
Leave one out error, stability, and generalization of voting
combinations of classifiers

Theodoros Evgeniou, (theodoros.evgeniou@insead.edu )
Technology Management,
INSEAD,
Boulevard de Constance, 77305 Fontainebleau, France

Massimiliano Pontil, (pontil@dii.unisi.it )
DII - University of Siena
Via Roma 56, 53100 Siena, Italy
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Abstract. We study the leave-one-out and generalization errors of voting combinations of
learning machines. A special case considered is a variant of bagging. We analyze in detail
combinations of kernel machines, such as support vector machines, and present theoretical
estimates of their leave-one-out error. We also derive novel bounds on the stability of combina-
tions of any classifiers. These bounds can be used to formally show that, for example, bagging
increases the stability of unstable learning machines. We report experiments supporting the
theoretical findings.
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1. Introduction

Studying the generalization performance of ensembles of learning machines
has been the topic of ongoing research in recent years (Breiman, 1996; Schapire
et al., 1998; Friedman et al., 1998). There is a lot of experimental work show-
ing that combining learning machines, for example using boosting or bagging
methods (Breiman, 1996; Schapire et al., 1998), very often leads to improved
generalization performance. A number of theoretical explanations have also
been proposed (Schapire et al., 1998; Breiman, 1996), but more work on this
aspect is still needed.

Two important theoretical tools for studying the generalization perfor-
mance of learning machines are the leave-one-out (or cross validation) error
of the machines, and the stability of the machines (Bousquet and Elisseeff,
2002; Boucheron et al., 2000). The second, although an older tool (Devroye
and Wagner, 1979; Devroye et al., 1996), has become only important recently
with the work of (Kearns and Ron, 1999; Bousquet and Elisseeff, 2002).

Stability has been discussed extensively also in the work of Breiman (1996).
The theory in Breiman (1996) is that bagging increases performance because
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it reduces the variance of the base learning machines, although it does not
always increase the bias (Breiman, 1996). The definition of the variance in
Breiman (1996) is similar in spirit to that of stability we use in this paper. The
key difference is that in Breiman (1996) the variance of a learning machine
is defined in an asymptotic way and is not used to derive any non-asymptotic
bounds on the generalization error of bagging machines, while here we define
stability for finite samples like it is done in (Bousquet and Elisseeff, 2002) and
we also derive such non-asymptotic bounds. The intuition given by Breiman
(1996) gives interesting insights: the effect of bagging depends on the ”sta-
bility” of the base classifier. Stability means here changes in the output of
the classifier when the training set is perturbed. If the base classifiers are
stable, then bagging is not expected to decrease the generalization error. On
the other hand, if the base classifier is unstable, such as often occurs with
decision trees, the generalization performance is supposed to increase with
bagging. Despite experimental evidence, the insights in (Breiman, 1996) had
not been supported by a general theory linking stability to the generalization
error of bagging, which is what Section 5 below is about.

In this paper we study the generalization performance of ensembles of ker-
nel machines using both leave-one-out and stability arguments. We consider
the general case where each of the machines in the ensemble uses a different
kernel and different subsets of the training set. The ensemble is a convex com-
bination of the individual machines. A particular case of this scheme is that
of bagging kernel machines. Unlike “standard” bagging (Breiman, 1996), this
paper considers combinations of the real outputs of the classifiers, and each
machine is trained on a different and small subset of the initial training set
chosen by randomly subsampling from the initial training set. Each machine
in the ensemble uses in general a different kernel. As a special case, appropri-
ate choices of these kernels lead to machines that may use different subsets
of the initial input features, or different input representations in general.

We derive theoretical bounds for the generalization error of the ensembles
based on a leave-one-out error estimate. We also present results on the sta-
bility of combinations of classifiers, which we apply to the case of bagging
kernel machines. They can also be applied to bagging learning machines
other than kernel machines, showing formally that bagging can increase the
stability of the learning machines when these are not stable, and decrease
it otherwise. An implication of this result is that it can be easier to control
the generalization error of bagging machines. For example the leave one out
error is a better estimate of their test error, something that we experimentally
observe.

The paper is organized as follows. Section 2 gives the basic notation and
background. In Section 3 we present bounds for a leave-one-out error of
kernel machine ensembles. These bounds are used for model selection ex-
periments in Section 4. In Section 5 we discuss the algorithmic stability
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of ensembles, and present a formal analysis of how bagging influences the
stability of learning machines. The results can also provide a justification of
the experimental findings of Section 4. Section 6 discusses other ways of
combining learning machines.

2. Background and Notations

In this section we recall the main features of kernel machines. For a more
detailed account see (Vapnik, 1998; Schölkopf et al., 1998; Evgeniou et al.,
2000). For an account consistent with our notation see (Evgeniou et al., 2000).

Kernel machine classifiers are the minimizers of functionals of the form:

H[f ] =
1
`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2
K , (1)

where we use the following notation:

− Let X ⊂ Rn be the input set, the pairs(xi, yi) ∈ X×{−1, 1}, i = 1, .., `
are sampled independently and identically according to an unknown
probability distributionP (x, y). The setD` = {(x1, y1), . . . , (x`, y`)}
is the training set.

− f is a functionRn → R belonging to a Reproducing Kernel Hilbert
Space (RKHS)H defined by kernelK, and‖f‖2

K is the norm off in
this space. See (Vapnik, 1998; Wahba, 1990) for a number of kernels.
The classification is done by taking the sign of this function.

− V (y, f(x)) is the loss function. The choice of this function determines
different learning techniques, each leading to a different learning algo-
rithm (for computing the coefficientsαi - see below).

− λ is called the regularization parameter and is a positive constant.

Machines of this form have been motivated in the framework of statistical
learning theory. Under rather general conditions (Evgeniou et al., 2000) the
solution of Equation (1) is of the form

f(x) =
∑̀

i=1

αiyiK(xi,x). (2)

The coefficientsαi in Equation (2) are learned by solving the following
optimization problem:

maxα H(α) =
∑`

i=1 S(αi)− 1
2

∑`
i,j=1 αiαjyiyjK(xi,xj)

subject to : 0 ≤ αi ≤ C, i = 1, . . . , `,
(3)
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whereS(·) is a continuous and concave function (strictly concave if matrix
K(xi,xj) is not strictly positive definite) andC = 1

2`λ a constant. Thus,
H(α) is strictly concave and the above optimization problem has a unique
solution.

