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Requirements for adaptive optics and compensating imaging systems lead to wave front recon-
struction problems which we formulate as generalized least-squares problems. For a given array of
phase-difference measurements, we construct explicit and exact solutions for the least-squares wave
front error. Of particular interest are solutions with minimum norm. Two different discretizations
for the gradient are used and the reasons for the different results are given.

INTRODUCTION AND SUMMARY

Adaptive optics and compensating imaging control systems
require methods that construct the phase of a wave front from
measured gradients of the wave front. The noise in gradient
measurements leads to a wave-front error that is related to the
variance of the noise by the error propagator. The calculation
of the error propagator is the main task of this paper.

We summarize the main points of our calculations. In Sec.
I we present some analytical background which can be used
to relate the least-squares phase error to the noise. We also
point out that the irrotational part of the noise is part of the
solution. In Sec. II we formulate two discretizations for the
gradients of the phase in terms of an overdetermined system
of linear equations. The rank of the matrix of this linear
system is of crucial importance. The least-squares mini-
mum-norm solutions are discussed in Sec. III and are used to
calculate the mean-square phase error with minimum norm.
In Sec. IV we show that many other least-squares solutions
can be constructed; they differ from the minimum-norm so-
lution by the amount of piston they contain. In Sec. V we

show how to extend the system of linear equations to a
nonsingular problem of full rank. The relation to network

theory is discussed in Sec. VI. We show that the minimum-
norm solution cannot be realized by a linear and passive net-
work. In Sec. VII we perform least-squares fits with poly-
nomial expansions. We show that a least-squares fit to the
phase gives different results from a least-squares fit to the
gradient. In Sec. VIII we apply the developed theory to a
square array from which the corners were removed. Finally
in Sec. IX we analyze the properties of the curl operator and
use it to estimate the mean-square gradient error.

1. ANALYTICAL BACKGROUND

In this introduction we present some useful background
material in analytical form. The general problem is the de-
termination of the phase of a wave front from its gradient. If
the gradient is known and the phase is given at a point ro
= (0,0) then the phase at any other point r = (x,y) is given
by

¢(r) = fc V ds + (ro), (1)

where C is any curve connecting points ro and r.

In the presence of noise, the computed value of the phase
can depend on the integration path, and Eq. (1) may not be
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useful. A more general method to calculate the phase from
the gradient field might be preferable.

The phase 4(x,y) and the measured gradient g(x,y) are
related in the presence of noise n(x,y) by

Vk + n = g, (2)

an equation which can be satisfied in a least-squares sense
(indicated by the circumflex)

X (V - g) 2 dxdy = minimum. (3)

This is a variational problem that has the Euler equation'

V20 = V * g, (4)

which is an elliptic differential equation. In our case, since
the gradients are known we therefore get a Neumann
boundary-value problem. 2 The generalization to a weighted
least-squares fit

S W(x,y)(Vf - g)2 dxdy = minimum, (5)

leads to the Euler equation

V * (WV) = V * (Wg) (6)

with a weight function W(x,y).

The existence of the solution for the Neumann problem
requires that the line integral over the boundary of the driving
term in Eq. (4) vanishes. Owing to the divergence form in our
case this condition is automatically satisfied. The solution
of a Neumann problem for a bounded region is unique except
for an additive constant.

The error in the least-squares solution is defined by

f = 0- 0,

and it also satisfies Eq. (4):

V72E = V7 . n.

(7)

(8)

We can assume a decomposition of the noise field into an
irrotational and a solenoidal part. The irrotational part is
included in the solution of Eq. (8), whereas the solenoidal part
of the noise is eliminated by taking the divergence of the
noise.

The purpose of the following calculations is the determi-
nation of the mean-square wave-front distortion (f

2
) averaged

over an appropriate noise ensemble.

IL. DISCRETIZATIONS

For the discretizations of Eq. (2) we use K = N2 phase
points arranged in a square array. The finite difference forms
for the gradient and the divergence can be expressed in a va-
riety of ways. We present in this paper results following the
discretization used by Hudgin 3 and Fried.4 For all cases the
relation between the phase, written as a linear array x, and the
gradient, a linear array g, can be written as

Ax = g, (9)

with a matrix A (M X K) which relates the array x (K) to the
array of M gradient measurements g(M). For Hudgin's
discretization the matrix A is given by
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FIG. 1. Hudgin's discretization for N = 3, M = 12, and the corresponding
matrix A, the reduced matrix A, for xg = 0, and the extended matrix Ae.

