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Abstract

The central concept of this thesis is that of Leavitt path algebras, a notion
introduced by both Abrams and Aranda Pino in [AA1] and Ara, Moreno and Pardo
in [AMP] in 2004. The idea of using a field K and row-finite graph E to generate
an algebra Lx (F) provides an algebraic analogue to Cuntz and Krieger’s work with
C*-algebras of the form C*(F) (which, despite the name, are analytic concepts). At
the same time, Leavitt path algebras also generalise the algebras constructed by W.
G. Leavitt in [Lel] and [Le2|, and it is from this connection that the Leavitt path

algebras get their name.

Although the concept of a Leavitt path algebra is relatively new, in the years
since the publication of [AA1] there has been a flurry of activity on the subject.
Many results were initially shown for row-finite graphs, then extended to countable
(but not necessarily row-finite) graphs (as in [AA3]) and then finally shown for
completely arbitrary graphs (see, for example, [AR]). Most of the research has
focused on the connections between ring-theoretic properties of Lg(FE) and graph-
theoretic properties of E (for example [AA2], [AR] and [ARM2]), the socle and socle
series of a Leavitt path algebra (JAMMS1], [AMMS2] and [ARM1]) and analogues
between Ly (F) and their C*-algebraic equivalents C*(F) (for example [To]). Some
papers have classified certain sets of Leavitt path algebras, such as [AAMMS], which
classifies the Leavitt path algebras of graphs with up to three vertices (and without
parallel edges).

In Chapter 1 we will cover the ring-, module- and graph-theoretic background
necessary to examine these algebras in depth, as well as taking a brief look at

Morita equivalence, a concept that will prove useful at various points in this thesis.



i

We introduce Leavitt path algebras formally in Chapter 2 and look at various results
that arise from the definition. We also examine simple and purely infinite simple
Leavitt path algebras, as well as the ‘desingularisation’ process, which allows us to
construct row-finite graphs from graphs containing infinite emitters in such a way
that their corresponding Leavitt path algebras are Morita equivalent. In Chapter 3
we examine the socle and socle series of a Leavitt path algebra, while in Chapter
4 we examine Leavitt path algebras that are von Neumann regular, m-regular and
weakly regular, as well as Leavitt path algebras that are self-injective. Finally, in
Appendix A we give a detailed definition of a direct limit, a concept that recurs

throughout this thesis.
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Chapter 1

Preliminaries

1.1 Ring Theory

In many texts, a ring R is required to be a monoid under multiplication; that is,
R must contain a multiplicative identity. Indeed, many well-known ring theoretic
results are based on the assumption that such an element exists. However, some
authors omit this requirement, resulting in a more general definition of a ring. As we
will see in Chapter 2, a Leavitt path algebra may not necessarily have an identity,
so throughout this thesis we will assume the more general definition of a ring that
does not require the existence of a multiplicative identity. In the case that R does
have a multiplicative identity, we say that R has identity or that R is unital, and
denote this identity by 1 (or 1g) as usual.

The following definition gives a very useful generalisation of the concept of a

multiplicative identity.

Definition 1.1.1. A ring R has local units if there exists a set of idempotents E
in R such that, for every finite subset X = {z1,...,2,} C R, there exists an e € F
such that X C eRe. In this case, ex; = x; = x;e for each i = 1,...,n and e is said

to be a local unit for the subset X.

Note that if a ring R has identity 1, then {1} is a set of local units for R. In
Chapter 2 we will show that every Leavitt path algebra has local units (but is not
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necessarily unital), and so we will be particularly interested in looking at results for
rings with local units. As we shall see, extending results for unital rings to this more
general case is straightforward in some cases, while in other cases it can be difficult

or even impossible.

When working with rings that do not necessarily have identity we have to take
care with the way certain things are defined. For example, for an arbitrary element
x in an arbitrary ring R we define the two-sided ideal generated by x, denoted

(x), to be the set

(x) = {ZrixsmLZr;:v—l—sz;—irn-x}
i j K

where r;, si,ré, s, € R, n € Z and the sums are finite. If R is unital, it is easy to
see that this expression simplifies to the more familiar definition (z) = {>_. rizs;:
ri,s; € R}. Furthermore, in the more general case that R has local units this
simplification still holds, since we can find a nonzero idempotent e € R for which

Er = X = X€.

Similarly, for an arbitrary element a € R we define the principal left ideal

generated by a, denoted Ra, to be the set
Ra:={ra+n-a:r € RnecZl}

Once again, in the case that R has local units this simplifies to the more familiar

definition Ra = {ra : r € R}, since a = ea for some idempotent e € R.

If R is a ring with local units, then for any element a € R there exists an
idempotent e € R such that a € eRe, by definition. It is easy to see that eRe is a
subring of R. Furthermore, note that eRe is always unital (with identity e), even
if R is not. The following result concerns the subring eRe. Recall that a ring R is

simple if the only two-sided ideals contained in R are {0} and R itself.

Proposition 1.1.2. Let R be a ring with local units. Then R is simple if and only

if the subring eRe s simple for every nonzero idempotent e € R.
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Proof. Suppose that R is simple and let e by any nonzero idempotent in R. To show
that eRe is simple it suffices to show that, for any nonzero element exe € eRe, the
two-sided ideal of eRe generated by exe is equal to all of eRe. Take an arbitrary
nonzero element exge € eRe. Since expe is an element of R and R is simple, the two-
sided ideal of R generated by ezge is equal to R. Now take another arbitrary element
eye € eRe. Since R = (expe) and R has local units we can write y = . r;(exoe)s;,

where each r;, s; € R. Thus

eye =y . er;(expe)s;e = > . (er;e)(expe)(es;e)

since e is an idempotent. Thus eye is contained in the two-sided ideal of eRe
generated by expe, and since eye was an arbitrary element this shows that eRe is

simple.

Conversely, suppose that fRf is simple for every nonzero idempotent f € R. As
above, it suffices to show that, for any nonzero element x € R, the two-sided ideal
of R generated by z is equal to all of R. Take arbitrary nonzero elements xg,y € R.
Since R has local units, there exists an idempotent ¢ € R such that zg,y € eRe.
Since eRe is simple, the two-sided ideal of eRe generated by xy must be all of eRe.
Thus y = ) _.(ere)xzo(es;e), where each r;,s; € R. However, this sum is clearly
contained in the two-sided ideal of R generated by xy, and so xy generates the whole

ring R, as required. [

We now move on to another definition that will be important when examining

Leavitt path algebras.

Definition 1.1.3. A ring R is said to be Z-graded if there is a family {R,, : n € Z}
of subgroups of the additive group (R, +) for which

(i) RnR, € Ryyyy for all m,n € Z, and
(i) R= &P,z Ry as an abelian group.

In this case, the family {R,, : n € Z} is said to be a Z-grading of R, and elements

of each subgroup R, are called homogeneous elements of degree n. Thus each
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element in R can be written uniquely as a sum of homogeneous components (from

the definition of a direct sum — see Section 1.2).

A familiar example of a Z-graded ring is the ring of Laurent polynomials R =
Klz,x7 '] over a field K. If we define R, = {ka™ : k € K} for each n € Z then it is
easy to see that conditions (i) and (ii) of the above definition hold. In many cases
a ring R lends itself naturally to a Z-grading; in particular, we will show that any
Leavitt path algebra Li(FE) is a Z-graded ring. This concept of grading extends to

several other ring-theoretic concepts, as the following definition illustrates.

Definition 1.1.4. An ideal I of a Z-graded ring R = @, ., R, is said to be a
graded ideal if v = ) _, x, € I (with each z,, € R,) implies that each z, € I.
In other words, an ideal I is graded if the homogeneous components of any element

in [ are in I themselves. Equivalently, we can write I = &, _,(I N R,,). Note that

ne”L
if R is a Z-graded ring and e is an idempotent in R then the subring eRe is also

Z-graded.

If R =8, R, and S = @, ., Sn are two Z-graded rings, then a homomor-
phism ¢ : R — S is said to be a graded homomorphism if ¢(R,) C S, for each
n € Z; that is, if ¢ takes homogeneous elements of degree n in R to homogeneous

elements of degree n in S.

It can be shown (see, for example, [NV, page 6]) that if R is a Z-graded ring and
I is a graded ideal of R, then the quotient ring R/I is also Z-graded. Similarly, if
R and R/I are both Z-graded then I must also be graded.

Lemma 1.1.5. If ¢ : R — S is a graded homomorphism between two graded rings

R and S, then ker(¢) is a graded ideal of R.

Proof. Let x € ker(¢) and write z = x,, + - -+ + x,,, where each z,, € R,,. Thus
0=¢(x) =3 ._, ¢(xy,). Since ¢ is a graded homomorphism, ¢(z,,) € S,, for each
1. However, since S is a graded ring, the element 0 can only be expressed one way
as a sum of homogeneous components from each S,,, namely 0 =0+ ---+ 0. Thus

for each i € {1,...,t} we have ¢(z,,) = 0 and so z,, € ker(¢), as required. O
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Let L be a left ideal of a ring R. Then L is said to be a minimal left ideal of
R if L # 0 and there exists no left ideal K of R such that 0 C K C L. Similarly, L
is said to be a maximal left ideal of R if L # R and there exists no left ideal M
of R such that L C M C R.

The following lemma provides a useful way to determine when a principal left

ideal is a minimal left ideal.

Lemma 1.1.6. Let R be a ring and let x be a nonzero element of R. If x € Ra for

every nonzero a € Rx, then Rx is a minimal left ideal.

Proof. Suppose Rz contains a nonzero left ideal I and take an arbitrary nonzero
a € I. Since a = bx + nx for some b € R and n € N, we have Ra C Rx. Similarly,
since r € Ra then Rx C Ra and so Rx = Ra. Since Ra C I, we must have I = Rx

and so Rz is minimal. O]

Let R be a ring. The Jacobson radical of R, denoted J(R), is the intersection
of the family of all maximal left ideals of R. It can be shown that J(R) is a two-sided
ideal of R. (Similarly, the socle of R is the sum of all minimal left ideals of R; we
will define this concept formally in Section 3.1). We now give two useful results

concerning the Jacobson radical.
Lemma 1.1.7. Let R be a ring. Then J(R) contains no nonzero idempotents.

Proof. 1t is well-known that every element = € J(R) is quasiregular, that is, there
exists a y € R such that © +y = —zy = —yx (see, for example, [D, Chapter 4]).
Suppose that J(R) contains an idempotent e. Then —e € J(R), so there exists a
y € R such that y — e = ey. Multiplying on the left by —e gives —ey + e = —ey,
and thus e = 0. O

The following lemma is from [AA3, Lemma 6.2].

Lemma 1.1.8. Let R be a Z-graded ring. Suppose that R contains a set of local
units E such that each element of E is homogeneous. Then J(R) is a graded ideal.
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Proof. Let x € J(R) and decompose = x,,, +- - -+, into a sum of its homogeneous
components. Let e be an element of E such that exe = x. Then x = exe =
€xn, €+ - -+ expy,e. Since e is a local unit it must be an idempotent, and therefore
e has degree 0. Thus ez, e is homogeneous with the same degree as z,,,. Since the
decomposition of an element into homogeneous components is unique, we must have

exy,e = x,, for each ¢ € {1,... t}.

By Jacobson [J2, Proposition 3.7.1] we have that J(R)NeRe = eJ(R)e = J(eRe).
Since z = exe, we have © € J(R) NeRe and so x € J(eRe). Since each z,, = ex,,e,
T =Ty, +---+x,, is in fact the decomposition of z into graded components in eRe.
Now, since eRe is a Z-graded unital subring of R (with e as identity), we can apply
Bergman [Be, Corollary 2| to get that J(eRe) is a graded ideal of eRe. Thus z,, €
J(eRe) for each i € {1,...,t}. Since J(R)NeRe = J(eRe), we have J(eRe) C J(R)
and thus z,, € J(R) for each i € {1,...,t}, completing the proof. O

A ring R is said to be von Neumann regular if, for every a € R, there exists an
x € R for which a = aza. Furthermore, we say that x is a von Neumann regular
inverse or quasi-inverse for a. Note that any division ring is von Neumann regular,
since we can simply choose z = a~! if a is nonzero. The question of which Leavitt
path algebras are von Neumann regular (as well as other definitions of ‘regular’) will
be visited in Section 4.2. The following lemma concerning von Neumann regular

rings is from [G1, Lemma 1.3].

Lemma 1.1.9. Let R be a ring and let J and K be two two-sided ideals in R with
J C K. Then K is von Neumann regular if and only if J and K/J are von Neumann

reqular.

Proof. If K is von Neumann regular, then clearly K/J is von Neumann regular.
Now consider a € J. Since J C K, there exists x € K such that a = ara. Now
y = zax € J (since J is a two-sided ideal) and aya = axara = axa = a. Thus J is
von Neumann regular.

Now suppose that K/J and J are both von Neumann regular and consider a € K.

Since K/J is von Neumann regular there exists € K for which a + J = aza + J,
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so that a — axa € J. Since J is von Neumann regular, there exists y € J for
which @ — aza = (a — aza)y(a — axa). Thus a = aza + (a — aza)y(a — axa) =

a(x +y — xay — yax + rayaz)a, and so K is von Neumann regular. O

We conclude this section with a useful result regarding the matrix ring M, (K),

where K is a field.

Lemma 1.1.10. Let K be a field. Then M, (K), the ring of n X n matrices over
K, is simple for all n € N.

Proof. Let n € N, let J be a nonzero two-sided ideal of M,,(K) and let A = (a;;) € J.
If we can show that the n x n identity matrix [, is in (A) (the two-sided ideal
generated by A) then we have M, (K) = (A) = J, proving that M, (K) is simple.
Let E;; be the matrix unit with 1 in the (¢, j) position and zeros elsewhere. Choose
i,j € {1,...,n} such that a;; # 0. Then a;; E1y = EjAE,; € (A). Since K is
a field, we have (a;len)(aijEH) = FE53 € (A). By similar arguments, we have

Es, ..., Eny € (A) and thus I,, = F11 + Eay + -+ - + E,, € (A), as required. O]

1.2 Module Theory

Let R be a ring. Recall that an abelian group (M, +) is called a left R-module or
a left module over R if there is a mapping R x M — M, given by (r,m) — rm,

such that, for all ;7,7 € R and all m, my, ms € M, we have
(i) 7(my +my) = rmy + rma,
(i) (ry +ro)m = rym + rom,

(iii) r1(rem) = (ryr2)m, and

(iv) 1gm = m (if R has identity).

If M is a left R-module, we sometimes denote M by zpM. Furthermore, we say

that N is a submodule of M if N is a subgroup of M and rn € N for all r € R
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and all n € N. Note that if we view a ring R as the additive abelian group (R, +),
then R can be seen as a left module over itself, with module multiplication given
by multiplication in the ring R. Furthermore, the submodules of g R are simply the

left ideals of R.

We can define a right R-module M similarly, with a mapping M x R — M given
by (m,r) +— mr, and we sometimes denote this by Mg. Again, any ring R can be
seen as a right module over itself, and the right submodules of Rr are the right
ideals of R. In this section we will concern ourselves primarily with left R-modules,

though analogous results and definitions exist for right R-modules in most cases.

Now let R be a ring and let M, N be left R-modules. A function f : M — N
is called an R-homomorphism if f is a group homomorphism for which f(rz) =
rf(z) for all z € M and all r € R. We denote by Hompg(M, N) the additive abelian
group of all R-homomorphisms from M to N. (This is easily seen to be a group if
we define addition by (f + ¢g)(m) = f(m) + g(m) for all f,g € Hompg(M, N) and
all m € M.) Furthermore, in the case that M = N, Homg(M, N) is denoted by
Endg(M) and is called the endomorphism ring of M. (Again, this is easily seen to
be a ring if we define multiplication by (f - g)(m) = f(g(m)) for all f, g € Endg(M)
and all m € M.)

We denote by R-mod the category of all left R-modules together with all R-
homomorphisms f : M — N, where M and N are left R-modules. (See Section
1.3 for a formal definition of a category.) However, in this thesis we will concern
ourselves with a slightly more restricted category of R-modules. We define an R-

module M to be unital if

RM::{meizmeR,miEM}:M,

i=1
and nondegenerate if Rm = 0 (for some m € M) implies m = 0. We denote by
R-Mod the subcategory of R-mod containing all unital and nondegenerate left R-
modules and all R-homomorphisms between such modules (and define Mod-R to be
the corresponding category of right R-modules.) Note that if R is a unital ring then

every left R-module is unital and nondegenerate, and so R-Mod is the full category
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R-mod.

Lemma 1.2.1. Let R be a ring with local units and let M be a unital left R-module.
Then

(i) M is nondegenerate, and
(11) for every m € M there is a local unit e € R such that em = m.

Proof. Let m € M. Since M is unital, we can write m = Z?:l r;m; for some r; € R
and m; € M. Since R has local units, there exists an idempotent e € R such that
r; =er; foreachi=1,...,n. Thusm =" erym; = e(}_._, rsm;) = em, proving
(ii). Furthermore, if Rm = 0 then m = em = 0, showing that M is nondegenerate

and thus proving (i). O

Now let R and S be two rings. Suppose that M is a left R-module and a right
S-module, with the property that (rm)s = r(ms) for all r € R, s € S and m € M.
Then we say that M is an R-S-bimodule, and we sometimes denote M by rMsg.
Furthermore, if M and N are two R-S-bimodules, then a map f : M — N is a
bimodule homomorphism if it is both a homomorphism of left R-modules and

right S-modules.

If A is a commutative ring then a ring R is called an A-algebra if R is an
A-A-bimodule. For example, any ring R is a Z-algebra, with the obvious module
multiplications nr =n-r =rn for all n € Z and all » € R. In this thesis we will be

primarily concerned with algebras over an arbitrary field K.

The following lemma gives a useful way of visualising the subring e Re of a ring R,
where e is an idempotent. Recall that Endg(Re) is the ring of all R-homomorphisms

from the left R-module Re to itself.

Lemma 1.2.2. Let R be a ring and let e be an idempotent in R. Then Endg(Re) =
(eRe)OP, where (eRe)PP is the opposite ring of eRe with multiplication - defined by
(erie) - (erqe) = (erge)(erie) for all ri,7m9 € R. Similarly, Endg(eR) = eRe.
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Proof. Let f be an arbitrary R-homomorphism in Endg(Re) with f(e) = rse for
some ry € R. (Note that r; defines the entire homomorphism f, since given any
element te € Re we have f(te) = t(f(e)) = trye.) Consider the map ¢ : Endg(Re) —
(eRe)®P with ¢(f) = erse. (To check this is a well-defined function, suppose that
rre = se for some s € R with ry # s. Then erye = ese, and so ¢ is indeed
well-defined.)

Now suppose that f,¢g € Endgr(Re) with f(e) = rre and g(e) = rye for some
r¢, 7y € R. Then (f +g)(e) = f(e) + g(e) = (r¢ + 1ry)e, and so

O(f +9) = elry +rg)e = erpe+erge = ¢(f) + 6(g)

as required. To check that ¢ is multiplicative, note that we must check that ¢(fg) =
O(f) - d(g) = ¢(9)d(f)- Now (fg)(e) = f(rge) = f(rye?) = ryef(e) = ryerse, and so

¢(fg) = e(ryers)e = (erge)(erse) = ¢(9)o(f)-

Thus ¢ is a ring homomorphism. Now, given any = € (eRe)%?

let f € Endg(Re) be the homomorphism defined by f(e) = re. Then ¢

, say r = ere,

(f) =
) with
o(f) = erpe = 0 (where ry is an element of R for which f(e) = rse). Then
0=erje=ef(e) = f(e?) = f(e) and so, for any se € Re, we have f(se) = sf(e) =0

and thus f = 0. Therefore ¢ is a monomorphism, and so Endz(Re) = (eRe)°P.

ere = x, and so ¢ is an epimorphism. Finally, suppose that f € Endg(Re

Using a similar argument, if we define ¢ : Endg(eR) — eRe to be the map
©(f) = erye, where r; is an element of R for which f(e) = ery, we obtain the

isomorphism Endg(eR) = eRe. O

We now turn our attention to direct products and direct sums. Recall that if
R is a ring and {A; : i € I} is a family of left R-modules, we define the direct
product of the family {A; : ¢ € I} to be the R-module formed by taking the
cartesian product of the family and denote this by [[,.; A;. Furthermore, we define

the external direct sum of the family to be

@Ai = {(ai)iel € HAi :a; # 04, for only a finite number of indices i € ]}.

i€l el
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Note that if I is a finite index set then we have [[,.; A; = @, As.

Now if M is an R-module and {M; : i € I} is a family of submodules of M, we
say the sum )., M; is an internal direct sum if every element m € ), _, M; has
a unique representation in the form Zie ; M;, where each m; € M; and m; # 0 for
only a finite number of indices i € I. We denote this by @,., M;. If M = @,.; M;

then each M, is said to be a direct summand of M.

It can be shown that a sum ), ; M; is direct if and only if

Mm< > Mj> = {0}

Jelj#i
for all © € I. We can also show that any internal direct sum can be regarded as an

external direct sum, and vice versa, and hence there is no ambiguity in the notation.

The following result concerns left ideals generated by idempotents, and is useful

when working with rings with local units (though it is valid for any ring).
Lemma 1.2.3. Let R be an arbitrary ring. If e € R is an idempotent, then

(i) Re is a direct summand of R;

(i1) any direct summand of Re is of the form Rf, where f is an idempotent; and
(111) if f € Re is an idempotent then Rf is a direct summand of Re.

Proof. (i) Since e = €%, we have Re = {re : r € R}. Let T = {t —te : t € R}.
It is straightforward to see that T is a left ideal of R. For any r € R, we have
r =re+ (r—re), so clearly we have R = Re+T. Furthermore, suppose x € ReNT.
Then v = se and v = t — te for some s,t € R. Using the fact that e = €2, we
therefore have © = se = se® = (t — te)e = te — te = 0. Thus ReNT = {0} and so

R = Re® T, as required.

(i) Suppose that Re = B®C. Since e = €? € Re we have e = f+g, where f € B
and g € C. Furthermore, since f € Re we have f = f’e for some f' € R, and thus
[ =fle=f'e? = fe. Therefore f = fe= f(f+g)=f*+ fgandso f — f? = fqg.
Now f — f2€ B and fg € C (since C is a left ideal), and so f2 — f € BN C = {0}
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and thus f2 = f. We now show that B = Rf. Clearly Rf C B since B is a left
ideal. Now suppose that x € B. Since x € Re, we have x = ze = z(f + ¢) and
thus © — zf = xg. Once again this implies  —xf € BNC andso z = zf € Rf,
completing the proof.

(iii) We show that Re = Rf @ R(e —ef). First, since f € Re we have f = f’e for
some f' € R, and so fe = f'e* = f'e = f. Thus Rf +R(e—ef) = Rfe+R(e—ef)e C
Re. Furthermore, if re € Re, then re = r(ef + e —ef) = (re)f + e(e —ef) €
Rf + R(e —ef), and so Re = Rf + R(e — ef). To show the sum is direct, suppose
that © € Rf N R(e — ef). Since f and e — ef are idempotents, there exist r,s € R
such that x = rf = s(e —ef). Then rf = rf? = s(e —ef)f = s(ef —ef) =0, as
required. ]

For a given left R-module M and index set I, we often write
M= 1_[]\4Z and MWD .= @MZ
iel iel
where M; = M for each i € I. As noted above, if I is finite then we have M’ = M),

Furthermore, for any n € N we let M" denote the direct sum (or product) of n copies

of M.

Proposition 1.2.4. Let R be a ring and let I be an index set. For any family of
left R-modules {A; : i € I} and any left R-module B, we have a group isomorphism

Hom (@A,ﬂ?) = HHom(Ai, B)

icl iel

Proof. For each j € I we define 7; : @,.; A; — A; to be the natural projection map

(ai)ier + aj, and ¢; : Aj — @,.; A; to be the natural injection map a; — (b;)ier,

where b; = a; and b; = 0 for i # j. Let f € Hom(ED,.; Ai, B). Then, for all i € I

we have f¢; € Hom(A;, B). Define 7 : Hom(EP,.; Ai, B) — [[;c; Hom(A;, B) by
T(f) = (fdi)ier- It is easy to show that 7 is a group homomorphism.

Suppose that 7(f) = 0 for some f € Hom(P,.; Ai, B), so that f¢; = 0 for all

i € I. Then, given any (a;)icr € B,c; Ai, we have f((ai)ier) = [, i) =

> icr foi(a;) =0 and so f = 0. Thus 7 is a monomorphism. Now let g = (g;)ier €
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[I,c; Hom(A;, B), so that g; : A; — B is a homomorphism for each i € I. Define
f € Hom(D,c; Ai, B) by f((ai)ier) = >_;c1 9i(mj((ai)ier)). Now, for each j € I we
have f¢;(a;) = gj(a;) and so f¢; = g;. Thus 7(f) = g and so 7 is an epimorphism,
completing the proof. O

Let R be a ring. A left R-module P is said to be directly infinite if P is
isomorphic to a proper direct summand of itself. In other words, P is directly
infinite if there exists a nonzero R-module @) such that P = P & (). Thus, for any

n € N, we have
P2PeB~(P®B)®@B2PoB*~...2PoB"

Furthermore, an idempotent e in a ring R is said to be infinite if the right ideal eR
is directly infinite (as a right R-module). The ring R is said to be purely infinite
if every right ideal of R contains an infinite idempotent. In other words, R is purely
infinite if every right ideal of R contains a directly infinite right ideal of the form

eR, where e is an idempotent.

The following result from [AGP, Theorem 1.6] gives a useful way of determining

when a unital ring is purely infinite. We state it here without proof.

Theorem 1.2.5. Let R be a simple unital ring. Then R is purely infinite if and

only if the following conditions are satisfied:
(i) R is not a division ring, and

(ii) for every nonzero element x € R, there exist elements s,t € R such that

sxt = 1.

In Section 2.3 we will be examining purely infinite simple Leavitt path algebras.
As mentioned earlier, any Leavitt path algebra has local units but is not necessarily
unital, and so we will need to adapt Theorem 1.2.5 for the more general case in
which R has local units. This is not straightforward, however, and we will need to

use Morita equivalence (introduced in Section 1.3) to do so.

The following proposition gives a useful way of determining when an idempotent

is infinite.
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Proposition 1.2.6. Let R be a ring and let e € R be an idempotent. Then e is

infinite if and only if there is an idempotent f in R and elements x,y in R such that

e=uzy, f[f=yx, and fe=ef=FfH#e.

Proof. First suppose that e is infinite. Then eR = B @& C', where B, C' are nonzero
right ideals of R, and there is an R-isomorphism ¢ : eR — B. Since e € eR we
have e = f + g, where f € B,g € C' and f, g are nonzero. Following the proof of
Lemma 1.2.3 (ii) (but in the context of right ideals), we can conclude that f and g
are idempotents and that B = fR and C' = gR, giving eR = fR @& gR. Now, since
f € eR and e is an idempotent we have f = ef, as required. Similarly, g = eg and
sog=eg=(f+9)g=fg+g* Thusg—g?>= fge€ BNC = {0} and so fg = 0.
Therefore we have fe = f(f +g) = f*+ fg = [, as required. Furthermore, f # e
since g is nonzero.

Now, since ¢ : eR — fR is an isomorphism, there exists x € eR such that

¢(z) = f and there exists y € fR such that ¢(e) = y. Then

yr = ¢(e)r = dlex) = o(x) = [,

Furthermore, we have

d(zy) = o(x)y = fy =y = é(e)
and so, since ¢ is a monomorphism, we also have zy = e, as required.

Conversely suppose that there exist elements f,z,y € R such that f? = f,
xy=e,yr= f,and ef = fe = f # e. Let g = e — f, noting that g # 0 since e # f.
Then e = f+gand so eR C fR+gR. Moreover, fR+gR =efR+(e—ef)R C eR
and so we have eR = fR+ gR. In fact, this last sum is direct since, if fr; = gry for
some r1,79 € R, then fry = f?r; = fgro = (fe — f?)ro = 0. Thus eR = fR® gR.

We complete the proof by showing that there is an isomorphism ¢ : eR — fR.
Recall that eR = zyR and fR = yxR. Thus we can define an R-homomorphism ¢ :
eR — fR by setting ¢(zyr) = yayr for all r € R. If ¢(ayr) = 0 then yxyr = 0 and
so zyr = er = e*r = xyxyr = 0, showing that ¢ is a monomorphism. Furthermore,
given yar € fR we have ¢(zyxr) = yryzr = f*r = fr = yxr, showing that ¢ is an

epimorphism and thus completing the proof. ]
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Proposition 1.2.6 leads to the following useul corollary.

Corollary 1.2.7. Let R be a ring and let S be a subring of R. If R has no infinite

tdempotents then S has no infinite idempotents.

Proof. Suppose that R has no infinite idempotents but S has an infinite idempotent
e. Then, by Proposition 1.2.6, there exists an idempotent f € S and elements
x,y € S such that e = zy, f = yr and fe = ef = f # e. Since these elements
are also in R, Proposition 1.2.6 also gives that e is an infinite idempotent of R, a

contradiction. O]

Definition 1.2.8. Let R be a ring, let My, Ms, ..., M, be left R-modules and for
eacht=1,....n—11let f; : M; - M;,, be R-homomorphisms. We say that the

sequence
M, f1 M, P o fn L Jn—1 M,
is exact if ker(f;11) = Im(f;) foreach ¢ = 1,...,n— 1. Furthermore, a short exact

sequence is an exact sequence of the form

0 A B C 0.

Note that this implies that f is a monomorphism and g is an epimorphism.
We now define an important concept in module theory.

Definition 1.2.9. Let R be a ring. A left R-module P is said to be projective
if, for any R-epimorphism g : B — (', where B,C are left R-modules, and any
R-homomorphism f : P — (|, there exists an R-homomorphism h : P — B such

that the following diagram commutes:

That is, gh = f.

This definition leads to the following useful lemma.
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Lemma 1.2.10. Let A and P be left R-modules, where P is projective, and let
f:A— P be an R-homomorphism. If f is an epimorphism, then there exists a left

R-module P" for which A= P & P'.

Proof. If f is an epimorphism, then by the projective nature of P there exists an

R-homomorphism A : P — B such that the following diagram commutes:

Thus we have fh = 1p, the identity map on P. We begin by showing that A =
Im(h)@ker(f). Let z € A, and write = hf(z)+ (x —hf(z)). Now hf(z) € Im(h),
while f(z—hf(x)) = f(x)— fhf(z) =0 (since fh = 1p) and so x — hf(x) € ker(f).
Thus A = Im(h) + ker(f). To show this sum is direct, suppose that y € Im(h) N
ker(f). Then y = h(z) for some z € P. Furthermore, 0 = f(y) = f(h(z)) = 1p(2) =

z, and so y = h(z) = h(0) = 0. Thus A = Im(h) & ker(f), as required. Since fh
is a monomorphism, A must also be a monomorphism, and so P = Im(h). Letting

P’ = ker(f), we therefore have A = P @ P’, as required. ]
A concept closely related to projective modules is that of injective modules.

Definition 1.2.11. Let R be a ring. A left R-module @ is said to be injective
if, for any R-monomorphism g : A — B, where A, B are left R-modules, and any
R-homomorphism f : A — @, there exists an R-homomorphism h : B — () such

that the following diagram commutes:

That is, hg = f.

In the case that R is injective as a left module over itself, we say that R is left

self-injective. We will examine self-injective Leavitt path algebras in Section 4.4.
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Lemma 1.2.12. Any direct summand of an injective R-module is injective.
Proof. Suppose that Q = M & N is an injective R-module. Consider the following
diagram of R-modules and R-homomorphisms, where g is a monomorphism:

0—>=A—>RB

d

M

Let i : M — @ and 7 : Q — M be the standard inclusion and projection maps,
respectively. Now ¢ f is an R-homomorphism from A to ), and so by the injectivity

of @ there exists an R-homomorphism & such that the following diagram commutes:

0—=A—"+R
/
]‘f 3
Q

That is, if = hg. Define h: B — M by h = wh. Then hg = thg = 7if = 1y f = f,

and so M is injective. O

A similar proof shows that the direct product of injective R-modules is also
injective. Furthermore, we can use similar arguments to show that any direct sum-
mand of a projective R-module is projective, and that the direct sum of projective

R-modules is projective.

We conclude this section with a series of results that generalise well-known results
for R-modules, where R is unital, to the more general case that R has local units.

