vec(BT Qk B)T [Wt ⊗ Wt ]vec(BT Ql B =
tr(BT Qk BWt BT Ql BWt ). Equation (36) can be derived in a
similar manner. ��
The following example shows that the empirical or sample
autocovariance function is a weighted LS-VCE, if the weight
matrix is chosen from the above given unit weight matrix
class.

Example 5 (The unbiased sample autocovariance function)
Let yi , i = 1, . . ., be a zero-mean stationary random
process, with unknown covariance function σi j = στ
(τ = |i − j |). If m data points are available, we have, with
y = (y1, . . . , ym)

T , that

E{y} = 0 and D{y} = Qyy =
m−1∑

τ=0

στ Qτ (37)

with the m × m cofactor matrices

Qτ = aτ

m−τ∑

i=1

(ci c
T
i+τ + ci+τ cT

i ) (38)

for τ = 0, 1, . . . ,m − 1, with a0 = 1
2 and aτ = 1 for τ �= 0.

Note that σ0 is the variance of yi and that στ is the covariance
between yi and yi+τ .

We may now apply Theorem 2, in order to estimate
σ = (σ0, σ1, . . . , σm−1)

T . In our case, we have t = BT y
with B = I . We will use the diagonal matrix
Wt = Wy = diag(w1, . . . , wm) as the weight matrix. Sub-
stitution of B = I and Wt = Wy = diag(w1, . . . , wm) into
Eq. (35), gives, with Eq. (38),

nτ,κ = tr(QτWy QκWy)

=
{

2aτ
∑m−τ

i=1 wiwi+τ if τ = κ

0 if τ �= κ
(39)
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Hence, the normal matrix is a diagonal matrix.
In a similar manner, and with Q0 = 0, we find

for the entries of the right-hand side vector, rτ = 2aτ∑m−τ
i=1 wiwi+τ yi yi+τ . The LS-VCE solution for the

unknown (co)variance components therefore follows as

σ̂τ =
∑m−τ

i=1 wiwi+τ yi yi+τ∑m−τ
i=1 wiwi+τ

, τ = 0, 1, . . . ,m − 1 (40)

If w1 = · · · = wm = 1, then

σ̂τ =
∑m−τ

i=1 yi yi+τ
m − τ

, τ = 0, 1, . . . ,m − 1 (41)

which is known as the unbiased sample autocovariance func-
tion of a zero-mean stationary time-series yi , see e.g. Wei
(1990).

We have thus shown that the sample autocovariance func-
tion is a LS-VCE, if the weight matrix is chosen as the identity
matrix. In the next section (see Example 6), we will deter-
mine the precision of this LS-VCE. ��
The normal equations of Theorem 2 are expressed in the basis
matrix B of the null space of AT . They can, however, also
be expressed in matrix A, instead of in matrix B. In order to
show this, we first recall some elements from least-squares
theory.

Let a partitioned linear model E{y} = A1x1 + A2x2 be
solved in a least-squares sense with weight matrix W . Now
let B2 be a basis matrix of the null space of AT

2 . Thus,
BT

2 A2 = 0. The solution for x1 is then identical to the
solution one would get when solving E{BT

2 y} = BT
2 A1x1

in a least-squares sense, but now with the weight matrix
W2 = (BT

2 W −1 B2)
−1 (e.g., Teunissen, 2000). With the use

of this analogy from least-squares theory, we can determine
the following alternative expression for the normal equations
of Eqs. (35) and (36).

Corollary 4 (an alternative expression) If W y
vh = DT (Wy ⊗

Wy)D is used as weight matrix for vh(yyT ), then the normal
equations of Eqs. (35) and (36) can be expressed in y, Wy

and A as

nkl = tr(Qk Wy P⊥
A Ql Wy P⊥

A ), k, l = 1, . . . , p (42)

and

rk = êT Wy Qk Wyê − tr(Qk Wy P⊥
A Q0Wy P⊥

A ) ,

k = 1, . . . , p (43)

with ê = P⊥
A y and P⊥

A = I − A(AT Wy A)−1 AT Wy.

Proof Since vh(t t T ) = D+(BT ⊗BT )Dvh(yyT ), we let BT
2

in W2 = (BT
2 W −1 B2)

−1 be given as BT
2 = D+(BT ⊗BT )D.

Furthermore, we set W2 = W t
vh = DT (Wt ⊗ Wt )D and

W = W y
vh = DT (Wy ⊗ Wy)D. It then follows upon substi-

tution in W2 = (BT
2 W −1 B2)

−1, that Wt = (BT W −1
y B)−1

and therefore that BWt BT = B(BT W −1
y B)−1 BT =

Wy P⊥
A . Substitution of BWt BT = Wy P⊥

A into nkl =
tr(BT Qk BWt BT Ql BWt ) = tr(Qk BWt BT Ql BWt BT ),
gives the stated result of Eq. (42). Recognizing that t =
BT y = BT ê, a similar derivation can be given for the right-
hand side rk . ��

5 LS-VCE in case of elliptically contoured distributions

In this section, we consider the LS-VCE method for the case
the probability distribution of the vector of observables y
in the linear model of Eq. (1) is elliptically contoured. The
class of elliptically contoured distributions includes the mul-
tivariate normal distribution as a special case. Since linear
functions of elliptically distributed random vectors are again
elliptically distributed (e.g., Gupta and Varga, 1993), we will
work directly with t = BT y. First, we will determine the var-
iance matrix of vh(t t T ), then we will consider the different
versions of the LS-VCE method.