A[q + (p - 1)(N - 1),q + (p - 1)N] = -1
A[q + (p - 1)(N - 1),1 + q + (p- l)N] = 1|

p= 1,N -1 (10)

A[q + M/2,q] =-I q = 1-M/2
A [q +M/2,q±+N] = 1q1M/

with all remaining elements equal to zero. The dimensions
M and K for a specified value of N are

M= 2N(N-1), K = N2,

and the rank of the matrix A is

R(A) = N 2 -1.

(10a)

(lob)

In Fig. 1 we show the discretization used by Hudgin and the
resulting matrix for N = 3.

The discretization used by Fried leads to the matrix given
by

A[m,n] = -1 A[m + 1,n] =-1

A[m,n+M] = 1 A[m+ 1,n+M] =-1
A[m,n+NM] =-1 A[m +1,n+NM] = 1

A[m,n+NM+M] = 1 A[m+ 1,n+NM+M] = 1 (11)
m = 1 + 2(q - 1) + 2(p - 1)(N - 1)
n = [q + (p - 1)NjM

p= 1,N- 1
q= 1,N - 1

with all remaining elements equal to zero. The dimensions
M and K are

M = 2(N-1) 2 , K = N2 ,

and the rank of the matrix is

R(A) = N 2 - 2.

(lla)

(llb)
An example for Fried's case for N = 3 is shown in Fig. 2. In

Hudgin's case the difference between the number of columns
in the matrix A and its rank is 1, corresponding to the property
that the phase is determined only up to a constant by its gra-
dient. In Fried's case the discretization leads to two sets of
disconnected phase points, with two arbitrary constants, one
for each set. This fact is expressed by the rank deficiency of
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FIG. 2. Fried's discretization for N = 3, M = 8, and the corresponding
matrix A, the reduced matrix A, for x8 = xg = 0, and the extended matrix
A,.

2. These properties pose no problem in our treatment of Eq.

(9).

III. LEAST-SQUARES MINIMUM-NORM SOLUTIONS

The least-squares minimum-norm solution of Eq. (9) is
unique and is5-7

x = A+g, (12)

where the Moore-Penrose generalized inverse is written as A+.
Solutions of linear equations are discussed in the Appendix.
The generalized inverse can be evaluated in a variety of ways.
We start with an elementary method using a partitioning of
the matrix A.

We define four submatrices that make up the matrix A

4=A A21  (13)
IA3 A 4

where A I is a full rank square matrix, its rank equal to the rank
of A, while A2, A3, and A4 are matrices of appropriate di-
mensions. The Moore-Penrose inverse of A is then5

I 1,
A+ = EAjA2VTUT A31  (14)

with
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FIG. 4. Error propagator for Fried's and Hudgin's discretization for the
minimum-norm solutions and the values from Ref. 4.

U= (I[AjA2]AT 1Ai}) (14)

where T indicates the transpose of a matrix.

The minimum-norm least-squares error is then given by

(2= 2SIN2, (15)

where U2 is the mean-square error of the gradient measure-
ments and S is the sum of the squares of all elements in the
matrix A+. In the derivation of Eq. (15) we assumed that the
noise is uncorrelated between the different gradient mea-
surements and that each gradient has the same mean-square
error. These are the same statistical properties of the noise
as in Refs. 3 and 4. The error propagator, defined by Ep
= S/N 2 , is plotted in Figs. 3 and 4 as a function of the number
of points N2 .

