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(Abstract) 8 

Ordovician change in the nature of seafloor carbonates saw rapid decline of previously 9 

widespread flat pebble conglomerates and the Palaeozoic peak abundance of hardgrounds. 10 

The effective disappearance of flat pebble conglomerates, widely attributed to physical 11 

disruption of substrate by bioturbation, is re-interpreted as reflecting increased depth of 12 

carbonate precipitation below the Taphonomically Active Zone such that early lithified 13 

carbonates were less frequently reworked by scour. With deeper, more stable zones of 14 

cementation, exhumed limestones formed hardgrounds, whose mid Ordovician acme 15 

supported rapid increase in epizoan diversity. Further deepening of cementation to below 16 

normal scour accompanied post-Ordovician decline in submarine hardgrounds.  17 

Supplementary material: database for Figure 1 is available at 18 

http://www.geolsoc.org.uk/SUP---- 19 

 20 

The early Palaeozoic evolutionary and ecological development of benthic metazoans was 21 

strongly affected by changes to the nature of the sea floor environment such as increased 22 

http://www.geolsoc.org.uk/SUP----
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burrowing activity (e.g. Cambrian Substrate Revolution, Bottjer et al. 2000) and widespread 23 

development of shallow marine hard substrates (Great Ordovician Biodiversification Event 24 

(GOBE);  Harper 2006). How did those changes impact upon, and relate to, carbonate 25 

systems and shallow sediment diagenesis? Here we consider two characteristic carbonate 26 

facies of early Palaeozoic shelf seas: flat pebble conglomerates (FPC) and submarine 27 

hardgrounds (carbonate cemented sea floors). Both peak in abundance before rapid decline, 28 

the former most widespread in the late Cambrian–early Ordovician, while the latter reach 29 

their Palaeozoic acme in the Mid-Late Ordovician (e.g. Taylor 2008, fig. 2).  30 

Flat pebble conglomerates (locally breccias) with carbonate intraclasts (rudstones, 31 

floatstones) are a striking feature of Late Proterozoic to early Ordovician shallow marine 32 

carbonate successions. They were mostly deposited in subtidal, typically offshore settings 33 

reflecting storm or tsunami reworking of shallow cemented limestone beds (Mount & Kidder 34 

1993; Pratt 2002; Myrow et al. 2004; Pratt & Bordonaro 2007). The FPCs are variable in bed 35 

geometry and thickness, matrix or clast supported texture, but typically have tabular, thin 36 

(<20mm) pebble to cobble sized clasts of fine grainstone to calcimudstone (e.g. Myrow et al. 37 

2004). This distinctive lithofacies effectively disappears from the stratigraphic record in 38 

offshore settings after the Early Ordovician (Sepkoski 1982; Sepkoski et al. 1991; Liu & 39 

Zhan 2009). The accepted view (e.g. Sepkoski et al. 1991) has been that with an Ordovician 40 

increase in the extent and depth of burrowing (Droser & Bottjer 1989; Bottjer et al. 2000), 41 

biotic mixing of the sediment would have prevented early cementation and the formation of 42 

thin lithified zones, removing the source for FPCs after scouring by storms or tsunamis.  43 

In the Ordovician, submarine hardgrounds become widely developed in shallow seas, 44 

colonised by an expanding diversity of encrusting and boring epizoans (e.g. Brett & 45 

Brookfield 1984) that form specialized new communities in the GOBE. They have been 46 
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interpreted as indicating seafloor calcite precipitation and aragonite dissolution in ‘calcite 47 

seas’ (Taylor & Wilson 2003; Palmer & Wilson 2004; Harper 2006; Taylor 2008).  48 

The aim of this paper is to provide a single, geochemical explanation for both the 49 

decline of subtidal FPC lithofacies and the peak abundance of hardgrounds during the 50 

Ordovician.  51 

 52 

Sea floor diagenesis and changes in sea floor shallow geochemical profiles during the 53 

early Palaeozoic  54 

The diagenetic processes for mobilization of calcium carbonate during shallow burial have 55 

been appreciated for some time (e.g. Sanders 2003; Berkeley et al. 2008; Cherns et al. 2011). 56 

Calcium carbonate, especially the more soluble aragonite, is dissolved in the uppermost 57 

sediment layer largely as a result of acidity caused by the oxidation of H2S, and while most 58 

back-fluxes to the water column, some is re-precipitated as calcite in the sediment column in 59 

areas of increased alkalinity such as depths where sulfate reduction takes place (e.g. Sanders 60 