This first result is from [ARM2, Proposition 2.2].

Proposition 1.2.13. Let R be a ring with local units. Then for any idempotent
e € R, the left ideal Re is a projective module in the category R-Mod.

Proof. Since R has local units, it is easy to see that Re is unital and nondegenerate
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and is therefore in the category R-Mod. Now consider the diagram

Re

K

B——~C—=0

where B,C are in R-Mod and ¢ is an epimorphism. Since e = e? € Re, we can
define ¢ = f(e). Furthermore, since g is an epimorphism there exists b € B for
which g(b) = ¢. Now ec = ef(e) = f(e?) = f(e) = ¢, and so g(eb) = eg(b) = ec = c.
Define h : Re — B by h(xe) = xeb for all z € R. Since xe = 0 implies zeb = 0, h is
a well-defined R-homomorphism. Thus, for any = € R, gh(ze) = g(zeb) = xg(eb) =
xc=uxf(e) = f(ze), and so gh = f and Re is projective. O

Let R be a ring, let A be a right R-module, B a left R-module and let G be an
abelian group. A function f : A x B — G is called an R-bilinear map if, for all

a,a’ € A, b,b/ € B and r € R, we have
(i) fla+a',b)= f(a,b)+ f(a',b),
(ii) f(a,b4+¥) = f(a,b) + f(a,b), and

(iii) f(ar,b) = f(a,rb).

The tensor product of A and B over R is an abelian group A ®r B together
with a bilinear map ® : A x B — A ®g B that is universal; that is, for every
abelian group G and every bilinear map f : A x B — G, there exists a unique group

homomorphism f : A®p B — G for which the following diagram commutes:

Ax B @

A®p N

That is, f o ® = f. It can be shown that such an abelian group A ®z B will always
exist (see, for example, [O, Section 2.2]). The group A®r B is generated by elements
of the form a ®r b, where a € A, b € B and a @z b = ®@((a,b)).
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Furthermore, if C' is a right R-module, D a left R-module and f : A — C and
g : B — D are R-homomorphisms, we can define amap f®rg: AQr B — C®grD
by f®grg((a,b)) = f(a) ®g g(b) for all a € A, b € B. When it is clear we are taking
the tensor product over R we may write A®g B as simply A® B. We use the tensor

product to define the following important concept.
Definition 1.2.14. Let R be a ring. A module M € R-Mod is said to be flat if the
functor — ®r M is exact on the category R-Mod. That is, whenever

0—=ATtop P~y

is a short exact sequence in R-Mod, then

0— =AM @M B M oM ——0

is also a short exact sequence.

It can be shown for any M that this sequence is always exact on the right-hand
side, and so to show that M is flat it suffices to show that any monomorphism

f A — B gives rise to a monomorphism f® 1, : AQ M — B® M.

We now give several results concerning flat modules over rings with local units.

We begin with the following lemma from [ARM2, Lemma 2.9].

Lemma 1.2.15. Let R be a ring with local units. For any M € Mod-R, the map
pa MR — M given by pn (D i (m; @ 13)) = Y0, myr; is an isomorphism of
right R-modules.

Proof. First note that M ® R is indeed a right R-module, with module multiplication
given by (30, (m; @ r))r = >0 (m; @ (ryr)) for all Y°7  (m; @ ;) € M @ R and
all r € R. Since M € Mod-R, M is unital and so MR = M. Thus any m € M
can be written m = Z?:l m;r; for some m; € M and r; € R, and so s is an
epimorphism. Now suppose Y ., m;r; = 0. Since R has local units, there exists
an idempotent e € R such that r;e = r; for each ¢« = 1,...,n. Then we have
Do (mi @ri) =320 (my @ rie) = 350 (mirs @ e) = (301 mar) ®@e =0®e =0.

Thus s is a monomorphism, completing the proof. O]
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This lemma leads to the following corollary.
Corollary 1.2.16. Any ring R with local units is flat as a left R-module.

Proof. Let A,B € Mod-R and let f : A — B be a monomorphism. Then, by
Lemma 1.2.15, there exist isomorphisms p4 : AQ R — Aand ug: BQ R — B. Let
a ® r be a generating element of A ® R. Then

frala®@r) = flar) = f(a)r = pp(fla) @ 1) = ppo (f @ 1g)(a @)

and so fua = pp o (f ® 1g); that is, the following diagram commutes:

0 A ! B

o] [

A®RW>B®R

0

Since f, ua and pp are monomorphisms, so too is f ® 1g, and thus R is flat as a left

R-module. O

The following result regarding flat modules is from Rotman [Ro, Theorem 3.60].
Though Rotman’s original result is for unital rings, the proof is the same for rings

with local units and so we omit it.

Proposition 1.2.17. Let R be a ring with local units, F' a flat left R-module and
K a submodule of F. Then F/K is a flat left R-module if and only if KNIF = IK

for every finitely generated right ideal I of R.

Recall that, for a unital ring R, an R-module is said to be free if it has a basis;
that is, a linearly independent generating set. The following definition, given in

[ARM2, Definition 2.11], extends this notion to rings with local units.

Definition 1.2.18. Let R be a ring with local units and let F' be a left R-module.
Suppose there exists an index set I and sets B = {b; };c; C F and U = {u;}ic; C R,
where each u; is an idempotent and b; = u;b; for all © € I. We say F'is a U-free left
R-module with U-basis B if, for all x € F, there exists a unique family {r; };,c; C R
(with only finitely many r; nonzero) such that r; = r;u; for each ¢ € I and

el
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Note that, in particular, we have ' = @,_; Rb;.

If R is a unital ring with identity 1, then taking u; = 1 for each ¢ € I reduces the

definition of a U-free left R-module to the familiar definition of a free left R-module.

We can expand the following result from [Ro, Theorem 3.62] to the more general
case involving local units and U-free modules, applying Proposition 1.2.17 in place

of [Ro, Theorem 3.60]. Again, we will omit the proof.

Theorem 1.2.19. Let R be a ring with local units and let F' be a U-free left R-

module. Then, for any submodule S of F', the following statements are equivalent:
(i) F/S is a flat R-module.

(ii) For each element x € S, there exists a homomorphism f : F — S such that

f@) =.

(11i) For each finite set of elements {x1,...,x,} of S, there is a homomorphism

f:F — S such that f(x;) = x; for eachi=1,... n.

We conclude this section with the following proposition from [ARM2, Proposition
2.17], which generalises the well-known result for unital rings that any R-module is

the epimorphic image of a free R-module.

Proposition 1.2.20. If R is a ring with local units then every module M € R-Mod
1s the epimorphic image of a U-free left R-module.

Proof. Let M € R-Mod. By Lemma 1.2.1, for every m € M there exists an idem-
potent e,, € R such that m = e,,m. Since M is unital, for any x € M we have
T= ey TmM = > v Tmemm, where only finitely many r,, are nonzero. Let
¢ D,,err Rem — M be the map (rmem)mem — Y _ear 'mEm™m, wWhich, by the
above observation, is an epimorphism.

To show that €,,.,; Rem is U-free, let U = {emn}tmen and B = {by }men C
D, Rem, where each by, = (b;)icnr, with b; = ey, for i = m and b; = 0 otherwise.
Then b,, = e,b,, for all m € M. Furthermore, if we take an arbitrary x =

(Smem)mem € @,,cn Rem (where each s, € R and only finitely many s, are
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nonzero), then taking r,, = s,,e,, we have a unique family {r,, },nens C R such that

X = ey Tmbm and rye, = ry. Thus @, ), Ren, is a U-free left R-module. [

1.3 Morita Equivalence

In this section we examine the concept of ‘Morita Equivalence’, which was defined by
Japanese mathematician Kiichi Morita in 1958. It is a powerful concept: if we can
show that two rings are Morita equivalent, then these two rings will share various
‘Morita invariant’ ring-theoretic properties. We will appeal to Morita equivalence
at several points in this thesis; in particular, we will show in this section that the
property ‘purely infinite’ is Morita invariant (Theorem 1.3.17) and use this to expand

Theorem 1.2.5 to rings with local units (Theorem 1.3.19).

Morita equivalence is a fairly deep and complex field of theory. Here we give
enough background so that the basic concepts can be understood and we have
sufficient tools to apply these concepts to relevant areas; however, some results will
be stated without proof, as they require a large amount of background theory that
would take us far outside the bounds of this thesis. We begin by looking at category
theory.

Definition 1.3.1. A category C is made up of two sets: Obj(C), the set of objects
in C, and Mor(C), the set of morphisms between objects in C. If A, B € Obj(C),
we let Mor(A, B) denote the set of morphisms from A to B. Furthermore, if f €
Mor(A, B), we can denote this by the usual function notation f: A — B.

Moreover, there exists an operation o such that, for any A, B,C € Obj(C),
we have o : Mor(B,C) x Mor(A, B) — Mor(A,C). This operation is associative,
so that for all A,B,C,D € Obj(C) and all f € Mor(A, B), g € Mor(B,(C) and
h € Mor(C, D) we have ho (go f) = (hog) o f. Furthermore, for all A € Obj(C)
there exists a unique morphism 14 € Mor(A, A) for which foly = f and 1409 = g,
for all f € Mor(A, B), g € Mor(C, A) and B,C € Obj(C).
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In Section 1.2 we introduced the category R-Mod. In light of the above definition,
we can see that the objects of R-Mod are the unital, nondegenerate left R-modules,
the morphisms are R-homomorphisms between such modules, and the operation o

is function composition.

Definition 1.3.2. Let C and D be two categories. A covariant functor is a
map F from C to D, denoted F : C — D, that maps each object A € Obj(C) to
F(A) € Obj(D), and each morphism f : A — B to F(f) : F(A) — F(B), for all
A, B € Obj(C). Furthermore, this map must satisfy the following two conditions:

(i) for all A,B,C € Obj(C) and all f € Mor(A, B) and g € Mor(B,C') we have
Flgo f) = Flg) o F(f), and

(ii) for all A € Obj(C) we have F(14) = 17(a).

A contravariant functor G : C — D is defined similarly, except that G takes
each morphism f : A — B to G(f) : G(B) — G(A), and thus condition (i) is
modified to G(g o f) = G(f) 0 G(g), where f and g are defined as above.

We illustrate the concept of functors with the following example.

Example 1.3.3. Let R be a ring. Given A, B € R-Mod, let Hom(A, B) denote
the group of R-homomorphisms from A to B, as usual. Furthermore, let Ab denote
the category of abelian groups. Now let M be a fixed module in R-Mod. We
define the map F : Mod-R — Ab by setting F(A) = Hom(M, A) for all A € R-
Mod. Furthermore, for all A, B € R-Mod and all f € Hom(A, B), we define F(f) :
Hom(M, A) — Hom(M, B) by F(f)(h) = fh, for all h € Hom(M, A). Then F(f)
is a function from F(A) to F(B).

We show that F is a covariant functor. For all A, B,C € R-Mod, and all
f € Hom(A, B) and g € Hom(B,(C), we have F(gf)(h) = gfh = F(g)(fh) =
F(9)(F(f)(h)) for all h € Hom(M, A), and thus F(gf) = F(g) o F(f), satisfying
condition (i). Furthermore, F(14)(h) = h for all h € Hom(M, A), and so F(1,) is
the identity on the group Hom(M, A) = F(A), satisfying condition (ii). Thus F is

a covariant functor.
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We now move on to a concept that allows us to say when two functors are

‘equivalent’ in some way.

Definition 1.3.4. Let C and D be two categories, and let F and G be two covariant
functors from C to D. A natural transformation 7 from F to G (denoted n : F —
G) associates to each A € Obj(C) a morphism 74 : F(A) — G(A) in D, such that
for every f € Mor(A, B) (where B € Obj(C)) we have ng o F(f) = G(f) ona. In

other words,
F(f)

F(A) F(B)
9A) ——9B)

is a commutative diagram in the category D. (Note that if F and G are contravariant
functors then the horizontal arrows in the above diagram are reversed, so that F(f) :

F(B) — F(A) and G(f) : G(B) — G(A).)

Furthermore, if 774 is an isomorphism for all A € Obj(C), then 7 is said to be a
natural isomorphism or natural equivalence. In this case, we say that F and

G are naturally isomorphic and write 7 = G.
The concept of natural equivalence now allows us to define Morita equivalence.

Definition 1.3.5. Let R and S be rings. We say that the categories R-Mod and
S-Mod are equivalent if there exist functors F : R-Mod — S-Mod and G : S-Mod
— R-Mod such that

GoF = the identity functor on R-Mod, and
FoG = theidentity functor on S-Mod.

Furthermore, if R-Mod and S-Mod are equivalent then we say that R is Morita

equivalent to S.

A ring-theoretic property P is said to be Morita invariant if, whenever a ring
R has property P, so too does every ring S that is Morita equivalent to R. It can

be shown that a property P is Morita invariant if it can be characterised purely
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in terms of R-Mod, without referencing elements of the modules or elements of R

itself.

We now define a concept that allows us to give an alternative definition of Morita

equivalence.

Definition 1.3.6. Let R and S be two rings, let gk Ng and ¢Mpg be two bimodules
and let (—,—): N X M — Rand [—,—] : M x N — S be two maps. Furthermore,
suppose we have two maps ¢ : N ®s M — R and ¢ : M ®zr N — S given by

d(n®@m)=(n,m) and @(m®n)=[m,n]
for which the following associativity conditions hold:
dn@m)n’ =ne(men’) and pmn)m' =meo(n e m')

for all m,m’ € M and n,n’ € N.

A Morita context is a sextuple (R, S, M, N, ¢, ) satisfying the above condi-
tions. Furthermore, we say that this Morita context is surjective if both ¢ and ¢

are surjective. Note that in this case we have R = NM and S = M N.

A ring R is said to be idempotent if R? := {>_"  r;s; : r;,8; € R} = R. Note
that if R has local units, then for any r € R there exists an idempotent e € R such
that » = er € R?, and so any ring with local units is idempotent. This definition
allows us to give an equivalent condition for Morita equivalence, as we see in the
following theorem from Garcia and Simén [GS, Proposition 2.3], which we state

without proof.

Theorem 1.3.7. Let R and S be two idempotent rings. Then R and S are Morita
equivalent if and only if there exists a surjective Morita context (R, S, N, M, o, p).

We owe the following results to Anh and Marki, whose research examining Morita
equivalence for non-unital rings is invaluable, as we will require many of these results
to be valid for rings that do not necessarily have identity. The first proposition is

from [AM, Proposition 3.3].
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Proposition 1.3.8. Let R and S be two Morita equivalent rings with local units.
Then the lattice of ideals of R is isomorphic to the lattice of ideals of S; in particular,
R is simple if and only if S is simple.

This second proposition is from [AM, Proposition 3.5].

Proposition 1.3.9. Let R be a ring with local units. If there exists an idempotent

e € R for which R = ReR, then R is Morita equivalent to the subring eRe.

We now establish some definitions and results that are useful in the context of

Morita equivalence.

Definition 1.3.10. A left R-module P is said to be a generator for R-Mod if every
left R-module M is the epimorphic image of P for some index set I. Furthermore,

we say that P is a progenerator if P is a projective generator.

For any ring R, if we view R as a left R-module then R is a generator for R-
Mod. To see this, let M be a module in R-Mod. Since M = RM by the unital
property of R-Mod, for any m € M we have m = _, r,n for some 7, € R (where
only a finite number of 7, are nonzero). Let I = M and define ¢ : RYY) — M by
A((rm)mer) = 2 _mes Tmm. Then ¢ is an epimorphism and so R is a generator for

R-Mod.

Definition 1.3.11. Let R be a ring and let P be a right R-module. The trace of
P, denoted tr(P), is defined by

tr(P) = Z{x € R:z = g(p) for some p € R and some g € Hompg(P, R)}.

It can be shown that tr(P) is a two-sided ideal of R (see, for example, [L2, Propo-
sition 2.40]).

We now look at two results that allow us to determine when a right R-module P
is a generator for Mod-R. The following result has been established for unital rings
(see for example [L2, Theorem 18.8]). Here we extend it to rings with local units by

adapting part of the proof of [AA2, Proposition 10], (i) <= (ii).
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Proposition 1.3.12. Let R be a ring with local units and let P be a right R-module.
If tr(P) = R then P is a generator for Mod-R.

Proof. Let E = {e; : i € I} be a set of local units for R. If tr(P) = R, then for each
e; € E we can write e; = z:(li gi(py) for some p, € P and some g, € Homg(P, R). If
we define A, : R — ¢;R by A, (1) = e;r, then letting J; = {41,..., 454} we have that
Ae; © @teJi gi : PY) — R — ¢;R is an epimorphism. To see this, take an arbitrary

e;r € e;R. Then

eir = A (eir) = (A, (€1))r = (/\ei ( ZteJi gt(pt)))r = (Aei ° @te]i gt) (per)ee, »

and 50 A, © P, ; g¢ is indeed an epimorphism. Let J be the disjoint union of the
sets J; and define ¢ : PY) — R by Py = Ae, © @teJi g¢. Since any element r € R
is contained in e; R for some local unit e;, we have that ¢ is also an epimorphism.
Now take an arbitrary right R-module M. Since R is a generator for Mod-R, M
is the epimorphic image of R™ for some index set A. Thus M is the epimorphic

image of (P/))(") and so P is a generator for Mod-R. O

Proposition 1.3.12 leads to the following lemma, which has also been adapted

from the proof of [AA2, Proposition 10], (i) <= (ii).

Lemma 1.3.13. Let R be a ring with local units and let P be a nonzero, finitely
generated projective right R-module. If R is simple then P is a generator for Mod-R.

Proof. Let P be a nonzero, finitely generated projective right R-module. Since P
is finitely generated we can write P = > "  x;R, where each z; € P. Define a
homomorphism ¢ : R* — P by ¢((aq,...,a,)) = > 1, x;a;. Since ¢ is an epimor-
phism and P is projective, there must exist P’ € Mod-R for which R" = P& P’ (by
Lemma 1.2.10).

Thus P is isomorphic to a direct summand of R™ (since, if § : P & P’ — R"
is an isomorphism, then R" = 0(P) @ 6(P’)) and so Homg(P, R™") # 0. However,
since Homp (P, R") = (Hompg(P, R))"™ (by the right R-module analogue of Propo-
sition 1.2.4), we have (Homg(P, R))" # 0 and so Homg(P, R) # 0. Thus tr(P)
is nonzero and so, since tr(P) is a two-sided ideal of R and R is simple, we have

tr(P) = R. Thus, by Proposition 1.3.12, P is a generator for Mod-R. O
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The significance of generators in the context of Morita equivalence is illustrated
in the following two results, which we will state without proof. The first proposition
is from Anh and Mérki [AM, Theorem 2.5] and generalises a well-known result for
unital rings (see, for example, [L.2, Proposition 18.33]) to the more general case of
rings with local units. First, we need to define the concept of a locally projective

module.

Definition 1.3.14. A module P € Mod-R is said to be locally projective if there
exists a direct system (F;); of finitely generated projective summands of P for which
P =lim e B (See Appendix A for more information on direct limits.) Note that

if P is a finitely generated projective module, then P is locally projective (taking
(P;)r to be simply P).

Proposition 1.3.15. Let R and S be two rings with local units. Then R is Morita
equivalent to S if and only if there is a locally projective generator Pr = lim;e; B

in Mod-R for which S = lim ;e End(P).

In the case that Py is a progenerator in Mod-R, then Proposition 1.3.15 simplifies
to ‘R is Morita equivalent to S if and only if S = End(Pg)’. In particular, we have
that R is Morita equivalent to End(Pg).

This second proposition is from Lam [L2, Proposition 18.44]. While the result
is given in a unital context, the proof is valid for any ring. Here we state it without

proof.

Proposition 1.3.16. Let R be a ring and let Pr be a progenerator in Mod-R. Then
the lattice of right ideals in End(Pg) is isomorphic to the lattice of submodules of
Pg.

Note that if R and S are two Morita equivalent rings and Pg and Ps are pro-
generators for R and S, respectively, then combining Propositions 1.3.8, 1.3.15 and
1.3.16 (and viewing R, S, End(Pg) and End(Ps) as right modules over themselves)
we have that the lattices of submodules of R, S, End(Pg), End(Ps), Pr and Pgs are

all isomorphic.
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We now come to the main result of this section, the proof of which has been

expanded from [AA2, Proposition 10], (i) <= (ii).

Theorem 1.3.17. Let R and S be two Morita equivalent rings with local units.
Then R 1is purely infinite simple if and only iof S s purely infinite simple; that is,

the property ‘purely infinite simple’ is Morita invariant.

Proof. Suppose that R is purely infinite simple and let P be a nonzero, finitely-
generated projective right R-module. We know that P is a generator for Mod-R
by Lemma 1.3.13. Since R is purely infinite, it must contain an infinite idempotent
e such that the right ideal eR is directly infinite, so that there exists a nonzero

submodule B of R such that
eRE¥BoeRY.---2B"d®eR

for all m € N. Now, since B is a direct summand of eR and eR is a projective
right R-module (by the right R-module analogue of Proposition 1.2.13), B is also a
projective right R-module. Furthermore, B is unital and nondegenerate since eR is
unital and nondegenerate.

Since B C eR C R, we have Hompg(B, R) # 0 (since it contains the inclusion
map from B to R) and so tr(B) # 0. Thus, since R is simple, tr(B) = R and so B is
a generator for Mod-R (by Proposition 1.3.12). Since P is finitely generated, there
is an n € N for which there exists an epimorphism « : B — P. Therefore, since P
is projective, we have B" = P & C for some submodule C' of B" (by Lemma 1.2.10).
Thus, setting ) = C' ® eR, we have

eREZB"®eREZP®CdeR=P&dQ.

Let n: eR — P & (@ be the above isomorphism. Let D be a nonzero submodule
of P, so that D’ = n~!(D) is a nonzero submodule — and therefore a nonzero right
ideal — of eR. Since R is purely infinite, D’ contains an infinite idempotent f. Thus
T' = fR is a directly infinite submodule of eR and so, since f € eR, fR is a
direct summand of eR (by Lemma 1.2.3 (iii)). Thus, letting 7" = n(7”"), we have
T C D C P. Futhermore, since 7" = fR is a direct summand of eR, T" must be a
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direct summand of P & ) and therefore of P. Thus every submodule of P contains
a nonzero direct summand of P that is directly infinite.

Conversely, suppose that for every nonzero, finitely generated projective right R-
module P we have that every submodule of P contains a nonzero direct summand
of P that is directly infinite. We show that R must be purely infinite. Let I be a
nonzero right ideal of R and let 0 # x € I, so that xR C I. Since R has local units,
x = ex for some idempotent e € R, and thus xR is a right ideal of eR. Now eR
is a nonzero, finitely generated, projective (by Proposition 1.2.13) right R-module,
and so xR contains a nonzero direct summand 7" of eR that is directly infinite. By
Lemma 1.2.3 (ii) we have that 7' = fR, where f is an idempotent. Thus f is an
infinite idempotent, and f = f?> € fR C xR C I. We can conclude that every
nonzero right ideal of R contains an infinite idempotent and so R is purely infinite.

We already know that simplicity is a Morita invariant property (by Proposi-
tion 1.3.8). Furthermore, suppose that Ps is nonzero, finitely-generated projective
right S-module. Then Ps is a generator for Mod-S (by Lemma 1.3.13) and so the
lattice of submodules of P must be isomorphic to the lattice of submodules of Pg by
our observation on page 28. Thus every submodule of Pg contains a nonzero direct
summand of Pg that is directly infinite and so, as shown in the previous paragraph,
S is purely infinite. Thus ‘purely infinite’ is a Morita invariant property between

rings with local units, completing the proof. [
Theorem 1.3.17 leads to the following useful result.

Proposition 1.3.18. Let R be a ring with local units. Then R is purely infinite
simple if and only if the subring eRe is purely infinite simple for every nonzero

tdempotent e € R.

Proof. Suppose that R is purely infinite simple. Then, for every nonzero idempotent
e € R we have R = ReR (by the simplicity of R) and so, by Proposition 1.3.9, R
is Morita equivalent to eRe. Thus, since the property ‘purely infinite simple’ is
a Morita invariant of R (by Theorem 1.3.17), eRe must be purely infinite simple.

Conversely, if eRe is purely infinite simple for every nonzero idempotent e € R then
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R is simple, by Proposition 1.1.2. Thus, Proposition 1.3.9 again gives that R is

Morita equivalent to each nonzero ring eRe and so R is purely infinite simple. [

We are now finally in a position to adapt Theorem 1.2.5 to the more general case

in which R has local units. Note the subtle difference in condition (ii).

Theorem 1.3.19. Let R be a simple ring with local units. Then R is purely infinite

if and only if the following conditions are satisfied:
(1) R is not a division ring, and

(i1) for every pair of nonzero elements x,y € R, there exist elements s,t € R such

that sxt = y.

Proof. Suppose R is purely infinite. Then R contains an idempotent e such that
eR = A& B, where A 2 eR and B is nonzero. In particular, R contains a nonzero
proper right ideal, and so R cannot be a division ring. Now choose a pair of nonzero
elements z,y € R. Since R has local units, there exists an idempotent e such that
x,y € eRe. By Proposition 1.3.18, we know that eRe must be purely infinite simple.
Since e is the identity for eRe, by Theorem 1.2.5 there exist elements s',t' € eRe
such that s'zt’ = e. Thus, taking s = ¢ and t = t'y, we have szt = y for s,t € R,

proving condition (ii).

Now suppose that conditions (i) and (ii) hold. Let I be a nonzero ideal of R
and let z be a nonzero element of I. Then, by condition (ii), for any y € R there
exist a,b € R such that y = axb € I, and so R must be simple. Now let f be a
nonzero idempotent of R (such an element must exist since R has local units). Since
R is simple we have RfR = R, and so R is Morita equivalent to the subring fRf
by Proposition 1.3.9. Thus the lattice of ideals of R is isomorphic to the lattice of
ideals of fRf (by Proposition 1.3.8) and so it follows from condition (i) that fRf
is not a division ring.

Now take an element € fRf. Applying condition (ii), we can find s',t' € R
such that s'xt’ = f. Let s = fs'f and t = ft'f. Then, noting that © = fzf,
we have sxt = (fs'f)z(ft'f) = fs'(faf)t'f = f(sxt')f = f(f)f = f. Since f is
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the identity for fRf and s,t € fRf, Theorem 1.2.5 tells us that fRf is purely
infinite. Furthermore, since R is simple, R = RfR and so R and fRf are Morita
equivalent (by Proposition 1.3.9). Thus Theorem 1.3.17 gives that R is purely
infinite, completing the proof. O

The equivalence given in Theorem 1.3.19 will prove useful when we come to

determine precisely which Leavitt path algebras are purely infinite simple in Section

2.3.

1.4 Graph Theory

As we will see, Leavitt path algebras are K-algebras that are generated, in a way, by
directed graphs. In this section we will define a directed graph and introduce several
important graph-theoretic concepts that will be useful when examining Leavitt path

algebras.

Definition 1.4.1. A directed graph £ = (E° E',r, s) consists of two sets, E°
and E', and two maps 7,5 : B! — EY The elements of E° are called vertices
and the elements of E' edges. For any edge e in E', s(e) is the source of e and
r(e) is the range of e. If s(e¢) = v and r(e) = w, then we say that v emits e and
w receives e. Informally, we can think of e as having direction from v to w. If

r(e1) = s(eq) for some edges ey, e, € E', we say that e; and e, are adjacent.

Since we will be dealing exclusively with directed graphs in this thesis, we will
henceforth refer to them as simply ‘graphs’.
Example 1.4.2. Consider the graph E, where E° = {vg, vy, v9, v3}, E* = {e1, €9, €3}
and s(ey) = v, r(e1) = s(ezx) = s(es) = vy, r(e2) = vy and r(e3) = v3. We can

illustrate this with the following diagram:
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From Definition 1.4.1 it follows that, for any vertex v in E°, s7!(v) is the set of
all edges emitted by v, while r~1(v) is the set of all edges received by v. If v does
not emit any edges, so that s~'(v) = (), then v is called a sink. If v does not receive
any edges, it is called a source. Referring to the graph F in Example 1.4.2, we can

see that vg is a source, while vy, and vs are sinks.

If v is a vertex such that |s7!(v)| = oo then v is called an infinite emitter. If
v is either a sink or an infinite emitter, it is called a singular vertex. Otherwise,
v is called a regular vertex. In other words, a vertex v is regular precisely when

0<|s7i(v)| < oo.

A graph E is said to be finite if E° is a finite set. If E contains no infinite
emitters, then F is said to be row-finite. Furthermore, if all infinite emitters in a
graph E emit a countably infinite number of edges then we say that F is countable.

Note that a graph can be finite but not row-finite; for example, consider the graph

ot v
where (00) denotes an infinite number of edges from u to v (so that u is an infinite
emitter). Many texts assume that a given graph FE is row-finite, or even that F
contains no singular vertices at all. However, in this thesis we will not be making

any such assumptions unless stated otherwise.

A path p in a graph FE is a sequence of edges ejes . . . e, such that r(e;) = s(e;41)
foralle=1,2,...,n—1. A path consisting of n edges is said to have length n, and
we write [(p) = n. If a path p contains an infinite number of edges then we say that
p has infinite length. The source of p, denoted s(p), is the source of its initial
edge, s(ey), while (if p has finite length) the range of p, denoted r(p), is the range
of its final edge, r(e,). It is also convenient to think of every vertex v € E° as being

a path of length 0, with s(v) = v = r(v).

We denote the set of all paths in £ by E*. For a given path p=-¢;...¢, € E*,
we define p° to be the set of all vertices in p; that is, p® = {s(e1),r(e;) : i = 1,2,...}.
Furthermore, if ¢ = e;...¢e,, for some m < n then we say that ¢ is an initial

subpath of p.
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A path p is said to be a cycle if s(p) = r(p) and s(e;) # s(e;) for all i # j. In
other words, a cycle is a path that begins and ends on the same vertex and does not
pass through any vertex more than once. If ¢ is a cycle with s(¢) = r(¢) = v, then
we say that c is based at v. If a graph E does not contain any cycles, it is said to

be acyclic.

An edge e € E! is said to be an exit to the path p = e; .. .e, if there exists an
i € {1,...,n} such that s(e) = s(e;) but e # e;. Note that an exit to a path p does
not have to be external to the path itself. For example, if p contains two distinct

edges e;, e; such that s(e;) = s(e;), then both e; and e; are exits for p.

Example 1.4.3. Consider the following graph E:

o 1 0 g
u—— @ ® >.w
[ )

Then p = fejeag is a path in E* with s(p) = u, r(p) = w and I(p) = 4. If we let
q = fey, then ¢ is an initial subpath of p. Furthermore, ¢ = ejeze3ey is a cycle in F

based at v, and ¢ is an exit for c.

Definition 1.4.4. We define a relation > on E° by setting v > w if there is a path
p € E* such that s(p) = v and r(p) = w. (Note that, because we consider a single
vertex to be a path of length 0, it is possible that v = w.) In this case, we say that

v connects to w.

For a vertex v € E°, we define the tree of v, denoted T'(v), to be the set of all

vertices in E° to which v connects; that is
T(w)={we E’:v>w}

Note that we always have v € T'(v) since all vertices connect to themselves, by
definition. We can extend the definition of a tree to an arbitrary subset X of E°
by defining T'(X) = (J,cx T'(v). Since v € T'(v) for each v € X we therefore have
X CT(X).
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A vertex v € E? is said to be a bifurcation (or there is a bifurcation at v)
if v emits more than one edge; that is, |s7'(v)| > 1. Furthermore, a vertex u € E°
is said to be a line point if there are no bifurcations or cycles based at any vertex
w € T(u). Note that, by definition, any sink is a line point. We denote the set of
all line points in E° by P(FE).

Example 1.4.5. Consider the following graph E:

/ ol \
oVl o2 o3 oV4
.w

S

Then, for example, we have T'(v;) = E°, since there is a path from v; to every vertex
in £, while T'(w) = {w,vy,u}. The only bifurcation in E is ve. Furthermore, the

line points in E are u, w,vs and vy; that is, P(F) = {u, w, vs,v4}.

Definition 1.4.6. We denote by E*° the set of all paths of infinite length in F, and
we denote by E=* the set E> together with the set of all finite paths in F whose
end vertex is a sink. A vertex v is cofinal if, for every path p € <>, there exists
a vertex w in p such that v > w. Furthermore, we say that a graph E is cofinal if

all of its vertices are cofinal.