5.1 The variance matrix of vh(t t T )

Definition 2 (elliptically contoured distribution) A random
b vector t is said to have an elliptically contoured distribution
if its PDF is of the form

ft (t) = |�t |−1/2g((t − µt )
T�−1

t (t − µt )), t ∈ Rb (44)

where g : R �→ [0,∞) is nonincreasing. This distribution is
denoted as Eb(µt ,�t ).

Several important distributions are known to belong to this
family of distributions. The multivariate normal distribution
can be shown to be a member of this family by choosing
g(x) = (2π)−n/2 exp{−(1/2)x}. Another member of this
family is the multivariate Student distribution. Note that the
mean of t is given by µt . The variance matrix of t can be
obtained from the characteristic function, which is of the
form φ(θ) = exp(iθTµt )ψ(θ

T�tθ), for some function ψ ,
where i = √−1. The variance matrix is then given as D{t} =
Qtt = −2ψ ′(0)�t .

Since vh(t t T ) = D+vec(t t T ), we can determine the vari-
ance matrix of vh(t t T ) from the variance matrix of vec(t t T ),
the entries of which are given by

Qi j k l
vec = E{(ti t j − E{ti t j })(tk tl − E{tk tl})}

= E{ti t j tk tl} − E{ti t j }E{tk tl}
i, j, k, l = 1, 2, . . . , b

(45)

Hence, we need the second- and fourth-order moments of
the elliptically contoured distribution. They are given by the
following Lemma.
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Lemma 1 Let t ∼ Eb(0,�t ). Then the odd-order moments
of t are zero, and the second- and fourth-order moments are
of the form

E{ti t j } = qi j

E{ti t j tk tl} = (κ + 1)(qi j qkl + qikq jl + q jkqil)

i, j, k, l = 1, 2, . . . , b
(46)

where qi j represents Qtt in index notation, i.e., qi j = (Qtt )i j ,
and κ is the kurtosis parameter.

Proof For the proof, we refer to Berkane and Bentler (1986);
Maruyama and Seo (2003).

Elliptical distributions are characterized by the kurtosis
parameter κ , which can be used to describe the relation of
central fourth-order to second-order moments of any random
variable as µ4 = 3(1 + κ)µ2

2. For the multivariate normal
distribution, we have κ = 0, and for the multivariate Student
distribution with b degrees of freedom, the kurtosis parame-
ter is given as κ = 2

b−4 .
With the use of Lemma 1, Eq. (45) can be written in terms

of the kurtosis parameter κ and the entries of the variance
matrix Qtt , as

Qi jkl
vec = (κ + 1)(qikq jl + q jkqil)+ κqi j qkl (47)

With this result, we are able to determine the variance matrix
of vh(t t T ) and its inverse.

Theorem 3 (variance matrix of vh(t t T )) Let the b vector t
have an elliptically contoured distribution with zero mean
and variance matrix Qtt . The variance matrix of vh(t t T ),
and its inverse, are then given as

Qvh = 2(κ + 1)D+(Qtt ⊗ Qtt )D
+T

+ κD+vec(Qtt )vec(Qtt )
T D+T (48)

and

Q−1
vh = 1

2(κ + 1)

[
DT (Q−1

t t ⊗ Q−1
t t )D

−κ ′ DT vec(Q−1
t t )vec(Q−1

t t )
T D

]
(49)

with

κ ′ = κ

2(κ + 1)+ κb
(50)

Proof see Appendix B. ��
Note, in case t is normally distributed (κ = 0), that the

inverse of the variance matrix is a member of the special class
of weight matrices considered earlier, with Wt = 1√

2
Q−1

t t .
This is not true, however, when κ �= 0.

5.2 The weighted LS-VCE

With the variance matrix of vh(t t T ) available, we are now in
the position to evaluate the precision of the weighted LS-VCE

in case of an elliptically contoured distribution. The variance
matrix Qσ̂ σ̂ follows from substituting Qvh of Eq. (48) into
Eq. (13). This variance matrix can be worked out further for
the case the weight matrix is a member of the unit weight
matrix class.

Corollary 5 (precision of (co)variance components) Let the
zero mean random b vector t = BT y have an elliptically con-
toured distribution with variance matrix Qtt = BT Qyy B,
and let the weight matrix of the LS-VCE σ̂ be given by
Wvh = DT (Wt ⊗ Wt )D, with Wt = (BT W −1

y B)−1. Then
the variance matrix of σ̂ is

Qσ̂ σ̂ = N−1 M N−1 (51)

where the entries of N and M are

nkl = tr(BT Qk BWt BT Ql BWt )= tr(Qk Wy P⊥
A Ql Wy P⊥

A )

(52)

and

mkl = 2(κ + 1)tr(BT Qk BWt Qtt Wt BT Ql BWt Qtt Wt )

+ κtr(BT Qk BWt Qtt Wt )tr(B
T Ql BWt Qtt Wt )

= 2(κ+1)tr(Qk Wy P⊥
A Qyy Wy P⊥

A Ql Wy P⊥
A Qyy Wy P⊥

A )

+ κtr(Qk Wy P⊥
A Qyy Wy P⊥

A )tr(Ql Wy P⊥
A Qyy Wy P⊥

A )

(53)

with P⊥
A =I−A(AT Wy A)−1AT Wy=W −1

y B(BTW −1
y B)−1BT.