2003, 2004; Fig. 1). This oxidized zone, effectively the Taphonomically Active Zone (TAZ), 61 

will be controlled by diffusion from the overlying water column, if oxygenated, and by 62 

mixing caused by bio-irrigation (mainly burrowing; e.g. Aller 1982; Aller & Aller 1998). 63 

Organic matter accumulated more among finer grained sediment sources the microbially 64 

mediated decay processes that drive skeletal carbonate dissolution and re-precipitation (e.g. 65 

Walter & Burton 1990; Walter et al. 1993; Hendry 1993). The importance of such processes 66 

linked to the mobilization of labile carbonates in the very shallow sediment column forms the 67 

basis for understanding the limestone-marl alternations that form a widely developed facies in 68 

Phanerozoic epeiric sea settings (Munnecke & Samtleben 1996; Westphal & Munnecke 69 

2003; Munnecke & Westphal 2005). 70 
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Brasier et al. (2011) proposed that changes in the position, relative to the sea floor, of 71 

the depth of the redox boundary during the Ediacaran–early Cambrian affected the zones of 72 

early lithification in the shallow sediment column. Late Proterozoic precipitation of calcium 73 

carbonate took place at or very close (<1cm) to the sea floor (also Peters & Gaines 2012), and 74 

though the early Cambrian advent of metazoan burrowing and biomineralization depressed 75 

the zone of cementation it remained very shallow (early-mid Cambrian subtidal burrow depth 76 

<3 cm, typically mm scale: Tarhan et al. 2015; Droser & Bottjer 1988). The depth of subtidal 77 

bioturbation, and by inference the zone of cementation, remained <6 cm through to the mid 78 

Ordovician, before both bioturbation depth (<30 cm) and intensity increased significantly in 79 

the Late Ordovician (Droser & Bottjer 1989).   80 

 81 

Abundance of flat pebble conglomerates and hardgrounds 82 

Subtidal FPCs are most common in the late Cambrian–Early Ordovician, before rapid 83 

decline, and notably while the TAZ remained very shallow (Fig. 2). Their temporal record, 84 

using publications by formation as a proxy for abundance, provides a direct comparison with 85 

published data for submarine hardgrounds (Fig. 2; Taylor 2008). A peak FPC distributional 86 

map illustrates the extensive occurrence (with a latitudinal control), and suggests any bias 87 

from availability of rock formations is likely not significant (Fig. 3). In shallow carbonate 88 

epeiric seas of the North China Plate, the subsequent decline of FPCs  corresponds to the 89 

decrease also in subtidal microbialites and increasing intensity of bioturbation  as the shallow 90 

sea floor character changed in the late Early Ordovician (early Floian) (Liu 2009; Liu & Zhan 91 

2009). Notably, in post-Ordovician times, minor occurrences of subtidal FPCs (Fig. 2) 92 

correspond to post-extinction events, when suppression of bioturbation would have led to 93 

shallowing of the TAZ (e.g. Wignall & Twitchett 1999; Calner 2005). 94 
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For submarine hardgrounds (carbonate cemented sea floors) the Palaeozoic peak of 95 

abundance is in the Ordovician (Taylor & Wilson 2003; Palmer & Wilson 2004; Harper 96 

2006; Taylor 2008; Fig. 2).  Early, encrusting hardground faunas are described from surfaces 97 

of cemented FPC in the late Cambrian (Brett et al. 1983). By the mid Ordovician hard 98 

substrate morphologies are variable, some largely comprising reworked, encrusted limestone 99 

nodules but others forming beds with complex hummocky and undercut surfaces; hardground 100 

biotas are notably more diverse (Brett & Liddell 1978; Brett & Brookfield 1984; Wilson et al. 101 

1992). Taylor and Wilson (2003, p. 44) suggested that the “Ordovician was a golden age for 102 

epizoans on hard substrates” due in part to increased hard substrate availability. The 103 

appearance of encrusters makes hardgrounds more recognizable after the early Ordovician 104 

(Brett & Liddell 1978) and likely reflects the availability of more stable substrates as 105 

compared with the fragmented cemented layers characteristic earlier in the Palaeozoic. 106 