Support Vector Machines (SVMs) are a particular case of these machines
for S(α) = α. This corresponds to a loss functionV in (1) that is of the
form θ(1 − yf(x))(1 − yf(x)), whereθ is the Heavyside function:θ(x) =
1 if x > 0, and zero otherwise. The points for whichαi > 0 are called
support vectors. Notice that the bias term (thresholdb in the general case of
machinesf(x) =

∑`
i=1 αiK(xi,x)+ b) is incorporated in the kernelK, and

it is therefore also regularized. Notice also that functionS(·) in (3) can take
general forms - leading to machines other than SVM - but in the general case
the optimization of (3) may be computationally inefficient.

2.1. KERNEL MACHINE ENSEMBLES

Given a learning algorithm - such as a SVM or an ensemble of SVMs - we
definefD` to be the solution of the algorithm when the training setD` =
{(xi, yi), i = 1, . . . , `} is used. We denote byDi

` the training set obtained
by removing point(xi, yi) from D`, that is the setD` \ {(xi, yi)}. When it is
clear in the text we will denotefD` by f andfDi

`
by fi.

We consider the general case where each of the machines in the ensemble
uses a different kernel and different subsetsDr,t of the training setD` where
r refers to the size of the subset andt = 1, .., T to the machine that uses it to
learn. LetfDr,t(x) be the optimal solution of machinet using a kernelK(t).

We denote byα(t)
i the optimal weight that machinet assigns to point(xi, yi)

(after solving - optimizing - problem (3)). We consider ensembles that are
convex combinations of the individual machines. The decision function of
the ensemble is given by

Fr,T (x) =
T

∑

t=1

ctfDr,t(x) (4)

with ct ≥ 0, and
∑T

t=1 ct = 1 (for scaling reasons). The coefficientsct are
not learned and all parameters (C ’s and kernels) are fixed before training. The
classification is done by taking the sign ofFr,T (x). Below for simplicity we
will note with capitalF the combinationFr,T . In Section 5 we will consider
only the case thatct = 1

T for simplicity.
In the following, the setsDr,t will be identically sampled according to

the uniform distribution and without replacement from the training setD`.
We will denote byEDr∼D` the expectation with respect to the subsampling
from D` according to the uniform distribution (without replacement), and
sometimes we writefDr,t∼D` rather thanfDr,t to make clear which training
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set has been used during learning. The letterr will always refer to the number
of elements inDr,t.

2.2. LEAVE-ONE-OUT ERROR

Table I. Notation.

f Real valued prediction rule of one learning machine,f : X→ R
V (f, y) Loss function

P (x, y) Probability distribution underlining the data

D` Set of i.i.d examples sampled fromP (x, y), D` = {(xi, yi) ∈ X× {−1, 1}}`
i=1

Di
` The setD`\{(xi, yi)}

fD` Learning machine (e.g. SVM) trained onD`. Also noted asf
LooD`(f) Leave-one-out error off on the data setD`

πδ(x) Soft margin loss,πδ(x) = 0, if x < −δ, 1 if x > 0, and x
δ if −δ ≤ x ≤ 0

Looδ,D`(f) Leave one out error with soft marginπδ

β` Uniform stability off
Dr,t or Dr,t ∼ D` Set ofr points sampled uniformly fromD` used by machinet, t = 1, . . . , T

Dr ∼ D` Set ofr points sampled uniformly fromD`

(Dr,t ∼ D`)i “Original” Dr,t with point (xi, yi) removed

Fr,T , or justF Ensemble ofT machines,Fr,T =
∑T

t=1 ctfDr,t

F̂ Expected combination of machinesEDr∼D` [fDr ]
DLooD`(F ) Deterministic leave out out error

DLooδ,D`(F ) Deterministic leave out out error with soft marginπδ

If θ is, as before, the Heavyside function, then the leave-one-out error of
f onD` is defined by

LooD`(f) =
1
`

∑̀

i=1

θ(−yifi(xi)) (5)

Notice that for simplicity there is a small abuse of notation here, since the
leave-one-out error typically refers to a learning method while here we use
the solutionf in the notation. The leave-one-out error provides an estimate
of the average generalization performance of a machine. It is known that the
expectation of the generalization error of a machine trained using` points is
equal to the expectation of the Loo error of a machine trained on`+1 points.
This is summarized by the following theorem, originally due to Luntz and
Brailovsky - see (Vapnik, 1998).
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THEOREM 2.1. SupposefD` is the outcome of a deterministic learning
algorithm. Then

ED`

[

E(x,y)[θ(−yfD`(x))]
]

= ED`+1

[

LooD`+1(fD`+1)
]

As observed (Kearns and Ron, 1999), this theorem can be extended to general
learning algorithms by adding a randomizing preprocessing step. The way the
leave-one-out error is computed can however be different depending on the
randomness. Consider the previous ensemble of kernel machines (4). The
data setsDr,t, t = 1, .., T are drawn randomly from the training setD`.
We can then compute a leave-one-out estimate for example in either of the
following ways:

1. For i = 1, .., `, remove(xi, yi) from D` and sample new data setsDr,t,
t = 1, .., T from Di

`. Compute thefDr,t∼Di
`

and average then the error of
the resulting ensemble machine computed on(xi, yi). This leads to the
classical definition of leave-one-out error and can be computed as:

LooD`(F ) =
1
`

∑̀

i=1

θ

(

−yi
1
T

T
∑

t=1

fDr,t∼Di
`
(xi)

)

(6)

2. Fori = 1, .., `, remove(xi, yi) from eachDr,t ∼ D`. Compute thef(Dr,t∼D`)
i

and average the error of the resulting ensemble machine computed on
(xi, yi). Note that we have used the notation(Dr,t ∼ D`)

i to denote
the setDr,t ∼ D` where(xi, yi) has been removed. This leads to what
we will call a deterministicversion of the leave-one-out error, in short
det-leave-one-out, orDLoo:

DLooD`(F ) =
1
`

∑̀

i=1

θ

(

−yi
1
T

T
∑

t=1

f(Dr,t∼D`)
i(xi)

)

(7)

Note that the first computation requires to re-sample new data sets for each
“leave-one-out round”, while the second computation uses the same subsam-
ple data sets for each “leave-one-out round” removing at most one point from
each of them. In a sense, the det-leave-one-out error is then more ”deter-
ministic” than the classical computation (6). In this paper, we will consider
mainly the det-leave-one-out error for which we will derive easy-to-compute
bounds and from which we will bound the generalization error of ensemble
machines. Finally notice that the size of the subsampling is implicit in the
notation DLooD`(F ): r is fixed in this paper so there is no need to complicate
the notation further.
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3. Leave-One-Out Error Estimates of Kernel Machine Ensembles

We begin with some known results about the leave-one-out error of kernel
machines. The following theorem is from (Jaakkola and Haussler, 1998):

THEOREM 3.1. The leave-one-out error of a kernel machine (3) is upper
bounded as:

LooD`(f) ≤ 1
`

∑̀

i=1

θ (αiK(xi,xi)− yifD`(xi)) (8)

wherefD` is the optimal function found by solving problem (3) on the whole
training set.