Now we define two concepts that will feature heavily in our study of Leavitt path

algebras.
Definition 1.4.7. Let H be a subset of £°. We say that
(i) H is hereditary if v € H implies T'(v) C H, and

(ii) H is saturated if {r(e) : s(e) = v} C H implies that v € H, for every regular

vertex v € E°.

In other words, a subset H is hereditary if, for each v € H, every vertex that

v connects to is also in H. Furthermore, a subset H is saturated if every regular
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vertex that feeds into H, and only into H, is also in H. In the study of Leavitt path
algebras we will be particularly interested in subsets of EY that are both hereditary
and saturated, which we call simply ‘hereditary saturated subsets’ of £Y. Note that
if a vertex v is a line point then any vertex w € T'(v) must be a line point, since
T(w) C T(v). Thus P(E) is a hereditary subset of E° — however, it is not necessarily

saturated.

Let X be an arbitrary subset of E°. The hereditary saturated closure of
X, denoted X, is the smallest hereditary saturated subset containing X; that is, for
any hereditary saturated subset H containing X, we have X C H.

Example 1.4.8. Consider again the graph E from Example 1.4.5:

u

w

AN
N

We can see that S = {v1, vy} forms a saturated (but not hereditary) subset of E°.
Furthermore, H = {u, w, v3,v,} forms a hereditary subset of E°. Indeed, this is the
set of line points of E, which is always hereditary, as noted above. However, H is
not saturated, since {r(e) : s(e) = vo} = {u,w,v3} C H but vy ¢ H. It is easy to
see that the hereditary saturated closure of H must contain v,, and therefore must
also contain vy. Thus H = E°.

Since u is the only sink in £, and F is finite, E=* is the set of all paths in E*
that end in u. Since every vertex in EY connects to u, every vertex is cofinal and

thus F is cofinal.

Lemma 1.4.9. Let E be a graph and let X be a subset of E°. Then the hereditary
saturated closure of X is the set |-, Gn(X), where

Go(X) =T(X), while for n > 1,

G (X)={ve E’: 0< |s'(v)| < oo and r(s7(v)) C Gp_1(X)} UG,_1(X).
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Proof. First, note that G,,(X) C G,(X) for each m < n. For ease of notation,
we set G(X) = U —, Gn(X). Now X C T(X) = Go(X) C G(X), and so G(X)
contains X. To show that G(X) is hereditary, suppose that v € G(X) and let
w € T(v). Furthermore, let p = e;...¢; be a path with s(p) = v and r(p) = w,
and let n be the minimum integer for which v € G,(X). If n = 0, then v € T(X)
and so w € T(X) C G(X) and we are done. If n # 0, then by definition we
have that 0 < |s7'(v)| < oo and r(s7*(v)) € G,_1(X). In particular, we have
r(e1) € Gn-1(X). Now let m be the minimum integer for which r(e;) € G, (X)
(noting that m < n —1). If m = 0, then again w € T(X) and we are done;
otherwise we have r(es) € G,,—1(X) by the same logic as above. Thus repeating
this argument either yields that w € T'(X) or r(e;) = w € G,(X) for some p < n.
In either case, w € G(X) and so G(X) is hereditary.

To show that G(X) is saturated, suppose we have a regular vertex v € E° such
that 7(s7(v)) € G(X). Let n be the minimum integer for which r(s7(v)) C G, (X).
Then by definition we have v € G,11(X) C G(X) and so G(X) is saturated.

Finally, suppose that H is any hereditary saturated subset containing X. Since
H is hereditary, it must contain 7'(X), so that T'(X) = Go(X) C H. Furthermore,
since H is saturated, H must contain the set S; = {v € E° : 0 < [s7}(v)| <
oo and r(s7'(v)) C T(X)}, and so G1(X) = S; UT(X) C H. Continuing this
argument, we see that G,,(X) C H for each non-negative integer n, and so G(X) =
U,—, Gn(X) € H. Therefore G(X) is the hereditary saturated closure of X, as
required. ]

We end with a proposition that incorporates several of the concepts we have
introduced in this section. This result generalises [APS, Lemma 2.8] from the row-

finite case to an arbitrary graph E.

Proposition 1.4.10. Let E be an arbitrary graph. The only hereditary saturated
subsets of E° are ) and E° if and only if the following conditions are satisfied:

(i) E is cofinal, and

(ii) for every singular vertex u € E°, we have v > u for all v € E°.
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Proof. Suppose that the only hereditary saturated subsets of E® are () and E°. Let
v € E° and p € E=*°. To show that F is cofinal, it suffices to show that we can
find a vertex w € p° for which w € T(v). Let X = {v}. Then X # 0, and so
X = E° = |22, Gu(X) (where each G,(X) is as defined in Lemma 1.4.9). Let
m € N be the minimum integer for which G,,(v) N p° # @ and let w € G,,(v) N p°.
If m > 0, then the minimality of m implies that w ¢ G,,_1(v), and so w is a regular
vertex and r(s7'(w)) € G,,_1(v). However, since w € p° and w is not a sink,
there must be some edge e in p for which s(e) = w. Thus r(e) € 7(s ' (w)) and so
r(e) € Gp_1(v) N p°, contradicting the minimality of m. Therefore m = 0 and so
w € Go(v) = T(v), as required. Now take a singular vertex u € E° and let v € E°.
Again, by our hypothesis there must exist a minimum integer m € N for which
u € Gn,(v). Suppose that m > 0. Since u is singular, we must have u € G,,—1(v)
(since only regular vertices are added with each iteration), a contradiction. Thus

m =0, and so u € T'(v). Thus v > u, as required.

Now suppose that conditions (i) and (ii) hold and that there exists a hereditary
saturated subset H of EY such that ) € H C E°. Choose a vertex v such that
v € E°\H. Now v cannot be a singular vertex, because condition (ii) would imply
that w > v for any w € H, and therefore that v € H by the hereditary nature of H.
In particular, v is not a sink and so s™*(v) # 0. Furthermore, r(s™'(v)) € H, for
otherwise we would have v € H by the saturated property of H. Thus there exists
an edge e; € s~!(v) for which r(e;) ¢ H. Again, r(e;) cannot be a singular vertex,
so we can repeat the above procedure to find an edge ey for which s(ep) = r(eq)
and r(ep) ¢ H, and so on. Thus we can form an infinite path p = ejes... with
p° N H = (. We know that p is infinite since each vertex in p° is not in H and
therefore cannot be a sink (by the argument used above). Thus p € E*°. However,
since E is cofinal, for any w € H there exists a vertex u € p° such that w > u, and
so u € H, a contradiction. Thus the only hereditary saturated subsets of E° are ()

and E°, as required. O



Chapter 2

Leavitt Path Algebras

2.1 Introduction to Leavitt Path Algebras

In this section we will define the central concept of this thesis, that of the Leavitt
path algebra. This concept ties together many aspects of graph theory and ring the-
ory, as we essentially construct a K-algebra from a given graph F by using its edges
and vertices as generating elements, along with a new set of edges known as ‘ghost
edges’. As we shall see, there are many (often surprising) analogues between graph-
theoretic properties of E and ring-theoretic properties of the associated Leavitt path
algebra, L (FE). Furthermore, many well-known algebras, such as the matrix rings
M., (K) and the Leavitt algebras L(1,n), are isomorphic to the Leavitt path algebra
of some graph E. Thus a graph can often provide a simple visual representation of

some of the more abstract properties of a particular ring.

We begin by defining the slightly simpler notion of a path algebra.

Definition 2.1.1. Let K be a field and E be an arbitrary graph. The path K-
algebra over FE, denoted A(E), is defined to be the K-algebra generated by the
sets £% and E', i.e. K[E°U E'], subject to the following relations:

(A1) vv; = ;5 v; for all v;,v; € E°; and

(A2) s(e)e =e=er(e) for all e € E'.

39



CHAPTER 2. LEAVITT PATH ALGEBRAS 40

As we will see, the relations (A1) and (A2) defined on A(FE) essentially preserve
the path structure of the associated graph E, hence the name ‘path algebra’. In
order to extend this concept to a Leavitt path algebra, we need to introduce the

following concept.

Definition 2.1.2. For an arbitrary graph FE, the extended graph of FE is the
graph E = (E°, E* U (E)*,7’, '), where (E')* = {¢ : ¢; € E'} and the functions
r" and s" are defined by

r'(e*) =s(e), s'(e)=r(e) and 1'(e) =r(e), $'(e)=s(e)

for all e € E'. For ease of notation, we usually denote the functions r’ and s’ as

simply r and s.

Essentially, the extended graph introduces a new set of edges (E')*, which is a
copy of E' but with the direction of each edge reversed; that is, if e € E' runs from
u to v, then e* € (EY)* runs from v to u. To distinguish between the two sets of
edges, we refer to E' as the set of real edges and (E!)* as the set of ghost edges.
A path made up of only real edges is called a real path, while a path made up of
only ghost edges is called a ghost path. For a real path p = e;...e¢,, we denote
the ghost path e ...eJ by p*. When we refer to a ‘path’ in a graph E it is assumed
that we are talking about a real path, unless stated otherwise. In particular, the

notation E* continues to refer to the set of real paths in FE.

We are now able to define a Leavitt path algebra.

Definition 2.1.3. Let K be a field and let E be an arbitrary graph. The Leavitt
path algebra of F with coefficients in K, denoted Lk (FE), is defined to be the
K-algebra generated by the sets £, E* and (E')*, i.e. K[E°UE'U (E")*], subject

to the following relations:
(Al) ViV; = 5ij (5 for all Vi, Vg € EO,
(A2) s(e)e =e =er(e) and r(e)e* = e* = e*s(e) for all e € E';

(CK1) efe; = d;;7(e ) for all e;,e; € EY; and
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(CK2) v =3/ cpiy(e)=v) €€ for every regular vertex v € E°.

In other words, the Leavitt path algebra of a graph E is the path K-algebra over
the extended graph E, subject to the relations (CK1) and (CK2), which are known
as the Cuntz-Krieger relations. Note that, by the (A1) relation, each v € E is
an idempotent in Ly (F) and the elements of E° are mutually orthogonal in L (E).

Thus the vertices of E form a set of orthogonal idempotents in Lg(E).

We now give several examples of Leavitt path algebras. From this point we will

always use K to denote an arbitrary field.

Example 2.1.4. The simplest possible example is the graph I; consisting of a single
vertex v and no edges:

.'U

In this case we have simply Lg([;) = Kwv, which is isomorphic to the ring K.

Similarly, if we add an extra vertex w to obtain the graph I; x I:

then we have Lg (I, x I;) = Kv® Kw = K% (Note that Kv+ Kw = Kv ® Kw

since v and w are mutually orthogonal.)

Things get more interesting if we add an edge e between v and w to form the
graph Ms:

e

v w
e —> e

In this case Lg(M,) is generated by the elements v, w,e,e*, subject to the four
Leavitt path algebra relations. We show that Lx(M;) = My(K) by defining the
map ¢ : Li(Ms) — My(K) on the generators of Ly (M,) as follows:

qb(’U) = EH, gb(w) = EQQ, ¢(6) = E12 and ¢(6*) = E21,

where E;; is the matrix unit with 1 in the (7, j) position and zeros elsewhere. We
extend ¢ linearly and multiplicatively. Since any element in My(K) is a K-linear
combination of the four matrix units listed above, ¢ is clearly an epimorphism.

Furthermore, it is easy to see that ¢ is a monomorphism since these matrix units
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are linearly independent. However, we also need to check that ¢ is well-defined:
specifically, that ¢ preserves the Leavitt path algebra relations on Lg(Ms). This
is often the most important step when defining a homomophism from a Leavitt
path algebra to another ring, and often the most time-consuming. In this case,
checking that ¢ preserves the relations is fairly straightforward since there are only
a small number of generating elements; in larger graphs, this process can become

quite messy and drawn-out.

Using the general matrix unit property that E;;Ey = d;, Ey, it is easy to see
that ¢ preserves the (A1), (A2) and (CK1) relations. For example, to check that
the equality e = er(e) is preserved by ¢ we must check that ¢(e) = ¢(er(e)) for all

e € E', which in this case reduces to showing
Plew) = EnEy = Ep = ¢(e),

as required. To check that the (CK2) relation is preserved, recall that the relation
is only defined at regular vertices. Thus we only need to check that the equality

v = ee* is preserved by ¢, which is easily seen since

p(v) = By = E1nEy = ¢(e)p(e”) = ¢(ee”).
Thus ¢ is an isomorphism and so Ly (M) = My(K), as claimed.!

Example 2.1.5. We can generalise the above example by defining the finite line

graph with n vertices, denoted M,,, to be the graph

el e €n—1
0Vl — > @V2 — > @U3 ... @Un—1 — > gUn

We show that Lx(M,) = M, (K). Similar to the case n = 2, we define ¢ on the
generators of Ly (M,) by

o(vi) = By, o(e;) = FEiiy1), and P(ej) = Eiv1yi

'In this example, we can also show that ¢ is an isomorphism by showing that the generators

v, w, e,e* form a basis for L (M), in which case there is no need to check that ¢ preserves the
Leavitt path algebra relations on Lg (Ms). However, we have chosen to use the latter method in

order to emphasise the importance of this step.
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foralli =1,...n. Asin Example 2.1.4, it is straightforward to show that the Leavitt
path algebra relations are preserved by ¢. Furthermore, for any matrix unit E;; €
M, (K) with i < j we have E;; = Ejipn)Euiyite) --- Ej-1); = ¢(€i€iz1...€j-1).
Similarly, if i > j then Ej; = ¢(ej_;...ej,,ej). Since any element in M, (K) is a
K-linear combination of such matrix units, ¢ is an epimorphism. Again, it is easy

[

to see that ¢ is a monomorphism, and so Lx(M,) = M,,(K), as claimed.

Example 2.1.6. We define the single loop graph, denoted R;, to be the graph

EC.U

Consider K[z, z~!], the ring of Laurent polynomials with coefficients in K. By
defining the map ¢ : Lig(R;) — K|z, 27! by ¢(v) = 1, ¢(e) = = and ¢(e*) = 271,
it is straightforward to see that ¢ preserves the Leavitt path algebra relations and

that Lx(Ry) & Kz, z™1.

We can extend the single loop graph to the rose with n leaves graph, denoted

R,:

e3
(D) B

For each n € N, we have that Lg(R,) is isomorphic to the Leavitt algebra L(1,n),
which is the unital K-algebra generated by elements {z;,y; : i = 1,...,n} and

subject to the following relations:

(1) zy; = 0; for alli,j € {1,...,n}; and

(i) Doy yiws = 1.

If we define ¢ : Lg(R,) — L(1,n) by ¢(v) = 1, ¢(e;) = y; and ¢(ef) = z;, we
can see that relations (i) and (ii) above correspond directly to the Leavitt path
algebra relations (CK1) and (CK2) on Lg(R,). Furthermore, since v* = v and
ve; = ¢; = e;v (and vel = e; = efv) for all i = 1,...,n, the relations (Al) and
(A2) correspond directly to the unital properties of 1. From here the isomorphism
is clear. Note that in the case n = 1 we have K[z, z™!] 2 L(1,1), which is consistent

with the single loop example above.
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So far we have only looked at examples of Leavitt path algebras of row-finite
graphs. The following graph contains an infinite emitter, which makes the situation

slightly more complex.
Example 2.1.7. We define the infinite clock graph, denoted C, to be the graph

oVl o2

i

ol — > U3

v oVt

where u emits a countably infinite number of edges. We show that Lx(Cy) =
P2, My (K) & K Iy, where @;°, My(K) is the direct sum of a countably infinite
number of copies of My (K) and Iy, = [[;2, Eg. If we let e; be the edge from u to
v;, then we can define a map ¢ : Ly (Co) — @io Ma(K) & KI5, on the generators
of L (Cy) as follows:

gb(u) = I, ¢(U1) = (Ell)i7 ¢(€i) = <E21)z’7 and <Z5(€Z<) = (E12)1;7

where (A); denotes the element of @~ My(K) with A € My(K) in the i compo-

nent and zeros elsewhere.

Note that the map here is similar to the mapping from Ly (M;) — My(K) in
Example 2.1.4. Indeed, it is as if we have an infinite number of copies of the graph
M, emanating from a single central vertex u. Thus, in a similar fashion to that
example it is easy to see that the Leavitt path algebra relations are preserved by ¢.

As an example, we check that ¢(ue;) = ¢(e;) for an arbitrary edge e;:

¢(U€z’) = ¢(U)¢(€z) = [22(E21>i = <E22)i(E21>i = <E21)i = ¢(€i);

as required. Note that we do not need to check the (CK2) relation as there are no

regular vertices in C,. Finally, it is clear that ¢ is an isomorphism, as required.

From the four defining Leavitt path algebra relations we can deduce the product

of two arbitrary generating elements in Ly (FE). For example, by applying relations
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(A1) and (A2), we can deduce the product of two arbitrary edges e;,e; € E':
eie; = e;7(€i)s(€j)ej = Or(e;)s(c;) €iC;-

Furthermore, for e}, e € (E')* we have:

e;je; = ejs(ei)r(ej)e; = Os(es)r(e;) €€

iz
Thus the product of two edges e; and ¢; is nonzero if and only if ¢; and e; are adjacent
in the graph E. Extending this to an arbitrary number of edges e, es,...¢, € E!,
we can see that the product ejes ... e, is nonzero if and only if eje, ... e, is a path
in F (and similarly the product e} ...ele] is nonzero if and only if ef ... e5e} is a

ghost path in F).

The relations (A1) and (A2) give similar results when multiplying an arbitrary

vertex v € E° with an arbitrary edge e € E':
ve =0y ge) e and  ev = 0, () €.

And similarly, for an arbitrary e* € (E;)* we have:

* *

ve' =0y’ and  e"v = Gy ) €

Thus the product of a vertex by an edge is nonzero only when the vertex is the
source of that edge, and the product of an edge by a vertex is nonzero only when
the vertex is the range of that edge. Essentially the relations (A1) and (A2) can
be seen as preserving the path structure of the graph E, as mentioned earlier. The
following lemma from [AA1l, Lemma 1.5] solidifies this concept. The proof here

follows the same argument as the proof of [Rae, Corollary 1.15].

Lemma 2.1.8. Let E be an arbitrary graph. Every monomial in Ly (E) is of the
form kpq*, where k € K andp,q € E*. Specifically, every monomial can be expressed

in one of two forms:
(i) kv;, where k € K and v; € E°, or

er, where k € K,e;,...,e; ,€j,...,e; € E' and m,n >0,

(ii) ke, ...ei,€; ...€f,

m+n>1,
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so that p and q are either paths of length 0 at the verter v;, orp = e€; ...€;, ,q =

ej, - -.¢€j, and at least one of p and q has length greater than 0.

Proof. We proceed by induction on the length of the monomial kx; ...x;, where
each z; € E° U E' U (E')*. For t = 1, it is clear that the monomial is either of type
(i) or (ii) above. Now assume it is true that every monomial of length ¢ > 1 can
be written as a monomial of type (i) or (ii) and let 8 = ky; ... yy;11, where each
yi € E°UFEYU(EY)* and k € K. Set a = kyy ...y, giving 3 = ay;11. By our

induction hypothesis on «, we have two cases:

Case 1: a = kv; for some v; € E°. If y;11 = v; then 3 = kd;;v; is of type (i). If
Y1 = €;, where e; € E', then 3 = kv;s(e;)e; = k v, s(e;) € is of type (ii). Similarly,
if yr11 = €} then 8 is again of type (ii).

Case 2: a =ke;, ...e; €F . with m,n >0, m+n > 1 and each ¢;,¢; € E'.

Jn J1’
We break this case into several subcases:
. — s , 0 * . — ef I VY-
Case 2.1: yi11 = vy, for some v; € E” and n > 0. Then e} v; = €] s(ej)v; =
vis(es,) €5 and 80 B =Kk dy; s(c; ) €y - - - €3 €5, ... €], 1s of type (ii).

Case 2.2: y;41 = v; for some v; € E® and n = 0. Then we must have m > 0 and

S0 3 = K0y, r(e,, ) €iy - - - €3y, 15 again of type (ii).

Case 2.3: y;41 = e; for some e; € E' and n > 0. By the (CK1) relation we have
¢j,e; = 0,5 7(¢;)-

If n > 1, we have 3 = kdj, ; 0s(c, )T(ej) Ciy -+ Cip €)oo

e;,, which is of type (ii).

If n =1and m > 0, we have 8 = k0, j Or(e,, ) .r(e;) €is - - - €iy» Which is again of
type (ii).

Finally, if n =1 and m = 0, we have 3 = k§;, ; 7(e;), which is of type (i).

Case 2.4: ;41 = e; for some e; € E' and n = 0. Then we must have m > 0 and
so B =e; ...e,e;is of type (ii).

Case 2.5: y41 = €] for some e; € E' and n > 0. Then we have that 3 =

kds(e; )r(e;) €iy - - - € €5, - - €5,€] is Of type (ii).
Case 2.6: y;41 = € for some e; € E''and n = 0. Then m > 0 and so 3 =

k(s’r‘(eim)’r(ej) eil . ezm j 1S agaln Of type (11) D
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In light of Lemma 2.1.8, we can now describe an arbitrary element of Lk (FE).
Since any element in L (F) is a K-linear combination of monomials in Lk (FE), an

arbitrary element o € Li(F) is of the form

n
i=1

where each k; € K and each p;,¢; € E*. In other words, Lx(F) is spanned as a
K-vector space by the set {p¢* : p,q € E*}. Note that a monomial pg* is only

nonzero if r(p) = r(q).

Lemma 2.1.9. Let E be an arbitrary graph. Then
Li(E) = @ Lx(E)w
veEO
Proof. Let x € Lg(F). By Lemma 2.1.8, x = kyp1¢] + - - + knpnq;, where each
ki € K and each p;,q; € E*. Thus x = kipigivr + - - - + knpn@yvn € Y cpo Lx(E)v,
where each v; = s(¢;), and so Lg(E) = Y cpo L (E)v.
To show this sum is direct, suppose we have y € L (E)v N Y2, cpo sy L (E)w

for some v € E° Then y = av = 37 o sy Guw for some a,a, € Li(E) (with

only a finite number of a,, nonzero) and so av = (av)v = (3_,c o oz W)V = 0,
since the vertices of E form a set of mutually orthogonal idempotents in Ly (E) (by
the (A1) relation). Thus Lg(E) = @, cpo Lr(E)v, as required. O

From Lemma 2.1.8 we know that every monomial in Lk (FE) is of the form kpg*,
where p and ¢ are paths in £. But what happens when we form the product p*q?

The following lemma gives a useful result concerning such products.
Lemma 2.1.10. Let E be an arbitrary graph and let p and q be two paths in E.
(i) If p and g have the same length, then in Lk (E) we have p*q = d,,7(p).

(i1) If p and q have different lengths, then in Lk (E) we have

*

py if q is an initial subpath of p with p = qps

P q=19 q ifpisan initial subpath of ¢ with ¢ = pgo

0 otherwise
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Proof. (i) Let p = ¢;, ...¢;,
(CK1) relation we have that e} e, = o, .; r(€;,) for each k € {1,...,n}. Also note

and ¢ = ej, ...ej,, where each ¢, ,e; € E'. By the

that r(e;,) = s(ei,,,) and so the (A2) relation gives 7(e;, ) Thus we

Cirt1 — Cigyr-

have
%

p*q .. el

n ° Zlejl et ejn

* *
ei17ej1)ein €€y,

*
( €i15€51 * " " 56%,1,63'”,1 )einejn

= (561'1 €5q C 561'”,1,6,7”,1661'”76]‘")r(ejn)

Thus, if e;, # e;, for any k € {1,...,n}, so that p # ¢, then the above equation
gives p*q = 0. Otherwise, if p = ¢ we have p*q = r(e;,) = r(p), as required.

(i) If ¢ is an initial subpath of p with p = gps, then applying (i) gives p*q =
(qp2)*q = p5q*q = pir(q) = pb, since r(q) = s(p2). Similarly, if p is an initial
subpath of ¢ with ¢ = pqo, then p*q = p*p g2 = ¢o.

Now suppose that ¢ is not an initial subpath of p and vice versa. Suppose that

l(p) > l(q) and write p = p; pa, where [(py) = I(q). Since p; # q, applying (i) gives
pq=pisp;q=0.If I(q) > I(p), a similar argument completes the proof. O

Recall the definition of a Z-graded ring from Section 1.1. If we equate degree in
L (F) with path length in E, it is natural to think of edges as elements of degree 1,
ghost edges as elements of degree —1 and vertices as elements of zero degree. As it
turns out, this intuitive grading does indeed fulfil the requirements for a Z-grading

on Li(FE), as the following lemma from [AA1, Lemma 1.7] shows.

Lemma 2.1.11. Let E be an arbitrary graph. Then Ly (FE) is a Z-graded algebra,
with grading induced by:

deg(v) =0 for allv € E° deg(e) =1 and deg(e*) = —1 for all e € E*.
That is, Lg(E) = @,,cy Lk (E)n, where for each n € N we define
Li(E), = {Zz kipig; = U(pi) — Uqi) = n},

with each k; € K and each p;,q; € E*.
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Proof. From Lemma 2.1.8, it is clear that Lx(E) = €D, ., Lk (E),.

nez

Now we want to show that Lx(E),Lix(E), C Lg(E)msn for each m,n € Z.
Consider nonzero monomials © = p1¢j € Lx(E),, and y = psq5 € Lg(E),, where
P1,G1, P2, G2 € E*. Note that we have I(p1) — l(q1) = m and l(py) — l(q2) = n.
If vy = p1¢ip2q5 = 0 then we are done, so suppose that zy # 0. According to

Lemma 2.1.10, we have three cases.

Case 1: 1(q1) = l(p2). Then ¢fps = r(p2) and so xy = p1g;. Since [(p1) — I(q2) =
(m+1(q1)) — (I(p2) —n) = m + n, we have that xy € Lg(E)pin-

Case 2: I(q1) > l(p2). Then q; = paq for some subpath ¢ of ¢;, and so zy = p1¢*¢;.
Since I(p1) — (q2q) = U(p1) — (Hg2) +1(q)) = 1(p1) — (lg2) + Uqr) — Up2)) = (I(p1) —
I(q1)) + (I(p2) — l(g2)) = m + n, we again have that 2y € Ly (E)1n.

Case 3: I(p2) > l(q1). Then a similar argument to Case 2 gives 2y € Lx(E)min-

Finally, if 2 = 37 p1,¢i, € Lr(E)m and y = 377 p2,¢5, € Li(E)y, then
from the argument above it is clear that xy € Lk (E)pmin. Thus Lg(E),, Lk (E), C
Lk (E)pmin, as required. O

We define the degree of an element x € Li(F) to be the lowest number n for
whichx € @, ., Lx(E)n. Recall from Definition 1.1.3 that an element of Lx (E), is

said to be homogeneous of degree n, and so | J,,.;, Lk (E), is the set of homogeneous

m<n

elements in Ly (FE).

Furthermore, if x is an arbitrary element of Ly (FE) and d € Z*, we say that x
is representable as an element of degree d in real (or ghost) edges if = can
be written as a sum of monomials from the spanning set {pg* : p,q € E*} in such a

way that d is the maximum length of a path p (or ¢) appearing in such monomials.

Note that an element x € Li(FE) can be representable as an element of different
degrees in real edges. For example, the element z = v (where v € E° is a regular
vertex) has degree 0 in real edges, but the (CK2) relation allows us to write x =

Zs(e):v ee*, which has degree 1 in real edges.

Finally, it is natural to ask under what conditions Ly (FE) is unital and, more

generally, under what conditions Ly (E) has local units. We close this section with
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the following relevant lemma from [AA1, Lemma 1.6].
Lemma 2.1.12. Let E be a graph.
(i) If E° is finite, then Y, _po v is an identity for Ly (E).
(ii) If E° is infinite, then E° generates a set of local units for L (E).

Proof. (i) Suppose EY is finite and consider an arbitrary monomial kpq* € L (F),
where p,q € E* and k € K. Let a =} _povi- Then

a(kpq) = ( > vi) kpq* = k( > 5%,3@)8(19))2%1* = ks(p)pg* = kpq".

UiEEO ”LJZ'EEO

Similarly, we can show that (kpg*)a = kpg*. Since any element in Lg(FE) is a sum
of such monomials, we must have that ax = © = za for all € Lg(FE). Thus « is
an identity for Ly (FE).

(ii) Suppose E° is infinite. Consider a finite subset X = {a;}!_, of Lx(E). We
can write each a; as a; = ng kiph(q})*, where each pf, ¢i € E* and kj € K. Now
define .

V= J{s)).s(q) 15 =1,...,s()}
i=1
and let # =) ., v. Then, using the same arguments as in (i), it is easy to see that

Ba; = a; = a;3 for each a; € X. Since (3 is a finite sum and an idempotent, it is a

local unit for X. Thus E° generates a set of local units for Lx(F). O

Lemma 2.1.12 tells us that, regardless of whether EY is finite or infinite, Ly (F)
will always have local units. This property will prove extremely useful when proving

future results.

2.2 Results and Properties

In the previous section we defined a Leavitt path algebra for an arbitrary graph

FE and examined its basic structure. Now we continue to examine in detail some
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important properties of Lx(FE), including the extremely powerful result shown in
Proposition 2.2.11. We begin by looking at the ideals of Lx(F). This first lemma
is from [AA1, Lemma 3.9].

Lemma 2.2.1. Let E be an arbitrary graph and let J be an ideal of Lx(E). The
set of all vertices contained in J, i.e. JNE°, forms a hereditary saturated subset of

E°.

Proof. Let H = JN E® and let v € H and w € T(v). Then there exists a path
p € E* with s(p) = v and r(p) = w. By Lemma 2.1.10, we have w = p*p = p*vp € J
and so H is hereditary.

Now suppose that w is a regular vertex in E° such that for all e € E' with

s(e) = w we have r(e) € H. Then the (CK2) relation gives
w = Z ee’ = Z er(e)e” € J,
s(e)=w s(e)=w

and so H is saturated. O]

If G is a subset of E°, then we denote by I(G) the two-sided ideal in Ly (FE)
generated by the elements of G. This definition gives us the following simple yet

useful lemma from [APS, Lemma 2.1].

Lemma 2.2.2. Let E be an arbitrary graph and let G be a subset of E°. Then
I(G) = I(G), where G is the hereditary saturated closure of G.

Proof. Let H = I(G) N E°. By Lemma 2.2.1 we know that H is a hereditary
saturated subset of E° containing G. By definition, G is the smallest such set, so
G C G C H and, by extension, I(G) C I(G) C I(H). However, since H C I(G) we

have I(H) C I(G) and so I(G) = I(G) = I(H), as required. O

The fact that any Leavitt path algebra has local units leads to the following

useful lemma.

Lemma 2.2.3. Let E be an arbitrary graph and let I be an ideal of Lx(FE). Then
INE®=E°if and only if I = Li(F).
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Proof. Suppose I N E° = E° and take an arbitrary element x € Lg(FE). Since
E° generates a set of local units for L (FE), there must be an e € I such that
ex = x = we. Since [ is an ideal we must have = € I, and so [ = Lg(F). The

converse is obvious. O]

Since Lk (E) has local units for any graph E, we can apply many of the results in
Section 1.2 to the category Ly (E)-Mod. We give a few examples of such applications

here.

Lemma 2.2.4. Let E be an arbitrary graph. The Leavitt path algebra Lk (E) is a
projective module in the category Ly (FE)-Mod.

Proof. By Lemma 2.1.9 we have Lg(E) = @, o Lx(E)v. Since each v € EY is an
idempotent and Ly (E) has local units, we can apply Proposition 1.2.13 to obtain
that each summand Lk (E)v is projective in Ly (E)-Mod. Thus, since the direct

sum of projective modules is also projective, Li(E) is projective. O

Lemma 2.2.4 tells us that every Leavitt path algebra is projective as a left module
over itself (and we can show similarly that every Leavitt path algebra is projective
as a right module over itself). However, the same is not true for injectivity; that is,
not all Leavitt path algebras are left or right self-injective. In Section 4.4 we will

examine self-injective Leavitt path algebras in detail.

For an arbitrary graph E, Corollary 1.2.16 tells us that Lx(FE) is flat as a left
Lg(E)-module. Furthermore, since Lk (E) = @, po Lk (E)v, then taking B = E"
and U = E° in the definition of U-free module we can see that every Leavitt path

algebra L (FE) is an E°-free left Ly (F)-module with basis E°.