Previously the abundance of hardgrounds had been explained by local calcite 107 

cementation sourced from carbonate released by sea-floor dissolution of aragonite in 108 

undersaturated (with respect to aragonite) Ordovician ’calcite seas’ (Wilson et al. 1992; 109 

Taylor & Wilson 2003; Palmer & Wilson 2004; Harper 2006). Recent experimental data, 110 

however, indicate that aragonite precipitation continued alongside calcite during ‘calcite seas’ 111 

in warm water environments (Balthasar & Cusack 2015).  In a study of Ordovician 112 

hardgrounds from eastern North America, Kenyon-Roberts (1995) found no direct evidence 113 

for sea floor dissolution, but did note petrographic evidence of hardground formation in 114 

shallow sub-oxic conditions below the TAZ. Cherns & Wright (2011), when comparing the 115 

taphonomy of skeletal lagerstȁtten between ‘aragonite’ and ‘calcite seas’, found no 116 

differences, suggesting that ‘calcite seas’ did not increase aragonitic shell dissolution.  117 

 118 
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Diagenetic model for Early Palaeozoic subtidal settings (Fig. 4) 119 

As the depth and intensity of burrowing increased through the early Palaeozoic, the TAZ 120 

thickened and the depth at which secondary carbonate re-precipitated also deepened. This 121 

reduced the probability that lithified carbonate would be exhumed by erosional reworking 122 

caused by wave scour. The FPCs  in shallow subtidal settings formed only while the TAZ 123 

was very thin, and hence the zone of cementation was close to the sediment-water interface 124 

allowing even relatively small and frequent scour events (storms or tsunamis) to exhume the 125 

cemented horizons (Late Precambrian–late Early Ordovician; Figs 2, 4).  As the TAZ 126 

thickened and the depth of carbonate precipitation increased, these horizons were less likely 127 

to be reworked by scouring. The FPC facies was replaced in shallow subtidal settings by less 128 

frequently exhumed, and hence more developed and thicker, cemented horizons, which when 129 

eventually exposed by scour formed reworked concretions and hardgrounds on which hard 130 

substrate biotas expanded (Mid–Late Ordovician; Figs. 2, 4). Development of these carbonate 131 

horizons may have been facilitated by increased skeletal input through diversification and 132 

faunal expansion during this interval (Porter 2010). In more offshore settings rarely affected 133 

by wave-related erosion, the secondary carbonate could accumulate uninterrupted to produce 134 

the nodular, diagenetic bedding of limestone-marl alternations.  As the TAZ deepened 135 

through the later Ordovician the cementation zone was displaced to deeper levels where 136 

reduced likelihood of exhumation led to decline in hardground abundance and more 137 

widespread development of diagenetic bedding (Late Ordovician; Fig. 3; Westphal 2006, fig. 138 

2). An implication is that diagenetic bedding would have been preserved in shallower areas 139 

than previously, assuming that shallower sea floors were more susceptible to periodic 140 

reworking than deeper ones (Peters & Loss 2012). This hypothesis is testable if it can be 141 

demonstrated that diagenetic bedding is found in shallower settings by the Late Ordovician. 142 

 143 
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Discussion 144 

This model proposes that a single trend, namely the deepening of the zone of cementation 145 

below the TAZ, can explain the rapid decline of FPCs, and the peak abundance of 146 

hardgrounds during the Ordovician, before their subsequent decline. That progressive change 147 

was ultimately a consequence of the previously documented increased depth and intensity of 148 

bio-irrigation. Rather than destroying the potential for rapid shallow cementation (Sepkoski 149 

1982; Sepkoski et al. 1991), lowering of the TAZ decreased the likelihood of erosional 150 

exhumation of thin cemented carbonate layers by wave scour.  151 

Many variables affected early diagenesis during the early Palaeozoic, including 152 

increased nutrient-rich organic matter and oxygen levels in sea floor sediments as a result of 153 

metazoan evolution (McIlroy & Logan 1999; Bottjer et al. 2000, Dornbos et al. 2005). The 154 

amount of labile aragonite from skeletal carbonate dissolution also likely increased with 155 

biomineralization, although the skeletal contribution to carbonate deposition remained limited 156 

up to mid Ordovician times (e.g. Pruss et al. 2010, fig. 8). Could the thinness of limestone 157 

beds ripped up to form FPCs from latest Proterozoic to Early Ordovician be explained by 158 

lower flux of carbonate from skeletal dissolution before the GOBE  rather than reflecting 159 