The structure of the matrix A makes it easy to perform the
required partitioning in Eq. (13) and to calculate the gener-
alized inverse using Eq. (14). The general procedure to cal-
culate the generalized inverse uses first the singular-value
decomposition 5' 7 of the matrix A

A = USVT, (16)

0
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FIG. 3. Error propagator for Hudgin's discretization as function of number
of points N 2 for a variety of conditions.
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where U and V are orthogonal matrices and S is a diagonal
matrix containing the singular values of A. The generalized
inverse is then given by

A+ = VS-1UT. (17)

A FORTRAN program to perform these operations is avail-
able.8

IV. OTHER LEAST-SQUARES SOLUTIONS

The phase is determined by the gradient field only up to a
constant (or two constants in Fried's case). This permits us
to construct particular least-squares solutions of Eq. (9) by
setting the phase equal to zero at a particular point (at two
points for Fried's case). As an example, one can take the
center or the corner value of the phase to be zero. In this way
the matrix A becomes a full rank matrix Ar reduced by one
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column for Hudgin's case and two columns for Fried's case.
The matrix relating the phase to all gradients is then given
by

Br = [(ATAr)YAr] (18)

where 0 is a one-row matrix of zeros for Hudgin's case and a
two-row matrix of zeros for Fried's case. The least-squares
errors corresponding to this solution are shown in Fig. 3 for
some center values of the phase equal to zero or some corner
values equal to zero. These solutions are obviously not
minimum-norm solutions.

The least-squares solution x = Brg with the matrix Br in Eq.
(18) is a solution of the equation

A7TArx = ATg, (19)

which is a finite difference approximation to Eq. (4) and is
identical to Hudgin's Eq. (28). Hudgin's derivation of this
equation was performed with considerable detour into Fourier
space. Equation (19) is called the normal equation 5 of the
least-squares problem ArXr = g.

It is possible to construct from Br the minimum-norm so-
lution B using the condition Zx = 0. This leads for Hudgin's
case to

B= -[C|C (20)

where the linear array C is given by

K-1
Cm = (1/N 2 ) A Bn., m = 1,M.

n=1

For Fried's case two linear arrays have to be introduced
corresponding to the fact that there are two sets of discon-
nected phase points.

We summarize now the numerical results for the error
propagator. In Fig. 3 we plot it as functions of N 2 for Hudg-
in's case. We show the minimum-norm solution, a solution
that assumes the center phase put to zero (for N even, we use
a point closest to the center), and a corner phase set to zero.
In addition we show the values calculated by Hudgin. 3 (We
corrected for a missing square-root sign in Hudgin's paper; his
noise coefficients have to be squared to give the correct error
propagator for the variance.)

The discretization used in the construction of the matrix
A in Eq. (10) is based on the approximation for the first de-
rivaitive

fl = f, + 1 l-a f+ 0(h2 ),

where h is the spacing between the points. A higher-order
approximation is given by

1f = h - n 2 A -21 + 0 (h 4).1 I- 1fn+2 + 9 fn+1 - f9 A +
h 24 8 8 24 1

An appropriate change in the matrix A leads then to a least-
squares solution with a slightly smaller error propagator, also
shown in Fig. 3.

The difference between the least-squares errors and the
least-squares minimum-norm error is due to the piston error
term. The piston is an unwanted parameter in the solution

for the wave front and has only some indirect effects. If the
piston is not removed the control system has to include the
dynamic range of the piston error and the effect on the system
will depend on the size and spectrum of the piston error. A
phase observed at a single point would include the piston
noise.

In Fig. 4 we plot the error propagator for the minimum-
norm solution for Fried's case. For large N Fried's solution
approaches the correct values. The deviation for small N is
probably due to the approximation introduced by Fried fol-
lowing his Eq. (22). We also plot the error propagator for the
minimum-norm solution for Hudgin's case in order to show
the effect of the different discretizations.

V. NONSINGULAR LEAST-SQUARES
MINIMUM-NORM SOLUTION

It is possible to extend system Eq. (9) to a full rank problem
which gives the unique least-squares minimum-norm solution.
Using the requirement E x = 0, which removes the piston, we
can extend Eq. (9) to

AeX = ge (21)

For Hudgin's case the dimension of Ae is (M + 1) X K. By
adding a row of ones

As(q) = 1, q = 1,K

to the matrix A we get

Ae K (22)

and adding one zero to the array g, we get g,.

For Fried's case the dimension of Ae is (M + 2) X K con-
structed by adding a two-row matrix A, to A as in Eq. (22)
with

A,[1,1 + 2p] = 1 p = 0,(N 2 - 1)/2

A, [2,2 + 2p] = 1 q = 0,(N2 -3)/2 for odd N,
A, [1,1 + 2(q - 1) + N(p - 1) + mod(p + 1,2)] = 1

A, [2,1 + 2(q - 1) + N(p - 1) + mod(p,2)] = 1 for even N.