Proof Expressions Qσ̂ σ̂ = N−1 M N−1 and nkl = tr(BT

Qk BWt BT Ql BWt ) = tr(Qk Wy P⊥
A Ql Wy P⊥

A ) are triv-
ial. Matrix M is given as M = AT

vhWvh QvhWvh Avh =
mkl = vh(BT Qk B)T Wvh QvhWvhvh(BT Ql B), where
Wvh = DT (Wt ⊗ Wt )D and Qvh for an elliptical distri-
bution is given by Eq. (48). Substitution of these terms, with
vh(.) = D+vec(.) and DD+vec(.) = vec(.), gives the first
part of the expression in terms of B. In order to obtain the
alternative expression in terms of Wy , Qyy and A, we sub-
stitute Qtt = BT Qyy B and then BWt BT = Wy P⊥

A . ��

To evaluate the precision in case y, and thus t , are normally
distributed, we have to set κ = 0. For a Student distribution
with b degrees of freedom, we have κ = 2

b−4 . Hence, if the
degrees of freedom is sufficiently large, one may use κ = 0
as an approximation.

In the following example, we determine the precision of
the sample autocovariance function.

Example 6 (Example 5 continued) To determine the pre-
cision of the sample autocovariance function, we will
assume that y is normally distributed (κ = 0). The entries
of matrix N in the expression of the variance matrix
Qσ̂ σ̂ = N−1 M N−1 of σ̂ = (σ̂0, . . . , σ̂m−1)

T , are given
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in Eq. (39). To determine the entries of matrix M , we substi-
tute κ = 0, Wt = Wy = diag(w1, . . . , wm) and B = I (or
P⊥

A = I ) into Eq. (53). This gives

mτκ = 2tr(QτWy Qyy Wy QκWy Qyy Wy) (54)

Hence, the entries of the variance matrix are given as

(Qσ̂ σ̂ )τκ = tr(QτWy Qyy Wy QκWy Qyy Wy)

2a2
τ (

∑m−τ
i=1 wiwi+τ )2

(55)

This expression is easily evaluated numerically.
A simple, but approximate, analytical expression can be

obtained, if we approximate the variance matrix of y by
Qyy ≈ σ0 I . This is a good approximation, the closer the
randomness of the time-series resembles that of white noise.
With this approximation, the variance matrix of Eq. (55)
becomes a diagonal matrix, with entries

σ 2
σ̂τ

= σ 2
0

∑m−τ
i=1 w2

i w
2
i+τ

aτ (
∑m−τ

i=1 wiwi+τ )2
, τ = 0, 1, ...,m − 1 (56)

If w1 = · · · = wm = 1, then

σ 2
σ̂τ

= σ 4

aτ (m − τ)
, τ = 0, 1, ...,m − 1 (57)

with σ 4 = σ 2
0 . This shows that the precision of the autoco-

variance function gets poorer with increasing time-lag τ . This
also makes sense, since less data are used when τ increases.

��

5.3 The minimum variance VCE

We have seen that the LS-VCE becomes a minimum variance
estimator if the weight matrix is chosen as the inverse of the
variance matrix, Wvh = Q−1

vh . With Eq. (49), we are now in
the position to determine the minimum variance estimator of
σ in case of elliptically contoured distributions.

Theorem 4 (minimum variance estimator) Let the zero
mean random vector t = BT y have an elliptically contoured
distribution, with variance matrix Qtt = BT Qyy B. The sys-
tem of normal equations of the minimum variance LS-VCE
σ̂ is then given by

N σ̂ = r (58)

where the entries of N and r are

nkl = tr(Qk Q−1
yy P⊥

A Ql Q−1
yy P⊥

A )

2(κ + 1)

×
[

1 − κ ′tr(Qk Q−1
yy P⊥

A )tr(Ql Q−1
yy P⊥

A )

tr(Qk Q−1
yy P⊥

A Ql Q−1
yy P⊥

A )

]
(59)

and

rk = êT Q−1
yy Qk Q−1

yy ê − tr(Qk Q−1
yy P⊥

A Q0 Q−1
yy P⊥

A )

2(κ + 1)

×
[
1− κ ′tr(Qk Q−1

yy P⊥
A )[êT Q−1

yy ê−tr(Q0 Q−1
yy P⊥

A )]
êT Q−1

yy Qk Q−1
yy ê−tr(Qk Q−1

yy P⊥
A Q0 Q−1

yy P⊥
A )

]

(60)

with ê = P⊥
A y = Qyy B Q−1

t t t and P⊥
A = I − A(AT Q−1

yy A)−1

AT Q−1
yy = Qyy B(BT Qyy B)−1 BT .