Now we briefly return to graph theory to define the concept of a closed path.

Definition 2.2.5. A path p =e;...e, with s(p) = v = r(p) is said to be a closed
path based at v. Furthermore, if we have that s(e;) # v for all i > 1 we say that p
is a closed simple path based at v. We denote the set of all closed paths based
at v by CP(v), and the set of all closed simple paths based at v by CSP(v).
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Note that any cycle is a closed simple path based at any of its vertices. However,
a closed simple path based at v may not be a cycle as it may visit any of its vertices
(other than v) more than once. Similarly, a closed path based at v may not be simple

as it may visit v more than once. We illustrate this with the following example.

Example 2.2.6. Consider the following graph:

Now, ejes and eseg are both cycles based at v. Furthermore, the path p = eseqeseq €
CSP(v) but is not a cycle, as p passes through w twice. Finally, the path ¢ =

eregeseseseq € CP(v) but is not a closed simple path, as ¢ passes through v twice.

We now use Lemma 2.1.10 to prove the following useful result from [AA1, Lemma

2.3] regarding closed paths.

Lemma 2.2.7. Fvery closed path (of length greater than zero) can be decomposed
into a unique series of closed simple paths (of length greater than zero); that is, for
every p € CP(v), there exist unique cy,...,c, € CSP(v) (with l(¢;) > 0 for each
ie{l,...,m}) such thatp=rcy...Cp.

Proof. Let p = e;...e, and let e;,,..., e, be the edges in p for which r(e;,) = v,
where t; < -+ <t = n. Let ¢ = e1...¢e; and ¢; = e, 41...¢; for each
1 <j<m. Thus p=c...cy, where each ¢; € CSP(v) and I(c;) > 0.

To show that this decomposition is unique, suppose that p =c¢;...c. = d; ... ds,
with ¢;,d; € CSP(v) and I(¢;),1(d;) > 0. Furthermore, suppose that » > s. By
Lemma 2.1.10 we have c¢jc; = v, and so multiplication by ¢} on the left gives 0 #
VCy...Cp = Cjdy ...ds. Since the right-hand side is nonzero, we must have ¢; = d,
and so by Lemma 2.1.10 again we have ¢y...c, = dy...ds (noting that vey = ¢
and vdy = dy). Repeating this process gives ¢; = d; for each i € {1,...,s}, and so

p==cy...cs =dy...ds.
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If r > s, we must have pcsi1...¢c, = p and so v = p*p = P'pcsy1...¢ =
Csi1 - - - Cr, which is impossible since [(¢;) > 0 for each ¢;. A similar argument shows

that we cannot have s > r. Thus r = s and so the decomposition is unique. ]

For a vertex v in an arbitrary graph E, the range index of v, denoted n(v), is

the cardinality of the set
R(w):={pe E":r(p) =v}.

Note that n(v) is always nonzero, since v € R(v) for each v € E°. We apply this

definition in the following lemma from [A, Lemma 4.4.3].

Lemma 2.2.8. Let E be a finite and row-finite graph and let v € E° be a sink.
Then

I, :=span({af* : o, € E*,r(a) =v=1(0)})

is an ideal of Lg(E), and I, = My, (K).

Proof. Take an arbitrary nonzero monomial of* € I,, so that r(a) = v = r(8),
and a nonzero monomial v6* € Lk (FE) with v,d € E*. Suppose that y6*af* # 0.
Then 6*a # 0 and so (by Lemma 2.1.10) we have that either « = dp or 0 = agq
for some paths p,q € E*. In the latter case we must have that [(¢) = 0, since
r(a) = v is a sink, and so 6 = a. Thus we can generalise to a single case in which
a = 0p, where [(p) may be zero. Then §*«a = p and so yé*af* = (yp)3* € I,, since
r(p) = r(a) = v. This shows that I, is a left ideal. Similarly, we can show that I,

is also a right ideal.

Now let n = n(v), as defined above. Since E is both finite and row-finite, n must
also be finite. Rename the elements in the set {ov € E* : r(«) = v} as {p1,...,pn},
giving I, = span{p;p; : i,j = 1,...,n}. Consider the expression (p;p;)(pkp;) and
suppose that j # k and (pip})(prp;) # 0. Then, as above, either p; = pyp or
pr = p;q for some paths p, g € E*. In either case, [(p) > 0 or I(¢q) > 0 since p; # py.
However, this is impossible as v is a sink. Thus j # k implies that (pip;)(pkpf ) =0.
Otherwise, we have (pip;)(p;p;) = pivp; = pip;- Thus {pipj : 3,5 =1,...,n} is a set
of matrix units for I, and so I, = M, (K). O
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Lemma 2.2.8 leads to the following important result from [AAS, Proposition 3.5].

Lemma 2.2.9. Let E be a finite, row-finite and acyclic graph, and let {vy, ..., v}
be the sinks of E. Then

Lk(E) = @Mnm)(K)-

Proof. We begin by showing that Ly (F) = @'_, I,,, where the I,, are the ideals
defined in Lemma 2.2.8. Consider an arbitrary nonzero monomial af* € Lg(FE),
where «, § € E*. If r(a) = v; for some ¢ € {1,...,t}, then af* € [,,. Otherwise, if
r(a) # v; for every i then () is not a sink. Thus we can apply the (CK2) relation

at r(a) (since E is row-finite), giving

aff* = Q(Z{elei ce1 € B, s(ep) = T(@)})ﬁ*
= Z{aele’{ﬁ* ce1 € B, s(e)) =r(a)}.

Now consider a specific summand of the above expression, «ae)(e])*5*. Either
r(e}) = v; for some ¢ € {1...,t}, in which case ae)(e})*p* € I,,, or r(ey) is not
a sink, in which case we can expand the expression by again applying the (CK2)

relation at r(e}), giving

acl(e)) 3" = act (D feaes s e € B, s(es) = 1(€))}) (€)' 5"
= Z{ae’lege;‘(e’l)*ﬁ* ey € B s(es) = r(e))}.

Suppose that repeating the above process yields a sequence of edges €€, ... that
never reaches a sink, and consider the infinite set of vertices T' = {r(e}),r(e}), ...}
Now this set of vertices must be distinct, since if r(e}) = r(e}) for some 7(e;), r(e;) €
T then we would have a cycle in E, contradicting the fact that E is acyclic.
However, we cannot have an infinite number of distinct vertices since F is finite.
Thus, for each summand of af*, we eventually reach an expression of the form
aelely ... el (el) ... (e))*(ey)**, where r(e]) is a sink; that is, r(e/,) = v; for some

i € {1...,t}. Thus each summand of af* is in [,, for some sink v;, and since

af* was an arbitrary monomial and these monomials generate Ly (E), we have

LK<E) = 25:1 Ivi'
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To show that this sum is direct, consider two arbitrary monomials o, € I,
and ;37 € I, for i # j. Suppose that («;3)(e;3;) # 0. As in the proof of
Lemma 2.2.8, this implies that either a; = 3;p or 3; = «;q for some paths p,q € E*.
Again, this is impossible as «; # §; (since v; # v;) and v;,v; are sinks. Thus
(i )(;3;) = 0. Since such monomials generate I,, and I, we have I, 1, =
{0} for all 4,5 € {1,...,t}. Note also that since F is finite, Lx(F) is unital (by
Lemma 2.1.12). Since Lg(F) = Y_, I,,, we have 1 = ¢; + --- + ¢;, where each
e; € I,,. Now suppose there exists z; € I, such that ;1 = 29 + --- 4+ x4, where
each z; € I,,. Now x; = zy(ey + -+ + e)) = xyeq, since I, [,, = {0} for i # j,
and so x; = x1e7 = (xg + -+ + x;)e; = 0. Repeating this argument, we have that
I,,N 2;:1,]';&@' I,, = {0} for each i € {1,...,t}, and so the sum is direct. Finally, we
apply Lemma 2.2.8 to complete the proof. O

To illustrate Lemma 2.2.9, consider the finite line graph with ¢ vertices, M;:

v 1 v €2 v v et—1 v
0l — > @2 — > @V3 i @Ut—1 — Ut

Here M, has a single sink v; with R(v;) = {v,pi_1,-..,p2,p1}, where we define
pi = €€ir1...e.q1 for each i = 1,...,t — 1. Thus n(v;) = t and so Lemma 2.2.9

gives L (M,;) = M, (K), which agrees with the formulation given in Example 2.1.5.

Definition 2.2.10. Let R be a ring with local units. The ring R is said to be
locally matricial if R = lim ;e R?;, where {R; : i € I'} is an ascending chain of rings
and each R; is isomorphic to a finite direct sum of finite-dimensional matrix rings

over K.

If £ is a row-finite graph, we can use Lemma 2.2.9 to show that Lx(F) is
locally matricial if and only if E is acyclic (see, for example, [A], Proposition 4.4.6).
However, to show this for an arbitrary graph E we will need some of the tools

introduced in Section 4.1. This equivalence is finally proved in Theorem 4.2.3.

We now prove the following powerful result from [AMMSI, Proposition 3.1],
which greatly simplifies the proof of several subsequent theorems. Though the orig-
inal theorem was given in a row-finite context, the proof is still valid for arbitrary

graphs. Here we have expanded the proof for ease of understanding.
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Proposition 2.2.11. Let E be an arbitrary graph. For every nonzero element x €

Ly (E) there exist Y1, ..., Y, 21,--.,2s € EOU EY U (EY)* such that

(1) y1...ypw21...2s 18 a nonzero element in Kv for some v € E°, or

(11) there exist a vertex w and a cycle without exits ¢ based at w such that

Yi..-YpT21...2s 1S @ nonzero element in

wLlg(E)w = { Z kic' form,n € Ny and k; € K}.

t=—m

These two cases are not mutually exclusive.

Proof. We first show that for a nonzero element = in Lg(F), there is a path pin E
such that zu is nonzero and in only real edges. Consider a vertex v € E° such that
zv # 0 (note that such a vertex will always exist, since if z = Y | kip;q;, where
each k; € K and p;,q; € E*, then choosing v = s(q;) ensures that kip;gfv # 0 and
thus zv # 0). Write zv = Y ;" Bief + 3, where 5,8 € Lg(E),e; € E',e; # ¢,
for i # j, ( is a polynomial in real edges, and zv is represented as an element of
minimal degree in ghost edges. We have two cases.

Case (1): zve; = 0 for all ¢ € {1,...,m}. This gives, for each e;, xve; =
B; + fe; = 0 and so 3; = —fe;. Thus zv =" —feef + = B>~ —eief +v).
Since zv # 0 we have v — " e;ef # 0. Since s(e;) = v for each e;, by the (CK2)
relation there must exist an f € E! such that s(f) = v but f # e; for each i. Thus
zof =201 —Pee;+06)f =0+ 5f #0 (since r(3) = v), and so, since (3 is in only
real edges, we have a path vf € E* such that xvf is nonzero and in only real edges.

Case (2): zve; # 0 for some i, say for i = 1. Then zve; = ) + fey, with the
degree in ghost edges of xwve; strictly less than that of xv. If ) is a polynomial
in only real edges, then we are done. Otherwise, we can repeat the above process,
reducing the degree in ghost edges with each iteration until we are left with an
element in only real edges (this must happen since the degree in ghost edges of zv

must, of course, be finite).

Now we can assume that © € Lg(F) is a nonzero polynomial in only real edges.

Write x = Y., ki, where 0 # k; € K for each i and each «; is a real path in
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E with a; # o for ¢ # j. Using induction on 7, we will prove that multiplication
on the left and/or right of z by elements from E° U E' U (E')* will produce either
a nonzero scalar multiple of a vertex or a nonzero polynomial in a cycle with no
exits. For r = 1, we have © = k1. If aq is a vertex then we are done. Otherwise,
ar = fi... [, for some f; € E*. Thus f*... ffx = kyr(f,), and so the proposition
is true for r = 1.

Now assume that the property is true for any nonzero element that is the sum of
less than r paths in the conditions above. Write z = Y ._, k;a; such that deg(a;) <
deg(iy1) and k;a; # 0 for each i. Let z = afjz. Thus 0 # z = ko + >, kif3;,
where v = 7(oq) and §; = ojo,. Note that deg(f;) < deg(Bi11) and 3; # §; for
1 7.

If 3; = 0 for some ¢ then we can apply our inductive hypothesis and we are done.
Furthermore, if some [3; does not begin or end in v, then we can apply our inductive
hypothesis to vz or zv (both nonzero since our f3; are distinct). Thus we can assume

that each (; is nonzero and begins and ends in v.

Now suppose that there exists some path 7 such that 7*3; = 0 for some, but not
all, ;. Then we can apply our inductive hypothesis to 7"z # 0 and we are done.
Thus we can suppose that, for a given path 7, if 7°5; # 0 for some ¢, then 7%3; # 0
for all <. Let 7 = (3; for some fixed j. Since 7°3; # 0, we must have 7*3;,; # 0. Since
deg(;) < deg(Bj+1), by Lemma 2.1.10 we have that either 8; = ;41 or 8,41 = 5,7,
for some path r; € CP(v). Since the §; are distinct, we must have the latter case.
Thus in general we have ;11 = §;r; for some path r; € CP(v), and so we can write
2 = kv + koyy + ksyiye + - - + kry1ye - - - Ye—1, Where each 7; is a closed path based

at v.

Now write each v; as v = v, ... %i,,,» where each 7;; is a closed simple path
based at v. If the paths 7;; are not identical, then we must have v;, # ;, for some
%i;» and so 7771, = 0 (since one cannot be an initial subpath of the other). Thus
we have 0 # Vi 2y = kyv, since 71, appears in every term but the first.

Now assume that the paths are identical, so that ;, = v (where v € E¥) for

each 7,7. If v is not a cycle then v must contain a cycle; that is, if v = e;...¢,
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(with each e; € E') then there exist e;,, ..., e;, withiy,... i € {1,...,n} such that
ip <---<ipand d = e, ...e;, is a cycle based at v (noting that k& < n). Thus we
have that d*y = 0 (since d is clearly not an initial subpath of ) and so d*zd = kv
and we are done.

Thus we can assume that z is a polynomial in the cycle ¢ = . Suppose that f
is an exit for ¢, so that s(e) = s(f) for some edge e in ¢ but f # e. Write ¢ = aeb
(where a,b € E*) and let p = af, which is nonzero since r(a) = s(e) = s(f). Then

prc= f*a*aec = f*ec =0 and so p*zp = p*kivp = kyr(f) and we are done.

Finally, if ¢ is a cycle with no exits based at v then z € { S ki for m,n €
N and k; € K}, where we understand ¢™™ = (¢*)™ for m € N and ¢ = v. Clearly
this set is contained in vLy(FE)v since each ¢* begins and ends in v. To see the
converse containment, first note that the elements of vLx(E)v must be linear com-
binations of monomials af3*, where a, 8 € E*, s(a) = v = s(f) and r(a) = r(f).
Now, since ¢ has no exits, any path p € E* with s(p) = v must be of the form
c"p', where n > 0 and p’ is an initial subpath of ¢ (for if p were to contain an
edge distinct from any edge in ¢, that edge would constitute an exit for ¢). Thus
a=c"a and 0 = "G for some m,n > 0. Since o and [ are initial subpaths of ¢
and r(a/) = r(f'), we must have o/ = 3. Let o/ =e;...¢e,. For any edge e in ¢, the
vertex s(e) emits only e (since ¢ has no exits) and so applying the (CK2) relation

at s(e) yields ee* = s(e). Thus

() =er...ep_reeren_q...€]
*

=€1... 6]{718(616)6271 ... €

= €1... ek—1<€k—1)* Ce 6;

and so af* = "o/ () ¢ = v = ™ (c*)". Again, using the fact that ¢ has
no exits we can apply the (CK2) relation to give cc* = v (letting o/ = ' = ¢ in the

above equation). Thus af* = ¢™(c*)" = ¢™ ", and so vLg(E)v is precisely the set
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of all polynomials in c.
To see that the two cases are not mutually exclusive, consider the graph E
consisting of a single vertex v and a single loop e based at v, and take x = e. Thus

*

e*zrv = v (giving case (1)) and vaxv = e, a cycle without exits (giving case (2)). O

Proposition 2.2.11 leads to the following useful corollary from [AMMS2, Corol-
lary 3.3].

Corollary 2.2.12. Let E be an arbitrary graph. Then
(i) every Z-graded nonzero ideal of Lk (E) contains a vertex, and

(i1) if E contains no cycles without exits, then every nonzero ideal of Ly (E) con-

tains a vertex.

Proof. (i) Let I be a Z-graded nonzero ideal of Lx(F) and let 0 # = € I. By

Proposition 2.2.11, there exist y, 2 € Lx(FE) such that 0 # yzz = > k;ic', where
c is a cycle without exits based at a vertex w, each k; € K and m,n € N. Since
I is a graded ideal, each summand of yxz must also be in I (since each k;c' is a
homogeneous element of degree i in Li(F)). Then, for t € {—m,...,n} such that
kict # 0, we have 0 # (k; *(c*)! )k, ¢t = w € I, as required.

(ii) Let J be a nonzero ideal of Li(F) and let 0 # = € J. Since E contains no
cycles without exits, then again by Proposition 2.2.11 there must exist y, z € Lx(F)
such that 0 # yzz = kv for some v € E® and k € K. Thus 0 # (k" 'v)kv = v € I,

as required. O

The following two ‘Uniqueness theorems’ are given by Tomforde as [To, Theorem
4.6] and [To, Theorem 6.8], respectively. In Tomforde’s paper, the proofs are fairly
involved. However, in light of Proposition 2.2.11 and its subsequent corollary, the

results follow almost instantly.

Theorem 2.2.13 (Graded Uniqueness Theorem). Let E be an arbitrary graph and
let A be a Z-graded ring. If m : Lx(FE) — A is a graded ring homomorphism for

which 7(v) # 0 for every vertex v € E°, then m is a monomorphism.
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Proof. By Lemma 1.1.5, ker(7) is a graded ideal of Lg(E). So, by Corollary 2.2.12,
if ker(7) is nonzero it must contain a vertex, contradicting the fact that 7(v) # 0

for every vertex v € E°. Thus ker(m) = {0} and so 7 is a monomorphism. O

Theorem 2.2.14 (Cuntz-Krieger Uniqueness Theorem). Let E be a graph in which
every cycle has an ezit and let A be a ring. If m: Lx(E) — A is a ring homomor-

phism for which w(v) # 0 for every vertex v € E°, then w is a monomorphism.

Proof. Suppose that ker(m) # 0. Since ker(w) is an ideal of L (E) and E contains
no cycles without exits, Corollary 2.2.12 tells us that ker(7) must contain a vertex.
Thus contradicts the fact that m(v) # 0 for every vertex v € E°, and so ker(m) = {0}

and thus 7 is a monomorphism. O

In addition to the above two results, Proposition 2.2.11 also leads to the following
useful theorem from [AMMS2, Theorem 3.7]. Recall that an element x in a ring R

is said to be nilpotent if ™ = 0 for some n € N.

Theorem 2.2.15. Let E be an arbitrary graph and let A be a graded K-algebra.
If m: Lg(FE) — A is a ring homomorphism for which w(v) # 0 for every vertex
v € E° and for which each cycle without exits in E is mapped to a non-nilpotent

homogeneous element of nonzero degree, then 7 is a monomorphism.

Proof. Suppose that ker(w) is nonzero. Since it is a nonzero ideal containing no
vertices, by Proposition 2.2.11 ker(¢) must contain a nonzero element of the form
x =" k' where cis a cycle without exits based at a vertex w, each k; € K

and m,n € N. By hypothesis, 7(c) = h, where h is a non-nilpotent homogeneous

element of nonzero degree. Thus m(x) = > kiw(e)' = > kh' = 0. Since

i=—m i=—m
h is not nilpotent, we must have k; = 0 for each © = —m,...,n, and so z = 0, a
contradiction. Thus ker(¢) = {0} and so 7 is a monomorphism, as required. O

2.3 Purely Infinite Simple Leavitt Path Algebras

We open this section with Theorem 2.3.1, which describes precisely which graphs
yield simple Leavitt path algebras. From this result we then build toward Theo-
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rem 2.3.9, which describes precisely which graphs yield Leavitt path algebras that

are both simple and purely infinite; that is, ‘purely infinite simple’.

The following result was first shown for row-finite graphs in [AA1, Theorem 3.11]
and then extended to arbitrary graphs in [AA3, Theorem 3.1]. In comparison to the
published versions, the first part of the proof given here is much simpler, thanks to

Proposition 2.2.11.

Theorem 2.3.1. Let E be an arbitrary graph. Then the Leavitt path algebra L (F)

1s simple if and only if E satisfies the following conditions:
(i) The only hereditary saturated subsets of E° are O and E°, and
(i1) every cycle in E has an exit.

Proof. Suppose statements (i) and (ii) are true and let J be a nonzero ideal of
Lk(FE). Since E contains no cycles without exits, Proposition 2.2.11 tells us that
J contains at least one vertex. Thus the vertices of J form a nonempty, hereditary
saturated subset of E° (by Lemma 2.2.1) and so J N E® = E° by (i). Thus, by
Lemma 2.2.3, we have that J = Lk (F), proving Lk (FE) is simple.

Now suppose that there exists a hereditary saturated subset H of EY that is
nonempty and is not equal to E°. We will show that this implies that Lg(F)
cannot be simple. Define the graph F' = (F° F' rp, sp), where

FO:EO\H7FIIT71(EO\H), TF:TEO\H,SF:SEO\H

In other words, F' consists of all the vertices of E that are not in H, and all the
edges whose range is not in H. To ensure that F' is a well-defined graph, we must
ensure that sp(F')Urg(F') C F°. From the definition it is clear that rp(F') C F°.
Furthermore, suppose that there exists an edge e € F! with s(e) € H. Then, by the
hereditary nature of H, we have r(e) € H, which contradicts the definition of F'.
Thus s(e) € F°, and so sp(F!') C F? and F is therefore well-defined.

Define a map ¢ : Lx(E) — Lk (F') on the generators of L (F) as follows:
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v ifvé H e ifr(e)¢ H . e ifr(e) ¢ H
p(v) = , ¢(e) = _ and ¢(e”) = ,

0 ifveHd, 0 ifr(e)e H 0 ifr(e) € H.
Extend ¢ linearly and multiplicatively. To ensure that ¢ is a K-algebra homomor-
phism, we must check that it preserves the Leavitt path algebra relations on £. This

is a relatively straightforward (though slightly tedious) process. We include it here

for the sake of completeness.

First, we check that the (A1) relation holds, i.e. that ¢(v;)¢(v;) = 0;; ¢(v;) for
all v;,v; € E°. We must examine several different cases:

Case 1: v;,v; ¢ H. Then ¢(v;)p(vj) = vivj = 65 v; = 055 ¢(v;).

Case 2: v; ¢ H,v; € H. Then §;;v; = 0 and so ¢(v;)p(v;) = 0 = 6;; d(v;). A
similar argument holds for v; € H,v; ¢ H.

Case 3: v;,v; € H. Then ¢(v;)p(vj) = 0 = &;; ¢(v;).

Next, we check that the (A2) relations hold. First, we check that ¢(s(e))p(e) =
¢(e) for all e € E*.

Case 1: r(e) ¢ H. Then s(e) ¢ H and so ¢(s(e))p(e) = s(e)e = e

Case 2: r(e) € H. Then ¢(s(e))p(e) =0 = o(e).

Similar arguments show that ¢(e)p(r(e)) = ¢(e), o(r(e))p(e*) = ¢(e*) and
o(e*)p(s(e)) = ¢(e*) for all e € B

Next we check that the (CK1) relation holds, i.e. that ¢(e})p(e;) = 6;; d(r(ei))
for all e;,e; € E'.

Case 1: r(e;),7(ej) ¢ H. Then ¢(ef)p(e;j) = efe; = 0;57(e;) = di5 d(r(e;)).

Case 2: r(e;) € H,r(e;) ¢ H. Then e; # ej, so ¢(e])p(ej) = 0 = 0;; p(r(e;)). A
similar argument holds for r(e;) ¢ H,r(e;) € H.

Case 3: 7(e;),7(ej) € H. Then again ¢(ef)p(e;) = ¢(ef)p(e;) = 0= d;; ¢(r(e;)).

Finally, we check that the (CK2) relation holds, i.e. that ¢(U_Z$E(ei):’u eie) =0

I
-
—~

Q)
~—

for all regular vertices v € E°.

Case 1: v € H. By the hereditary nature of H, for every edge ¢; € E! with
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s(e;) = v, we have r(e;) € H. Thus

¢><v— > ) = o(v) — ¢ei)d(e]) =0—0=0.

(e)=v sp(en)=v

Case 2: v ¢ H. Because H is saturated, there must exist at least one edge ¢; € E'*
such that s(e;) = v and r(e;) ¢ H (for otherwise, if r(e;) € H for all ¢; € s7(v)
then we must have v € H, a contradiction). If r(e;) ¢ H, then ¢(e;)p(ef) = eef.
Otherwise, ¢(e;)d(ef) = 0. Recalling that, in the graph F', v only emits edges e; for
which 7(e;) ¢ H in the original graph E (by definition), we have ¢( D sm(es)=u eie}) =
D s(en— P(€)D(€]) = D, (e)—o €i€5 - This gives

¢<v— Z emf)zv— Z e;e; = 0.
SE

(e:)=v sp(e)=v
Thus ¢ preserves the Leavitt path algebra relations on F, and so is a K-algebra

homomorphism.

Now consider the ideal ker(¢). Since H is nonempty, there must exist a vertex
v € H. Since ¢(v) = 0 and v # 0, we have ker(¢) # {0}. Furthermore, since
H # E° there must exist a vertex w € E°\H. Since ¢(w) = w # 0, we have
ker(¢) # Lk (E). Thus ker(¢) is a proper nontrivial ideal of Lx(FE), and so Lx(F)

is not simple, as required.

To complete the proof, we now suppose that E contains a cycle ¢ without exits,
and show again that this implies that Lx(F) cannot be simple. Let v be the base
of this cycle and consider the nonzero ideal (v +c¢). We show that (v+¢) # Lg(FE)
by showing that v ¢ (v+c¢). Let ¢ = e;, ...€;,, where s(e;,) = r(e;,) = v. Since
¢ has no exits, we have that cc* = v (see the proof of Proposition 2.2.11, page 59).
Furthermore, by Lemma 2.1.10 we know that ¢*c¢ = v. Furthermore, we must have
CSP(v) = {c}, since the existence of a closed simple path based at v that is distinct

from ¢ would imply that ¢ has an exit.

We proceed by contradiction: suppose that v € (v + ¢). Then there exist

(nonzero) monic monomials oy, 5; € Li(FE) and scalars k; € K such that

v = Z ko (v + ¢) 5.
=1
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Each summand in the above expression must begin and end in v, for otherwise
v=uv)v = > kv(a(v+c)B)v =0, a contradiction. Furthermore, since ¢ is
based at v, we can write v + ¢ as v(v + ¢)v. Thus, since the right-hand side of the
above expression is nonzero, each «; and (; must begin and end in v. Thus each
ay, B is a monomial in v Lk (F)v and so, as shown in the proof of Proposition 2.2.11,

we have that each «; and 3, is equal to ¢™ or (¢*)" for some m,n € Ny.

Recalling that cc* = v = c*c, we have that ¢ and ¢* commute with v + ¢, and so
ar(v+c¢) = (v+c)ay for each t =1,...,n. Thus

n

v = Z ko (v + ¢) B = Z(v + ¢)(krauBr).

t—1

Now each o, 3; term is a power of either ¢ or ¢*, and so we can write v = (v+¢)P(c, ¢*),

where P is a polynomial with coefficients in K, i.e.
Ple,c®) =1_p(c) "+ -+ v+ -+ 1,c", m,n>0.

Suppose that [_; # 0 for some index i > 0, and let mg be the maximum such index.

Then
(v+c)P(c,c") =1y, (c")™ + terms of higher degree = v.

Thus we must have that [_,,, = 0, a contradiction. Thus [_; = 0 for all ¢« > 0.
Similarly, we can show that I; = 0 for all 4 > 0. Thus P(c,c¢*) = lyv, and so
v = (v+¢)lgv = lp(v + ¢), which is impossible since deg(v) = 0 but deg(lp(v+¢)) =
deg(c) > 0. Thus we have obtained our contradiction, proving that Lk (FE) is simple

and completing the proof. [

Example 2.3.2. We now apply Theorem 2.3.1 to some of the Leavitt path algebras

introduced in Section 2.1.

(i) The finite line graph M, For every n € N, M,, has no cycles, so trivially con-
dition (ii) of Theorem 2.3.1 is satisfied. Furthermore, suppose that H is a nonempty
hereditary saturated subset of E°, so that v; € H for some i = 1,...,n. Then, by
the hereditary nature of H, we must have v;y1,...,v, € H. Furthermore, by the

saturated nature of H we must have v;_; € H, and thus inductively v; o,...,v; € H.
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Therefore H = (M,,)? and so condition (ii) is satisfied. Thus L (M,) = M, (K) is

simple for all n € N, which agrees with the result given in Lemma 1.1.10.

(ii) The single loop graph Ry. The single loop in R; forms a cycle without an exit,
so that condition (ii) is not satisfied and thus Ly (R;) = K[z,z~!] is not simple.

1

(iii) The rose with n leaves R,. Every edge e¢; € (R,)" is a cycle, and if n > 2

then e; has an exit, since any other edge is an exit. This satisfies condition (ii).
Furthermore, condition (i) is trivially satisfied as R,, only has one vertex, so that
the only nonempty subset of (R,)? is (R,)? itself. Thus Ly (R,) = L(1,n) is simple
for all n > 2.

(iv) The infinite clock graph Cy. In this case, for any radial vertex v; we have that
{v;} is a hereditary saturated subset of (Cw)?, and so Lk (Cwo) = ;- | Ma(K)BK Iy

is not simple.

This next corollary follows directly from Theorem 2.3.1 and Proposition 1.4.10,

and offers an alternative set of conditions that are equivalent to L (E) being simple.

Corollary 2.3.3. Let E be an arbitrary graph. The Leavitt path algebra Ly (E) is
simple if and only if E satisfies the following conditions:

(i) every cycle in E has an exit,
(i1) E is cofinal, and

(iii) for every singular verter u € E°, we have v > u for all v € E°.

For a given graph E, we define the set
Vi:={veE":|CSP(v)| = 1}.

We say that E satisfies Condition (K) if V3 = (). In other words, E satisfies

Condition (K) if no vertex in E° is the base of precisely one closed simple path.

The following lemma was first given for row-finite graphs in [AA2, Lemma 7]

and then extended to arbitrary graphs in [AA3, Lemma 4.1].



CHAPTER 2. LEAVITT PATH ALGEBRAS 67

Lemma 2.3.4. Let E be an arbitrary graph. If Lx(E) is simple, then E satisfies
Condition (K).

Proof. Suppose that L (E) is simple, and suppose there exists a v € E° such that
CSP(v) = {p}. If pisnot a cycle, it is easy to see that there exists a cycle based at v
whose edges are a subset of the edges of p, contradicting the fact that C.SP(v) = {p}.
Thus p is a cycle and so, by condition (ii) of Theorem 2.3.1, there must exist an exit
e for p.

Let A be the set of all vertices in p. Now r(e) ¢ A, for otherwise we would
have another closed simple path based at v distinct from p. Let X = {r(e)} and let
X be the hereditary saturated closure of X. Recall the definition of G, (X) from
Lemma 1.4.9. Since Lk (FE) is simple, by condition (i) of Theorem 2.3.1 we have

X = E° and so we can find an n € N such that
n =min{m : AN G, (X) # 0}.

Let w € AN GL(X) and suppose that n > 0. By the minimality of n, we
have w ¢ G,,_1(X). Thus, by the definition of G,,(X), w must be a regular vertex
and r(s7H(w)) € G,_1(X), i.e. w emits edges only into G,_1(X). Since w is a
vertex in p, there must exist an edge f such that s(f) = w and r(f) € A. Thus
r(f) € ANG,-1(X), contradicting the minimality of n. So we must have n = 0,
and therefore w € Go(X) = T(r(e)) (by definition). This means there is a path ¢
from r(e) to w. Since w is in the cycle p, and e is an exit for p, there must also be a
path p’ from w to r(e), and so p'q is a cycle based at w. However, this implies that

|CSP(v)| > 2, a contradiction. O

The following useful result regarding infinite emitters in simple Leavitt path

algebras is from [AA3, Lemma 4.2].