In the particular case of SVMs where the data are separable the r.h.s of
Equation (8) can be bounded by geometric quantities, namely (Vapnik, 1998):

LooD`(f) ≤ 1
`

∑̀

i=1

θ (αiK(xi,xi)− yifD`(xi)) ≤
1
`

d2
sv

ρ2 (9)

wheredsv is the radius of the smallest sphere in the feature space induced
by kernelK (Wahba, 1990; Vapnik, 1998) centered at the origin containing
the support vectors, that isdsv = maxi:αi>0 K(xi,xi), andρ is the margin
(ρ2 = 1

‖f‖2K
) of the SVM.

Using this result, the next theorem is a direct application of Theorem 2.1:

THEOREM 3.2. Suppose that the data is separable by the SVM. Then, the
average generalization error of a SVM trained on` points is upper bounded
by

1
` + 1

ED`

(

d2
sv(`)

ρ2(`)

)

,

where the expectationE is taken with respect to the probability of a training
setD` of sizè .

Notice that this result shows that the performance of the SVM does not
depend only on the margin, but also on other geometric quantities, namely
the radiusdsv.

We now extend these results to the case of ensembles of kernel machines.
In the particular case of bagging, the subsampling of the training data should
be deterministic. By this we mean that when the bounds on the leave one
out error are used for model (parameter) selection, for each model the same
subsample sets of the data need to be used. These subsamples, however,
are still random ones. We believe that the results presented below also hold
(with minor modifications) in the general case that the subsampling is always
random. We now consider the det-leave-one-out error of such ensembles.
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THEOREM 3.3. The det-leave-one-out error of a kernel machine ensemble
is upper bounded by:

DLooD`(F ) ≤ 1
`

∑̀

i=1

θ

( T
∑

t=1

ctα
(t)
i K(t)(xi,xi)− yiF (xi)

)

. (10)

The proof of this Theorem is based on the following lemma shown in
(Vapnik, 1998; Jaakkola and Haussler, 1998):

LEMMA 3.1. Let αi be the coefficient of the solutionf(x) of machine (3)
corresponding to point(xi, yi), αi > 0. Letfi(x) be the solution of machine
(3) found when the data point(xi, yi) is removed from the training set. Then
yifi(xi) ≥ yif(xi)− αiK(xi,xi).

Using lemma 3.1 we can now prove Theorem 3.3.

Proof of Theorem 3.3:Let Fi(x) =
∑T

t=1 ctf
(t)
i (x) be the ensemble ma-

chine trained with all initial training data except(xi, yi) (subsetsDr,t are the
“original” ones - only(xi, yi) is removed from them). Lemma 3.1 gives that

yiFi(xi) = yi

T
∑

t=1

ctf
(t)
i (xi) ≥

T
∑

t=1

ct

[

yif (t)(xi)− α(t)
i K(t)(xi,xi)

]

= yiF (xi)−
T

∑

t=1

ctα
(t)
i K(t)(xi,xi)

from which it follows that:

θ (−yiFi(xi)) ≤ θ

( T
∑

t=1

ctα
(t)
i K(t)(xi,xi)− yiF (xi)

)

.

Therefore the leave one out error
∑`

i=1 θ(−yiFi(xi)) is not more than

∑̀

i=1

θ

( T
∑

t=1

ctα
(t)
i K(t)(xi,xi)− yiF (xi)

)

,

which proves the Theorem.�

Notice that the bound has the same form as the bound in Equation (8):
for each point(xi, yi) we only need to take into account its corresponding

parameterα(t)
i and “remove” the effects ofα(t)

i from the value ofF (xi).
The det-leave-one-out error can also be bounded using geometric quan-

tities. To this purpose we introduce one more parameter that we call the
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ensemble margin(in contrast to the margin of a single SVM). For each point
(xi, yi) we define its ensemble margin to beyiF (xi). This is exactly the
definition of margin in (Schapire et al., 1998). For any givenδ > 0 we define
Errδ to be the empirical error with ensemble margin less thanδ,

Errδ(F ) =
1
`

∑̀

i=1

θ (−yiF (xi) + δ) .

and byNδ the set of the remaining training points - the ones with ensemble
margin≥ δ. Finally, we note bydt(δ) the radius of the smallest sphere in the
feature space induced by kernelK(t) centered at the origin which contains
the points of machinet with α(t)

i > 0 andensemble margin larger thanδ1.

COROLLARY 3.1. For any δ > 0 the det-leave-one-out error of a kernel
machine ensemble is upper bounded by:

DLooD`(F ) ≤ Errδ(F ) +
1
`





1
δ

T
∑

t=1

ctd2
t(δ)(

∑

i∈Nδ

α(t)
i )



 (11)

Proof: For each training point(xi, yi) with ensemble marginyiF (xi) < δ
we upper bound
θ(

∑T
t=1 ctα

(t)
i K(t)(xi,xi)− yiF (xi)) with 1 (this is a trivial bound). For the

remaining points (the points inNδ) we show that:

θ

( T
∑

t=1

ctα
(t)
i K(t)(xi,xi)− yiF (xi)

)

≤ 1
δ

T
∑

t=1

ctα
(t)
i K(t)(xi,xi). (12)

In the case that
∑T

t=1 ctα
(t)
i K(t)(xi,xi)− yiF (xi) < 0, Equation (12) is

trivially satisfied. If
∑T

t=1 ctα
(t)
i K(t)(xi,xi)− yiF (xi) ≥ 0, then

θ(
T

∑

t=1

ctα
(t)
i K(t)(xi,xi)− yiF (xi)) = 1,

while

T
∑

t=1

ctα
(t)
i K(t)(xi,xi) ≥ yiF (xi) ≥ δ ⇒ 1

δ

T
∑

t=1

ctα
(t)
i K(t)(xi,xi) ≥ 1.

1 In the case of SVMs, these are the support vectors of machinet with ensemble margin
larger thanδ.
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So in both cases inequality (12) holds. Therefore:

∑̀

i=1

θ

( T
∑

t=1

ctα
(t)
i K(t)(xi,xi)− yiF (xi)

)

≤

`Errδ +
1
δ

∑

i∈Nδ

T
∑

t=1

ctK(t)(xi,xi)α
(t)
i ≤ `Errδ +

1
δ

T
∑

t=1

ctd2
t(δ)(

∑

i∈Nδ

α(t)
i ).

The statement of the corollary follows by applying Theorem 3.3.�

Notice that Equation (11) holds for anyδ > 0, so the best bound is
obtained for the minimum of the right hand side with respect toδ > 0.
Using Theorem 2.1, Theorems 3.3 and 3.1 provide bounds on the average
generalization performance of general kernel machines ensembles like that
of Theorem 3.2.