These extended systems lead to the normal equation

ATAeX = ATge = ATg,

with the least-squares minimum-norm solution

x = (A'A,)-1ATg,

(23)

(24)

which is identical to the solution equation (12).

VI. RELATION TO NETWORK THEORY

It is useful to formulate the least-squares equations in terms
of network theory if a hardware implementation is consid-
ered.3 The simplest case is given by Hudgin's discretization
where the matrix A of Eq. (10) can be directly interpreted as
the transpose of the complete incidence matrix 9 of a network
for which the phase points are used as nodes and the lines
connecting these nodes are used as branches. Putting one
node voltage to zero corresponds to removing one row of the
matrix A. This leads to the matrix Ar, which can be inter-
preted as the transpose of the reduced incidence matrix of a
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network. For our case we can assume that the branch-ad-
mittance matrix is proportional to the unit matrix. Equation
(19) is then the system of node equations with the node-
admittance matrix A TAr. The driving term of Eq. (19) is the
node current-source vector which is given by the sum of the
currents incident at the corresponding nodes.

The solution arrived at in this way does not have minimum
norm. We have shown that the least-squares minimum-norm
solution can be determined from Eq. (23). We can again in-
terpret A TAe as an extended node-admittance matrix.
However, a realization by a linear and passive network is not
possible, because the extended node-admittance matrix is not
a diagonally dominant matrix.'0 In order to get the mini-
mum-norm solution an active element has to be added to the
network.

In the terminology of network theory9 Hudgin's discreti-
zation leads to a connected graph for which at least one con-
nected subgraph exists. These subgraphs are called trees.
Fried's discretization leads to an unconnected graph, which
contains a set of trees, one for each of the separate parts, and
is called a forest.

VII. LEAST-SQUARES FIT AND POLYNOMIAL
EXPANSIONS

It is sometimes useful to represent a phase by the coeffi-
cients of an expansion in a set of basic functions Pi (e.g., Zer-
nike polynomials)

c = P+A+g. (29)

In the second method we substitute the phase expansion
Eq. (27b) into the gradient Eq. (27a)

g = APc, (30)

and obtain a least-squares solution

cg = (AP)+g, (31)

which inserted into Eq. (27b) leads to the phase

og = P(AP)+g. (32)

The two solutions, Eqs. (29) and (31), as well as Eqs. (28a)
and (32) are in general not the same, and we indicate this by
a subscript g.

A simple example showing the difference between the two
methods is presented in Fig. 5. For three gradient values, four
phase values, and a single polynomial (tilt), we show the rel-
evant matrices and their generalized inverses.

In the first method a least-squares fit gives the minimum
variance of the phase, whereas the second method gives a
minimum variance of the gradient. The first method using
Eq. (28a) maximizes the Strehl ratio, whereas the second
method using Eq. (32) minimizes the second moment of a
beam propagated, in a geometrical optics sense, to a focal
plane. The main computational difference is the evaluation
of the generalized inverse A+ for the first method. The matrix
A can be very large. The second method requires at most an
inversion of a matrix with dimension equal to the number of
polynomials required.

rk(x,y) = EciPi(x,y).

The polynomials do not have to be orthogonal, but they do
have to be linearly independent on the set of points for which
they are evaluated.

We construct a matrix P[K,L] with the dimension K given
by the number of points (Xk,yk) and the dimension L given by
the number of basis functions. Equation (25) can then be
written

'k= Pc, (26)

with the phase array O[K] and the coefficient array c[L].

We analyze now two methods to treat the two equations

g = AO, (27a)

0 = Pc. (27b)

The first equation relates the measured gradients to the
phase, usually in the presence of noise. The second equation
relates the phase to the coefficients of an expansion. In
general each represents an overdetermined linear system
(more equations than unknowns).