Lemma 2.3.5. Let E be an arbitrary graph such that Ly (E) is simple. If 2 € E°
is an infinite emitter, then CSP(z) # 0. In particular, if Lk (E) is simple and E is

acyclic, then E must be row-finite.

Proof. Let z € E° be an infinite emitter, and let e € s7'(2). Since L (F) is simple,

by Corollary 2.3.3 (iii) we have that r(e) > z. Thus there is a closed simple path p
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based at z and so CSP(z) # (). Furthermore, it is easy to see that there is a cycle
based at z made up of a subset of edges of p. Thus any graph E which is acyclic

and for which Lk (E) is simple cannot contain any infinite emitters. O
The following result is from [AA2, Lemma §].

Lemma 2.3.6. If R is a directed union of a chain of finite-dimensional subalgebras,

then R contains no infinite idempotents. In particular, R is not purely infinite.

Proof. Suppose that R contains an infinite idempotent e. Then, by Proposition 1.2.6,
there exists an idempotent f € R and elements x,y € R such that e = xy, f = yx
and fe=ef = f # e. Since R is the directed union of a chain of finite-dimensional
subalgebras, the elements e, f, x,y must be contained in a finite-dimensional sub-
algebra S of R. Thus, applying Proposition 1.2.6 again we have that e is an in-
finite idempotent in S. Therefore eS = A; & By, where A; # {0}, and there
exists an isomorphism ¢ : eS — Bj. Define ¢(A;) = Ay and ¢(B;) = By. Thus
By = ¢(eS) = ¢(A® B) = Ay @ By. Since A; # {0} and ¢ is an isomorphism,
Ay # {0} and so Bs is properly contained in B;. Once again, defining ¢(A4y) = Aj
and ¢(B2) = Bs, we have ¢(By) = By = Az @ Bs. By the same logic as above,
B3 is properly contained in By. Thus, repeating the process, we have an infinitely

decreasing chain of right ideals
BlDBQDBg,D"'

andsoeS=A1 B =A1PAs P By =A1 ® Ay P A3 P B3 = - - -, contradicting the

fact that S is finite-dimensional. ]

Recall that a ring R is locally matricial if R = li_n}igRi, where {R; : i € I}
is an ascending chain of rings and each R; is isomorphic to a finite direct sum of
finite-dimensional matrix rings over K. Thus Lemma 2.3.6 leads immediately to the

following corollary.

Corollary 2.3.7. Let R be a ring. If R s locally matricial, then R is not purely

nfinite.
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The following proposition is from [AA2, Proposition 9]. Though the result is

given there in a row-finite context, the proof still holds for arbitrary graphs.

Proposition 2.3.8. Let E be an arbitrary graph. Suppose there exists a vertex
w € EY with the property that there are no closed simple paths based at any vertex

v € T(w). Then the corner algebra wLk (E)w is not purely infinite.

Proof. Define a new graph H = (H°, H',r,s), where H® = T(w), H = s7'(H")
and r and s are the functions 7 and sg restricted to the set H'. To show this is
a well-defined graph, it is enough to show that r(s~'(H?)) C H®. Take a vertex
z € H° that is not a sink, and an edge e such that s(e) = z. Since z € T'(w), we
have r(e) € T'(w) = H°, as required.

To show that Ly (H) is a subalgebra of Li(FE), we must show that the Leavitt
path algebra relations hold in Lx(H). It is clear that the first three relations hold;
to show that the (CK2) relation holds, suppose that v is a regular vertex in H.
Then v must be a regular vertex in E, and furthermore s3;'(v) = s5'(v) € H', so
the (CK2) relation holds in L (H).

Since there are no closed simple paths based at any vertex v € T(w), H must
be acyclic. Thus, by Theorem 4.2.3% Ly (H) is locally matricial, and so by Corol-
lary 2.3.7 L (H) is not purely infinite. Since wLk(H )w is a subring of Lk (H ), and
Lk (H) does not contain any infinite idempotents, then by Corollary 1.2.7 wLx (H)w
it cannot contain any infinite idempotents and is therefore not purely infinite.

Finally, we show that wLx (H)w = wLk(E)w. Let o = ), k;p;qf be an arbitrary
element of Ly (FE), where k; € K and p;,q; € E*. Then waw = Zj ki;pi;q;,, where
s(pi;) = w = s(q;;). Thus p;,,q;, € Lx(H) and so wLg(E)w € wLg(H)w. Thus
wLg(H)w = wLg(F)w and so wLk(E)w is not purely infinite, as required. O

We now come to the main proof of this section. This was first given for row-
finite graphs in [AA2, Theorem 11] and then extended to arbitrary graphs in [AA3,
Theorem 4.3]. It is here that we can apply Theorem 1.3.19, which we presented in
Section 1.3.

2The proof of this theorem is independent to any results in this section.
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Theorem 2.3.9. Let E be an arbitrary graph. Then Li(E) is purely infinite simple
if and only if E satisfies the following conditions:

(1) The only hereditary saturated subsets of E° are ) and E°,
(i1) every cycle in E has an exit, and

(iii) for every verter v € EV, there is a vertex u € T(v) such that u is the base of a

cycle.

Proof. Suppose that conditions (i), (ii) and (iii) hold. Theorem 2.3.1 tells us im-
mediately that Ly (FE) is simple. Thus, to show that Ly (F) is purely infinite, by
Theorem 1.3.19 it suffices to show that Lx(F) is not a division ring and that for any
nonzero pair of elements x,y € Lk (FE) there exist s,t € Li(FE) such that szt = y.
Together, conditions (ii) and (iii) show there exists at least one cycle with an exit
in £, and thus there must exist two distinct edges e; and ey in E'. Since efey = 0,
L (F) has zero divisors and therefore cannot be a division ring.

Now let z,y be a pair of nonzero elements in Lx(FE). Since E contains no cycles
without exits, by applying Proposition 2.2.11 we can find elements a,b € Ly (F)
such that axb = u, where u € E°. By condition (iii), u connects to some vertex v
at the base of a cycle ¢. Thus either u = v or there is a path p € E* with s(p) = u
and r(p) = v. By choosing o’ = b’ = w in the former case, or ' = p*,0’ = p in the
latter, we have elements o/, b’ € Lk (FE) such that a'ub’ = v.

Since ¢ is a closed simple path based at v and Lk (F) is simple, Lemma 2.3.4
tells us there must be at least one other closed simple path ¢ based at v with q # c.
For each m € N, let d,,, = ¢™ !¢. Since ¢ cannot be a subpath of ¢, and vice versa,
we have ¢*q = 0 = ¢*c. Using that ¢*c = v and assuming that m > n, we have
d:d, = (¢* ()™ N (" q) = ¢*(¢*)™ g = 0. Similarly, d*,d,, = 0 for n > m. For
the case m = n, we have d},d,, = ¢*vq = v. Thus d},d,, = 0,, ,v for all m,n € N.

Since Ly (E) is simple, we have (v) = Ly (FE), and so for an arbitrary w € E°

we can write w = 22:1 a;vb; for some a;,b; € Lig(FE). Let a, = 25:1 a;d; and
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by = 23:1 d;b;. Using the fact that dfd; = 0 ; v, we have

t t t
AupUby, = (Z aid;-“> v ( Z djbj) = Z a;vb; = w.
i=1 j=1 i=1

In other words, for any vertex w € E° we can find ay,b, € Lx(E) for which
AUy, = w.

By Lemma 2.1.12, we can find a finite subset of vertices X = {vy,...,vs} for
which e = "7 | v, is a local unit for y, so that ey = e = ye. Let a,,, b,, be elements

for which a,,vb,, = v;, for each v; € X. Let s’ = 77 | a,,df and t' = 377, d;b,,.
This gives

sut’ = (iavidz‘>v<idjbvj> = iavivbvi = ivs =e.
i=1 j=1 i=1 i=1

In summary, we have found elements a,b,a’, V', s',t' € Ly (E) for which axb = u,
aubl = v and s'vt’ = e. Let s = s'd’a and t = bb't'y. Thus we have szt =
(s'a’a)x(bb't'y) = s'd'(axb)b't'y = §'(a'ub )t'y = (s'vt')y = ey = y, and so Lk (E) is
purely infinite.

Conversely, suppose that Lg(FE) is purely infinite simple. Again, conditions (i)
and (ii) follow directly from the fact that Lx(F) is simple (by Theorem 2.3.1). If
condition (iii) does not hold, then there exists a vertex w € E° such that no vertex
v € T(w) is the base of a cycle. Since a cycle can be formed from a subset of edges
of any closed path, there cannot be any closed simple path based at any vertex v €
T(w) either. Thus, by Proposition 2.3.8, wLk(F)w is not purely infinite. Finally,
Proposition 1.3.18 gives that L (F) is not purely infinite, a contradiction. ]

The following proposition from [AA3, Theorem 4.4] shows that, for any graph E
for which Ly (F) is simple, we have the following dichotomy.

Proposition 2.3.10. Let E be an arbitrary graph. If E is simple, then either
(i) Lk(E) is purely infinite simple and E contains a cycle, or

(1) Li(E) is locally matricial and E is acyclic.
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Proof. If E is acyclic then Theorem 4.2.3 tells us that L (F) is locally matricial.
Otherwise, suppose E contains a cycle ¢. By Corollary 2.3.3 we have that E is
cofinal, and so every vertex connects to the infinite path ¢*°. Thus every vertex
connects to a cycle, satisfying condition (iii) of Theorem 2.3.9. Since Lk (E) is
simple, conditions (i) and (ii) of Theorem 2.3.9 are satisfied (by Theorem 2.3.1),
and thus L (F) is purely infinite simple. ]

Example 2.3.11. Of the Leavitt path algebras determined to be simple in Exam-
ple 2.3.2, we now use Proposition 2.3.10 determine which of these are purely infinite
simple.

(i) The finite line graph M,. Since M, is acyclic for all n € N, Lg(M,,) must

be locally matricial for all n € N. This is no surprise, considering that Ly (M,)

M., (K).

(ii) The rose with n leaves R,. Since R, contains n cycles for each n € N,

Lk (R,) = L(1,n) must be purely infinite simple for all n > 2.

2.4 Desingularisation

Recall that a vertex v € E° is said to be singular if v is either a sink or an infinite
emitter. In this section we look at the process of ‘desingularisation’, in which we
construct from a given graph E a new graph that contains no singular vertices; in
other words, a graph that is row-finite and has no sinks. This concept was originally
used in the C*-algebra context in [BPRS|. The significance of the desingularisa-
tion process is illustrated in Theorem 2.4.5, in which we show that the Leavitt
path algebra of a graph F is Morita equivalent to the Leavitt path algebra of its

desingularisation.

Definition 2.4.1. Let E be a countable graph. A desingularisation of F is a
graph F' constructed from E that contains no singular vertices. We construct F' by
‘adding a tail’ to each sink and infinite emitter in E°. If v, is a sink in F, then we

attach an infinite line graph at v like so:
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vo v1 v2 @U3

If vy is an infinite emitter in £, then we first list the edges €1, e, €3, ... € s~ (vg)
(noting that the countable property of E allows us to list the edges in this way).

Then we again attach an infinite line graph at vy:

vo I v, 12 vy I3 ol

We then remove the edges in s7(vp) and add an edge g; from v;_; (in the infinite
line graph) to r(e;) for each e; € s7'(vy). Effectively, we are removing each e;
and replacing it with the path fify... f;_1g; of length j. Note that both e; and

fifa... fj—19; have source vy and range 7(e;).

Note also that the desingularisation of a graph may not necessarily be unique:
differences may arise depending on the way in which we choose to order the edges

in s71(vp) (in the case that vy is an infinite emitter).

We now give two examples of the desingularisation process. In these examples
the desingularisation is in fact unique (up to isomorphism), due to the symmetry of

the graphs.

Example 2.4.2. Consider the infinite edges graph

Note that « is an infinite emitter and v is a sink, so we add a tail at both vertices
in the desingularisation process. Furthermore, each edge emitted by u has range v,

and so we obtain the desingularisation
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Example 2.4.3. Recall the infinite clock graph

Again, each vertex in this graph is a singularity, resulting in an infinite number of

infinite tails. Thus the desingularisation of Cy, looks like
[ ] [ ]
[ [

1 [

U ur U2 > U3

B

v1 v2 v3 V4

< 0

v1 v3 V4

1 [ ]

@ —— @ <—— @

The following proposition is from [AA3, Proposition 5.1].

Proposition 2.4.4. Let E be a countable graph and let F be a desingularisation of
E. Then there exists a monomorphism of K-algebras from Ly (E) to Lk (F).

Proof. We define a map ¢ : Lg(E) — Lg(F) on the generators of E as follows.
First, we define ¢(v) = v for all v € E°. Note that this is valid since no vertices are
removed in the construction of F', only added. Next, if s(e) is a regular vertex then
we define ¢(e) = e and ¢(e*) = e*. Furthermore, if e = ¢; € s7!(vy), where vg is an
infinite emitter, then we define ¢(e;) = fifao... fj19; and ¢(€}) = gjfi 1. f5 f1,
where f1, f2,..., fj—1 and g; are as in Definition 2.4.1.

Expand ¢ linearly and multiplicatively. In order to check that ¢ is a well-defined
K-homomorphism, we must check that ¢ preserves the Leavitt path algebra rela-
tions on L (F). Clearly the (A1) relation is preserved, since each vertex in Lx(FE)
is mapped to itself in Ly (F). Similarly, the (A2) relations are easily seen to be
preserved, since s(é(e)) = s(e) and r(¢(e)) = r(e) for all e € E' (as noted in Def-
inition 2.4.1). To check the (CK1) relation, note that the only nontrivial situation
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arises when s(e;) = s(e;) = wvo, where vy is an infinite emitter. In the case that
i = j, we have ¢(ef)op(e;) = (g7 iy [5I7)(fifz- - fimrgi) = r(e;) = é(r(e;)). On
the other hand, if i # j then ¢(e])p(e;) = (gf fiq .- f5 fi)(fifz- .. fiz1g;) = 0, since
fifo... ficigi and fifa... fj_19; are not subpaths of each other. Thus the (CK1)
relation is preserved. Finally, since regular vertices (and the edges they emit) are un-
changed by ¢, and we only evaluate the (CK2) relation at regular vertices, it is clear
that the (CK2) relation is preserved. Thus ¢ is a well-defined K-homomorphism, as
required.

Finally, we show that ¢ is a monomorphism. Suppose that = € ker(¢) and x # 0.
By Proposition 2.2.11 there exist y,z € Lx(E) for which either yzz = v € E° or
yrz =y i ki # 0, where m,n € Ny, k; € K and c is a cycle without exits in
E. Since ker(¢) is a two-sided ideal of Lx(F), we have yzz € ker(¢). By definition,
ker(¢) contains no vertices (since ¢(v) = v for all v € EY), and so we must have
S kidh € ker(¢). Thus ¢(>°1 ki) =>1" kip(c)" = 0. Note that ¢ sends
paths of length ¢ to paths of length greater than or equal to ¢, and that ¢ and ¢(c)
must have the same source and range. Furthermore, ¢(c) cannot pass through any
vertex more than once (from the definition of ¢) and so ¢(c) is a cycle in F'. Since
Lk(F) is graded, this implies that each term k;¢(c)® = 0, and thus each k; = 0, which
is impossible since >~ k;¢* # 0. Thus ker(¢) = {0} and so ¢ is a monomorphism,

as required. [

Proposition 2.4.4 leads to the following powerful result from [AA3, Theorem 5.2].
Here we have greatly expanded the proof to clarify the arguments and results used

at each step.

Theorem 2.4.5. Let E be a countable graph and let F' be a desingularisation of E.
Then the Leavitt path algebras Li(E) and Li(F') are Morita equivalent.

Proof. We begin by labelling the vertices of E as a sequence {v;}2,. We can
form idempotents t; = Zlgk v; for each £ € N. Note that for any subset X C
Lk (E) there exists a 5, such that tyx = x = zt), for all x € X (see the proof of
Lemma 2.1.12), and so {t; : k € N} forms a set of local units for Lg(E). (Note
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that if E? is finite then ¢, is simply the identity for Lx(E) for all k& > |EY|, by
Lemma 2.1.12.)

Let t = ¢, for an arbitrary k € N. We show that tLy(F)t = tLg(F)t. Recall
the monomorphism ¢ : Lx(E) — Lg(F') from Proposition 2.4.4, and consider the
restriction map ¢|ir, (g : tLx(E)t — Li(F). Since ¢(v) = v for each v € EY, we
have ¢(t) = t, and thus for any = = tat € tLx(E)t we have ¢(tat) = to(x)t. Now
if to(x)t = to(y)t for some y € tLk(E)t, then clearly ¢(x) = ¢(y) and so x = y,
since ¢ is a monomorphism. Thus ¢z, () is a monomorphism from L (E)t to

tL(F)t.

To show that ¢|i;, (k) is an epimorphism, consider an arbitrary element z €
tLg(F)t. Then x = Y " kipiqf, where k; € K and p;,¢; are paths in F with
r(pi) = r(q:;) and s(p;), s(¢;) € {v : I <k} for each i € {1,...,n}. Suppose that p is
a path in F with s(p) € {v; : I < k}. If p=p;...p,, where each p; is an edge from
the original graph E, then p = ¢(p1...pn). I p = fifa... fj—19; (where the f; and
g; are as defined in Definition 2.4.1), then p = ¢(e;), where e; € s7!(vg) for some

infinite emitter vy € E°. Furthermore, if p is a concatenation of two such paths,

then clearly p € Im(¢). For all three cases above, clearly we also have p* € Im(¢).

The final possible form for p is p = py...puf1... fj, (with n > 0), where the
fi form part of an infinite tail from either a sink or an infinite emitter, and each
pi is an edge from the original graph E. Let s(f;) = vo and r(f;) = v;. By the
desingularisation definition, any path ¢ in F' with r(¢) = v; must be of the form
¢ ---Gmfi--. f; (with m > 0), where each ¢; is an edge from the original graph FE.
Thus pg* = ¢(p1 .- pa)(fr-- [i)(f] - f1)d(q, - - - ¢7) and so it suffices to show that
(i f))(ff - fi) is in the image of ¢.

If vy is a sink, then each v; along the infinite tail based at v, emits precisely one

edge, namely fi1. Thus applying the (CK2) relation at v; gives v; = fit1 /', and
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SO

oo fiad)U5 - D) = fimviaaffa o A
- fl e fj*l(f;—l e ff
:fl...)?}j_g...ff

= fifi

= Vo,

and vy = ¢(vp), as required.
Now suppose that vy is an infinite emitter. Then each v; along the infinite tail
based at vy emits precisely two edges, namely f;;; and g¢;.1. Thus applying the

(CK2) relation at v; gives v; = fip1fi11 + gi419;11, and so

(f1 '-fjflfj)(f;f;—l D) =f -'fjf1(?1j71 - gjg;)f;—l ST
= (fre i) )
— (i fimgi) gy fin - f1)-

Repeating this expansion eventually gives

(fl . fj—lfj)(f;f;—l e fik) - flfik - Z(fl cee fz—lgz)(g;kfz*—l s fik)
=2
J
=9 — g19; — Z(fl o fig) G fiy - ST

=2
J
= gb(vo —ere] — Zemf)
=2

and we are done. (Note that the inverse images of all of these paths also have
source in the set {v; : [ < k}, and thus are indeed contained in t L (E)t.) Therefore

PliL () is an isomorphism of K-algebras and so tLx (E)t = tLg(F)t.

From the definition of t;, we can view ;L (E)t; as the set of all elements in
Lk (F) generated by paths p with s(p) € {v, : | < k}. Thus we have ¢, Lx(F)t; C
tk+1LK<E)tk+1 (and tkLK(F)tk Q tk+1LK(F)tk+1) for each k € N. For every pair
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i,7 € N with ¢ < j, let ¢;; be the inclusion map from t,Lx(E)t; to t;Li(E)t; and
let @;; be the inclusion map from ¢; Ly (F)t; to t;Lk(F)t;. For such a pair 7,7 it
is easy to see that t;t; = t; = t;t;, and so for any x = t;at; € t;Lx(E)t; we have
tjxt; = t;(tixt;)t; = tixt; = x. Thus we can view the inclusion map ¢;; as mapping
tivt; — tjxt; (and similarly for ;). For ease of notation, let @|¢, 1, (my, = ¢x for all

k € N. Thus for any x = t;zt; € t;Lx(F)t; we have
Qii(tixt;) = @i (tidi(x)t;) = tidi(x)t; = ¢;(tjat;) = ¢4 (tixts),

and so @;;¢; = ¢;p;;; that is, the following diagram commutes

Pi

Pij Pij
tiLg (E)t; tiLi (E)t;

for all 7,7 € N with ¢ < j. (Similarly, since ¢; is an isomorphism for all i € N, we
also have ;¢ ' = 625;195@'-)
Clearly (t; Lk (E)ti, vij)n and (t; Lk (F')t;, ¢i;)n are direct systems of rings. Since

these are both ascending chains of rings, the direct limits h_n;ieN t;Lik(E)t; and

lim jen L Kk (F)t; exist (see Appendix A). For ease of notation, we set
Rp =liment;:Lx(E)t; and  Rp =lim ey tiLr(F)t.

For each i € N, let ¢; be the map from ¢;Lx(F)t; to R and let ¢; be the map from
t;Lx(F)t; to Rp as defined in Definition A.1.1.

Now, for each i € N there exists a ring homomorphism @;¢; : t;Lx(F)t; — Rp,

and furthermore, for i < j,
(@505)0ij = @i(d50i5) = 6j(Pij i) = (8;8ij)Pi = Pihi-

Thus, by condition (ii) of Definition A.1.1, there exists a unique ring homomorphism

i R — Rp for which ¢;¢; = pp; for all © € N. By a similar argument, there exists
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a unique ring homomorphism p/ : Rr — Ry for which p;¢; ' = 1/, for all i € N.
This situation is illustrated in the following commutative diagram, which holds for

each pair 7,75 € N with ¢ < j:

tLK t; LK ) g
®i ¢>~7 M/ u’ ¢-7 on
tiLi(F t.Li(F)t;

In summary, there exist unique ring homomorphisms y : R — Rp and u' : Rp —

Rpg that satisfy the following equations:
@i = i and  @h; " = /' @;.

From the second equation we have ¢; = p/@;¢; = i/ pp; (substituting from the first
equation) for all # € N, and so, by appealing to the uniqueness given in Defini-
tion A.1.1 (ii), we have p/u = 1g,. Similarly, the first equation gives @; = pp;¢; ' =
p @iy and so pp' = 1g,. Thus g/ = p~! and we have Rg = Rr. However, as noted
above, the set {t; : k € N} forms a set of local units for Lx(F), and furthermore,
for each pair ¢, 7 € N with ¢ < j we have t; € t;Lg(E)t;. Thus, by Lemma A.1.2 we
have R = Lk (F), and so Rp = lim y.en tr L (F)ty, = Lg(F).

Now suppose that wy is a singular vertex in £ and let w; be any vertex in F' con-
tained in the ‘infinite tail’ added at wq in the desingularisation process. Furthermore,
let p; denote the path f; ... f; from wy to w; in F*. Define 7; : Lx(F)wy — Lx(F)w;
by x +— xp;. It is easy to see that 7; is a left Ly (F')-module homomorphism. Further-
more, Ly (F)w; is projective in L (F')-Mod, by Proposition 1.2.13. For an arbitrary
y € Lig(F)w;, we have y = yw; = ypip; = m(yp}), and so m; is an epimorphism.
Thus, by Lemma 1.2.10, L (F)w; is isomorphic to a direct summand of Ly (F)wy
as left Ly (F)-modules.
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By Lemma 2.1.9, we have Lg(F) = @,cpo Lx(F)v. Furthermore, Lg(F') is a
generator for Ly (F)-Mod (see Definition 1.3.10). Now, from the above paragraph

we have

Li(F) = @ Li(F)v

veF0

_ (ea LK<F>U) o ( P LK<F>wi)

veEEY w; EFO

~ (@ LK(F)U> D ( £ Awi>

veEEY w; EFO

where each w; € F° is contained in an infinite tail based at wy (for some singular
vertex wp) and A,, is a direct summand of L (F)wy. For ease of notation, let
H = @, cpo Lx(F)v. Then we have that @, cpo Aw, is a direct summand of H,
since A,, is a direct summand of Ly (F)wy for each singular vertex wy € E°. From
the above equation, we have an isomorphism between a subset of H® H and L (F),
which implies we have an epimorphism from H @ H to Lk (F'). Since Lg(F) is a
generator for Ly (F)-Mod, for any M € Lg(F)-Mod there exists an index set [
and epimorphism 7 : Lg(F )(I) — M. This induces an epimorphism 1 : H?) =
HD o HD — M, and so H is a generator for Ly (F)-Mod.

Now, note that we have Ly (F)ty, = Lx(F)(v1 + -+ vp) = @ ypicpy L (F)v;
for each & € N. Thus is it easy to see that lim yen L (F)tx = @D, epo Lx(F)v = H.
Note that each Ly (F)t; is projective (by Proposition 1.2.13), is finitely generated
(with generating set {t;}) and is a direct summand of H. Thus H is a locally projec-
tive generator for Ly (F)-Mod (see Definition 1.3.14) and so by Proposition 1.3.15
any ring that is isomorphic to lim ey End(Lg (F)tx) must be Morita equivalent to

Ly (F).

Finally, by Lemma 1.2.2 we have End(Lg (F)ty) = t, L (F)tx, and so
h_II}l kEN End(LK(F)tk) = ll}nkeN tkLK<F)tk = LK<E)

Thus Lg(F) and Lk (FE) are Morita equivalent, completing the proof. O



Chapter 3

Socle Theory of Leavitt Path
Algebras

In this chapter we define the notion of a socle and give a precise description of the
socle of an arbitrary Leavitt path algebra in Section 3.2. Furthermore, we expand
this definition to a socle series in Section 3.4, and again describe the socle series
of a Leavitt path algebra, applying the concept of a quotient graph introduced in
Section 3.3. To begin, we introduce some preliminary ring-theoretic definitions and

results.

3.1 Preliminary Results

Definition 3.1.1. Let R be a ring. Recall that L is a minimal left ideal of R if
L # 0 and there exists no left ideal K of R such that 0 C K C L. The left socle of
R, denoted soc;(R), is defined to be the sum of the family of minimal left ideals of
R (or the zero ideal, if R contains no minimal left ideals). We can define the right

socle of R, denoted soc,(R), similarly.

It is clear from the definition that soc;(R) is a left ideal of R. However, what is
slightly less obvious is that it is also a right ideal of R, as the following proposition

shows.

81
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Proposition 3.1.2. For any ring R, soc;(R) is a two-sided ideal of R.

Proof. Since soc;(R) is clearly a left ideal of R (since it is the sum of left ideals), it
suffices to show that soc;(R) is also a right ideal of R. Take an arbitrary nonzero
element s € soc;(R) and an arbitrary nonzero r € R. Since s € soc(R), we can
write s = l; + ... + [,, where each [; € L, and L; is a minimal left ideal of R. Thus
sr=1ULr+ ...+ l,r, and so it suffices to show that [;r € soc;(R) for each i.

Take an arbitrary minimal left ideal L; of R and define ¢ : L; — R by ¢(x) = xr,
for all x € L;. It is easy to see that ¢ is an R-module homomorphism: clearly ¢ is
additive, and for any " € R and = € L; we have ¢(r'z) = (r'z)r = r'(ar) = r'¢(z).

Since ker(¢) is a left ideal contained in L; and L; is minimal, then either ker(¢) =
L; or ker(¢) = {0}. In the former case, this gives ¢(L;) = {0}. In the latter case,
¢ is a monomorphism, and so ¢ : L; — ¢(L;) is an isomorphism of left R-modules.
Specifically, ¢(L;) is a minimal left ideal of R. In either case, ¢(L;) C soc;(R), and

thus zr € soc¢(R) for every x € L;. In particular, [;r € soc;(R) and we are done. [

A similar proof shows that soc,(R) is also a two-sided ideal of R.

For a given ring R, a left R-module is semisimple if it is the direct sum of
simple submodules. If we view R as a left module over itself, then R is semisimple
if it is the direct sum of minimal left ideals. Thus we have that soc;(R) = R if and

only if R is semisimple.

An ideal I is said to be nilpotent if there exists a k € N such that

I* ::{inl...xik::cijefforalli,j andneZ}zo.
i=1

A ring R is said to be semiprime if it contains no nonzero two-sided nilpotent
ideals. Furthermore, a ring R is said to be nondegenerate if aRa = 0 for some
a € R implies that a = 0. The following proposition shows that these two concepts

are equivalent.

Proposition 3.1.3. Let R be a ring. Then R is semiprime if and only if R is

nondegenerate.
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Proof. Suppose that R is nondegenerate. Let I be a nonzero two-sided ideal of R
such that I™ = 0 for some n € N. Let ny be the minimum such n and set J = ™01,
Thus J is a nonzero two-sided ideal and J? = 0. Let a be an arbitrary element of
J. Then, since Ra C J, we have aRa C J? = 0. Since R is nondegenerate, a = 0
and so J = 0, a contradiction. Thus R is semiprime.

Conversely, suppose that R is semiprime and that aRa = 0 for some a € R.

Recall that RaR is the two-sided ideal given by

RaR = {Zmasi i1, 8, € Ryn € Z}.

i=1
Then (RaR)?> = (RaR)(RaR) C R(aRa)R = 0, and so RaR = 0, since R is
semiprime. Now let J be the two-sided ideal generated by a, so that

J = {Znasi—l-Zr;a—i-Zas;%-ma:ri,si,r;,sgc ER,mEZ}.
i J k

Then any element of J? must be a sum of elements of the form zay, where z,y € R,
and so J3 C RaR and thus J® = 0. Since R is semiprime, we have that J = 0 and

so a = 0, since a € J. Thus R is nondegenerate. ]

The following proposition shows, somewhat surprisingly, that if R contains no
nonzero two-sided nilpotent ideals then it cannot contain any nonzero left or right

nilpotent ideals either.

Proposition 3.1.4. Let R be a ring. Then R is semiprime if and only if R contains

no nonzero left (or right) nilpotent ideals.

Proof. Clearly if R contains no nonzero left (or right) nilpotent ideals then it contains
no nonzero two-sided nilpotent ideals and must therefore be semiprime. To prove
the converse, suppose that R is semiprime and let I be a nonzero left ideal of R
such that I™ = 0 for some n € N. As in the proof of Proposition 3.1.3, we can find
a left ideal J such that .J is nonzero and J? = 0. Take an arbitrary element nonzero

x € J and let L be the two-sided ideal generated by x, so that

L= {ansi—i-Zr;x—l—sz;ijx : 7’2-,81-,7“;,5; € R,m € Z}.
i J k
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Since L? C RzR and Rz C J, we have
L° C (RxR)(RrR) C RtRxR C J*R = 0.

Thus, since R is semiprime we have that L = 0, and so x = 0. Since z was an
arbitrary element of .J, we have that J = 0, a contradiction. Thus R contains no
nonzero nilpotent left ideals. Similarly, we can show that R contains no nonzero

nilpotent right ideals. ]

We now move on to describing the general form of minimal left ideals. The

following proposition is from [J2, Proposition 3.9.1].

Proposition 3.1.5. Let D be a minimal left ideal of a ring R. Then either D* = 0
or D contains an idempotent e such that D = Re = {re : r € R}.

Proof. Suppose that D? # 0. Then there exists b € D such that Db # 0. Since Db
is a nonzero left ideal contained in D and D is minimal, we have Db = D. Now let J
be the left annihilator of b in R; that is, J = {r € R:rb = 0}. It is clear that J is a
left ideal of R and, furthermore, JN D # D, since otherwise we would have Db = 0.
Since J N D is a left ideal contained in D we must therefore have J N D = 0. Now,
Db = D implies that eb = b for some e € D. Thus b = eb = €*b and so (e —e?)b = 0.
Therefore e —e? € JN D = 0 and so e = e2. Since b is nonzero, e is nonzero, and so
Re is a nonzero left ideal contained in D. Thus Re = D, as required. Finally, note

that Re = {re : r € R} since e is an idempotent. O
Proposition 3.1.5 leads immediately to the following corollary.