We now consider the particular case of SVM ensembles. In this case we
have the following

COROLLARY 3.2. Suppose that each SVM in the ensembles separated the
data set used during training. Then, the det-leave-one-out error of an ensem-
ble of SVMs is upper bounded by:

DLooD`(F ) ≤ Err1(F ) +
1
`

T
∑

t=1

ct
d2

t

ρ2
t

(13)

where Err1 is the margin empirical error with ensemble margin 1,dt is the
radius of the smallest sphere centered at the origin, in the feature space in-
duced by kernelK(t), containing the support vectors of machinet, andρt is
the margin of thet−th SVM .

Proof: We choseδ = 1 in (11). Clearly we have thatdt ≥ dt(δ) for any δ,

and
∑

i∈Nδ
α(t)

i ≤
∑`

i=1 α(t)
i = 1

ρ2
t

(see (Vapnik, 1998) for a proof of this

equality).�

Notice that the average generalization performance of the SVM ensemble
now depends on the “average” (convex combination of)D2

ρ2 of the individual

machines. In some cases this may be smaller than theD2

ρ2 of a single SVM.
For example, suppose we train many SVMs on different sub-samples of the
training points and we want to compare such an ensemble with a single SVM
using all the points. If all SVMs (the single one, as well as the individual ones
of the ensemble) have most of their training points as support vectors, then
clearly theD2 of each SVM in the ensemble is smaller than that of the single
SVM. Moreover the margin of each SVM in the ensemble is expected to be
larger than that of the single SVM using all the points. So the “average”D2

ρ2
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in this case is expected to be smaller than that of the single SVM. Another
case where an ensemble of SVMs may be better than a single SVM is the
one where there are outliers among the training data. If the individual SVMs
are trained on subsamples of the training data, some of the machines may
have smallerD

2

ρ2 because they do not use some outliers - which of course
also depends on the choice ofC for each of the machines. In general it is not
clear when ensembles of kernel machines are better than single machines.
The bounds in this section may provide some insight to this question.

Finally, we remark that all the results discussed hold for the case that there
is no bias (thresholdb), or the case where the bias is included in the kernel
(as discussed in the introduction). In the experiments discussed below we use
the results also in the case that the bias is not regularized (as discussed in
Section 2 this means that the separating function includes a biasb, so it is
f(x) =

∑`
i=1 αiK(xi,x)+ b), which is common in practice. Recent work in

(Chapelle and Vapnik, 1999) may be used to extend our results to an ensemble
of kernel machines with the bias not regularized: whether this can be done is
an open question.

4. Experiments

To test how tight the bounds we presented are, we conducted a number of ex-
periments using datasets from UCI2, as well as the US Postal Service (USPS)
dataset (LeCun et al., 1990). We show results for some of the sets in Figures
1-5. For each dataset we split the overall set in training and testing (the sizes
are shown in the figures) in 50 different (random) ways, and for each split:

1. We trained one SVM withb = 0 using all training data, computed the
leave-one-out bound given by Theorem 3.1, and then compute the test
performance using the test set.

2. We repeated (1) this time withb 6= 0.

3. We trained 30 SVMs withb = 0 each using a random subsample of size
40% of the training data (bagging), computed the leave-one-out bound
given by Theorem 3.3 usingct = 1

30 , and then compute the test perfor-
mance using the test set.

4. We repeated (3) this time with withb 6= 0.

We then averaged over the 50 training-testing splits the test performances and
the leave-one-out bounds found, and computed the standard deviations. All

2 Available fromhttp://www.ics.uci.edu/ mlearn/MLRepository.html
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machines were trained using a Gaussian kernel, and we repeated the proce-
dure for a number of differentσ’s of the Gaussian, and for afixedvalue of
the parameterC, (selected by hand so that it is less than 1 in Figures 1-5,
and more than 1 in Figure 6, for reasons explained below - for simplicity
we used the same value ofC in Figures 1-5,C = 0.5, but we found the
same trend for other small values ofC, C < 1). We show the averages and
standard deviations of the results in Figures 1 to 5. In all figures we use the
following notation: Top left figure: bagging withb = 0; Top right figure:
single SVM with b = 0; Bottom left figure: bagging withb 6= 0; Bottom
right figure: single SVM withb 6= 0. In each plot the solid line is the mean
test performance and the dashed line is the error bound computed using the
leave-one-out Theorems 3.1 and 3.3. The dotted line is the validation set error
discussed below. The horizontal axis shows the logarithm of theσ of the
Gaussian kernel used. For simplicity, only one error bar (standard deviation
over the 50 training-testing splits) is shown (the others were similar). Notice
that even for training-testing splits for which the error is one standard devia-
tion away from the mean over the 50 runs (i.e. instead of plotting the graphs
through the center of the error bars, we plot them at the end of the error
bars) the bounds for combinations of machines are still tighter than for single
machines in Figures 3 to 5. The cost parameterC used is given in each of the
figures. The horizontal axis is the natural logarithm of theσ of the Gaussian
kernel used, while the vertical axis is the error.

An interesting observation is thatthe bounds are always tighter for the
case of bagging than they are for the case of a single SVM. This is an in-
teresting experimental finding for which we provide a possible theoretical
explanation in the next section.This finding can practically justify the use
of ensembles of machines for model selection: Parameter selection using
the leave-one-out bounds presented in this paper is easier for ensembles of
machines than it is for single machines.

Another interesting observation is that the bounds seem to work similarly
in the case that the biasb is not 0. In this case, as before, the bounds are tighter
for ensembles of machines than they are for single machines.

Experimentally we found that the bounds presented here do not work well
in the case that theC parameter used is large (C = 100). An example is
shown in Figure 6. Consider the leave-one-out bound for a single SVM given
by Theorem 3.1. Let(xi, yi) be a support vector for whichyif(xi) < 1. It is
known (Vapnik, 1998) that for these support vectors the coefficientαi is C. If
C is such thatCK(xi,xi) > 1 (for example consider Gaussian kernel with
K(x,x) = 1 and anyC > 1), then clearlyθ(CK(xi,xi) − yif(xi)) = 1.
In this case the bound of Theorem 3.1 effectively countsall support vectors
outside the margin(plus some of the onesonthe margin, i.e.yf(x) = 1). This
means that for “large” C (in the case of Gaussian kernels this can be for exam-
ple for anyC > 1), the bounds of this paper effectively are similar (not larger
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Breast Cancer data (C=0.5, Train= 200, Test = 77)

Figure 1. Breast cancer data: Top left figure: bagging withb = 0; Top right figure: single
SVM with b = 0; Bottom left figure: bagging withb 6= 0; Bottom right figure: single SVM
with b 6= 0. In each plot the solid line is the mean test performance and the dashed line is the
error bound computed using the leave-one-out Theorems 3.1 and 3.3. The dotted line is the
validation set error discussed below. The horizontal axis shows the logarithm of theσ of the
Gaussian kernel used.

than) to another known leave-one-out bound for SVMs, namely one that
uses the number of all support vectors to bound generalization performance
(Vapnik, 1998). So effectively our experimental results show thatthe number
of support vectors does not provide a good estimate of the generalization
performance of the SVMs and their ensembles.