frequency of exhumation at shallow burial depths? Although the intensity of bio-irrigation 160 

increased markedly in the Early Cambrian, bioturbation depth (<6 cm) remained shallow 161 

through to the Late Ordovician, when both depth (<30 cm) and average ichnofabric index 162 

increased substantially (Droser & Bottjer 1989; Tarhan et al. 2015). If changes in the 163 

biogeochemical environment of the upper sediment layers were a consequence of that deeper 164 

and more intense bio-irrigation, accompanied by increased oxygenation of the seas and 165 

oversaturation (Pruss et al. 2010) that affected diagenetic carbonate precipitation, what other 166 

effects took place in terms of carbonate behaviour? The biogenically reworked mixed layer 167 

increased only slowly, from 0.2 cm in the early-mid Cambrian to 1.5 cm in the Ordovian-168 
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Silurian (Tarhan et al. 2015). Could the presence of a thin TAZ potentially result in higher 169 

levels of acidity through sulfide oxidation and a greater degree of undersaturation with 170 

respect to aragonite, compared with today’s thicker TAZ?  171 

Organisms with more labile, aragonitic shells (primarily molluscs) are diverse in the 172 

early Cambrian radiation although their fossils are relatively sparse in the trilobite dominated 173 

Cambrian–Lower Ordovician skeletal record (Porter 2007; Porter et al. 2010). From the mid 174 

Ordovician, skeletal material was a major contributor to carbonate sediment; limestone shell 175 

beds, most commonly brachiopod-rich, increase in proportion, thickness and abundance in 176 

shallow marine settings (Kidwell and Brenchley 1994; Li  & Droser 1997, 1999; Pruss et al. 177 

2010). Molluscs are dominant in some storm beds, most commonly representing local 178 

reworking of concentrations of dead gastropod shells accumulated in the upper sediment 179 

layers (Li & Droser 1999; Harper 2006, fig. 9). Did a thicker TAZ later in the Ordovician 180 

result in less intense sulfide oxidation, less dissolution and a longer survival time of aragonite 181 

shells in the TAZ?  182 

The Palaeozoic decrease in abundance of hardgrounds after the Ordovician (Fig. 2) is 183 

here interpreted as reflecting the lowering of the TAZ and cementation zone to depths in the 184 

sediment column affected less frequently by wave (storm or tsunami)  reworking. It might 185 

also imply that such reworking later rarely affected sediments much below the TAZ at 30cm. 186 

Mesozoic peaks of hardground occurrence (Fig. 2) may in part reflect large outcrop areas of 187 

marine sediments (Smith and McGowan 2007), such as the Cretaceous Chalk. The extensive 188 

hardgrounds of the middle Jurassic are hosted predominantly in very shallow, oolitic facies 189 

and are of much more diverse origins than those of the Ordovician (Kenyon-Roberts 1995). 190 

 191 

Conclusions 192 
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The decline of flat pebble conglomerates and the peak abundance of submarine hardgrounds 193 

in the Ordovician are interpreted as reflecting the progressive deepening of the zone of 194 

carbonate precipitation below the TAZ, resulting in less frequent reworking of the upper part 195 

of the sediment column by scour. The deepening was a consequence of increased depth and 196 

intensity of bioturbation and bio-irrigation. This shift also created a range of more lithified 197 

substrates in subtidal settings, promoting a rapid expansion in epizoan diversity. Thus, 198 

changes in bioturbation affected carbonate diagenesis and the composition of the sea floor 199 

carbonates, and provided new niches for invertebrates. 200 
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Figure Captions 343 

Figure 1. Shallow burial diagenetic environment and calcium carbonate precipitation. A, 344 

labile aragonite shells (molluscs), more susceptible to early dissolution in the oxic upper 345 

sediment layers of the Taphonomically Active Zone (TAZ), release carbonate and leave 346 

moulds that are readily destroyed through bioturbation. B, calcitic shells more likely to 347 

survive early dissolution, and more rarely steinkerns of aragonitic shells; diffused carbonate 348 

precipitates in a zone of cementation in the sulfate reduction zone.  349 

Figure 2. Abundance (using publications by formation as proxy) of subtidal flat pebble 350 

conglomerates (pale, points; supplemental information available online 351 

at  www.geolsoc.org.uk/SUP0xxxx) and submarine hardgrounds (dark, histogram; based on 352 