Corollary 3.1.6. Fvery minimal left ideal of a semiprime ring R is of the form Re,

where e s an idempotent in R.

We can show similarly that every minimal right ideal of a semiprime ring R is
of the form eR, where e is an idempotent. Note that the converse is not necessarily
true: for a given idempotent e in a semiprime ring R, Re and eR may not be minimal
left or right ideals. However, the following proposition from [L1, Lemma 1.19] shows

that if one of these is minimal then both are.
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Proposition 3.1.7. Let R be a semiprime ring and let e be an idempotent in R.

Then Re is a minimal left ideal if and only if eR is a minimal right ideal.

Proof. Suppose that Re is a minimal left ideal of R. To prove that eR is a min-
imal right ideal of R it suffices to show that e € aR for any nonzero a € eR (by
Lemma 1.1.6). Now, if @ € eR then a = et = ¢*t = ea (for some ¢t € R), and
thus aR = eaR. Since R is semiprime it must be nondegenerate, and so ea # 0
implies that eaRea # 0. Thus easea # 0 for some s € R. Let ¢ : Re — Re
be the R-homomorphism defined by ¢(x) = zase. Noting that ¢ = e* € Re,
we have ¢(e) = ease # 0, and so Im(¢) # 0. Thus, since Re is a minimal
left ideal we have Im(¢) = Re. Similarly, ¢(e) # 0 implies that ker(¢) # Re
and so ker(¢) = 0. Thus ¢ is an isomorphism of left R-modules. Therefore
e = ¢ 'gp(e) = ¢ '(ease) = eap~'(se) € eaR = aR, and so eR is a minimal

right ideal of R. A similar argument shows the converse. ]
Finally, we have this useful result from [J2, Theorem 4.3.1].
Proposition 3.1.8. Let R be a ring. If R is semiprime, then soc;(R) = soc,.(R).

Proof. Since R is semiprime, Corollary 3.1.6 tells us that that the left socle of R
is the sum of minimal left ideals of the form Re, where e is an idempotent in
R. Furthermore, by Proposition 3.1.7 we know that Re is a minimal left ideal if
and only eR is a minimal right ideal. Thus, if soc;(R) = >, Re;, then ) . e;R C
soc,(R). Therefore each e; € e;R C soc,.(R) and so, since soc,(R) is a two-sided
ideal, soc;(R) = ), Re; C soc,(R). Using a similar argument, we also have that

soc,.(R) C so¢(R), and so soc,(R) = soc;(R). O

3.2 The Socle of a Leavitt Path Algebra

In this section we show that the socle of a Leavitt path algebra Ly (F) is closely
related to the line points of the associated graph E. Indeed, in Theorem 3.2.11 we
show that for any graph E we have soc(Li(FE)) = I[(P,(F)), the ideal generated by
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the line points of E. We begin with the following proposition, shown in [AMMS2,
Proposition 3.4].

Proposition 3.2.1. For an arbitrary graph E, the Leavitt path algebra Li(E) is

semiprime.

Proof. Suppose that Lk (F) is not semiprime, so that there exists a nonzero ideal
I such that I? = 0. Take a nonzero x € I. By Proposition 2.2.11, there exist
Y,z € Li(FE) such that either yzrz = kv for some nonzero k € K and some v € E°,
or yrz =y k" for some k; € K (not all zero) and some ¢ € E*, where ¢ is a
cycle without exits in . Now I cannot contain a vertex v, since v = v? € I? = 0,
a contradiction. So we must have Y ki € I. Let p=>_1" k" and let k be

the (nonzero) coefficient of the term of maximum degree in p. Since p? = 0, we have

k* =0 and so k = 0, a contradiction. Thus L (E) must be semiprime. O

Proposition 3.1.8 and Proposition 3.2.1 lead immediately to the following corol-

lary.

Corollary 3.2.2. Let E be an arbitrary graph. Then soc;(Lk(E)) = soc,(Lk(E)).

In light of this result, we will drop the terms ‘left’ and ‘right’ and simply refer
to the ‘socle’ of a Leavitt path algebra Ly (FE), which we denote by soc(Lk(FE)).

Recall that a vertex is a bifurcation if it emits two or more edges, and that a
vertex v is a line point if there are no bifurcations or cycles based at any vertex
w € T(v). We say that a path p contains a bifurcation if the set p°\{r(p)}
contains a bifurcation. The following related lemma is from [AMMS]1, Lemma 2.2],
and though it is given there in a row-finite context, the proof remains valid for the

arbitrary case.

Lemma 3.2.3. Let E be an arbitrary graph and let u,v be in E°, with v € T'(u). If

there is only one path joining u and v and it contains no bifurcations, then Ly (E)u =

Li(E)v as left Lx(E)-modules.

Proof. Let p be the unique path for which s(p) = u and r(p) = v. By Lemma 2.1.10

we have that p*p = v. Furthermore, since p contains no bifurcations, for each edge
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e; in p we have s(e;) = e;ef (by the (CK2) relation). Using the same logic as in the
proof of Proposition 2.2.11, page 59, this gives pp* = u.

Define a map ¢, : Lg(E)u — Lg(E)v by ¢p(z) = xp. Similarly, define a map
¢p * Lk (E)v — Li(E)u by ¢p«(y) = yp*. These maps are easily seen to be left
Lk (E)-module homomorphisms. Furthermore, we have ¢,«¢,(z) = xpp* = 2u =z
and ¢,¢,+(y) = yp*p = yv = y. Thus ¢, and ¢, are mutual inverses, and so
Lig(F)u = Lg(E)v as left Lg(F)-modules, as required. O

We now embark on a series of results concerning left ideals and minimal left ideals
of a Leavitt path algebra L (E), building towards our main result in Theorem 3.2.11.
The following proposition is from [AMMS]1, Proposition 2.3|, and though it is given
in a row-finite context, it is easily adapted to the arbitrary case by requiring that u

is a regular vertex rather than simply ‘not a sink’.

Proposition 3.2.4. Let E be an arbitrary graph and uw € E° be a reqular vertex
with s (u) = {f1,...,fu}. Then Lx(E)u = @, , Lx(E)fifF. Furthermore, if
r(fi) # r(f;) for i # j and we let v; = r(f;), then Lx(E)u = @), Lx(E)v;.

Proof. By the (CK2) relation, we know that w = > | fif#, and so Lx(E)u =
Sov  Lr(E)fif. To show that this sum is direct, note that the f;f#* are orthogonal
idempotents by the (CK1) relation: (fify)(fify) = Li(f7 fi)fi = fir(f)fF = fif7,
while (fif7)(f5f7) = fi(fi f;)f; = 0 for i # j. Thus, if z;f; f; = Z;L:L#i xjfi [} for
some z;,x; € Lk (E), multiplication on the right by f;f’ gives z;f;f = 0, and so

the sum is direct.

To prove the second assertion, we define a map ¢ : Lx(E)u — @._, Lx(E)v;
by ¢(z) = >, «fi. It is clear that this map is a left Ly (FE)-module homomorphism.
Now suppose that ¢(z) = Y ", zf; = 0 for some © € Lg(E)u. This gives 0 =
(i xfi)r(f;) = xf; for each j € {1,...,n} (since r(f;) # r(f;) for i # j), and
sor =au =) ofiff =0. Thus ker(¢) = {0} and so ¢ is a monomorphism.
Now consider an arbitrary element y = > " y; € @, Lx(E)v;. Then > " y;fi €
Li(F)u and

¢<Z?:1 ?/zﬁ) = Z?:l (¢(yzfz*)) = Z:'L:l (Z?:l ylfz*fj) = Z:Lzl(ylfz*fl) =Y,
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since y; i fi = yiv; = y; for each i € {1,...,n}. Thus ¢ is an epimorphism, complet-
ing the proof. [

The following proposition from [AMMS2, Lemma 4.3] considers the case in which

w 18 an infinite emitter.

Proposition 3.2.5. Let E be an arbitrary graph and let uw € E° be an infinite emitter
with s7'(u) = {fi}ier (where I is an infinite index set). Then @, ; Lx(E)f;f; C

Proof. First, note that the sum ) ., Lx(E)f; f; is direct since {fi f; }icr is a set of
mutually orthogonal idempotents (by the (CK1) relation). Now, since r(f]) = u
wer L (E) fif{ € Lg(E)u. Suppose the converse
containment holds, so that v € @, ; Lk (E)f;f; (since u = u* € Li(E)u). Then
u =73 x;f;f;, where {f;} is a finite subset of s~'(u) and each z; € Lx(F). Since

for each i, we have the inclusion €

u is an infinite emitter, there exists a ¢ € s~ '(u) such that g # f; for each j.
Thus g = ug = > ;z;f;ffg = 0 by the (CK1) relation, a contradiction. Thus
@B,c; Lx(E)fifi is properly contained in Ly (E)u, as required. O

The previous two results lead to the following corollary.

Corollary 3.2.6. Let E be an arbitrary graph and let uw € E°. If T(u) contains a

bifurcation then Lk (E)u is not a minimal left ideal.

Proof. Let v € T(u) be a bifurcation, and let p be a path from u to v. Let v
be the first bifurcation occuring in p, so that there are no bifurcations between w
and vyg. Whether vy is a regular vertex or an infinite emitter, Proposition 3.2.4
and Proposition 3.2.5 give that Lx(FE)vy is not a minimal left ideal, since for any
fi € s71(vg) we have that Li(E)f;f is a left ideal properly contained in Ly (E)uvp.
By Lemma 3.2.3, we have Lg(F)u = Lg(E)vy as left Lg(E)-modules, and thus

Li(F)u is not a minimal left ideal. O

From Corollary 3.2.6 we can begin to see a relationship between minimal left
ideals and line points forming. The following proposition from [AMMS1, Corollary
2.4] reinforces this notion. Though their proof is given in a row-finite setting, it

holds for arbitrary graphs as well.
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Proposition 3.2.7. Let E be an arbitrary graph and let w € E°. If there is a closed
path based at u, then Ly (E)u is not a minimal left ideal.

Proof. Let pu be a closed path based at u and suppose that L (FE)u is a minimal
left ideal. By Corollary 3.2.6, there cannot be a bifurcation at any vertex in 7'(u).
In particular, p cannot contain any bifurcations and so must be a cycle without
exits. Consider the left ideal Ly (FE)(u + ). This ideal is nonempty, since u + p =
u(u+ p) € Lg(E)(u+ p). Furthermore, it is contained in Lg(E)u since r(u) = .
Thus, by the minimality of L (F)u, we have Lx(E)(u+p) = Lk (E)u. Specifically,
we have u € Lg(E)(u+ p).

Thus we can write u = Y., k;o;(u + p1), where the o; are monomials in Ly (E)
and k; € K. Using a similar argument to the one found in the proof of Proposi-
tion 2.2.11, each a; must begin and end in u and is therefore either a power of y or
p* (since p is a cycle without exits). Thus we can write u = P(u, u*)(u + u), where

P is a polynomial with coefficients in K; that is,

where each [; € K and m,n € N. Using the same argument found in the proof of
Theorem 2.3.1, we can deduce that _; =0 =1; for all i > 0. Thus u = lgu(u+p) =

lo(u + ), which is impossible, and so Lk (E) cannot be minimal. O

The following proposition was first given in [AMMSI1, Theorem 2.9] and then
generalised to the arbitrary case in [AMMS2, Theorem 4.12]. However, a far simpler
proof is given in [ARM1, Proposition 1.9], and it is this proof that we present below.

Proposition 3.2.8. Let E be an arbitrary graph and let v € E°. Then Li(E)v is
minimal if and only if v € P(E).

Proof. Suppose that v is a line point in . We begin by showing that every nonzero
L (F)-endomorphism of Li(FE)v is an automorphism. By Lemma 1.2.2 we have
that End(Lg(E)v) & (vLg(E)v)P. Take an arbitrary element x € (vLg(E)v)°P.
Then = = v(> ., kipigt)v = > ki(vpigiv), where each p;,¢; € E* and n € N.
If vp;gfv # 0 for some i € {1,...,n}, then s(p;) = s(¢;) = v and r(p;) = r(q).
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Thus p; and ¢; are both paths from v to r(p;). Since v is a line point there can only
be one such path and so p; = ¢;. Furthermore, since p; contains no bifurcations
we have vp;gfv = v (see the proof of Lemma 3.2.3). Thus x = (D_ k;)v and so
End(Lg(E)v) 2 (vLg(E)v)?? = Kv. Since Kv is a field with identity element v,
every nonzero element of End(Lg(F)v) is invertible and thus is an automorphism.

Now let a be an arbitrary nonzero element in L (F)v. Since Lk (FE) has local
units, Lx(E)a # 0. Furthermore, since Lx (E) is semiprime we have (L (E)a)? # 0,
and so there exist b,¢ € Lg(FE) such that (ca)(ba) # 0. Define ¢ : Lg(E)v —
Li(E)v by ¢(x) = z(ba). Then ¢(a) = aba # 0 and so ¢ is a nonzero endomorphism,
and therefore an automorphism. Thus, since v € Li(E)v, we must have v = d(ba)
for some d € Lg(FE). Therefore v € Lg(E)a and so, by Lemma 1.1.6, L (F)v is

minimal.

Conversely, suppose that Ly (F)v is minimal. Suppose by way of contradiction
that T'(v) contains vertices with bifurcations, and choose a bifurcation vertex u €
T'(v) such that the path p connecting u and v is of the shortest length possible.
Since p contains no bifurcations, by Lemma 3.2.3 we have Lg(E)u = Lg(E)v, and
so0 Lk (E)u is minimal. By Proposition 3.2.7, there cannot be a cycle based at u.

Let e be an edge in E' with s(e) = u. We claim that Lg(E)u = Lg(E)ee* ® C,
where C' = {x — zee* : x € Lg(E)u}. To show this, first take y € Ly (E)u. Then
y = yee* +y —yee* € Lg(E)ee* + C. Now take z € Lg(E)ee* + C. Then, for
some 1,5 € Lg(E), z = ree* + su — suee® = ree*u + su — suee*u € Lg(E)u, and so
Lk (E)u = Lk (E)ee*+C. To show the sum is direct, suppose that z € Lg(E)ee*NC,
so that z = tjee* = tou — tauee* for some t1,ty € L (E). Then tou = tiee* + tyee*,
and so multiplying on the right by e gives toe = t1e+tye. Thus t1e = 0 and therefore
z = 0, showing the sum is direct.

Suppose that C' = 0. Then, taking x = u in the definition of C', we must have
u — ee* = 0. Now, since u is a bifurcation, there must exist an edge f € E' such
that s(f) =w but e # f. Thus f = uf = ee*f = 0, which is absurd. Therefore C' is
nonzero, and thus Lk (E)u is not minimal, a contradiction. Thus v must be a line

point. O]
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Proposition 3.2.8 leads to the following lemma from [AMMS1, Proposition 4.1]

Lemma 3.2.9. Let E be an arbitrary graph. Then

> Li(E)u C soc(Lk(E)).

uEP, (E)

The reverse containment does not hold in general.

Proof. By Proposition 3.2.8, we know that Ly (F)u is a minimal left ideal for any
vertex v € P/(F) and is therefore contained in the socle. To show that the converse

containment is not true, we give the following counterexample. Let E be the graph
ol <2 % > oW

By Lemma 2.2.9, L (FE) = My(K) @ My(K). By Lemma 1.1.10, My(K) is simple
and so the only minimal left ideals of My(K) @ My(K) are My(K) @ {0} and {0} ®
My (K). Thus soc(Lg(F)) = My(K)@&My(K) and so Lk (F) coincides with its socle.
However, soc(Lx(E)) = Li(E) # > ,cpp) Lx(E)u = Lr(E)v+ Lg(E)w, since for
instance z ¢ Lx(E)v + Li(E)w. To see this, suppose that z = zv + yw for some
7,y € Lg(F). Then z = 2? = zvz + ywz = 0, a contradiction. O

So far we have shown that any principal left ideal of Ly (F) generated by a line
point u is contained in the socle of Lx(E), but we have not quite given a precise
formulation of the socle. The following theorem, from [AMMS1, Theorem 3.4],
brings us one step closer to doing so. Though the original proof is given for the
row-finite case, it is easily generalised to the arbitrary case by applying the relevant

generalised results.

Theorem 3.2.10. Let E be an arbitrary graph and let x be an element of Lk (F)
such that Lx(E)x is a minimal left ideal. Then there exists a vertex v € P(E) such
that L (E)x = Lg(E)v as left Lk (E)-modules.

Proof. Consider € Lk (FE). By Proposition 2.2.11 we have two cases; we show that

the second case is not possible.
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Suppose that there exist elements y,z € Lg(F) such that yzz is a nonzero

element in

wLlg(E)w = { Z kic' for m,n € N and k; € K},

where c is a cycle without exits in E based at a vertex w € E°. For ease of notation,
let A\ = yrz € wLi(F)w. Since Lk (E)yx is a nonzero left ideal contained in Ly (E)x
and Ly (F)z is minimal, we must have Ly (E)yr = Lg(F)z. Furthermore, we can
define a map ¢, : Lx(F)r — Lg(E)xz by ¢.(a) = az for all @ € Lg(E)z. Clearly
¢, is a nonzero epimorphism. Also, since L (E)x is minimal and ker(¢,) # Li(F)x
(since 0 # yxz € Im(¢,)), we have ker(¢.) = {0} and so ¢, is a monomorphism.
Therefore Lx(F)r = Lg(FE)rz = Lg(E)yrz = Lig(F)A, and so Lg(E)A is a mini-
mal left ideal of L (F).

We now show that (wLg(E)w)A is a minimal left ideal in the subring wL g (E)w.
By Lemma 1.1.6 it suffices to show that, for any nonzero a € (wLk(E)w)\, we
have A € (wLk(F)w)a. Since a € Lig(FE)\ and Lk(E)A is minimal in Lg(FE), we
have Li(F)a = Lig(FE)A, and so A € Lg(E)a. Therefore A = w\ € wlkg(E)a =
(wLk(E)w)a, as required.

It is straightforward to see that the function ¢ : wLg(E)w — K[t,t7] given
by ¢(w) =1, ¢(c) =t and ¢(c*) =t~ (and expanded linearly) is an isomorphism.
This implies that ¢((wLg(FE)w)A) is minimal in K[t,t~!]. However, K[t,t"!] has no
minimal left ideals. To see this, suppose that f(t) = S2._, a;t’ and g(t) = > i bt
are two nonzero elements of R = K|[t,t7']. Without loss of generality, we can
suppose that aj, # 0 and b,, # 0, so that f(t)g(t) = apb,t**™ + higher powers # 0.
Thus R is an integral domain. Now suppose that R contains a minimal left ideal I
and let = be a nonzero element of I. Since 22 € I and [ is minimal, /] = Rz?, and so
x = ya? for some y € R. Since R is an integral domain, this gives 1 = yo € I and
so I = R. Thus R is a field. However, this is a contradiction, since it is easy to see
that not all elements in R have an inverse (for example, 1+ t). Thus K[t, '] has
no minimal left ideals, and so the second case of Proposition 2.2.11 is not possible,

as claimed.

Therefore we must be in the first case of Proposition 2.2.11, and so there exist
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elements y, z € Li(E) such that yrz = kv # 0, for some v € EY and k € K. Now
Lg(E)v = Lg(E)k kv C Lg(E)kv and so Ly (F)v = Lg(E)kv. Using the same
argument as in the second paragraph of the proof, we have Ly (E)x = Lg(F)yzz =
Li(E)kv and so Lx(E)xr = Li(FE)v as left Li(FE)-modules, as required. Finally,
since Lk (FE)v is therefore minimal, by Proposition 3.2.8 we have v € P(F). O

Now we come to the main result of this section, where we describe precisely the

structure of the socle of a Leavitt path algebra.

Theorem 3.2.11. Let E be an arbitrary graph. Then soc(Lk(FE)) = I[(P/(F)) =
I(H), where H is the hereditary saturated closure of P/(FE).

Proof. First, we show that soc(Lg(E)) C I(P/(FE)). Let I be a minimal left ideal
of Li(FE). Since Lk (FE) is semiprime, by Corollary 3.1.6 there exists an idempotent
a € Lg(F) such that I = Lg(E)a. Furthermore, by Theorem 3.2.10 we have
Lg(E)a = Lg(E)u for some v € P(FE). Thus there exists a left Ly (E)-module
isomorphism ¢ : Lig(F)a — Lg(E)u and we can find elements x,y € Ly (E) such
that ¢(a) = zu and ¢~ (u) = ya, giving

a=¢'¢(a) = ¢ (2u) = 2u ¢ (u) = zuyo.

Thus a = z(uw)ya € I(P(F)), and so I = Lg(E)a C I(P(FE)) and therefore
soc(Lx(F)) C I(P(F)).

For the converse containment, take a vertex v € PF(FE). By Lemma 3.2.9,
we have Lg(F)v C soc(Lkg(E)) and so, since soc(Lg(FE)) is a two-sided ideal,
Lig(E)YoLg(F) C soc(Lg(E)). Since this is true for all v € PF(F), we have
Lx(E)P(E)Lk(E) = I(P(F)) C soc(Lk(FE)), and so soc(Lk(FE)) = I(P(FE)).
Finally, Lemma 2.2.2 gives I(P,(E)) = I(H), where H is the hereditary saturated
closure of P(FE). O

Theorem 3.2.11 leads immediately to the following useful corollary.

Corollary 3.2.12. For an arbitrary graph E, the Leavitt path algebra Li(FE) has
nonzero socle if and only if Pi(E) # 0.



CHAPTER 3. SOCLE THEORY OF LEAVITT PATH ALGEBRAS 94

Example 3.2.13. We now use Theorem 3.2.11 to compute the socle of some familiar

Leavitt path algebras.

(i) The finite line graph M,. Every vertex in M, is a line point, and so by
Theorem 3.2.11 we have soc(Lx(M,)) = I[(P(M,)) = I((M,)°) = Lx(M,). Thus,
since Lk (M,) = M, (K), we also have that soc(M,,(K)) = M,,(K) for all n € N.

(ii) The rose with n leaves R,,. The graph R,, contains a single vertex v that is
the base of n cycles; in particular, v is not a line point. Thus P(R,) = 0 and so
soc(R,) = 0. Thus, since Lk (R,) = L(1,n), we also have that soc(L(1,n)) = 0 for
all n € N.

(iii) The infinite clock graph Cs. In this case, the line points of C', are the radial
vertices v;, so that P(Cy) = {v;}2,. Thus we have soc(Lx(Cx)) = T({v:}2;).
Recall from Example 2.1.7 the isomorphism ¢ : Lg(Cx) — @ My(K) & Kl
that maps each vertex v; to (E11);, the element of @;°, My(K) with Ej; in the i
component and zeros elsewhere. Thus soc(;”; Ma(K) & K1) is the two-sided
ideal generated by the set {(FE11);}52,. Note that this ideal contains any matrix unit
(Emn)j, since (Eng)j = (Emi)j(E11)j(E);, and since such matrix units generate

;- M(K) we have

SOC (éMg(K} D KIQQ) = éMg(K)

3.3 Quotient Graphs and Graded Ideals

In Section 3.4 we will examine the socle series of a Leavitt path algebra, a concept
that naturally extends the socle. In doing so we will need to consider quotient rings
of the form Ly (E)/I, where I is a graded ideal of Lx(FE). Thus, in this section we
will examine some properties of graded ideals I of Lx(F) and quotient rings of the
form Lg(F)/I. In particular, we show in Theorem 3.3.8 that, for any graded ideal I
of Lg(FE), Lx(F)/I is isomorphic to the Leavitt path algebra of a ‘quotient graph’

of E, a concept we define below.
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Many of the results in this section are thanks to Tomforde, whose paper [To]
gives many valuable results regarding the ideal structure of a Leavitt path algebra.

We begin with the following definitions.

Definition 3.3.1. Let E be a graph and let H be a hereditary saturated subset of
E°. The set of breaking vertices of H, denoted By, is defined to be the set

By = {v € E°\H : v is an infinite emitter and 0 < |s™*(v) N r 1 (E°\H)| < oco}.

In other words, a breaking vertex is an infinite emitter that emits an infinite number
of edges into H, while emitting only a finite number of edges into the rest of the

graph. Note that if F is row-finite then By is always empty.

Furthermore, we say that (H, S) is an admissible pair of F if H is a hereditary
saturated subset of E° and S C By.

We use these definitions to define the quotient graph E\(H,S).

Definition 3.3.2. Let E be an arbitrary graph and let (H,.S) be an admissible pair
of E. The quotient graph E\(H,S) is defined as follows. Let B}, be a set of
duplicates of By, and write By, = {v' : v € By}. Let S’ = {v/ € B, : v € S}. We
define

(E\(H,5))" = (E"\H) U (By\5") and

(E\(H,S))! ={e€ E':r(e) ¢ HYU{€ : e € E' with r(e) € Bg\S}.

Furthermore, the source and range functions sg\(g,s) and rg\(m,s) coincide with sg
and g when applied to {e € E' : r(e) ¢ H}, while we define sp\(m,5)(¢/) = sg(e)
and rg\(m,9)(¢') = (re(e)). If S =0, we often write E\(H,S) as simply E|H.

Thus, to form the quotient graph E\(H,S) we first remove all vertices u € H
and all edges e € E' with r(e) € H. Then, for each breaking vertex v € By \S, we
add a new vertex v’ to the graph. Furthermore, for each edge e with r(e) = v, we
add a new edge €’ to the graph, running from s(e) to v’. Note that this construction

implies that every v' € B \S’ is a sink.
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Example 3.3.3. Consider the following graph E:

e2
U1 o2

€1

ol o2

o!3
where (00) denotes an infinite number of edges. Let H = {uy,uq,us}. Then H is
clearly a hereditary saturated subset of £°. Furthermore, both v; and v, emit an

infinite number of edges into H and a single edge into E°\H. Thus By = {v,vs}.

If we choose S = {vy}, then the quotient graph E\(H,S) looks like:

€2
€1

Definition 3.3.4. Let E be a graph and let H be a hereditary saturated subset of
E°. For any v € By, we define

Note that, by the definition of a breaking vertex, this sum must be finite and is

therefore well-defined. Using the fact that e;ejejef = 045 e;ef (by the (CK1) relation),
it is easy to see that v is an idempotent.
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Definition 3.3.5. Let E be an arbitrary graph. For any admissible pair (H, S) of F,
we denote by I(p,sy the two-sided ideal in Lx(E) generated by the sets {v : u € H}
and {v” : v € S}. Note that if S is empty then Iy g = I(H).

The following proposition is from [To, Lemma 5.6] and describes the structure

of an ideal of the form I(y g). Here we have greatly expanded the proof for clarity.

Proposition 3.3.6. Let E be an arbitrary graph. For any admissible pair (H,S) of

E we have
It = span({aﬁ* r(a) =7(B) € HYU{aw"B* :r(a) =r(B) =w € S})
where each a, 3 € E*. Furthermore, Iy g) is a graded ideal of Lk (E).

Proof. Let J denote the right-hand side of the above equation. It is clear that every
element in J is in the ideal generated by {v : v € H} U{wf : w € S}, that is,
J C Ig,s). To show the converse containment, let x € (g g), so that

T = Z a;v;b; + Z Cjijdj,
J

]

where each a;,b;,cj,d; € Lg(E), each v; € H, each w; € S and the sums are finite.
By Lemma 2.1.8 we know that every element in Lg(E) is of the form ), kip;q;,
where each p;,q; € E* and each k; € K. Thus, omitting the scalars k; for ease of

notation, we can write the above expression as

T = Z(pliQZ)vi(pziq;‘i) + Z(pqui’})Wf (p2,95,);

i j
where each p,q € E*.

Take a nonzero term y = (p1¢7)v(p2q;) from the first sum. Since y is nonzero,
we must have s(q1) = s(p2) = v, and so y = p1¢ip2¢s. Since ¢jps # 0, Lemma 2.1.10
tells us that either p, = g1y or ¢ = po7 for some paths v, 7 in E. For the former
case, we have y = p1¢}(q17)q5 = p1ygs. Since s(p2) = v and r(p2) = r(v), we have
r(y) € T(v). Thus r(y) € H, by the hereditary nature of H. So, taking a = p;7y
and = g, we have y = ar(y)5* € J. For the latter case, we have y = p;7*¢;, and

a similar argument shows that again y € J.
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Now take a nonzero term z = (pi1g})w(paq;) from the second sum above.
Letting M = {e € E' : s(e) = w, r(e) ¢ H}, we can write z = (p1g})(w —
> eenr €€¥)(p2¢3) (from the definition of w). Again, since z is nonzero we must

have s(q1) = s(p2) = w and so
2= pigip2as — Y prgiee’ pag;.
ecM

We now consider three different cases.

Case 1: I(q1) = l(p2) = 0. In this case, since z is nonzero we must have ¢; =
p2 = w, and 80 2 = pywgs — Y. p Pree’qs. Thus, letting a = p; and 8 = g2 we have
z=ow"p* € J.

Case 2: I(q1) = 0, I(p2) > 0. Let f be the initial edge of po, so that p, = fpy.

Thus 2z = p1frhas — D ceprPree’ fohas. If r(f) ¢ H then f € M (since s(f) = w),
and so using the fact that e*f = 0 for all e € M such that e # f, we have

2 =p1fohas — puf T faas = pifrhas — pifphgs =0,

contradicting the fact that z is nonzero. Thus r(f) € H and so f ¢ M. Therefore
e*f =0 for all e € M and so z = pfphes. Since r(f) = s(py) € H, we have
r(py) € H, by the hereditary nature of H. Thus, letting o« = py fp}, and 5 = go, we
have z = ar(p,)s* € J. Using a similar argument, we can see that z € J for the
case that {(¢q1) > 0 and I(p2) = 0.

Case 3: I(q1) > 0, and I(py) > 0. Let p; = fp) and ¢ = gq}, where f, g €
BT f # g, then 2z = pi(q1)*g* frhas — Deens P1(dh) g ee” frhgs = 0 (since
g'e = 0 and/or e*f = 0 for all e € M), a contradiction. Thus f = g and
so 2 = pi(q)*Pads — D e P1(q1) free* frhgs. As in Case 2, if r(f) ¢ H then
z = pi(q)) Phags — p1(q1)*Phas = 0, a contradiction. So r(f) € H, f € M and we
have z = (p1(q))*)r(f)(phqs). Thus using the same argument as in Case 2, we have

z € J.
Thus z € J, and so I(g,s) € J, as required.

To see that I( g is graded, note that each term af*, where r(a) = r(3) € H, is

homogeneous of degree |a| — |3|. Furthermore, for any v € S, v¥ is by definition an
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element of degree 0, so again we have that each term av’ 3 is homogeneous of degree
|| — |B]. Thus each element in Iy, g) can be expressed as the sum of homogeneous
elements of the form af* or av™3*. Since each of these homogeneous elements is

also in Iy sy, by definition, Iy ) is therefore a graded ideal. ]

If H is a hereditary and saturated subset of E°, then taking S = () and applying
Proposition 3.3.6 we get

I(H) =span({af* : o, f € E*,r(a) =7(0) € H}).

Thus Proposition 3.3.6 allows us to describe precisely the elements of an ideal I(y,g)

(or I(H)) in a relatively simple way. This will prove valuable in future results.

If (H,S) is an admissible pair in E then, by definition, I(z,g) is generated by the
set of vertices u € H and the set of elements v for which v € S. It is natural to ask
if Iys) also contains vertices that are not in H, and elements v” for which v ¢ S.
The following proposition, which has been adapted from the beginning of the proof
of [To, Theorem 5.7], shows that this is in fact not possible.

Proposition 3.3.7. Let E be an arbitrary graph and let (H,S) be an admissible
pair of E. Then Iig g N E°=H and {veBy: vl e [(H,s)} =39.

Proof. We begin this proof by setting up a homomorphism between Ly (E) and
Lk (E\(H,S)) that we will refer to again in later proofs, particularly the proof of
Theorem 3.3.12. Define ¢ : L (F) — Lix(E\(H,S)) on the generators of Lx(FE) as

follows: )
) if v € (E°\H)\(Bg\S)
p(v) =4 v+ ifve By\S
0 ifveH,

e if r(e) € (E°\H)\(Bg\9)
ple) =4 e+e ifr(e) € By\S
0 if r(e) € H
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and
e* if r(e) € (E°\H)\(Bg\9)
p(e’) = e+ ()" ifr(e) € By\S
0 if r(e) € H.