5. Stability of Ensemble Methods

We now present a theoretical explanation of the experimental finding that the
leave-one-out bound is tighter for the case of ensemble machines than it is for
single machines. The analysis is done within the framework of stability and
learning (Bousquet and Elisseeff, 2002). It has been proposed in the past that
bagging increases the “stability” of the learning methods (Breiman, 1996).
Here we provide a formal argument for this. As before, we denote byDi

` the
training setD` without example point(xi, yi).
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Figure 2. Thyroid data: Notation like in Figure 1.

We use the following notion of stability defined in (Bousquet and Elisse-
eff, 2002)

Definition (Uniform Stability): We say that a learning method isβ`−stable
with respect to a loss functionV and training sets of sizèif the following
holds:

∀i ∈ {1, . . . , `},∀D`, ∀(x, y) : |V (fD`(x), y)− V (fDi
`
(x), y)| ≤ β`.

Roughly speaking the cost of a learning machine on a new (test) point
(x, y) should not change more thanβ` when we train the machine with any
training set of sizè and when we train the machine with the same training
set but one training point (any point) removed. Notice that this definition is
useful mainly for real-valued loss functionsV . To use it for classification
machines we need to start with the real valued output (2) before thresholding.
We define for any given constantδ the leave-one-out error Looδ on a training
setD` to be:

Looδ,D`(f) =
1
`

∑̀

i=1

πδ

(

−yifDi
`
(xi)

)

,
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Figure 3. Diabetes data: Notation like in Figure 1.

where the functionπδ(x) is 0 for x < −δ, 1 for x > 0, and x
δ + 1 for

−δ ≤ x ≤ 0 (a soft margin function)3. For ensemble machines, we will
consider again a definition similar to (7):

DLooδ,D`(F ) =
1
`

∑̀

i=1

πδ

(

−yi
1
T

T
∑

t=1

f(Dr,t∼D`)
i(xi)

)

,

Notice that forδ → 0 we get the leave one out errors that we defined in Sec-
tion 2, namely equations (5) and (7), and clearly DLoo0,D`(F ) ≤ DLooδ,D`(F )
for all δ > 0.

Let β` be the stability of the kernel machine for the real valued output wrt.
the`1 norm, that is:

∀i ∈ {1, . . . , `},∀D`, ∀x : |fD`(x)− fDi
`
(x)| ≤ β`

For SVMs it is known (Bousquet and Elisseeff, 2002) thatβ` is upper bounded
by C·κ

2 whereκ = supx∈XK(x,x) is assumed to be finite. The bound on the
stability of a SVM is not explicitly dependent of the size of the training set
`. However, the value ofC is often chosen such thatC is small for largè .
In the former experiments,C is fixed for all machines which are trained on

3 We defineπ0 to be the Heavyside functionθ.
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Figure 4. Heart data: Notation like in Figure 1.

learning sets of same sizes. This means that they have all the same stability
for the`1 norm.

We first state a bound on the expected error of a single kernel machine
in terms of its Looδ error. The following theorem is from (Bousquet and
Elisseeff, 2002).

THEOREM 5.1. For any givenδ, with probability1 − η the generalization
misclassification error of an algorithm that isβ` stable w.r.t. thè 1 norm is
bounded as:

E(x,y) [θ(−yfD`(x))] ≤ Looδ,D`(fD`) + β` +

√

`
2

(

2
β`−1

δ
+

1
`

)2
ln(

1
η
),

whereβ` is assumed to be a non-increasing function of`.

Notice that the bound holds for a given constantδ. One can derive a bound
that holds uniformly for allδ and therefore use the “best”δ (i.e. the empirical
margin of the classifier) (Bousquet and Elisseeff, 2002). For a SVM, the value
of β` is equal toCκ

2 . Theorem 5.1 provides the following bound:

E(x,y) [θ(−yfD`(x))] ≤ Looδ,D`(fD`) +
Cκ
2

+

√

`
2

(

Cκ
δ

+
1
`

)2
ln(

1
η
)
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Figure 5. USPS data: Notation like in Figure 1.

The value ofC is often a function of̀ . Depending on the wayC decreases
with `, this bound can be tight or loose.

We now study a similar generalization bound for an ensemble of machines
where each machine uses onlyr points drawn randomly with the uniform
distribution from the training set. We consider only the case where the co-
efficientsct of (4) are all 1

T (so taking the average machine like in standard
bagging (Breiman, 1996)). Such an ensemble is very close to the original idea
of bagging despite some differences - namely that in standard bagging each
machine uses a training set of size equal to the size of the original set created
by random subsampling with replacement, instead of using onlyr points.

We will consider the expected combination̂F defined as4:

F̂ (x) = EDr∼D` [fDr(x)]

where the expectation is taken with respect to the training dataDr of sizer
drawn uniformly fromD`. The stabilility bounds we present below hold for
this expected combination andnot for the finite combination considered so
far - as mentioned below how close these two are is an open question. The

4 Here, we assume that all functions are measurable and that all the sets are countable.
By doing so, we avoid the measurability discussions and we assume that all the quantities we
consider are integrable.
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Figure 6. USPS data: Using a large C (C=50). In this case the bounds do not work - see text
for an explanation. Notation like in Figure 1.

leave-one-out error we define for this expectation is again like in (7) (as in
equation (7) the sizer of the subsamples for simplicity is not included in the
notation):

DLooδ,D`(F̂ ) =
1
`

∑̀

i=1

πδ

(

−yiEDr∼D`

[

fDi
r
(xi)

])

which is different from the “standard” leave-one-out error:

1
`

∑̀

i=1

πδ

(

−yiEDr∼Di
`
[fDr(xi)]

)

which corresponds to (6). As an extreme case whenT →∞:

DLooδ,D`

(

1
T

T
∑

t=1

fDr,t

)

→ DLooδ,D`(F̂ ) (14)

This relation motivates the choice of our method of calculation for the leave
one out estimate in Section 3. Indeed the right hand side of the equation
corresponds to the quantity that we have bounded in Sections 3 and 4 and
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that ultimately we would like to relate to the stability of the base machine. It
is an open question to measure how fast the convergence Eq. (14) is. As we
discuss below and as also mentioned in (Breiman, 1996), increasingT beyond
a certain value (typically small, i.e. 100) does not influence the performance
of bagging, which may imply that the convergence (14) is fast.