Proof To obtain the minimum variance estimator in case
of elliptical distributions one can rely on Corollary 3, with
Q−1

vh given in Eq. (49). Substitution of the related terms, with
DD+vec(.) = vec(.) gives

nkl = 1

2(κ + 1)
vec(BT Qk B)T

[
Q−1

t t ⊗ Q−1
t t

− κ ′vec(Q−1
t t )vec(Q−1

t t )
T
]

vec(BT Ql B)

= tr(BT Qk B Q−1
t t BT Ql B Q−1

t t )

2(κ + 1)

×
[

1 − κ ′tr(BT Qk B Q−1
t t )tr(B

T Ql B Q−1
t t )

tr(BT Qk B Q−1
t t BT Ql B Q−1

t t )

]
(61)

In order to obtain the alternative expression in terms of
Qyy and A we use again B Q−1

t t BT = Q−1
yy P⊥

A in Eq. (61).

For the right-hand side r = AT
vh Q−1

vh vh(t t T − BT Q0 B), fol-
low a similar procedure and use t = BT y = BT ê. ��
Note that in this case, the variance matrix of σ̂ is directly
given by the inverse of the normal matrix, Qσ̂ σ̂ = N−1.
Also note that if κ = κ ′ = 0, i.e. t is normally distributed, the
structure of the above system of normal equations becomes
identical to the structure of the system of normal equations of
the weighted LS-VCE, with weight matrix Wvh = DT (Wt ⊗
Wt )D (see Theorem 2 and Corollary 3). If the weight matrix
is chosen such that Wt = 1√

2
Q−1

t t and Wy = 1√
2

Q−1
yy , then

Eqs. (35) and (36) become identical to Eqs. (59) and (60),
respectively.

In the following example, a minimum variance estimator
is given of the variance matrix of repeated measurements.

Example 7 (Variance matrix estimation from repeated
experiments) Consider the following linear model

E{yi } = Axi , D{yi , y j } = σi j Q i, j = 1, 2, . . . , r (62)

It consists of r groups of observation equations. The
yi , i = 1, . . . , r , are normally distributed m-vectors of
observables and the xi , i = 1, . . . , r , are the n-vectors of
unknowns. The m×n design matrix A is assumed known and
of full column rank. In addition to the xi , also the r(r + 1)/2
(co)variance components σi j are assumed unknown. The
m × m cofactor matrix Q is assumed known and positive
definite. The goal is to determine the minimum variance LS-
VCE solution for the σi j . Note, if r = 1, that the above model
reduces to the standard linear model, with the variance factor
of unit weight as the single unknown variance component.

If we define Y = (y1, . . . , yr ), x = (xT
1 , . . . , xT

r )
T and

(�)i j = σi j , we may write the above model, with the use of
the Kronecker product, as

E{vec(Y )} = (I ⊗ A)x, D{vec(Y )} = � ⊗ Q (63)
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with

� =
r(r+1)/2∑

k=1

σkCk (64)

where σk is respectively σ 2
1 , σ12, σ13, . . . , σ 2

r , and
Ck = ci cT

i , for σk := σ 2
i , and Ck = ci cT

j + c j cT
i , for

σk := σi j (i �= j). Thus, Eq. (63) may also be written as

E{vec(Y )} = (I ⊗ A)x,

D{vec(Y )} =
r(r+1)/2∑

k=1

σk(Ck ⊗ Q) (65)

We may now apply Theorem 4 (with κ = κ ′ = 0) to find the
minimum variance estimator of σ = (σ1, . . . , σr(r+1)/2) =
vh(�). We have Q−1

vec(Y )vec(Y ) = �−1 ⊗ Q−1, Qk = Ck ⊗ Q

and ê = P⊥
Ir ⊗Avec(Y ) = (Ir ⊗ P⊥

A )vec(Y ) = vec(P⊥
A Y ),

with P⊥
A = Im − A(AT Q−1 A)−1 AT Q−1. Substitution

into rk = 1
2 êT Q−1

vec(Y )vec(Y )Qk Q−1
vec(Y )vec(Y )ê, gives, with

Ê = P⊥
A Y , for the entries of the right-hand side vector

rk = 1

2
vec(Ê)T [�−1Ck�

−1 ⊗ Q−1]vec(Ê)

= 1

2
tr(�−1Ck�

−1 ÊT Q−1 Ê)

= 1

2
vec(Ck)

T [�−1 ⊗�−1]vec(ÊT Q−1 Ê)

= 1

2
vh(Ck)

T [DT (�−1 ⊗�−1)D]vh(ÊT Q−1 Ê) (66)

and thus

r = 1

2
[DT (�−1 ⊗�−1)D]vh(ÊT Q−1 Ê) (67)

since vh(Ck) is the canonical unit vector having the one as
its kth entry.

In a similar way we find for the entries of the normal
matrix,

nkl = 1

2
tr(Ck�

−1Cl�
−1 ⊗ P⊥

A )

= 1

2
tr(Ck�

−1Cl�
−1)tr(P⊥

A )

= 1

2
vh(Ck)

T [DT (�−1 ⊗�−1)D]vh(Cl) tr(P⊥
A ) (68)

and thus

N = m − n

2
DT (�−1 ⊗�−1)D (69)

since tr(P⊥
A ) = rank(P⊥

A ) = m −n. With Eqs. (67) and (69),
we obtain the minimum variance LS-VCE �̂ from σ̂ = N−1r
and σ̂ = vh(�̂), as

�̂ = ÊT Q−1 Ê

m − n
(70)

Note that this result is a generalized form of the familiar
estimator for the variance factor of unit weight.