Taylor 2008 and http://markwilson.voices.wooster.edu/bioerosion-bibliography/). Note: 353 

revision of Cambrian stratigraphy into four series is ongoing; divisions into Lower, Middle 354 

and Upper series follow standard usage in literature.  355 

Figure 3. Palaeogeographic reconstruction for 485 Ma (Bugplates IGCP503; T.H. Torsvik 356 

2009) showing late Cambrian–early Ordovician extent of flat pebble conglomerate facies 357 

(black stars).  358 

Figure 4. Diagenetic model for carbonate precipitation in subtidal Palaeozoic settings, 359 

showing early Cambrian through Ordovician changes in the depth of the Taphonomically 360 

Active Zone (TAZ) and zone of cementation, susceptibility of lithified limestone layers to 361 

scouring, and distribution of flat pebble conglomerates, submarine hardgrounds and the 362 

diagenetic nodular bedding of limestone-marl alternations. SWI sediment-water interface. 363 

364 

http://www.geolsoc.org.uk/SUP0xxxx
http://markwilson.voices.wooster.edu/bioerosion-bibliography/
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Wright and Cherns Supplementary Data   403 

Flat pebble conglomerates from subtidal settings (Fig. 2) 404 

AGE LOCATION FORMATION 
SHELF 
SETTING 

PROPOSE
D 
PROCESS AUTHOR(S) 

Mesoproteroz
oic 

China, Hebei 
Province 

Gaoyuzhuang 
Formation  

Subtidal within 
storm wave 
base storms Luo et al. 2014 

Proterozoic, 
Pre-Marinoan 
glaciation 

NW Canada, 
Mackenzie 
Mountains Keele Fm 

mid to outer 
ramp storms Day et al. 2004 

Vendian 
Gourma, 
West Africa  slope 

bottom 
currents' 

Bertrand-Sarfati 
& Moussine-
Pouchkine 1983 

Ediacaran South Africa  Swartpunt Fm 
Low energy 
deeper ramp storm 

Narbonne et al. 
1997 

Ediacaran 
Canadian 
Arctic Gametrail Fm subtidal ramp storms 

MacNaughton et 
al. 2008 

Ediacaran Kazakhstan 
Kyrshabakty 
Formation 

shallow 
carbonate 
platform 

high energy 
events 

Heubeck et al. 
2013 

Ediacaran - 
Lower 
Cambrian Oman Ara Group 

carbonate 
platform  

Grotzinger & 
Al -Rawahi 2014 

Lower 
Cambrian 

 South 
Australia 

Sellick Hill 
Formation subtidal storms 

Mount & Kidder 
1993 

Lower 
Cambrian W Mongolia 

Bayan Gol Fm, 
Zavkhan Basin 

shallow 
subtidal storms Kruse et al. 1996 

Lower 
Cambrian South China 

Shuijingtuo 
Fm subtidal  

Ishikawa et al. 
2008 

Middle 
Cambrian 

Canadian 
Arctic   ramp  

Dewing & 
Nowlan 2012 

Middle 
Cambrian 

British 
Columbia, 
Canada Jubilee Fm   Pope 1990 
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Middle 
Cambrian Argentina La Laja Fm subtidal shelf tsunamis 

Pratt & 
Bordonaro 2007 

Middle 
Cambrian Australia Ranken Lst 

low energy 
shallow 
subtidal  storms Kruse 1996 

Middle 
Cambrian 

Wyoming, 
USA 

Upper Gros 
Ventre Shale   Csonka 2009 

upper Middle 
Cambrian 

W Utah, 
USA 

upper Wheeler, 
Marjum fms 

middle 
carbonate belt - 
subtidal shelf  Robison 1964 

Middle-
Upper 
Cambrian NW China  

Supratidal to 
subtidal fpc storms Liang et al. 1993 

Middle 
Cambrian - 
Lower 
Ordovician Siberia 

Ust’-
Brus,Labaz, 
Orakta, 
Kulyumbe, 
Ujgur and Iltyk 
fms   

Kouchinsky et 
al. 2008 

Upper 
Cambrian NW Siberia 

Chopko Fm, 
Chopka River  

carbonate 
platform, 
turbidites 

submarine 
landslides 

Varlamov et al. 
2006 

Upper 
Cambrian N China 

Gushan, 
Chanshang 
formations  subtidal shelf storms 

Ding et al. 2008; 
Meng et al. 1997 

Upper 
Cambrian 

China, 
Shandong 
Province 

Chaomidian 
Formation 
(Furongian) 

shallow 
subtidal  

Lee et al. 2010; 
Chen 2014; 
Chen et al. 2009, 
Chen et  al. 
2010; Van Loon 
et al. 2013 