We then have the following bound on the expected error of ensemble
combinations:

THEOREM 5.2. For any givenδ, with probability1 − η the generalization
misclassification error of the expected combination of classifiersF̂ each us-
ing a subsample of sizer of the training set and each having a stabilityβr
wrt. the`1 norm is bounded as:

E(x,y)

[

θ(−yF̂ (x))
]

≤ DLooδ,D`(F̂ ) +
r
`
βr +

√

r2

2`

(

2βr−1

δ
+

1
r

)2
ln(

1
η
)

Proof: We will apply the stability theorem 5.1 to the following algorithm:

− On a set of sizè, the algorithm is the same as the expected ensemble
machine we consider.

− On a training set of sizè− 1, it adds a dummy input pair(x0, y0) and
uses the same sampling scheme as the one used withD`. That is,Dr is
sampled fromDi

`∪{(x0, y0)} with the same distribution as it is sampled
from D` in the definition ofF̂ . When(x0, y0) is drawn inDr, it is not
used in training so thatfDr is replaced byfDr\{(x0,y0)}.

The new algorithm that we will callG can then be expressed as:G(x) =
EDr∼D` [fDr(x)] and Gi, its outcome on the setDi

` is equal toGi(x) =
EDr∼D` [fDi

r
(x)] where(xi, yi) plays the role of the dummy pair(x0, y0)

previously mentioned. The resulting algorithm has then the same behavior on
training sets of sizè as the ensemble machine we consider, and the classical
leave-one-out error forG corresponds to the det-leave-one-out error we have
defined previously for̂F .

From that perspective, it is sufficient to show thatG is rβr
` stable wrt. the

`1 norm and to apply theorem 5.1. We have:

∣

∣

∣G−Gi
∣

∣

∣ =
∣

∣

∣EDr∼D` [fDr ]− EDr∼D` [fDi
r
]
∣

∣

∣

whereDi
r = Dr\(xi, yi). We have by definition:

∣

∣

∣G−Gi
∣

∣

∣ =
∣

∣

∣

∣

∫

fDrdP −
∫

fDi
r
dP

∣

∣

∣

∣
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whereP denotes here the distribution over the sampling ofDr from D`.
Defining the function1A of the setA as to be:1A(z) = 1 iff z ∈ A, we
decompose each of the integral as follows :

∣

∣

∣G−Gi
∣

∣

∣ =
∣

∣

∣

∣

∫

fDr1(xi,yi)∈DrdP +
∫

fDr1(xi,yi)/∈DrdP−
∫

fDi
r
1(xi,yi)∈DrdP −

∫

fDi
r
1(xi,yi)/∈DrdP

∣

∣

∣

∣

Clearly, if (xi, yi) /∈ Dr, Dr = Di
r, so that:

∣

∣

∣G−Gi
∣

∣

∣ =
∣

∣

∣

∣

∫

fDr1(xi,yi)∈DrdP −
∫

fDi
r
1(xi,yi)∈DrdP

∣

∣

∣

∣

≤
∫

βr1(xi,yi)∈DrdP

≤ βrP [(xi, yi) ∈ Dr]

where the probability is taken with respect to the random subsampling of the
data setDr from D`. Since this subsampling is done without replacement,
such a probability is equal tor` which finally gives a bound on the stability of
G = EDr∼D` [fDr ]. This result plugged into the previous theorem gives the
final bound.�

This theorem holds for ensemble combinations that are theoretically de-
fined from the expectationEDr∼D` [fDr ]. Notice that the hypothesis do not
require that the combination is formed by only the same type of machines.
In particular, one can imagine an ensemble of different kernel machines with
different kernels. We formalize this remark in the following

THEOREM 5.3. Let F̂S be a finite combination of SVMsfs, s = 1, .., S
with different kernelsK1, . . . ,KS :

F̂S =
1
S

S
∑

s=1

EDr∼D`

[

fs
Dr

]

(15)

wheref s
Dr∼D`

is a SVM with kernelKs learned onDr. Denote as before by

DLooδ,D`(F̂
S) the det-leave-one-out error of̂FS computed with the function

πδ. Assume that each of thefs
Dr∼D`

are learned with the sameC on a subset
Dr of sizer drawn fromD` with a uniform distribution. For any givenδ, with
probability1− η, the generalization misclassification error is bounded as:

E(x,y)

[

θ(−yF̂S(x))
]

≤ DLooδ,D`(F̂
S)+

r
2`

(Cκ)+

√

r2

2`

(

Cκ
δ

+
1
r

)2
ln(

1
η
),

whereκ = 1
S

∑S
s=1 supx∈XKs(x,x).
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Proof: As before, we study

G−Gi =
1
S

S
∑

s=1

EDr∼D`

[

fs
Dr

]

− EDr∼D`

[

f s
Di

r

]

Following the same calculations as in the previous theorem for each of the
summand, we have:

∣

∣

∣G−Gi
∣

∣

∣ ≤
1
S

∫ S
∑

s=1

βr,s1(xi,yi)∈DrdP,

whereβr,s denotes the stability of a SVM with kernelKs on a set of sizer,
andP is the distribution over the sampling ofDr from D`. As before, since
(xi, yi) appears inDr only r

` times in average, we have the following bound:

∣

∣

∣G−Gi
∣

∣

∣ ≤
1
S

S
∑

s=1

βr,sr
`

.

Replacingβr,s by its value for the case of SVMs yields a bound on the gen-
eralization error ofG in terms of its leave-one-out error. This translates forF
as a bound on its generalization error in terms of its det-leave-one-out error
which is the statement of the theorem.�

Notice that Theorem 5.3 holds for combinations of kernel machines where
for each kernel we use many machines trained on subsamples of the training
set. So it is an “ensemble of ensembles” (see Equation (15)).

Compared to what has been derived for a single SVM, combining SVMs
provides a tighter bound on the generalization error. This result can then
be interpreted as an explanation of the better estimation of the test error by
the det-leave-one-out error for ensemble methods. The bounds given by the
previous theorems have the form:

E(x,y) [θ(−yF (x))] ≤ DLooδ,D`(F ) + O





r√
`
Crκ

√

ln( 1
η )

δ2





although the bound for a single SVM is:

E(x,y) [θ(−yf(x))] ≤ Looδ,D`(f) + O





√
`C`κ

√

ln( 1
η )

δ2





We have indexed the parametersC with an index that indicates that the SVMs
are not learned with the same training set size in the first and in the second
case. In the experiments, the sameC was used for all SVMs (C` = Cr). The
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bound derived for a combination of SVMs is then tighter than for a single
SVM by a factor ofr/`. The improvement is because the stability of the
combination of SVMs is better than the stability of a single SVM. This is true
if we assume that both SVMs are trained with the sameC but the discussion
becomes more tricky if differentC ’s are used during learning.