We can also determine the precision of the entries of �̂.
Since the variance matrix of σ̂ = vh(�̂) is given by the
inverse of the normal matrix, it follows from Eq. (69) that

Qσ̂ σ̂ = N−1 = 2

m − n
D+(� ⊗�)D+T (71)

From this result, the variances and covariances of the esti-
mated (co)variance components follow as

σσ̂i j σ̂kl = σikσ jl + σilσ jk

m − n
; σ 2

σ̂i j
= σ 2

i σ
2
j + σ 2

i j

m − n
(72)

Thus, the variances of the variance components are given as

σ 2
σ̂ 2

i
= 2σ 4

i

m − n
, i = 1, ..., r. (73)

��

6 The mean and the variance of the LS-VCE based
estimator of x

In case of the linear model of Eq. (1), the BLUE of x is
x̂ = (AT Q−1

yy A)−1 AT Q−1
yy y. This estimator can not be used

if Qyy is unknown. In this section, we investigate what can
be said about the mean and the variance of the parameter
estimator when Qyy is replaced by its estimator.

6.1 The mean

Once the (co)variance component estimator σ̂ has been
obtained, one can estimate Qyy as

Q̂yy = Q0 +
p∑

k=1

σ̂k Qk (74)

When Q̂yy is used to replace Qyy in the expression for the
BLUE of x , we obtain the estimator

x̂ ′ = (AT Q̂−1
yy A)−1 AT Q̂−1

yy y (75)

where the matrix Q̂yy and the vector y are both random.
The question is then how this randomness propagates into

the mean and variance of x̂ ′. For this purpose, we first rewrite
Eq. (75) into a more convenient form. With the use of the
decomposition y = Ax̂ + Qyy B(BT Qyy B)−1t , see Eq. (3),
we may express x̂ ′ as

x̂ ′ = x̂ + M(t)t (76)

with

M(t) = (AT Q̂−1
yy A)−1 AT Q̂−1

yy Qyy B(BT Qyy B)−1 (77)

Note that since the entries of Q̂yy are functions of the misclo-
sure vector t , this also holds true for the entries of the matrix
M(t). Also note that since AT B = 0, M(t) will be small if
Q̂yy is a good approximation of Qyy .
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With the above decomposition, it is now possible to see
when x̂ ′ is unbiased or not. It follows from Eq. (76) that x̂ ′
is an unbiased estimator of x , i.e., E{x̂ ′} = E{x̂} = x , if and
only if E{M(t)t} = 0. Thus for x̂ ′ to be unbiased, we need
that

E{M(t)t} =
∫

M(t)t ft (t)dt = 0 (78)

holds true, where ft (t) denotes the probability density func-
tion (PDF) of t . This condition is satisfied if M(t) ft (t) is
symmetric with respect to the origin, thus if M(−t) ft (−t) =
M(t) ft (t). Since Q̂yy , and therefore also M(t), is a function
of vh(t t)T , it follows that M(t) is always symmetric with
respect to the origin, M(−t) = M(t).

The conclusion is therefore, that x̂ ′ is an unbiased estima-
tor of x , whenever the PDF ft (t) is symmetric with respect
to its mean E{t} = 0. This is a gratifying result, since this
holds true for many of the distributions used in practice (such
as the class of elliptically contoured distributions).

6.2 The variance

Let us now consider the variance of x̂ ′. The evaluation of the
variance is more problematic. We will assume that Eq. (78)
holds true and that x̂ is uncorrelated with M(t)t . The lat-
ter is true, for instance, when y is normally distributed, in
which case x̂ and t , and thus also x̂ and M(t)t , are indepen-
dent. With these assumptions, an application of the variance
propagation law to Eq. (76) gives

Qx̂ ′ x̂ ′ = Qx̂x̂ +
∫

M(t)t t T M(t)T ft (t)dt (79)

Equation (79) shows by how much the variance of x̂ ′ dif-
fers from the smallest possible variance, i.e. the variance of
the BLUE of x . Although it is difficult to evaluate the second
term on the right-hand side of Eq. (79) exactly, a first-order
approximation can be obtained if one makes use of the linear-
ization M(t) = M(0)+ ∂t M(0)t . Substitution into Eq. (79),
gives

Qx̂ ′ x̂ ′ = Qx̂x̂ + M(0)Qtt M(0)T

+
b∑

i=1

b∑

j=1

∂t Mi (0)E{ti t j t t
T }∂t M j (0)

T (80)

This shows that the difference between Qx̂ ′ x̂ ′ and Qx̂x̂

depends on the second- and fourth-order moments of t . They
are given in Lemma 1 for elliptically contoured distributions.

7 LS-VCE compared to MINQUE, BIQUE and MLE

In this section, we compare the LS-VCE method with some of
the existing and well-known methods of VCE. A comparison

is made with the following estimators: (1) the minimum norm
quadratic unbiased estimator (MINQUE); (2) the best invari-
ant quadratic unbiased estimator (BIQUE), also known as
the minimum variance quadratic unbiased estimator (MIV-
QUE); and (3) the maximum likelihood estimator (MLE) of
the (co)variance components.