Upper 
Cambrian S Korea 

Hwajeol 
Formation 

subtidal, 
relatively deep  

Kim & Lee  
2000 

U Cambrian  Western USA  

Outer detrital 
belt (subtidal 
lagoon) Storms Sepkoski 1982 

Upper 
Cambrian 

Rocky Mts 
USA 

Snowy Range 
Fm 
(Sunwaptan-L 
Skullrockian) 

Inner detrital 
belt, subtidal 

Storms 
(leading to 
slope 
failure) 

Brett et al. 1983; 
Myrow et al. 
2004;  Myrow et 
al. 2012 

Upper 
Cambrian 

Montana 
USA Deadwood Fm subtidal shelf tsunamis Pratt 2002 
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Upper 
Cambrian 

Wyoming, 
USA 

Snowy Range 
Fm - Upper 
Deadwood 
Formation 

subtidal 
intrashelf basin storms 

Saltzman 1999; 
Myrow et al. 
2004 

Upper 
Cambrian 

Wyoming, 
USA   

fpc 
produced by 
dewatering 

Wiison 1985; 
Kozub 1997 

Upper 
Cambrian 

Virginia, 
USA 

Nolichucky 
Formation 

shallow 
subtidal basin 
facies storms 

Markello & 
Read 1981, 1982 

Upper 
Cambrian 

Nevada and 
Utah, USA SPICE interval Intrashelf basin storms 

Saltzman et al. 
1998 

Upper 
Cambrian 

Montana 
USA 

Grove Creek, 
Snowy Range, 
Maurice 
formations   

Dorf & 
Lochman 1940 

Upper 
Cambrian 

Maryland, 
USA 

Conococheagu
e Limestone  

sand shoal 
environments  

Demicco 1985; 
Demicco et al. 
1991 

Upper 
Cambrian 

Virginia, 
USA 

Conococheagu
e Limestone, 
Copper Ridge 
Dolomite   

Group I outer 
shelf  storms Whisonant 1987 

Upper 
Cambrian 

Tennessee, 
USA 

Maynardsville 
Fm, 
Conosauga 
Group subtidal  

Glumac and 
Walker  1997 

Upper 
Cambrian 

Wisconsin 
and 
Minnesota, 
USA 

Tunnel City 
Group 

shallow 
subtidal storms Eoff 2014 

Upper 
Cambrian 

California, 
USA 

Nopah Fm 
(Sunwaptan); 
also Desert 
Valley 
Formation, 
Whipple Cave 
Formation, 
Notch Peak 
Formation,  
Ajax Dolomite 

shallow 
subtidal storms 

Shapiro & 
Awramik 2006 

Upper 
Cambrian 

S Alberta, 
Canada 

Bison Creek 
and Mistaya 
formations 

shallow 
subtidal shelf storms Westrop 1989 
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Upper 
Cambrian - 
Lower 
Ordovician 

 Alberta , 
Canada 

Survey Peak 
Fm; Ibexian-
Tremadoc   

Ji & Barnes 
1996 

Upper 
Cambrian - 
Lower 
Ordovician Mexico Ti˜nu Fm  

subtidal 
dysoxic shelf debris flows 

Landing et al. 
2007 

Upper 
Cambrian - 
Lower 
Ordovician N China 

Fengshan 
Formation  - 
Yeli Formation subtidal shelf  Yang et al. 2002 

Upper 
Cambrian - 
Lower 
Ordovician 

China, Jilin 
Province  

candidate 
GSSP 
Xiaoyangqiao subtidal  storms Chen et al. 1988 

Upper 
Cambrian - 
Lower 
Ordovician 

Utah, USA; 
Nevada USA 

Notch Peak 
and House 
Limestone 
fms; Whipple 
Cove and 
House 
Limestone fms 

shoals on 
shallow 
carbonate shelf  

Popov et al. 
2002; Cook & 
Taylor 1975, 
1977  

Upper 
Cambrian - 
Lower 
Ordovician 

Colorado, 
USA 

Dotsero Fm, 
Manitou Fm   Berg 1960 

Lower and 
Upper 
Cambrian, 
Lower 
Ordovician 

Appalachians
, USA 

Dunham Fm; 
Pine Plains 
Fm; 
Ogdenburg 
and Tribes Hill 
fms  storms Friedman 1994 