The stability of SVMs depends indeed on the way the value ofC is de-
termined. For a single SVM,C is is generally a function of̀, and for com-
bination of SVMs,C also depends on the size of the subsampled learning
setsDt. In Theorem 5.2, we have seen that the stability of the combination
of machines was smaller thanrβr

` whereβr is equal toCκ
2 for SVMs. If this

stability is better than the stability of a single machine, then combining the
functionsfDr,t provides a better bound. However, in the other case, the bound
gets worse. We have the following corollary whose proof is direct:

COROLLARY 5.1. If a learning system isβ` stable andβ`
βr

< r
` , then

combining these learning systems does not provide a better bound on the
difference between the test error and the leave-one-out error. Conversely, if
β`
βr

> r
` , then combining these learning systems leads to a better bound on

the difference between the test error and the leave-one-out error.

This corollary gives an indication that combining machines should not
be used if the stability of the single machine is very good.Notice that the
corollary is about bounds, and not about whether the generalization error for
bagging or the actual difference between the test and leave one out error
is always smaller for unstable machines (and larger for stable ones) - this
depends on how tight the bounds are in every case.

However, it is not often the case that we have a highly stable single ma-
chine and therefore typically bagging improves stability. In such a situation,
the bounds presented in this paper show that we have better control of the
generalization error for combination of SVMs in the sense that the leave one
out and the empirical errors are closer to the test error. The bounds presented
do notnecessarily imply that the generalization error of bagging is less than
that of single machines. Similar remarks have already been made by Breiman
(1996) for bagging where similar considerations of stability are experimen-
tally discussed. Another remark that can be made from the work of Breiman
is that bagging does not improve performances after a certain number of
bagged predictors. On the other hand, it does not reduce performances either.
This experimentally derived statement can be translated in our framework as:
WhenT increases, the stability of the combined learning system tends to the
stability of the expectationEDr∼D` [fDr ] which does not improve afterT has
passed a certain value. This value may correspond to the convergence of the
finite sum 1

T
∑T

t=1 fDr,t to its expectation wrt.Dr,t ∼ D`.
At last, it is worthwhile noticing that the stability analysis of this section

holds also for the empirical error. Indeed, for aβ` stable algorithm, as it
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is underlined in (Bousquet and Elisseeff, 2002), the leave-one-out and the
empirical error are related by:

Looδ,D`(f) ≤ Err0(fD`) + β`,

where Err0(fD`) is the empirical error on the learning setD`. Using this
inequality in Theorems 5.2, and 5.3 for the algorithmG, we can bound the
generalization error ofF in terms of the empirical error and the stability of
the machines.

6. Other Ensembles and Error Estimates

6.1. VALIDATION SET FORMODEL SELECTION

Instead of using bounds on the generalization performance of learning ma-
chines like the ones discussed above, an alternative approach for model se-
lection is to use a validation set to choose the parameters of the machines.
We consider first the simple case where we haveN machines and we choose
the “best” one based on the error they make on a fixed validation set of size
V . This can be thought of as a special case where we consider as hypothesis
space the set of theN machines, and then we “train” by simply picking the
machine with the smallest “empirical” error (in this case this is the validation
error). It is known that ifV Ei is the validation error of machinei andTEi
is its true test error, then for allN machines simultaneously the following
bound holds with probability1− η (Devroye et al., 1996; Vapnik, 1998):

TEi ≤ V Ei +

√

log(N)− log(η
4 )

V
. (16)

So how “accurately” we pick the best machine using the validation set de-
pends, as expected, on the number of machinesN and on the sizeV of the
validation set. The bound suggests that a validation set can be used to accu-
rately estimate the generalization performance of a relatively small number
of machines (i.e. small number of parameter values examined), as done often
in practice.

We used this observation for parameter selection for SVMs and for their
ensembles. Experimentally we followed a slightly different procedure from
what is suggested by bound (16). For each machine (that is, for eachσ of
the Gaussian kernel in our case, both for a single SVM and for an ensemble
of machines) we split the training set (for each training-testing split of the
overall dataset as described above) into a smaller training set and a validation
set (70-30% respectively). We trained each machine using the new, smaller
training set, and measured the performance of the machine on the validation
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set. Unlike what bound (16) suggests, instead of comparing the validation per-
formance found with the generalization performance of the machines trained
on the smaller training set (which is the case for which bound (16) holds),
we compared the validation performance with the test performance of the
machine trained usingall the initial (larger) training set.

This way we did not have to use less points for training the machines,
which is a typical drawback of using a validation set, and we could com-
pare the validation performance with the leave-one-out bounds and the test
performance of theexact samemachines we used in the Section 4.

We show the results of these experiments in Figures 1-5 - See the dotted
lines in the plots. We observe thatalthough the validation error is that of
a machine trained on a smaller training set, it still provides a very good
estimate of the test performance of the machines trained on the whole training
set. In all cases, including the case ofC > 1 for which the leave-one-out
bounds discussed above did not work well, the validation set error provided a
very good estimate of the test performance of the machines.

6.2. ADAPTIVE COMBINATIONS OF LEARNING MACHINES

The ensembles of kernel machines (4) considered so far are voting combina-
tions where the coefficientsct in (4) of the linear combination of the machines
are fixed. We now consider the case where these coefficients are also learned.
In particular we consider the following two-layer architecture:

1. A numberT of kernel machines is trained as before (for example using
different training data, or different parameters). Letf t(x), t = 1, . . . , T
be the machines.

2. TheT outputs (real valued in our experiments, but could also be thresh-
olded - binary) of the machines at each of the training points are com-
puted.

3. A linear machine (i.e. linear SVM) is trained using as inputs the outputs
of theT machines on the training data, and as labels the original training
labels. The solution is used as the coefficientsct of the linear combination
of theT machines.

In this case the ensemble machineF (x) is a kernel machine itself which
is trained using as kernel the function:

K(x, t) =
T

∑

t=1

f t(x)f t(t).

Notice that since each of the machinesf t(x) depend of the data, also the
kernelK is data dependent. Therefore the stability parameter of the ensemble
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machine is more difficult to compute (when a data point is left out the kernel
K changes). Likewise the leave-one-out error bound of Theorem 3.3 does not
hold since the theorem assumes fixed coefficientsct

5.
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Figure 7. When the coefficients of the second layer are learned using a linear SVM the system
is less sensitive to changes of theσ of the Gaussian kernel used by the individual machines
of the ensemble. Solid line is one SVM, dotted is ensemble of 30 SVMs with fixedct = 1

30 ,
and dashed line is ensemble of 30 SVMs with the coefficientsct learned. The horizontal axis
shows the natural logarithm of theσ of the Gaussian kernel. Left is the Heart dataset, and right
is the Diabetes one. The thresholdb is non-zero for these experiments.