In the following, we will describe the underlying assump-
tions of the different methods and show under which circum-
stances the different estimators coincide.

7.1 MINQUE

The MINQUE method (Rao 1971) is a popular method for
estimating unknown (co)variance components. The underly-
ing model of MINQUE is given by Eqs. (1) and (2), with
Q0 = 0 and Qk = Zk Z T

k . As with the LS-VCE method,
MINQUE has the advantage that no distributional assump-
tions need to be made about the higher order moments of y
or t .

Here we show that the MINQUE method is a special case
of the LS-VCE method. That is, if the special class of weight
matrices Wvh = DT (Wy ⊗ Wy)D is used and Wy is chosen
as

Wy =
( p∑

k=1

wk Qk

)−1

=
( p∑

k=1

wk Zk Z T
k

)−1

(81)

in which the wk , k = 1, . . . , p, are user-defined scalar
weights, then the LS-VCE degenerates to the MINQUE.

MINQUE is defined as a quadratic estimator of σ ,
say yT Sy (with S symmetric), which is unbiased (i.e.,
tr(Z T

k SZk) = 1, k = 1, . . . , p) and invariant for changes in
x (i.e., S A = 0). Furthermore, matrix S is chosen such that it
minimizes, in the sense of a Euclidean norm, the difference
between the MINQUE and a so-called ‘natural’ estimator
of σ . These conditions of Rao (1971) lead to the following
minimization problem:

min
S

p∑

k=1

p∑

l=1

tr(wkwl [Z T
k SZl ][Z T

l SZk]) (82)

subject to the conditions of unbiasedness and invariance. Rao
(1971) has shown that the minimizing symmetric matrix Ŝ,
and therefore the MINQUE σ̂ = yT Ŝy, is given as

Ŝ =
p∑

l=1

λl P⊥T
A Wy Zl Z T

l Wy P⊥
A (83)

where the λk are given as the solutions to the set of
equations

∑p
k=1 λk tr(Zk Z T

k Wy P⊥
A Zl Z T

l Wy P⊥
A ) = 1, for

l = 1, . . . , p, and where Wy is given by Eq. (81).
A comparison of the above solution with that of Cor-

ollary 4 (setting Q0 = 0 and Qk = Zk Z T
k ), shows that

the LS-VCE reduces to the MINQUE, in case the special
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class of weight matrices is used with the Wy of Eq. (81).
Sjöberg (1983) has shown how the MINQUE works out in
case the model of condition equations is used, instead of
the model of observation equations. In that case, MINQUE
becomes identical to the LS-VCE solution of Theorem 2, with
Wt = (BT W −1

y B)−1.

7.2 BIQUE

As with MINQUE, the underlying model of BIQUE is given
by Eqs. (1) and (2), with Q0 = 0 and Qk = Zk Z T

k . Also,
like MINQUE, the BIQUE is a quadratic estimator yT Sy
that satisfies the conditions of unbiasedness and invariance,
tr(Z T

k SZk) = 1, k = 1, . . . , p, and S A = 0, respectively.
The two methods differ, however, with respect to the

objective function that needs to be minimized. In the case
of BIQUE, the objective function is given by the variance
of the quadratic estimator. This implies, as for the minimum
variance LS-VCE (see Corollary 3 and Sect. 5.3), that distri-
butional information needs to be available of the observables,
in particular the central moments up to and including order
four.

BIQUE has been derived and studied by various authors
under the assumption of normally distributed observables,
see e.g. Koch (1978); Sjöberg (1984); Caspary (1987); Yu
(1992); Koch (1998). Based on the normal distribution, the
minimization of the variance of the invariant quadratic unbi-
ased estimator leads to the following minimization problem:

min
S

tr(SQyy SQyy) (84)

subject to the conditions of unbiasedness and invariance.
Solving for S gives a solution that is identical to the mini-

mum variance LS-VCE solution of Theorem 4 for κ = κ ′ =
0. This solution is also identical to MINQUE, in case the
scalar weights are chosen aswk = σk . However, note that, in
contrast with the LS-VCE, MINQUE cannot accommodate
minimum variance estimators for which the inverse variance
matrix Q−1

vh has a structure other than that of Eq. (33).

7.3 MLE

In contrast with LS-VCE, MINQUE and BIQUE, MLE
requires complete knowledge of the PDF of the observables.
For (co)variance component estimation based on the linear
model of Eqs. (1) and (2), one usually assumes normally
distributed observables.

The MLE of the (co)variance components is known to
be a biased estimator, see e.g. (Rao and Kleffe, 1988; Rao,
1997). This bias is due to the fact that the MLE does not take
into account the loss of degrees of freedom resulting from
the estimation of x . To remedy this situation, the restricted

maximum likelihood (REML) estimator has been suggested
Patterson and Thompson (1971); Harville (1977).