Upper 
Cambrian - 
Lower 
Ordovician Siberia Nya sequence 

shallow 
carbonate 
platform  

Dronov et al. 
2009 

Upper 
Cambrian - 
Lower 
Ordovician 

Mid-East 
Korea 

Choson 
Supergroup subtidal 

storm, 
diagenetic 
lsts 

Kwon et al. 
2002 

Lower 
Ordovician 

Newfound-
land 

Watt's Bight 
and Boat 
harbour fms 

deep subtidal 
to peritidal storms Pruss et al. 2010 
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Lower 
Ordovician Utah, USA 

Pogonip Group 
-  Notch Peak 
Formation, 
House 
Limestone, 
Fillmore 
Formation, and 
Wah Wah 
Limestone 

shallow 
subtidal to 
peritidal  Pruss et al. 2010 

Lower 
Ordovician S Korea Dumugol Fm 

shallow to 
deep ramp storms Lee & Kim 1992 

Lower 
Ordovician Korea Mungok Fm subtidal shelf storms 

Kim and Lee 
1995;  Choi, 
Kim & Lee 1993 

Lower 
Ordovician NY, USA Tribes Hill Fm 

intertidal to 
supratidal 

desiccation 
and high 
energy 
events 
(seismic 
/storm 
/tsunami?) 

Braun & 
Friedman 1969 

Lower 
Ordovician 
(Tremadoc) 

Pingquan, 
Hebei 
Province, N 
China  

shallow 
subtidal to 
shaly basinal  

Liu & Zhan 
2009 

Lower 
Ordovician 

Pingquan, 
Hebei 
Province, N 
China and 
Xingshan, 
Hubei 
Province, S 
China  

Lower 
Tremadoc 
shallow 
subtidal, Upper 
Tremadoc 
shallow to 
deep subtidal  Liu 2009 

Lower 
Ordovician NW Hubei 

Nantsinkian-
lower Dawan 
fms; Tremadoc 
- early Floian 

shallow marine 
carbonate 
platform; 
shallow to 
deeper subtidal  Liu et al. 2011 

Lower 
Ordovician Nevada, USA 

Ninemile 
Shale 

within storm 
wave base  storms 

Sprinkle & 
Guensburg 1995  
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Lower 
Ordovician 

Utah and 
Nevada, USA Kanosh Shale Intrashelf basin storms 

Wilson et al. 
1992 

Lower 
Ordovician Utah 

Fillmore 
Formation 

storm 
dominated 
shelf  storms 

Sprinkle & 
Guensburg 1995; 
Dattilo 1993; 
Benner et al. 
2004 

Upper 
Silurian 

Gotland, 
Sweden 

upper Hemse-
Eke fms 

subtidal to very 
shallow, 
microbial 
shoals 

anachronisti
c facies - 
suppressed 
burrowing 

Cherns 1982, 
1983; Calner 
2005  

Upper 
Silurian 

Somerset Is., 
Arctic 
Canada Reach Bay Fm 

Subtidal within 
storm wave 
base storms 

Jones & Dixon 
1976 

Upper 
Devonian 
(Frasnian) 

Holy Cross 
Mts, Poland  

Shallow 
subtidal 

storms or 
tsunamis 

Kazmierczak & 
Goldring 1978 

Lower 
Triassic S Turkey  Dienerian Fm 

storms 
affecting 
shallow shelf 

anachronisti
c facies - 
suppressed 
burrowing Pruss et al. 2006 

Lower 
Triassic 

South China; 
North Italy  

storm-
dominated 
shelf to deep 
basin; mid 
ramp 
carbonates 

anachronisti
c facies - 
suppressed 
burrowing 

Wignall & 
Twitchett 1999 

Lower 
Triassic SW USA 

Moenkopi - 
Union Wash 
formations 

subtidal to 
deep 

anachronisti
c facies - 
suppressed 
burrowing 

Pruss et al. 
2005; Woods 
2009 

Lower 
Jurassic Portugal 

Achada 
Dolomites and 
Limestones Subtidal 

dip-slip 
movements 
causing 
tsunamis 

Kullberg et al. 
2001 
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