On the other hand, an important characteristic of this type of ensembles is
that independent of what kernels/parameters each of the individual machines
of the ensemble use, the “second layer” machine (which finds coefficientsct)
always uses a linear kernel. This may imply thatthe overall architecture is
less sensitive to the kernel/parameters of the machines of the ensemble. We
tested this hypothesis experimentally by comparing how the test performance
of this type of machines changes with theσ of the Gaussian kernel used from
the individual machines of the ensemble, and compared the behavior with
that of single machines and ensembles of machines with fixedct. In Figure 7
we show two examples. In our experiments, for all datasets except from one,
learning the coefficientsct of the combination of the machines using a linear
machine (we used a linear SVM) made the overall machineless sensitive
to changes of the parameters of the individual machines (σ of the Gaussian
kernel). This can be a useful characteristic of the architecture outlined in this
section. For example the choice of the kernel parameters of the machines of
the ensembles need not be tuned accurately.

6.3. ENSEMBLESVERSUSSINGLE MACHINES

So far we concentrated on the theoretical and experimental characteristics of
ensembles of kernel machines. We now discuss how ensembles compare with
single machines.

5 A validation set can still be used for model selection for these machines.
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Table 6.3 shows the test performance of one SVM compared with that of
an ensemble of 30 SVMs combined withct = 1

30 and an ensemble of 30
SVMs combined using a linear SVM for some UCI datasets (characteristic
results). For the tables of this section we use, for convenience, the following
notation:

− VCC stands for “Voting Combinations of Classifiers”, meaning that the
coefficientsct of the combination of the machines are fixed.

− ACC stands for “Adaptive Combinations of Classifiers”, meaning that
the coefficientsct of the combination of the machines are learned-adapted.

We only consider SVMs and ensembles of SVMs with the thresholdb. The ta-
ble shows mean test errors and standard deviations for the best (decided using
the validation set performance in this case) parameters of the machines (σ’s of
GaussiansandparameterC - hence different from Figures 1-5 which where
for a givenC). As the results show, the best SVM and the best ensembles
we found have about the same test performance. Therefore,with appropriate
tuning of the parameters of the machines, combining SVMs does not lead to
performance improvement compared to a single SVM.

Table II. Average errors and standard deviations
(percentages) of the “best” machines (bestσ of
the Gaussian kernel and bestC) - chosen accord-
ing to the validation set performances. The per-
formances of the machines are about the same.
VCC and ACC use 30 SVMs.

Dataset SVM VCC ACC

Breast 25.5± 4.3 25.6± 4.5 25.0± 4.0

Thyroid 5.1± 2.5 5.1± 2.1 4.6± 2.7

Diabetes 23.0± 1.6 23.1± 1.4 23.0± 1.8

Heart 15.4± 3.0 15.9± 3.0 15.9± 3.2

Although the “best” SVM and the “best” ensemble (that is, after accurate
parameter tuning) perform similarly, an important difference of the ensembles
compared to a single machine is that the training of the ensemble consists of
a large number of (parallelizable) small-training-set kernel machines - in the
case of bagging. This implies that one can gain performance similar to that
of a single machine by training many faster machines using smaller training
sets - although the actual testing may be slower since the size of the union
of support vectors of the combination of machines is expected to be larger
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than the number of support vectors of a single machine using all the training
data. This can be an important practical advantage of ensembles of machines
especially in the case of large datasets. Table 6.3 compares the test perfor-
mance of a single SVM with that of an ensemble of SVMs each trained with
as low as 1% of the initial training set (for one dataset - for the other ones
we could not use 1% because the size of the original dataset was small so
1% of it was only a couple of points). For fixedct the performance decreases
only slightly in all cases (Thyroid, that we show, was the only dataset we
found in our experiments for which the change was significant for the case
of VCC), while in the case of the architecture of Section 5 even with 1%
training data the performance does not decrease. This is because the linear
machine used to learn coefficientsct uses all the training data. Even in this
last case the overall machine can still be faster than a single machine, since
the second layer learning machine is a linear one, and fast training methods
for the particular case of linear machines exist (Platt, 1998).

Table III. Comparison between error rates of a single SVM v.s. error rates of VCC
and ACC of 100 SVMs for different percentages of subsampled data.
The last dataset is from (Osuna et al., 1997).

Dataset VCC 10% VCC 5% VCC 1% ACC 10% ACC 5% ACC 1% SVM

Diabetes 23.9 26.2 - 24.9 24.5 - 23± 1.6

Thyroid 6.5 22.2 - 4.6 4.6 - 5.1± 2.5

Faces 0.2 0.2 0.5 0.1 0.2 0.2 0.1

7. Conclusions

We presented theoretical bounds on the generalization error of ensembles of
kernel machines such as SVMs. Our results apply to the general case where
each of the machines in the ensemble is trained on different subsets of the
training data and/or uses different kernels or input features. A special case of
ensembles is that of bagging. The bounds were derived within the frameworks
of cross validation error and stability and learning. They involve two main
quantities: the det-leave-one-out error estimate and the stability parameter of
the ensembles.

We have shown that the det-leave-one-error of the ensemble can be bounded
with a function of the solution’s parameters (ct andαt

i’s in Equation 4) which
can be computed efficiently. In the case of bagging of SVMs, this bound
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is experimentally found to be tighter, i.e. closer to the test error, than the
equivalent one for single kernel machine. This experimental finding could be
justified by the stability analysis.

In the case of ensembles of kernel machines, each trained with the same
regularization parameterC, the stability parameter is a linearly increasing
function of the number of points used by each machine. Then ensembles of
kernel machines are more stable learning algorithms than the equivalent sin-
gle kernel machine. The derived bound on the difference between empirical
or leave-one-out estimates and generalization error is tighter for bagging than
for single kernel machines - which is experimentally observed. This can be
important for example for model selection. It does not necessarily imply that
the generalization error of bagging is smaller than that of single machines -
as also shown by the experiments.

A main research direction which emerges from the paper is that the the-
oretical framework presented here can be applied to bagging of any learning
machine other than kernel machines, showing formally for which machines
bagging increases the stability. Another important open problem is how to
extend the bounds of Section 3 and 5 to the type of machines discussed in
Section 6.2, or to the case of boosting (Schapire et al., 1998). As discussed
above the theoretical results presented in this paper do not hold when the
coefficients of the linear combination of the machines are not fixed a priori.
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