The REML considers the likelihood function of the dis-
tribution of t = BT y, instead of the likelihood function of
the distribution of y. Thus, with t ∼ N(0, Qtt (σ )), where
Qtt (σ ) = ∑p

k=1 σk BT Qk B, the likelihood function of the
REML is given as

ln L(t; σ)=−b

2
ln 2π− 1

2
ln det(Qtt (σ ))− 1

2
t T Qtt (σ )

−1t

(85)

The REML of σ is then defined as the maximizer of L(t; σ),
σ̂ = arg max

σ
L(t; σ) (86)

It can be shown that the REML is identical to the BIQUE
(e.g., Koch 1986), and therefore also identical to the mini-
mum variance LS-VCE. Alternative derivations and studies
of maximum likelihood variance component estimation, can
be found in e.g. Kubik (1970); Ou (1989); Yu (1996).

8 Concluding remarks

In this contribution, we studied the weighted least-squares
approach to variance component estimation. Since it is
believed that the LS-VCE method is undeservedly still one
of the lesser known VCE methods, we have emphasized
the simplicity, flexibility and attractiveness of the method,
together with the fact that the method is capable of uni-
fying many of the existing VCE methods. The method is
very simple indeed, since with the data vector and the
design matrix given as yvh = vh(t t T − BT Q0 B) and
Avh = [vh(BT Q1 B), . . . , vh(BT Q p B)], the unbiased least-
squares estimator of the (co)variance component vector fol-
lows directly as

σ̂ = (AT
vhWvh Avh)

−1 AT
vhWvh yvh (87)

in which Wvh is a user-defined weight matrix. The method
is flexible, since it gives the user, through the user-defined
weight matrix Wvh, considerable leeway to weight the data
according to the needs of their application. This has been
shown for different classes of weight matrices, one of
which was derived from the class of elliptically contoured
distributions.

The LS-VCE method is also attractive, since it allows one
to directly apply the existing body of knowledge of least-
squares theory. We have discussed various such examples,
ranging from the formulation of test statistics for hypothe-
sis testing to the solution of nonlinear (co)variance compo-
nent estimation problems. Another example is the precision
description of the (co)variance component estimator. It read-
ily follows from an application of the variance propagation
law to Eq. (87), as
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Qσ̂ σ̂ = N−1 M N−1 (88)

with N = AT
vhWvh Avh, M = AT

vhWvh QvhWvh Avh and Qvh

the variance matrix of yvh.
Being able to perform a rigorous precision analysis is

important for many applications, such as estimability studies
or significance testing. Clearly, the computations, as needed
for Eqs. (87) and (88), are straightforward and easily exe-
cuted with standard least-squares software packages. This is
also true for other least-squares VCE diagnostics.

It was also emphasized that the LS-VCE method is capa-
ble of unifying many of the existing VCE-methods. It was
shown that these methods could be easily recovered by mak-
ing the appropriate choice for the weight matrix Wvh. From
Eq. (87) one directly obtains the minimum variance (co)var-
iance component estimator, if the weight matrix is chosen as
Wvh = Q−1

vh . The variance matrix Qvh and its inverse were
worked out for the class of elliptically contoured distribu-
tions. Several important distributions are known to belong
to this class, the multivariate normal distribution being one
such example.

In case of the normal distribution, REML and BIQUE are
recovered. It was also shown that in this respect MINQUE is
a rather restrictive estimator. It can easily be recovered from
the LS-VCE method, by making the appropriate choice for
the weight matrix. MINQUE itself, however, is not capable
of handling elliptically contoured distributions, other then
the normal distribution. Since the LS-VCE method can han-
dle elliptically contoured distribution, it can be applied to
data, for instance, of which the distribution has tails that are
heavier than those of the normal distribution.

Appendix A

Definition of matrix operators

Definition 3 Consider a matrix S = (si j ) of order u × v and
a matrix T = (ti j ) of order q × r . The Kronecker product
of the two matrices, denoted by S ⊗ T , is defined as the par-
titioned matrix si j T which is seen to be a matrix of order
uq × vr . It thus has uv blocks, the i j th block is the matrix
si j T of the order q × r .

Definition 4 Let S = [s1 s2... sv] be an arbitrary matrix
of size u × v, with si its i th column (vector) of size u.
Then the vec-operator on this matrix is defined as vec(S) =
vec([s1 s2... sv]) = [

sT
1 sT

2 ... sT
v

]T
. Therefore, the vec oper-

ator creates a column vector of size uv × 1 from the matrix
S by stacking the column vectors of S below one another.

Definition 5 The commutation matrix Kuv is the uv × uv
matrix with the property that Kuvvec(S) = vec(ST ) for every
u×vmatrix S. When u = v, we use the notation K instead of

Kuv . In this case, the commutation matrix has the form K =∑u
i=1

∑u
k=1 ci cT

k ⊗ckcT
i with ci = (0 · · · 0 1 0 · · · 0)T , the

canonical unit vector which contains zeros except a one at
i th position.

Definition 6 Let S = (si j ) be any arbitrary square matrix of
size u. The vh-operator of S is obtained in the similar way
that vec(S) is defined, but it starts each column at its diago-
nal element. That is, vh(S) contains the 1

2 u(u + 1) elements
si j , i ≥ j , only the elements on and below the diagonal
of S.