Extend ¢ linearly and multiplicatively. To begin, we must check that ¢ preserves the
Leavitt path algebra relations on Ly (FE), a rather technical and tedious procedure.
However, for the sake of completeness we will show this process in full for this

particular proof. For ease of notation, we set (E°\H)\(By\S) =T

First, we check that the (A1) relation holds, i.e. that ¢(v;)¢(v;) = ;5 ¢(v;) for
all v;,v; € E°. We must examine several different cases:

Case 1: v;,v; € T. Then ¢(v;)p(v;) = viv; = di5v; = 0ij P(v;).

Case 2: v; € T,v; € By\S. Then ¢(vi)p(v;) = vi(vj +v5) = 65 v; = 045 P(v;) (we
know that v; # v} since v; ¢ Lx(E)). A similar argument shows the relation holds
for v; € By\S,v; € T

Case 3: v;,v; € By\S. Then ¢(v;)p(v;) = (vi + v))(v; + vj) = vv; + vjvj =
0ij (v +v)) = 65 (v;).

Case 4: Either v; or v; € H. Then ¢(v;)p(v;) = 0 = 0;; ¢(v;).

Next, we check that the (A2) relations hold. First, we check that ¢(s(e))p(e) =
o(e) for all e € E.

Case 1: s(e),r(e) € T. Then ¢(s(e))p(e) = s(e)e = e = ¢(e).

Case 2: s(e) € T,r(e) € Bg\S. Then ¢(s(e))o(e) = s(e)(e+¢€') =e+e = ¢(e),
since s(e’) = s(e).

Case 3: s(e) € Bg\S,r(e) € T. Then ¢(s(e))p(e) = (s(e) + s(e))e = s(e)e =
e = ¢(e) (we know that s(e)’e = 0 since every v € B}, is a sink).

Case 4: s(e),r(e) € By\S. Then ¢(s(e))p(e) = (s(e) + s(e)')(e + €') = s(e)e +
s(e)e =e+¢e = o¢(e).

Case 5: s(e) € H. Then, since H is hereditary, r(e) € H and so ¢(s(e))p(e) =
0= ¢(e).

Case 6: s(e) € E'\H,r(e) € H. Then ¢(s(e))o(e) = 0= ¢(e).

Next, we check that ¢(e)¢(r(e)) = ¢(e) for all e € E.
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Case 1: r(e) € T. Then ¢(e)p(r(e)) =er(e) = e = ¢(e).

Case 2: 7(e) € By \S. Then ¢(e)p(r(e)) = (e+¢€')(r(e)+r(e)) = er(e)+e'r(e) =
e+e = d(e)

Case 3: r(e) € H. Then ¢(e)op(r(e)) =0 = ¢(e).

By very similar arguments, we can show that ¢(r(e))o(e*) = ¢(e*) and that
o(e*)o(s(e)) = o(e*) for all e € EL.

Next we check that the (CK1) relation holds, i.e. that ¢(e})p(e;) = 0;;0(r(e;))
for all e;,e; € E*.

Case 1: r(e;),r(e;) € T. Then ¢(e])p(e;) = efe; = 0;r(e;) = di;P(r(e;)).

Case 2: 7(e;) € T,r(e;) € Bp\S. Then ¢(ef)o(e;) = €j(ej +€}) = diyr(e;) =
dij¢(r(ei)) (we know that e; # €} since €} ¢ Li(F)). A similar argument shows that
the relation holds for r(e;) € By\S,r(e;) € T.

Case 3: 7(e;),r(ej) € Bu\S. Then ¢(e})d(e;) = (ef + (e;)")(e; +¢€;) = efe; +
(€1)"€) = 0ij(r(e:) +r(ei)) = 0i0(r(ei))-

Case 4: Either r(e;) or r(e;) € H. Then ¢(e})p(e;) = 0= 0;;¢(r(e;)).

Finally, we check that the (CK2) relation holds, i.e. that ¢(v—>_ ee*) =0

sg(e)=v
for all regular vertices v € E°. Specifically, v is not a breaking vertex.

If v e H, s(e) = v implies that r(e) € H since H is hereditary. So

cb(v— > ) =ov) = Y ole)pler) =0.

sg(e)=v sg(e)=v
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Otherwise, we can assume that v € T'. Thus we have

¢<v— > ) =) — > dlee)— D> dlee’) = > ¢lee”)

se(e)= sg(e)=v sg(e)=v sg(e)=v
r(e)eT r(e)éBg\S r(e)e
=v— Z ee* — Z (e+e)(e* + (e)%)
sg(e)=v sg(e)=v
r(e)ET T‘(E)EBH\S
=0 — Z ee* — Z (ee* +€'(e')")
sg(e)=v sg(e)=v
T(C)ET T’(E)EBH\S

=y — E ee”

SE\(H,S) (e)=v

= 0, for the following reason.

We know that v must emit at least one edge e with r(e) ¢ H, because otherwise the
saturated property of H would imply that v € H. Thus v is not a sink in E\(H, S5).
Furthermore, since v is not an infinite emitter in £, and since v must emit only a
finite number of new edges ¢’ in E\(H, S), v is not an infinite emitter in £|H. Thus
v is a regular vertex in E\(H,S) and so we are able to apply the (CK2) relation in
the final step above. Thus ¢ preserves the Leavitt path algebra relations on £ and

is therefore a K-algebra homomorphism.

We now show that I(zs) C ker(¢). By definition, I(z ) is generated by the sets
{v:ve H}and {vf : v € S}, so it suffices to show that all such generating elements
are mapped to 0 under ¢. We know that ¢(v) = 0 for all v € H. Now consider an
element v, where v € S. Then, using the same argument as we did when checking
the (CK2) relation, we have

(v = gzﬁ(v - Z ee*> =v— Z ee* — Z (ee” +¢€'(e')"),
LT Vo S
noting that ¢(v) = v since v € T = (E°\H)\(Bg\S). Note that since v € S C By,
v must be a regular vertex in E\(H,S), by the definition of a breaking vertex.
Furthermore, we have

Z ee* — Z (ee’ +¢€'(e)") = Z ee”,

sg(e)=v sg(e)=v SE\(Hys)(E):’U
r(e)eT r(e)éBg\S
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and so by the (CK2) relation ¢(v) = 0, as required. Thus I(z,s) C ker(¢).

Now suppose there exists w € I(g,5)NE® such that w ¢ H. Then either ¢p(w) = w
or ¢(w) = w+w' (by the definition of ¢), a contradiction since /(x5 C ker(¢). Thus
Iigs) N E° = H. Similarly, suppose there exists v € By \S such that v” € Iy ).
Then

p(vf) = qb(v - Z ee*) =(v+)— Z ee* =
B( (e)¢H

sg(e)=v,r(e sp\(m,s)(e)=v

(following the same argument as above). Once again, this contradicts that Iy s) C

ker(¢) and so {v € By : v € Iy} =S, completing the proof. O

Note that if we take S to be the empty set, the statement of Proposition 3.3.7
simplifies to I(H) N E° = H for all hereditary saturated subsets H of E°.

Now we come to perhaps the most important result of this section, which shows
that, for any admissible pair (H, S) of a graph E, the quotient ring Lx (E)/I(p,s) is
in fact isomorphic to the Leavitt path algebra of the quotient graph F\(H,S). This
powerful result is from [To, Theorem 5.7(2)]. Here we have greatly expanded the

proof for clarity.

Theorem 3.3.8. Let E be an arbitrary graph and let (H,S) be an admissible pair
of E. Then
Lg(E)/Ins) = Lr(E\(H,S)).

Proof. Define ¢ : Lig(FE\(H,S)) — Li(E) on the generators of Ly (FE\(H,S)) as

follows:
(v if v € (E°\H)\(Bpy\S)
P(0) = § D iomorteygn e if v € Br\S
| v if v =v" € By\S5',
(¢ if r(e) € (E°\H)\(Bx\5S)
ple) =49 ep(r(e)) if r(e) € Bg\S
L ep(r(e)) ife=¢
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and
e if r(e) € (E°\H)\(Bg\9)
pe) =< o(r(e)) e if r(e) € By\S
o(r(e))e* ife=¢

Extend ¢ linearly and multiplicatively. Furthermore, define ¢* : Lx(E\(H,S)) —
Lk(E)/Ins by ¢*(x) = ¢(x) + Ius). It can be verified that ¢, and therefore ¢*,
preserves the Leavitt path algebra relations on Ly (E\(H,S)). This a straightfor-
ward but tedious process, with several subcases for each relation, so here we will
just provide a sample calculation: we show that the (CK1) relation efe; = d;;7(e;)

is preserved for the case r(e;),r(e;) € By\S. In this case we have

*

p(e7)p(ej) = o(r(e:)) eje; p(r(e;))
= 055 p(r(es)) r(e:) (r(es))
=05 (Xstmymrteortrogn Jild) (€ (Eotomreorison ifl)
= 0 (Xotomricorirgn fif?)
= 035 p(r(€s)),

as required. Checking that these relations are preserved ensures that ¢* is indeed a

K-homomorphism.

To show that ¢* is a monomorphism, we will apply the Graded Uniqueness The-
orem (Theorem 2.2.13). We know that Iy g) is Z-graded (by Proposition 3.3.6), and
so Lig(E)/In,s) is Z-graded. Furthermore, ¢ (and therefore ¢*) is a graded homo-
morphism, since it takes generating elements to elements of equal degree. To show
that ¢*(v) # 0 for all v € (E\(H, S))?, it suffices to show that p(v) ¢ Iy s for all
v e (E\(H,S))". Suppose that v € (E°\H)\(Bg\S). Then ¢(v) =v ¢ Iy ), since
IinsyNE® = H and v ¢ H (by Proposition 3.3.7). Now suppose that v € By\S.
Then @(v) = 3 (o)—yr(e)gm €€"- Suppose that ¢(v) € Im,s) and choose a fixed edge
[ for which s(f) =vand r(f) ¢ H. Then f*o(v)f = >, )—preen [Tee"f =71(f) €
I(n,s), since Iy gy is a two-sided ideal. However, this implies r(f) € H, a contra-
diction, and so ¢(v) ¢ I(ys). Furthermore, if v' € B \S’ then ¢(v') = v & Iy g),

since v € Itm,sy implies v € S (again by Proposition 3.3.7), a contradiction since
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v € By\S. Thus p(v) ¢ I(g,s) for all v € (E\(H, S))?, so we can apply the Graded

Uniqueness Theorem to obtain that ¢* is indeed a monomorphism.

To show that ¢* is an epimorphism, note that Lx(FE)/I(u,s) is generated by
elements of the form af* + Iy g), where a, f € E*, r(a) = r(8) and of* ¢ Iiu,s).
Suppose |a| = |B] = 0, so that aB* = v for some v € E. Now if v € H then
v € I(n,g), a contradiction. So v ¢ H. Now suppose || > 0. If a contains an edge
e such that r(e) € H, then r(«) € H, since H is hereditary, and so o* € I(,s), a
contradiction. Thus «, and similarly /3, contains no edges such that r(e) € H. Thus

Li(E)/Iu,s) is generated by the set
{fv+Imsy:vg HYU{e+ Ius :r(e) g HYU{e" + Ius) :r(e) ¢ H}.

Since ¢*(x) = ¢(x) + I(u,s), it suffices to show that the set {v:v ¢ H}U{e:r(e) ¢
H}u{e* :r(e) ¢ H} is in the image of p. If v € (E°\H)\(Bx\S), then v = ¢(v).
If v € By\S, then
v = Z ee* + v = p(v) + ).
REp
Similarly, if r(e) € (E°\H)\(Bg\S), then e = p(e) (and e* = p(e*)). If r(e) €
Bp\S, then by the above equation we have

e = er(e) = e(p(r(e)) + @(r(e))) = ep(r(e)) + ep(r(e)’) = ple) + p(e)

(and e* = p(e*) + p((e')*)). Thus ¢* is an epimorphism. Therefore ¢* is an isomor-

phism, so we have Lx(E)/Ius) = Lrx(E\(H,S)) as required. O

Note that if we take S to be the empty set then Theorem 3.3.8 simplifies to
Lk(E)/I(H) = Lk (E|H).

So far we have been exclusively considering graded ideals of the form Iy g).
However, as the following theorem shows, any graded ideal of L (F) is in fact of
the form Iy ) for some admissible pair (H,S) of E. This result has been adapted
from [To, Theorem 5.7(1)].

Theorem 3.3.9. Let E be an arbitrary graph and let I be a graded ideal of Ly (E).
Ifwelet H=TNE® and S ={w € By : w” € I}, then I = Iy ).
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Proof. Let I be a graded ideal of Lx(F) and let H and S be the two sets de-
scribed above. Clearly we have Iy ) C I, from the definition of Iy ). By The-
orem 3.3.8, there exists an isomorphism ¢* : L (E\(H,S)) — Lk (E)/In,s). Let
7 Lg(E)/Iins) — Li(E)/I be the quotient map, so that m(z + Iiys) = .+ I.
Note that this map is well-defined, since I( gy € I. Consider 7p* : Lg(E\(H,S)) —
Lk (E)/I. Now, since [ is graded so too is Li(F)/I. Furthermore, both 7 and ¢*
are graded (by definition), and so wp* is also graded.

We wish to show that w¢*(v) # 0 for any v € (E\(H, S))°. Note that mp*(v) =
m(p(v) + L) = p(v) + I, so it suffices to show that ¢(v) ¢ I for all v €
(E\(H,S))° We proceed in a similar fashion to the proof of Theorem 3.3.8. Sup-
pose v € (E°\H)\(Bg\S). Then ¢(v) = v ¢ I, since H = I N E° (by definition)
and v ¢ H. Now suppose v € By\S. Then ¢(v) = > \_, ()¢n €€ Suppose
that ¢(v) € I and choose a fixed edge f for which s(f) = v and r(f) ¢ H. Then
1) f = 3 g)=vriergn [e€"f = r(f) € I, since I is a two-sided ideal. However,
this implies r(f) € H, a contradiction, and so ¢(v) ¢ I. Furthermore, if v' € Bj\S’
then ¢(v') = v ¢ I, since v# € I implies v € S (by the definition of S), a contra-
diction as v € By\S. Therefore we have mp*(v) # 0 for any v € (E\(H,S)), as
required.

Thus, since mp* is a graded homomorphism between two graded rings, we can
apply Theorem 2.2.13 to give that my* is injective. Since * is an isomorphism, this
implies that 7 is injective. Thus 7 must be the identity map and so Li (E)/I(u.s) =
Lk (E)/I and therefore Iy ) = I, as required. O

Note that if E is a row-finite graph, then E° cannot contain any breaking vertices
and so the set S in the statement of Theorem 3.3.9 will always be empty. Thus in
the row-finite case we have that I = I(H) for any graded ideal I of Ly (FE), where
H=1nE".

Since Theorem 3.3.9 tells us that all graded ideals of L (E) are of the form I g)
for some admissible pair (H,S) of E, and Proposition 3.3.6 describes the structure
of such an ideal, we can now describe the structure of any graded ideal of Ly (F).

We state this explicitly in the following corollary.
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Corollary 3.3.10. Let I be a graded ideal of Lx(FE). Then
I =span({af*:a,8 € E*,r(a) =r(8) € HY U{aw" 3" :r(a) = r(B) =w € S}),

where H=1NE° and S = {w € BY : wH € I}.

Theorem 3.3.9 also leads to the following useful corollary.
Corollary 3.3.11. For an arbitrary graph E, the Jacobson radical J(Lk(E)) = 0.

Proof. We know that L (F) is Z-graded and that E° is a set of local units for
Lk (FE), with each element of E° homogeneous. Thus, by Lemma 1.1.8 we have
that J = J(Lg(F)) is a graded ideal. Furthermore, Theorem 3.3.9 tells us that
J = Jus), where H = JNE® and S = {w € B¥ : w? € J}. However, by
Lemma 1.1.7 we know that J(R) cannot contain any nonzero idempotents, and
so H = (). By the definition of By, we must also have that S = (), and thus
J(Lk(E)) = 0. O

We finish this section with a result that will prove useful when examining the
socle series of a Leavitt path algebra in Section 3.4. This proof is based on the
homomorphism ¢ : Lg(F) — Lx(E\(H,S)) that we defined in the proof of Propo-
sition 3.3.7, as well as the isomorphism given in Theorem 3.3.8. This result is stated
in a simpler form in [ARM1, Theorem 1.7(ii)] and the reader is referred to Tom-
forde’s [To, Theorem 5.7]. However, Tomforde does not prove this result explicitly,

and so we provide details of the proof here.

Theorem 3.3.12. Let E be an arbitrary graph and let H be a hereditary saturated
subset of E°. Then there is an algebra epimorphism ¢ : Lx(E) — Li(E\(H,S))
for which ker(¢) = Iin,g).

Proof. Recall the homomorphism ¢ : Lig(E) — Lg(E\(H,S)) from the proof of

Proposition 3.3.7. To show that ¢ is an epimorphism, it suffices to show that ¢

maps onto the set of generators of Li(F\(H,S)); that is, each vertex, edge and

ghost edge of L (E\(H,S)) is in the image of ¢. We begin by checking the vertices.
Case 1: v ¢ By\S. Then ¢(v) = v.
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Case 2: v' € B}\S'". Then we have ¢(v) = v’ (see the final paragraph of the
proof of Proposition 3.3.7).
Case 3: v € By\S. Then ¢(v —vf) = (v +0') — v/ = 0.

Next, we check the edges.

Case 1: r(e) ¢ By \S. Then ¢(e) =

Case 2: r(e/) = v € By \S. Then ¢(ev )= (e+e)N =¢.
Case 3: r(e) = v € Bg\S. Then ¢(e —ev?) = (e+¢€') — ¢ =e.

Similar arguments show that the ghost edges of E\(H,S) are also in the image

of ¢. Thus ¢ is an epimorphism, as required.

Since ¢ is an epimorphism, we have that Ly (E)/ker(¢) = Lx(E\(H,S)). We
denote this isomorphism by ¢ : Lg(E)/ker(¢) — Lx(E\(H,S)), where ¢(z +
ker(¢)) = ¢(x). To complete the proof, we must show that ker(¢) = I(g,s). From
the proof of Proposition 3.3.7, we know that I(y gy C ker(¢). To show that we have

equality, we first show that the isomorphism

¢"¢: Li(E)/ker(¢) — Li(E\(H,S)) = Li(E)/In.s)

sends x + ker(¢) to x + Iy for all x € Lg(E), where ¢* is the isomorphism
defined in the proof of Theorem 3.3.8. To show this is true, it suffices to show it
for the generators of Li(FE), that is, the set E° U E' U (E')*. For v € H, we have
v € Iimsy C ker(¢), so trivially ¢*¢(v + ker(¢)) = v + I(ms), since v + ker(¢) and
v+ Iius) are the zero elements of Li(E)/ker(¢) and Lg(E)/I(n,s), respectively.
The same is true for all e € E' and e* € (E')* with r(e) € H.

For a generating element y that is not contained in I g g), it suffices to show that
©¢(y) =y, since in that case we have p*¢(y+ker(¢)) = ¢*(¢(v)) = ¢od(y)+ L5y =
y + I(m,s). Consider v € (E°\H)\(Bg\S). Then p¢(v) = ¢(v) = v. Similarly, we
have pp(e) = p(e) = e for all e € E' (and pg(e*) = p(e*) = e* for all e* € (E')*)
with 7(e) € (E°\H)\(Bg\S).

Now consider v € By \S. Then ¢p(v) = o(v+v') = 37 1y pieyen €€ +07 =0,
by the definition of v¥. Thus, for any e € E! with r(e) € By\S we have p¢(e) =
ple+¢e) = e(p(r(e)) + p(r(e))) = er(e) = e. Similarly, for any e* € (E')* with
r(e) € By \S we have po(e*) =
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Thus ¢*(¢(x + ker(¢))) = x + Iiu,s) for all v € Lg(F), as required. Suppose
that ker(¢) # I(u,s), so that there exists some a € ker(¢) for which a ¢ Iy s). In
that case ¢*(¢(a + ker(¢))) = a + I(y,s), which is impossible since a + ker(¢) is
zero in Ly (E)/ker(¢) while a + I(p,g) is a nonzero element of Lg(E)/Iy,g). Thus

ker(¢) = I(p,s), as required. O

Note that this proof relies on the fact that we already know that Ly (E)/I(g,s) =
Lx(E\(H,S)) from Theorem 3.3.8. If we could show that ker(¢) = I\ g directly,
then this would also prove Li(E)/In,sy = Lx(E\(H,S)), making Theorem 3.3.8
redundant. However, while we can easily show that I gy C ker(¢), it is not clear

how to show that ker(¢) C Iy s) without appealing to Theorem 3.3.8.

3.4 The Socle Series of a Leavitt Path Algebra

Definition 3.4.1. Let R be any ring and let 7 = 2/#l. The Loewy left ascending
socle series, or simply left socle series, of R is the well-ordered ascending chain

of two-sided ideals
0250§51§"'§Sa§3a+1§"' (Oé<7')
where, for each a < 7,

Sat1/Sa = soc(R/S,) if y=a+1isnot alimit ordinal, and
S, = U, S if v is a limit ordinal.

a<ly Y

For each a@ < 7, S, is called the a-th left socle of R (and in particular, S; =
soc;(R)). The least ordinal A for which Sy = Sy is called the left Loewy length
of R, denoted I(R). If R = S, for some «, then R is said to be a left Loewy ring
(of length «).

Starting with the right socle of R, we can define the right socle series of R (and

related terms) similarly.

Although the left and right socle series may differ in general, we will show in

Corollary 3.4.8 that they coincide for Leavitt path algebras. (Note that we already
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know soc;(Lk(E)) = soc,(Lk(E)) by Corollary 3.2.2.) Thus, since we will hence-
forth only be concerned with the socle series of Leavitt path algebras, there is no

need to specify ‘left’ or ‘right” when using terms related to the socle series.

In this section we give several results regarding the socle series of an arbitrary
Leavitt path algebra Li(F). In Theorem 3.4.7 we describe the a-th socle of L (FE)
for all ordinals «, and describe precisely when Lg(F) is a Loewy ring of length A.
Furthermore, in Theorem 3.4.12 we show that for any ordinal A there exists a graph

E for which Lk (F) is a Loewy ring of length A.

Example 3.4.2. We begin by examining the socle series of some familiar Leavitt

path algebras.

(i) The finite line graph M,. We saw in Example 3.2.13 that soc(Lk(M,)) =
S1 = Lg(M,). Thus Li(M,), and therefore M,,(K), is a Loewy ring of length 1
(for all n € N).

(il) The rose with n leaves R,,. In Example 3.2.13 we showed that soc(Lk(R,,)) =
S; = 0. By definition S5/S; = soc(Lg(R,)/S1), and so Sy = soc(Lg(R,)) = 0.
Thus S, = 0 for all ordinals «, and in particular Lx(R,), and therefore L(1,n), is

certainly not a Loewy ring for any n € N.

(iii) The infinite clock graph Cw. Recall that Cy, looks like:

U1 V2

17

ol —— o3

v

o4

We saw in Example 3.2.13 that soc(Lk(Cx)) = I(H), where H = {v;}3°,. Since H
is a hereditary saturated subset of E° (recalling that the saturated condition does
not apply at infinite emitters), we can apply Theorem 3.3.8 to get Lx(Cy)/I(H) =
Lig(Cx|H) = Lk({u}) = K. Now, since the only ideals of K are {0} and K, we
have soc(K) = K, and so Sy/I(H) = soc(Lx(Cx)/I(H)) = Lrk(Cx)/I(H). Thus
Sy = Lg(Cx) and so Lg(Cy) is a Loewy ring with Loewy length 2.
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We now look at a new example that will be integral to the proof of Theo-

rem 3.4.12. This example is a combination of Examples 2.1, 2.5, 2.6 and 2.7 from

[ARM1].

Example 3.4.3. We define a sequence of graphs P, as follows. First, let Py be the

graph consisting of a single vertex and no edges:
Py: o

Next, let P, be the ‘infinite line’ graph

P olL1 P oV1.3 @UL A i

Now we construct the graph P, from P; by adding a second row of vertices
{ve; : 7 € N} and edges from vy ; to vy ;41 for each j € N, effectively adding a
second ‘infinite line’ graph. We then connect the two rows of vertices by adding an

edge from v, ; to vy 1, for each j € N, giving the graph

P2 . P oV1,2 PR @Vl A >
oV21 o222 0V2.3 @U24 i

In general, we construct the graph P;.; from the graph P; by adding vertices
{vit1, : j € N} and, for each j € N, an edge from v;41; to v;11;+1 and an edge

from Vit1,j to Vi1-

Now, Lk (Py) = K, and so soc(Lk(Py)) = Lx(P). Thus Li(Fp) is a Loewy
ring with [(Lg(P,)) = 1. In the graph P;, every vertex is a line point, and so by
Theorem 3.2.11 we have soc(Lg(Py)) = I((P1)?) = Li(P;). Thus Lg(P) is also a
Loewy ring with I(Lk(P;)) = 1.

For the graph P, the set of line points is the top row of vertices H = {v;; :
j € N}. Note that H is both hereditary and saturated. Thus soc(Lg(FP2)) = I(H).
Furthermore, note that the quotient graph P,|H consists of the ‘bottom row’ of
vertices and edges and is clearly isomorphic as a graph to P;. Thus, by Theorem 3.3.8

we have

Lk (Py)/I(H) = Li(Po|H) = L (P1),
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and since Ly (P;) is a Loewy ring with I(Lg(P;)) = 1, Li(P,) is therefore a Loewy
ring with [(Lg(FP2)) = 2.

Using induction, it is easy to see that L (P,) is a Loewy ring with I(Lk(F,)) =n
for all n € N: to begin, we know this statement is true for n = 1 and n = 2. Now
assume it is true for n =i and consider the graph P;;;. The line points of P;,; are
again the set H = {v1; : j € N}, and P,4;|H is isomorphic to P,. Thus, as above,
Li(Piyq|H) = Lg(F;), and since Lk (F;) is a Loewy ring with [(Ly(P;)) = ¢ (by
our assumption), Ly (P;y1) is therefore a Loewy ring with [(Lg(Piy1)) =i+ 1, as

required.

If we view P; as being contained in P;;; for each ¢ € N, then {P;}cy is an
ascending chain of graphs. Thus, with w denoting the first infinite ordinal, we can

form the graph

P,={]JP.

1<w
Then, using the same argument as above, P,|P(P,) = P,, with S; C Sy C S3 C
o CUjew, Si = L (P,), and L (P,) is a Loewy ring with Loewy length w.

We now define a sequence of graphs @), that are very similar to the graphs
P,, except for one subtle but important difference. This example is from [ARMI,
Example 2.8].

Example 3.4.4. Let ); be the infinite line graph:

Ql : oW1l oW1,2 oW1,3 oWl A >

As in the previous example, we now add a second ‘infinite line’ graph, but this
time we connect the two rows of vertices from the lower to the upper by adding an

edge from w; j to wy; for each j € N, giving the graph

Q2 . oW2,1 oW2,2 oW2,3 oW2,4 .. >

R N———

oW1 1 oW1,2 oW1,3 oWl d >
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In general, we construct the graph ;.1 from the graph Q; by adding vertices
{wi41,; : 7 € N} and, for each j € N, an edge from w;;;; to w;41 ;41 and an edge
from w;; to w;y1,1. Contrast this with the construction of Py, in which we add
an edge from v;;1; to v;; for each j € N. Despite this difference, it is clear that
the graph @); is isomorphic to the graph P; for each ¢ € N. Thus the Leavitt path
algebra Ly (Q,) is a Loewy ring with I(Lx(Q,)) = n for all n € N.

Once again, viewing (); as being contained in ;1 for each i € N, we can form
the graph Q. = |J,., Qi This is where the two examples diverge. For each i € N,
P(P;) = {v1, : j € N} (which is independent of i) and so P(P,) = {v1; : j € N}.
However, P)(Q;) = {w;; : j € N} for each i € N, and so (), has no line points.
Therefore soc(Lk(Q.)) = {0}, and so S, = {0} for each a. Thus, while Lg(FP,) is

a Loewy ring, its counterpart Ly (Q,) is not.

We now give a definition that is an integral part of Theorem 3.4.7. This definition
is from [ARMI1, Definition 3.1], although this version differs from the published

version for reasons that will be explained after the proof of Theorem 3.4.7.

Definition 3.4.5. Let E be an arbitrary graph and let Ly (F) be its associated
Leavitt path algebra. Recall the definitions of the quotient graph E\(H,S) and v
from Section 3.3. For each ordinal v, we define transfinitely a subset V., of E° as

follows.

(i) V1 is the hereditary saturated closure of the set Pj(F).

Suppose v > 1 is any ordinal and that the sets V,, have been defined for all o < ~.
Let S, denote the a-th socle of L (FE) and define B, := {w € By, : w"> € S,}.

(ii) If v = @+ 1 is a non-limit ordinal, then V, = E° N I(V._,), defining
Vo =VaUW,UZ,,
where

W, = {w € E°\V, : w is a line point in the quotient graph E\(V,, B,)}
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and

Ly = {v— ee” :vEBVa\Ba}
s(e)=v,

r(e)¢Va

(iii) If v is a limit ordinal, then V, ={J,_, Va.

Lemma 3.4.6. Each subset V, (as defined in Definition 3.4.5) is a hereditary sat-
urated subset of E°.

Proof. We know that the set of line points of £ must be a hereditary subset of E°
since, given a vertex v € P(E), every vertex w € T'(v) must also be a line point, by
definition. Thus Vi, the hereditary saturated closure of P,(F), must be a hereditary

saturated subset of EC.

If 7 is a non-limit ordinal, then V, = E°NI(V.,,

), where I(V

a+1

) is as defined
above. Since I(V,,,) is an ideal, V, must be a hereditary saturated subset, by

Lemma 2.2.1.

For the case where v is a limit ordinal, take a vertex v € V, and a vertex
w € T(v). Since V, =

is hereditary, we have w € V,, and so w € V,. Now suppose that u is a regular vertex

o<y V., we must have v € V,, for some o < =, and since V,
in EY such that, for each e; € s™*(u), we have r(e;) € V,. Since V,, C V,4; for each
a < 7, there must exist some a < 7 for which r(e;) € V,, for all e; € s7!(u). Then,

since V,, is saturated, we must have that u € V,, and thus u € V,, as required. =~ [

We now come to the main result of this section. This theorem is from [ARMI,
Theorem 3.2], although it differs from the published version, which the author found
to be incorrect for a number of reasons. After correspondence with one of the authors
of the paper, the theorem was adjusted to the current version below. The differences
between versions and why the changes were made will be discussed after the proof.

The proof has also been expanded to clarify some of the arguments used.

Theorem 3.4.7. Let E be an arbitrary graph and let L (E) be its associated Leavitt
path algebra. For each ordinal «, let S, denote the a-th socle of Lk (E), and let V,
and B, be the subsets of E° and By, , respectively, defined in Definition 3.4.5. Then
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(i) Su is a graded ideal for each a;

(ii) V, = E°N S, for each a;

(iii) So = I (v, B.) for each a;

(iv) Lg(E)/Sq = L (E\(Va, Ba)) as graded K-algebras for each a; and

(v) Lk(E) is a Loewy ring of length X if and only if X is the smallest ordinal such
that E° = V.

Proof. We prove (i)-(iv) simultaneously by transfinite induction. For v = 1, V}
has been defined as the saturated closure of the set of line points of £. Thus, by
Theorem 3.2.11, we have S; = soc(Lk(FE)) = I(V1). By Proposition 3.3.6, S; is a
graded ideal (proving (i)), and by Proposition 3.3.7 we have S; N E® = Vi (proving
(ii)). Since Sy = I(V4) = I ), Proposition 3.3.7 gives By = {w € By, : w" €
S1} = 0 and thus Sy = Iy, p,), proving (iii). Now (iv) follows directly from (iii) and
Theorem 3.3.8, and so we have shown that (i)-(iv) hold for the case v = 1.

Now suppose that v > 1 and that properties (i)-(iv) hold for all @ < 7. Sup-
pose that 7 is a non-limit ordinal, so that v = a + 1 for some «, and suppose
that V,, # E° (so that S, # Lg(E).) Recall (from Definition 3.3.2) the sets By,
By, and the quotient graph Ly (E\(Va, Ba)). Let ¢ : Lg(E) — Lg(E\(Va, Ba))
be the epimorphism defined in the proof of Proposition 3.3.7 and V/,, be the set
defined in Definition 3.4.5. Consider ¢(Vi, ;) = ¢(Vo) U d(Wo) U ¢(Z,), a subset of
L (E\(Va, Ba)). By the definition of ¢, we have ¢(V,,) = {0}.