In the first method we use a least-squares solution (with
minimum norm) to Eq. (27a)

k = A+g, (28a)

and a least-squares solution to Eq. (27b)

c =P+5. (28b)

The coefficients c are then related to the gradient g by
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VilI. RESULTS FOR A SPECIAL CASE

A. Error propagator coefficient
In this section we analyze some interesting properties for

a special case which consists of a 9 X 9 array from which the
three points in each corner are removed. Additional modi-
fications include a central obscuration and a phase error cal-
culation based on a larger number of points used for the gra-
dient measurements than for the evaluation of the phase.
The array used is shown in Fig. 6, it has 69 phase points and
120 gradients.

We calculated the wave front error propagation factor for
a variety of conditions summarized in Table I. The whole
array has 69 points and 120 gradients. The first modification
leads to a system where the edge points are not used; it consists
of 45 points for which the phase is calculated from all 120
gradients. Another option is the elimination of the center
point, corresponding to a system with a central obscuration
where one point and four gradients are removed. The error
propagator coefficient for these cases is presented in Table
I.

B. Tilts of phase fronts
We restrict the polynomial expansion for the special case

to the determination of x tilt and y tilt. The coefficients for
the tilt can be determined from a least-squares gradient fit

cg = (AP)+g,

or from a least-squares phase fit

(33)
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FIG. 5. Example showing the
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(34) IX. ANALYSIS USING THE CURL OPERATOR

For tilt alone the matrix (AP)+ reduces to an expression,

[cxgl = ( )[11 1 1 ° 0 ]0 (35)

cyg] Ml 1°0 ... 0 1 1.-.*. 01 11

showing that the tilts are given by the average of the corre-
sponding gradients.

The tilts from a least-squares phase fit are considerably
more complicated. We show the matrix P+A+ in Table II for
a full 9 X 9 array and for the special array with the corners cut
off. The matrix elements are arranged in such a way that they
correspond to the gradients as shown in Fig. 6. The tilts of
the full array are a weighted average of the gradients, where
the weights depend on the position in the array. For the
special array the x tilt depends on the y gradients, an inter-
action absent in the full square array.
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An/-4 -'

FIG. 6. Special 9 X 9 array with corners cut off. The outer circle contains
120 gradients and 69 phases. The inner circle contains 45 phases. A
central obstruction removes four gradients and one phase.

A. Construction of an irrotational gradient field
It is possible to eliminate the solenoidal part of the noise

of the gradient measurement and reduce the system equation
(9) to a consistent system of linear equations. If we specify
the piston (e.g., by 01 = 0), a simple addition of the curl-free
gradients can be performed, approximating the line integral
in Eq. (1).

We introduce a matrix Q, corresponding to a discrete form
of the curl operator

Q[q + (p
Q[q + (p

Q[p,q] = 1 p = 1,(N - 1)2

Q[p,q+N-1] =-1| q=1,(N-j)2
- 1)(N - 1),M/2 + q + (p - 1)N] = -1
- 1)(N- 1),M/2 + 1 + q + (p - 1)N] = 11

p= 1,N-1 q = 1,N-1. (36)

TABLE I. Wave-front error for the 69 phase-point system.

Array Modea Kb Mc Ep

Whole C 69 120 1.025
Inside C 45 120 0.8539
Whole M 69 120 0.6421
Inside M 45 120 0.5054

With central obscuration

Whole C 68 116 1.218
Inside C 44 116 1.098
Whole M 68 116 0.6740
Inside M 44 116 0.5540

Mode: C = centered, phase is set to zero at center point (or next to center if
center point omitted); M = minimum norm (piston removed).

bNumber of phase points.
cNumber of gradients.
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TABLE II. Matrix for least-squares phase fit of tilt (X 104).

Tilt coefficients:

where the subscript rd indicates the appropriately reduced
arrays. The matrix Ard is constructed from the matrix A by
eliminating the first column and (N - 1)2 rows.
The solution of Eq. (42) is then simply

Full Array,

74
74
74
74
74
74
74-
74
74

130
130
130
130
130
130
130
130
130

141
159
163
164
163
159
141

-61
-25
-7

7
25
61

The matrix Q has the dimension (N - 1)2 X M and an ex-
ample for N = 3 is shown in Fig. 7. The curl matrix Q has full
row rank.

The curl-free gradient g, is determined from the measured
gradient by subtracting a solenoidal gradient g.,

gc =g-gs.