Definition 7 Let S be a symmetric matrix of size u. The
duplication matrix D is the u2 × 1

2 u(u + 1) matrix with the
property that Dvh(S) = vec(S)

Properties of matrix operators

Assuming all matrices and vectors involved have appropriate
dimensions, the following properties hold for the Kronecker
product, trace, and vec-operator:

tr(U V ) = tr(V U ) (89)

(U + V )⊗ S = U ⊗ S + V ⊗ S (90)

(U V )⊗ (ST ) = (U ⊗ S)(V ⊗ T ) (91)

tr(U ⊗ V ) = tr(U )tr(V ) (92)

(U ⊗ V )T = U T ⊗ V T (93)

(U ⊗ V )−1 = U−1 ⊗ V −1 (94)

vec(uvT ) = v ⊗ u (95)

vec(U )T vec(V ) = tr(U T V ) (96)

vec(U V S) = (ST ⊗ U )vec(V ) (97)

tr(U V ST ) = vec(T T )T (ST ⊗ U )vec(V )

= vec(T )T (U ⊗ ST )vec(V T ) (98)

For symmetric matrix S of size n and arbitrary matrices
U and V of size n ×n, the following formulas holds between
the duplication matrix D and the commutation matrix K :

vec(S) = Dvh(S), vh(S) = D+vec(S) with

D+ = (DT D)−1 DT (99)

D+D = I, and DD+ = D+T DT a projector (100)

vec(S) = DD+vec(S) (101)

(D+(S ⊗ S)D)−1 = D+(S−1 ⊗ S−1)D (102)

DD+(U ⊗ U )D = (U ⊗ U )D (103)

D+(U ⊗ U )DD+ = D+(U ⊗ U ) (104)

(DT (U ⊗ U )D)−1 = D+(U−1 ⊗ U−1)D+T (105)

K (U ⊗ V ) = (V ⊗ U )K (106)

K (U ⊗ V )K = V ⊗ U (107)

K D = D, D+K = D+ (108)

DD+ = 1

2
(I + K ) (109)
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For a complete reference on the properties and the theo-
rems among the vec and vh operators, the Kronecker product,
and the commutation and duplication matrices, we refer to
Magnus (1988).

Appendix B

Proof of Theorem 3

The b2×b2 variance matrix Qvec of Eq. (47), as a fourth-order
tensor, can be rewritten as Qvec = ∑b

i=1
∑b

k=1 ci cT
k ⊗ Qi.k.,

where the b × b submatrix Qi.k. is of the form

Qi.k. = (κ + 1)(cT
i Qtt ck Qtt + Qtt ckcT

i Qtt )

+κQtt ci c
T
k Qtt (110)

with ci the canonical unit vector. Qvec gives, with Eq. (110)

Qvec = (κ+1)
b∑

i=1

b∑

k=1

ci c
T
k ⊗ (cT

i Qtt ck Qtt +Qtt ckcT
i Qtt )

+κ
b∑

i=1

b∑

k=1

ci c
T
k ⊗ Qtt ci c

T
k Qtt (111)

or

Qvec = (κ + 1)

[
Qtt ⊗ Qtt +

b∑

i=1

b∑

k=1

(I ⊗ Qtt )

× (ci ck ⊗ ckcT
i )(I ⊗ Qtt )

]

+κ
b∑

i=1

b∑

k=1

(I ⊗ Qtt )(ci ck ⊗ ci c
T
k )(I ⊗ Qtt ) (112)

or

Qvec = (κ+1)[Qtt ⊗Qtt +(I ⊗Qtt )K (I ⊗Qtt )]

+κ(I ⊗ Qtt )

b∑

i=1

b∑

k=1

(
ci ck ⊗ ci c

T
k

)
(I ⊗ Qtt ) (113)

with K the commutation matrix of size b2 × b2. Equa-
tion (113) is reformulated as

Qvec = (κ + 1)[I + K ]Qtt ⊗ Qtt

+κ I ⊗ Qtt

b∑

i=1

b∑

k=1

(ci ck ⊗ ci c
T
k )I ⊗ Qtt

(114)

The term
∑b

i=1
∑b

k=1 ci ck ⊗ ci cT
k can be written as

b∑

i=1

b∑

k=1

ci c
T
k ⊗ ci c

T
k =

b∑

i=1

ci ⊗ ci

b∑

k=1

cT
k ⊗ cT

k (115)

or

b∑

i=1

b∑

k=1

ci c
T
k ⊗ ci c

T
k = vec

(
b∑

i=1

ci c
T
i

)
vec

(
b∑

k=1

ckcT
k

)T

= vec(I )vec(I )T (116)

Equation (114) with Eq. (116) follows that

Qvec = 2(κ + 1)DD+(Qtt ⊗ Qtt )+κvec(Qtt )vec(Qtt )
T

(117)

Applying the variance propagation law to vh(t t T ) =
D+vec(t t T ) results in the variance matrix of the observable
vector vh(t t T )

Qvh = 2(κ + 1)D+(Qtt ⊗ Qtt )D
+T

+κD+vec(Qtt )vec(Qtt )
T D+T (118)

which completes the first part.
Using the identity

(U + uvT )−1 = U−1 − U−1uvT U−1

1 + vT U−1u
(119)

with U = 2(κ+1)D+(Qtt ⊗ Qtt )D+T , u = κD+vec(Qtt )

and v = D+vec(Qtt ) the inverse of Qvh is simply obtained.
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