The solenoidal gradient has to satisfy

Qgs. = Qg,

(37)

(38)

which is an underdetermined system with (N - 1)2 equations
for M = 2N(N - 1) unknown values of g,. We select the so-
lution with minimum norm of g2,

(39)

(40)

which leads to the overdetermined but consistent system

AO = g, (41)

If we turn to a reduced system (e.g., 0k = 0) and use all x
gradients but only one column of y gradients we get a
nonsingular system of N 2 

- 1 equations for the same number
of unknown phases

ArdOr = grd, (42)
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(P+A +)y = 0

where we call SL the inverse of Ard because it is the discrete
equivalent of the line integral in Eq. (1).

The piston of the phase Okr can be removed as shown in Sec.
III by introducing

s = -C 1
LL - C

where C is the array of the column sums of SL

C, = N E (SL)Lj.

167
167
167
167
167
167
167
167
167

121
168
191
202
204
202
191
168
121

-68
-42
-21
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21
42
68
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FIG. 7. Curl operator and its generalized inverse for N = 3.
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185
185
185
185
185
185
185
185
185

167
167
167
167
167
167
167
167
167

130
130
130
130
130
130
130
130
130

74
74
74
74
74
74
74
74
74

(43)

Special Array

185
185
185
185
185
185
185
185
185

170
191
210
221
224
221
210
191
170
-22
-19
-11
-3

3
11
19
22

116
101
98

101
116

-10
-4

4
10

(P+A+)..

The piston removed phase 4[N 2] can then be calculated
from

0 = SRrdg, (46)

where S is the [N2 
X (N 2 - 1)] matrix from Eq. (44), and Rrd

is an [(N 2 
- 1) X M] matrix obtained from the matrix R by

eliminating the (N - 1)2 rows corresponding to the gradients
which are not needed if the solenoidal part of the gradient is
removed. This phase is identical to the phase calculated with
the generalized inverse

0 = A+g.

B. Use of the curl measurements
The curl measurements can be used to estimate the noise

present in the gradient measurements. We make the as-
sumption that the measurement noise values are statistically
independent. The relation between the curl q and the gra-
dient g

q = Qg (47)

leads then to the relation between the two corresponding
variances

q= (N- 1)_2 IQ I 2U = 4U2. (48)

The noise propagation factor in this case is independent of the
number of gradient values.

The variance of the solenoidal part of the gradient g, is re-
lated to the variance of the gradient g by

10
4

-4 (P+Aj+)x,
-10

(44)

(45)
170
191
210
221
224
221
210
191
170

0
0
0
0
0
0
0
0

121
168
191
202
204
202
191
168
121
22
19
11
3

-3
-11
-19
-22

141
159
163
164
163
159
141

68
42
21
6

-6
-21
-42
-68

116
101
98

101
116

61
25
7

-7
-25
-61

gs = Q+Qg.

The curl-free gradient is then

g,= (I - Q+Q)g = Rg,

-1 I1
, I

-I I

Or � A,-dlgrd = SL9rd,

I -1

c.1 = I(PIAI)xx (P'A+)xy

ICY (P+A+)y. (P+A+)yyl �Y'11 -



1 = I F +Q N 2 -i2 N 2
t a t 12

with a proportionality factor that approaches 1/2 for]I
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is the least-norm solution.
(49) (iv) For other matrices

large x = A+b + (I - A+A)y,

with arbitrary y, is the least-squares solution

IAx - b II, = min,
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APPENDIX

Glossary of symbols:
|| ... ||, Euclidean or L 2 norm;
A+, Generalized inverse of matrix A;
A T. Transpose of matrix A.

Solutions of linear systems:

A system of linear equations

Ax = b

has the following solutions:
(i) For a square matrix with full rank,

x = A-lb.

(ii) For a rectangular matrix A [M X N]
with full column rank,

with M > N, and

x = (ATA)-lATb

is the least-squares solution

IlAx - bl = min.

(iii) For a rectangular matrix A [M X N] with M < N, and
with full row rank,

x = AT(AAT)-lb

and for y = 0 one gets the least-squares minimum-norm so-
lution

IAx - bl = min,

and

IIx | = min.

The generalized inverse A+ can be defined by the Moore-
Penrose conditions

AA+A = A, A+AA+ = A+,
(AA+)T= AA+, (A+A)T = A+A.
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