Let W, = {v1,v9, ..., w1, wy, ...}, where each v; € (E°\V,)\(By,\B,) and each
w; € BVQ\BOz- Thus

¢(Wa) = {Ul7v27 coe, W + w17w2 + wé, .. }

Recalling from the proof of Proposition 3.3.7 that ¢(u;i — 3o =u, re)ev. €€7) = U;
for each u; € By, \B,, we also have ¢(Z,) = By, \B,,. Thus

qb(valc—i—l) = {U17U27 coe, Wy wllaw2 + wé, .. } U (B(/Q\B&)
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Now, since each w; € By, \B,,, each w; = (w; + w;) — w; € I(¢(V,,,)), and so
HO(V21) = I({o1, 00, s, } U (BY \BL) = T(Wa U (By \BL)).

By definition, W, is the set of all line points in E\(V,, B, ) that are also vertices in
the original graph E. Furthermore, the only new vertices introduced into E\(V,, B,)
are the set By, \B,,, which are sinks (and therefore line points) by definition. Thus
Pi(E\(Va, Ba)) = Wo U (By, \B,,) and so, by Theorem 3.2.11,

s0c(L (E\(Va, Ba)) = I(P(E\(Va, Ba))) = I(Wa U (By,\B,)) = 1(¢(Vay1))-

Now, by our induction hypothesis we have I(y, p,) = Sa, and so by Theorem 3.3.8
we have Lx(F)/S, = Li(E\(V., B.)). Specifically, the function ¢ : Ly (E)/S, —
Li(E\(Va, By)) with ¢(x + S,) = ¢(x) is an isomorphism. Thus, from the socle

series definition we have
Seat1/Sa = soc(Lx(E)/Sa) = soc(Lx(E\(Va, Ba))) = 1(¢(Vas)) = ¢(1(Vain))-
Thus $<5E+1/55):: ¢(I(V;+1)% and so

Sa+1/Sa =0~ (O(1(Vas)) = I(Vasr)/Sa,
giving Say1 = I(V,1). Thus Vo = I(V., ) N E® = S,1 N EY, proving (ii).

By our inductive hypothesis, S, and soc(Lk(E\(V,, By)) are graded. Further-
more, Sai1/Sa = soc(Lg(E\(V,, By))) and so S,41 is graded, proving (i). Since
Sat1 is graded, by Theorem 3.3.9 So11 = Img), where H = S, N E° and
S ={w € By : w? € Sq;1}. From above, we have H = V,,,; and so S = B,y (by

the definition of By41). Thus Saq = I
directly from (iii) and Theorem 3.3.8.

Vai1,Basq), Droving (iil). Again, (iv) follows

Thus we have shown properties (i)-(iv) for when 7 is not a limit ordinal. If 7 is a
Se and V, =
graded, S, is also graded, proving (i). Furthermore, if V,, = S, N E° for each o < v
then it follows that V,, = S, N EY, proving (ii). As above, the fact that S, = Iy, 5.)

limit ordinal, then by definition S, = |J V... Since each S, is

a<ly a<ly

follows from (i) and (ii) and the definition of B,, and (iv) follows directly from (iii)
and Theorem 3.3.8. Thus we have established (i)-(iv) for all ~.
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Finally, note that Ly (FE) is a Loewy ring of length \ if and only if A is the smallest
ordinal for which Sy = Lg(F), by definition. By Lemma 2.2.3, Sy = Lg(F) if and
only if Sy N E® = EY that is, V) = E° (by (ii)). Thus Lk (FE) is a Loewy ring of
length X if and only if ) is the smallest ordinal for which Vy = E°, proving (v). [

The primary error in the original proof of [ARM1, Theorem 3.2] was the assump-
tion that S, = I(V,) rather than S, = Iy, p,). While the property S, = I(V,) was
not stated explicitly in the theorem itself, the assumption is implied when [ARM1,
Theorem 1.7(ii)] is invoked to give Lx(E)/S, = Lk(E|V,) during the induction
process. As shown in the proof above, the fact that V, = E°N S, (together with
Theorem 3.3.9) implies directly that S, = I, B,), and Iy, s,y # 1(Va) unless
B, = 0, which is not true in general. Thus we have changed the proof of Theo-
rem 3.4.7 accordingly and have added the statement S, = I(v, p,) as property (iii) for
clarity. Furthermore, [ARM1, Theorem 3.2(3)] states that ‘Lx(E)/S. = Lk (E|V,)
as graded K-algebras for each K’; here we have changed that to ‘Ly(FE)/S, =
L(E\(V,, By)) as graded K-algebras for each o’ in property (iv).

Furthermore, recall that we define W, in Definition 3.4.5 as
W, = {w € E°\V, : w is a line point in the quotient graph E\(V,, Ba)},

and that this definition allows us to conclude in the proof of Theorem 3.4.7 that
P(E\(Va, Ba)) = Wo U (B, \B,), an equality that is central to the proof. In
[ARM1, Definition 3.1], the corresponding set is defined as

{w € E°\V, : every bifurcation vertex u € T(w)\V, has at most one edge e

with s(e) = w and r(e) ¢ V,}.

However, such vertices will not necessarily be line points in the quotient graph
E\(V,, B,), since there is the possibility that a new edge ¢ with s(¢’) = u €
Tg(w)\V, will be added in the construction of E\(V,, B,), making u a bifurcation

in the quotient graph. Hence we have modified the definition in our version.

As promised at the beginning of this section, we now show that the left and right

socle series of a Leavitt path algebra coincide.
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Corollary 3.4.8. Let E be an arbitrary graph. For any ordinal o < 21Fx(BE)l - the
a-th left socle of Lx(E) is equal to the a-th right socle of Lk(FE).

Proof. We proceed using transfinite induction. For ease of notation we will denote
a-th left socle of Lk (E) by S, and the a-th right socle of Lk (E) by T,. For the
case o = 1, we have S; = soc;(Li(F)) = soc,.(Lk(F)) = Ty, by Corollary 3.2.2.
Now let 1 < a < 25BNl and suppose that Sz = Tj for all B < a. Moreover,
suppose that o = 3+1, where 3 is not a limit ordinal. Then, applying Corollary 3.2.2

and Theorem 3.4.7 (iv), we have

Sa/Sp = soci(Lk(E)/Sp) & soci(Li (E\(Vs, Bg)))
= s0¢, (L (E\(Vs, Bg))) = soc,(Lg (E)/Ts) = Tu /T3,

and since Sy = T3 we therefore have S, = T,.
Now suppose that « is a limit ordinal. Then we have S, = s, S5 = Ug.o T =
T,, completing the proof. O

We now proceed with several ring-theoretic results related to the socle series of
a Leavitt path algebra. Because some of these results rely on Theorem 3.4.7, the
proofs have had to be subtly adjusted. However, these adjustments have not led to
any changes in the results themselves. The first result is from [ARM1, Proposition

3.3.

Proposition 3.4.9. Let E be an arbitrary graph and let S, be the a-th socle of

Lg(E). Each S, is a von Neumann regular ring.

Proof. 1t is known (see for example [J2, pages 65, 90]) that for a semiprime ring R,
soc(R) is a direct sum of simple rings 7; and that each T; is the directed union of
full matrix rings over division rings. By the remark on p.67 of [L1], a matrix ring
over a division ring is von Neumann regular, and thus a directed union of matrix
rings over division rings must be von Neumann regular. Since soc(R) is a direct sum
of such rings, it must also be von Neumann regular. Now we know that Ly (E) is

semiprime by Proposition 3.2.1, and so S; = soc(Lg(F)) is von Neumann regular.
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We proceed by transfinite induction. Suppose that v > 1 and assume that S,
is von Neumann regular for each o < . Suppose « is not a limit ordinal, so that
v = a+1 for some . By Theorem 3.4.7 (iv), we have Lk (E)/Sq = Lx(E\(Va, Ba)),
and s0 Sa11/Sa = soc(Lk(FE)/S,) = soc(Lk(E\(Va, Ba))). Since the socle of a
Leavitt path algebra is von Neumann regular (by the paragraph above), we have
that So11/S4 is von Neumann regular. Furthermore, S, is von Neumann regular by

our inductive hypothesis and so S,+1 is von Neumann regular (by Lemma 1.1.9).

If v is a limit ordinal, then S, = Ua<7 Sq. Take a € S,. Then a € S, for some
a < 7, and since S, is von Neumann regular by our inductive hypothesis there exists
x € Sq C S, for which a = aza. Thus S, is von Neumann regular, completing the

proof. ]

Proposition 3.4.9, together with the yet-to-come Theorem 4.2.3, leads to the

following corollary.

Corollary 3.4.10. Let E be an arbitrary graph. If Lx(E) is a Loewy ring, then E

is acyclic and Lk (E) is locally K-matricial and von Neumann regular.

Proof. If Lk(E) is a Loewy ring then Lg(E) = S, for some a. Thus Lg(FE) is von
Neumann regular (by Proposition 3.4.9) and so, by Theorem 4.2.3, F is acyclic and
Lk (FE) is locally K-matricial. O

Note that the converse is not true: recall the graph ), from Example 3.4.3,
which was acyclic but not a Loewy ring since S, = {0} for all &. However, the
following corollary (from [ARM1, Corollary 3.5]) shows that we have equivalence

when EY is finite.

Corollary 3.4.11. Let E be a graph for which E° is finite. The following statements

are equivalent.
(i) Lk(E) is a Loewy ring
(i1) E is acyclic

(111) Lk (E) is von Neumann regular.
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Furthermore, if E* is also finite, then the previous conditions are equivalent to
(iv) Li(F) is semisimple (in this case, we have [(Lx(E)) =1).

Proof. Theorem 4.2.3 gives (ii) <= (iii), while Corollary 3.4.10 gives (i)=-(ii). To
show (ii)=-(i), suppose that E is acyclic. Since EY is finite, this implies that £ must
contain at least one sink, and so Fj(E) # (). Recall from Definition 3.4.5 that V; =
TE’) # (). If V; = E° then Lg(FE) is a Loewy ring (of length 1) by Theorem 3.4.7
(v). If not, then we can form the quotient graph E\(V4, B;1). This graph must also
be acyclic, since the only edges added in the construction of the quotient graph end
in sinks, by definition. Now, if the added vertices v" € By, \B] are the only sinks in
E\(Vi, B1), then the graph (E\(V1, B1)) \ ((By; \By)U{e' € (E\(Vi, B1))'}) contains
no sinks, a contradiction since this is also a finite and acyclic graph. Thus E\(V}, By)

must contain a vertex from the original graph E that is a sink in FE\(V1, By).

Now, by definition V5 contains the sets V; and
W, = {w € E°\V; : w is a line point in the quotient graph E\(Vi, B;)}.

By our observation above, W; # () and so Vi C V4, giving |V3| > |V3]. Again, either
Vo = E°, in which case we are done, or we can repeat the above argument to show
that |V3] > |Va|, and so on. Since EY is finite, this ascending chain of subsets of EY
must stop, eventually giving V,, = E° for some n € N. Thus Lg(F) is a Loewy ring
by Theorem 3.4.7 (v).

Now suppose that E! is finite and F is acyclic. Then, by Lemma 2.2.9, Lx(E) is
isomorphic to a direct sum of matrix rings over K. Since each matrix ring is simple
(by Lemma 1.1.10), Lk (E) is therefore the direct sum of simple left ideals and so is
semisimple, showing (ii)=-(iv). If Lx(FE) is semisimple, then soc(Lx(F)) = Lk (FE)
and so [(Lx(E)) = 1, as required. Thus Lg(F) is a Loewy ring, showing (iv)=-(i)
and completing the proof. O

We now come to the second main result of this section, which is from [ARMI,

Theorem 4.1].
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Theorem 3.4.12. For every ordinal A and any field K, there exists an acyclic graph
Py for which Ly (Py) is a Loewy ring of length \.

Proof. We construct a series of graphs P, that transfinitely extends the series intro-

duced in Example 3.4.3. For A = 1, we choose E = Py, the ‘infinite line’ graph

P oVL1 ovl2 ovL3 oULA

P, is clearly acyclic.

Now suppose that A > 2 is any ordinal, and suppose that the graphs P, have
been defined for all @ < A and that each P, has Loewy length a. There are three
possibilities for A. First, suppose that A = a + 1, where « is not a limit ordinal.
Then, in a similar manner to Example 3.4.3, we construct the graph P,,; from P,
by adding vertices {vo41; : j € N} and, for each j € N, an edge from v,41; to

U141 and an edge from vq41; t0 U4 1, giving

A
Pa+1 : oVl oVx.2 = @V — S gUad >
.Ua+1,1 [ .Ua+1,2 [ .Ua+1,3 [ .Ua+1,4 . >

Secondly, if A is a limit ordinal then we define

RZU%

a<<A

Finally, suppose that A = a + 1, where « is a limit ordinal. Then we construct
the graph P,;; from P, by adding a single vertex v,411 and, for each 8 < «, an

edge from v,41,1 to vg1, giving

Pa+1 : Pa U
(c0)

.Ua+1,1
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Note that in each case P, is acyclic (as required) and P, is a subgraph of P, for

all @ < A, giving a chain of subgraphs P, C P, C --- C P\_1 C P,.

We now show by transfinite induction that I[(Lx(P,)) = « for each ordinal .
We do this by showing that « is the smallest ordinal for which V,, = P? and then
applying Theorem 3.4.7 (v). For a = 1, we have V; = Fj(P)) = P}, since every
vertex in P; is a line point.

Now let A\ be any ordinal greater than 1 and suppose that Lx(P,) is a Loewy
ring of length « for all @ < A. Since each P, can be viewed as a subgraph of P, this
is equivalent to assuming that V,, = P for each o < A, where each V, is a subset of
P,

Suppose that A = 3+ 1, where (3 is not a limit ordinal. Now V3 = Pg, and since
there are no infinite emitters going into Vs we have By, = (). Thus it is easy to see

that the definition of V) simplifies to Vy = E® N I(V3 U W3), where W is the set
Ws = {w € PY\Vj : w is a line point in Py|V3}.

Now, since By, = () we have P5|V3 = Pi, and so every vertex in the set (Py\|Vp)? =
{vp415 : J € N} is a line point. Thus Vi = E° N I(P§ U {vg1; = j € N}) =
E°NI(PY) = PY. Furthermore, since V3 # P}, X is indeed the smallest ordinal for
which V) = P, as required.

Now suppose that A = 8 + 1, where  is a limit ordinal. Since vg;;; emits
an infinite number of edges into Vi3 = Pg and no edges into the rest of the graph,
we again have By, = (). Furthermore, every vertex in the graph P\|V = By is a
line point,! and so, by the same argument as above, we have that ) is the smallest
ordinal for which Vy = P}, as required.

Finally, suppose that A is a limit ordinal. Then V) = J, ., Vo = U\ P) = PY,
completing the proof. O

We finish this section with a result from [ARM1, Theorem 4.2] that shows there
exists an upper bound on the Loewy length of the Leavitt path algebra of a row-

finite graph. The proof of this theorem refers to the set W, from Definition 3.4.5.

'Recall from Example 3.4.3 that Py is the graph consisting of a single vertex and no edges.
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As noted earlier, this definition is different from the one seen in [ARM1, Definition

3.1] and so we have had to modify the following proof accordingly.

Theorem 3.4.13. Suppose that the Leavitt path algebra Ly (F) is a Loewy ring. If E
is a row-finite graph then Ly (E) must have Loewy length < wy, the first uncountable

ordinal.

Proof. Suppose that L (F) has Loewy length greater than wy. Let S,, be the w;-st
socle of Ly (E) and let V,,, be the set of vertices defined in Definition 3.4.5. Recall

from the definition that V, ;1 contains the set
W,, = {w € E°\V,, : w is a line point in E|V,, },

noting that B,, = ) since E is row-finite. Consider a fixed w € W,,. Now w is
not a line point in F, for otherwise we would have w € V; C V,,,. Furthermore,
since Lk (F) is a Loewy ring then E must be acyclic (by Corollary 3.4.10), and in
particular there cannot be a cycle based at any vertex in Tg(w). Thus Tg(w) must

contain at least one bifurcation.

Let U = {uy,us,...} be the set of bifurcation vertices in Tx(w) that are also
contained in Trgy, (w) (though indeed they are not bifurcations in E[V,, since w
is a line point in F|V,,). Since E is row-finite, for a fixed positive integer n the
number of paths of length n with source w is finite, and so the number of vertices
in Tp(w) is at most countable and thus |U| is at most countable. Furthermore, U
is not empty. To see this, suppose that U is empty and let p be a path of minimum
length in £ from w to a bifurcation v € Tg(w). Since the only vertices removed
in the construction of E[V,, are in the set V,,, if u ¢ Ty, (w) then there must
be a vertex v € p° for which v € V,,, (noting that we may have v = u). However,
since there are no bifurcations between w and v, the saturated nature of V,,, implies
that w € V,,,, a contradiction. Thus U is not empty. Note that, by definition, each
u; & V..

As noted above, each u; € U cannot be a bifurcation in E|V,,. Thus each u;

must emit at most one edge into E°\V,,, and so, since it is a bifurcation in F, u;
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emits at least one edge into V,,. For each u; € U, let s™'(w;) = {ei,,..., €5, } (a

finite set since E' is row-finite), and define
Ji={ei, € s (ug) i r(e;;) € Vo, }

Note that each of these sets is nonempty since each u; emits at least one edge into
V.., as explained above. From the definition of J; we have r(.J;) C V,,,. Thus, since

Vo, = U(Kw1 Vi, for each u; € U we have r(J;) C V,, for some o; < wy.

Let v = sup{e; : i = 1,2,...}, so that | r(J;) C V., (noting that v < wy,

u €U
since U is countable). Thus the quotient graph E|V, contains none of the edges in
Uu,cu Ji- Since each u; emits at most one edge into E°\V,,,, and therefore at most
one edge into E°\V,,, each u; must be a line point in E|V,. Thus, by Theorem 3.2.11,
each w; € soc(Lk(E|V;). Recall the definition of ¢ : Lg(E) — Lg(E|V,) from
Proposition 3.3.7. Since each u; ¢ V,,, we have u; ¢ V, and so ¢(u;) = u,;. Letting
¢ : Lxg(E)/S, — Lx(E|V,) be the isomorphism defined by ¢(z + S,) = é(z), we
therefore have ¢~!(u;) = u; + S,. Thus we have

Sy1/8y =soc(Lg(E)/S,) = soc(Lk(E|V,),

and specifically ¢~ [soc(Lg(E|V;))] = Sy41/5;.

Since each u; € soc(Lg(E|V;)), we have u;+S5, € S,41/S,. Thus each u; € S,41,
and so u; € S, 1NEY =V, CV,, contradicting the fact that each u; ¢ V,,,. Thus
Lk (F) has Loewy length < wy, as required. O]

One may be tempted to think that w, the first countable ordinal, would be
an upper bound for the Loewy length of Li(FE) in the case that E is row-finite.
However, [ARM1, Example 4.3] constructs a series of row-finite graphs P, for which
the Loewy length of Lg(FP,) = « for each a < wy, thus showing that w; is indeed
the best possible upper bound.



Chapter 4

Regular and Self-Injective Leavitt
Path Algebras

In this chapter we define various notions of ‘regularity’ for a ring and examine Leavitt
path algebras with these properties in Sections 4.2 and 4.3. Furthermore, in Section
4.4 we examine Leavitt path algebras that are self-injective; that is, injective as
left (or right) modules over themselves. To begin, we define the construction of a
particular K-subalgebra of a Leavitt path algebra that will be integral to proving

our main result in Section 4.2.

4.1 The Subalgebra Construction

In this section, we define a subalgebra B(X) of Lk (FE) for a given graph E and finite
subset of nonzero elements X C Lg(FE). Furthermore, we show in Proposition 4.1.7
that Ly (FE) is in fact the directed union of such algebras. This subalgebra con-
struction is given by Abrams and Rangaswamy in [AR], and we follow their work
closely for the majority of this section. To begin, we introduce the concept of a
graph Fr; this definition is given in [AR, Definition 2|, which in turn is based on
an idea presented by Raeburn and Szymanski in [RS].

Definition 4.1.1. Let E be a graph, and let F be a finite subset of E'. We define

s(F) to be the set of all vertices in E° that are the source of at least one edge in F,

125
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and similarly 7(F') to be the set of all vertices that are the range of at least one edge

in F'. We construct a new graph, Er, in two parts. First, we define the vertices:
EY=FUWrpU Zp,

where

Wr=r(F)Ns(F)Ns(E'\F) and Zp =7r(F)\s(F).
In other words, each edge in F' becomes a vertex in our new graph. In addition, we
include all vertices which are both the source and range of at least one edge in F' as
well as the source of at least one edge that is not in F' (the set W), as well as all

vertices that are the range of at least one edge in F' but not the source of any edge

in F (the set Zp). Now we define the edges of Ep:

Ep ={(f.7z) € F x Ep :r(f) = s(2)},

following the convention that s(v) = v when z = v is a vertex from our original
graph E (i.e. when z € Wr U Zp C E%). In other words, E}. is the set of ordered
pairs (f,z) of edges f € F and vertices x € EY% for which either fz forms a path in
our original graph F (if x € F), or x is the range vertex for f in E (if z € WrU Zp).

Finally, we define the source and range functions of Ep:
s((f,x))=f and  r((f,x)) =z forall (f,z) € Ep

Note that, since F' is finite, the graph EFr must also be finite. Also, any vertices
in the sets Wr or Zp become sinks in our new graph. We illustrate the construction

of Er with the following example.

Example 4.1.2. Let E be the graph
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and let F' be the set of edges {e1,e2}. Then Wrp = {v1} and Zr = {v2}, and so

EY = {ey,eq,v1,v2}. Thus E}L = {(e1,€2), (e1,v1), (€2,v2)}, and so we have

o (e1,e2) o2

Er = (e1,v1) (e2,v2)
ol o2

The following lemma is from [AR, Lemma 1].

Lemma 4.1.3. Let E be an acyclic graph. Then, for any finite subset F' of E*, the
graph Er is acyclic.

Proof. By definition, any vertex v € EY% is a sink unless it is of the form v = e € F.
Since r((z,y)) = y (where (z,y) € E}), any cycle in Er must be of the form
(e1,e2)(ea,€3),...,(en,€1), where ey, e9,€3,...,¢e, € F. However, (e, f) is an edge in
Er only if r(e) = s(f) in E, by definition. Thus ejeqges ... e, must be a cycle in E.

Therefore, Er can only be acyclic if E is acyclic. ]

The homomorphism ¢ : Lig(Er) — Lk(E) defined in the following proposition
(from [AR, Proposition 1]) is integral to our definition of B(X).

Proposition 4.1.4. Let E be an arbitrary graph and let F be a finite subset of E*.
Then there is an algebra homomorphism ¢ : Li(Er) — Lk (E) with the following

properties:
(1) FUF* Clm(¢) (where F* = {e*:e € F});
(i) r(F) C Tm(@); and
(iii) if w is not a sink in E and sz (w) C F, then w € Im(¢).

Proof. We begin by defining ¢ : Lx(Er) — Lg(FE) on the generators of Er as

follows:
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*

ee

fw=eecF

(W) =1 W= cpupon f HweWn

w

eff*

d(h) =1 e— > ers(fy=r(e €f f* i h = (e,r(e

e

and

ifwe Zp,

ifh=(e f),feF

if h=(e,r(e

¢(h*) = (¢(h))* for all h* € (E)*

Extend ¢ linearly and multiplicatively. It is a straightforward yet tedious process

to check that ¢ preserves the Leavitt path algebra relations on L (F). As a sample of
the calculations required, we will check that the (CK1) relation holds for h;, h; € E}.,

for the case h; = (e;,7(e;)), h; =
check that ¢(h})p(h;) = 0i; ¢(r(h;))

Thus

(ej,7(e;)), with r(e;),r(e;) € Wrp. We want to
= 0, ¢(r(e;)), since r(h;) = r(e;) by definition.

¢(h7)o(h;) = (6?— > fifi*e?> <€j— > ejfjfj>

s(fi)=r(ei)

Y. ocefifi— Y, fifieie

+ (
(fi)

=eje;

fi€F,
s(f5)=r(e;)

fi€F,
s(fi)=r(es)

> fz-f:>e;*ej< > fjf;)

s(fi)=r(e;)

Note that efe; appears in every term in the above expression, which simplifies
to d;;(r(e;)) by the (CK1) relation in Lg(E). Note also that the (CK1) relation

simplifies the last term in the above expression to

(5 )
Ji€F,

s(fi)=r(e:)

> fif;>=6z-j< > fifz-*)-

fi€F,
s(fi)=r(es)
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Thus the above expression simplifies to

o(h;)o(h;) = 05(r(e;)) — 25ij( > fiff) + 5ij< > fifi*)
s )erlen () rien

= 5¢j(7”(€z‘)) - 57;]'( Z fsz)
Ji€F,
s(fo)=r(es)

= 045 P(r(ei))

as required. Similar calculations can be made for the other Leavitt path algebra
relations, and for each subcase contained within. We are now ready to show that

properties (i), (ii) and (iii) hold for our definition of ¢.

To show that F'U(F)* C Im(¢), it suffices to show that every f € F' is contained
in Im(¢), since if f € Im(¢) then f* € Im(¢), by definition. If r(f) is a sink,
then r(f) € r(F)\s(F) = Zp, and so f = &((f,7(f))). Now suppose that 0 #
sz (r(f)) C F, so that r(f) emits edges only into F. Let s5'(r(f)) = {g1,-- -, gn},
which is a finite set since each g; € F and F is finite. For each g; € s5'(r(f)) we
have fg;97 = ¢((f,gi)), and so , applying the (CK2) relation, we have f = fr(f) =
F(3i9i97) = 32, faigi = 32, 0((f. 9i)) € Im(9).

Now suppose that r(f) is not a sink and emits edges only into E'\F. This
again implies that r(f) € r(F)\s(¥) = Zr and so f = o((f,r7(f)). Thus the
only remaining case is that r(F') emits edges into both F' and E'\F. In this case,
r(f) e r(F)Ns(F)Ns(E'\F) = Wp. Let {g1,...,9m} be the subset of edges in F
for which s(g;) = r(f). As above, we have fg;g; = ¢((f,¢;)) for each g;. Thus

f=(Zifagi) + (f = Zi faigr) = 2, 0((f.9) + o((f,r(f)) € Im(¢)

since r(f) € Wg. Thus we have established property (i).

Now suppose v = r(f) for some f € F. Then v = f*f € Im(¢) by (i), estab-
lishing property (ii). Finally, suppose that w is a vertex that is not a sink in £ and
s (w) ={f1,..., fa} € F. Then f;f; € Im(¢) for each f;, by (i), and so the (CK2)
relation gives w = ). f; f € Im(¢), establishing property (iii). O

We can apply Theorem 2.2.15 to prove the following lemma.
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Lemma 4.1.5. Let E be a graph, let F be a finite subset of E* and let ¢ : L (Er) —
Li(E) be the homomorphism defined in Proposition 4.1.4. If E is acyclic, then ¢

s a monomorphism.

Proof. Recall that, for each w € E%, we have ¢(w) = ee* if w =e € F, ¢p(w) = w if
w € Zp and ¢(w) = w — 3 o p ()= f[7 il w € Wi For the former two cases, it is
clear that ¢(w) # 0; for the latter case, recall that Wr = r(F) N s(F) N s(E'\F),
so that w emits at least one edge that is in E'\F and thus ¢(w) # 0 by the
(CK2) relation. Therefore ¢(v) # 0 for every vertex v € E%. If F is acyclic, then
Lemma 4.1.3 gives that Er is acyclic, so it is trivially true that ¢ maps each cycle
without exits to a non-nilpotent homogeneous element of nonzero degree. Thus, by

Theorem 2.2.15, ¢ is a monomorphism. [

Having defined our homomorphism ¢, we are almost ready to construct the K-
subalgebra B(X) of Lk (FE) defined in Definition 4.1.6, which will play an important

role in the proof of Theorem 4.2.3. We first have a few preliminary definitions.

Let E be an arbitrary graph and let X = {ai,...,a,} be a finite subset of

nonzero elements of Lx(E). By Lemma 2.1.8, we can write each a, in the form

s(r) t(r

)
Qr = Z krivri + Z l?”jp'f’jQ:j
i=1 j=1

where each k,.,[,.. is a nonzero element of K, each v,, € E° and each Prjsr; € B

i
Additionally, for each j € {1,...,%(r)}, at least one of p,, or ¢, has length 1 or
greater (since the case in which both paths have zero length is covered in the first
sum).

Let F' denote the set of edges that appear in the representation of some p,  or

qr; for 1 < j < t(r), 1 <r < n. Furthermore, let S be the set of vertices
S = {vm,...,vrs(r) 1 <r< n}

Thus F', F* and S are the sets of all edges and vertices, respectively, that appear in

the representation of our elements in X. Note that both F' and S must be finite.
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We now partition S into four disjoint subsets as follows:
Sy =Snr(F),
and, defining 7" = S\ 54,
Sy ={veT:s;'(v) CF and s;'(v) # 0},

Sz ={veT:s;'(v)NF =0}, and

Si={veT:sx'(v)NF #0and s;' (v) N (E'\F) # 0}.

In other words, S; is the set of all vertices in S that are the range of some edge in
F. For those vertices in S that are not the range of some edge in F', we then have
three cases: vertices that emit edges only into F', vertices that emit no edges into
F, and vertices that emit edges into both F' and E'\F; these three cases make up
the subsets Sy, S3 and Sy, respectively.

Finally, let Er be the graph corresponding to our set of edges F', as defined in
Definition 4.1.1, and let ¢ : L (Er) — Lg(E) be the homomorphism defined in the
proof of Proposition 4.1.4. We are now ready to construct our subalgebra B(X) of

L (FE), as defined in [AR, Definition 3].

Definition 4.1.6. Let E be an arbitrary graph and let X = {a4,...,a,} be any
finite subset of nonzero elements of Li(F). Let S3,S; and ¢ be as defined above.
Define B(X) to be the K-subalgebra of L (F) generated by the set Im(¢)US3U Sy,
so that

B(X) = (Im(@), S5, S4).

We finish this section by describing several important properties of our subalge-
bra B(X), in a result from [AR, Proposition 2]. In particular, we show that Lx(E)

is the directed union of such subalgebras.

Proposition 4.1.7. Let E be an arbitrary graph and let X = {ay,...,a,} be any
finite subset of nonzero elements of Lx(E). Let F,Ss, Sy and ¢ be as defined above.
Forw € Sy, let u, denote the (nonzero) element w — 3 ooy, fI*. Then
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(i) X € B(X);

(”) B(X) = Im((b) & (@uiesg Kvi) D (eawje& Kuwj);

(111) The collection {B(X) : X C Lg(E), X finite} is an upward-directed set of
subalgebras of Lk (E); and

(v) Lig(F) = li_H}{XgLK(E), X ﬁm‘te}B(X)-

Proof. To prove (i), recall that the set X is generated by the subsets F, F* and
S =51 US,US3U Sy, as defined above. By Proposition 4.1.4, we have F' U F* C
Im(¢) € B(X) (property (i), S1 € r(F) C Im(¢) S B(X) (property (ii)) and
Sy C Im(¢) C B(X) (property (iii)). Finally, S3U S, C B(X), by definition, and so
X C B(X), as required.

To prove (ii), first note that since S3 C EY; it is a set of pairwise orthogonal
idempotents, and so Y ¢ Kv; = D, g, Kvi. Furthermore, the set {u,, : w; €
Sy} is also a set of pairwise orthogonal idempotents, as follows: let w;, w; € Sj.

Then

uwiuwj - (wz - Z fzfz*) <wj - Z fjf;)
)=w; ):wj

fi€F,s(fi fi€Fs(f;

= 0jj w; — 205 ( Z fsz) + 0y < Z fszfsz)
)=wi

Fi€Fs(fi fi€Fs(fi)=w;
= 0y (wi - Z fifz‘*)
fi€F,s(fi)=w;

= 0ij U,

as required. Thus }°, oo Kuw, = D, cg, K, -

We now show that the sum Im(¢) + (D,,cq, Kvi) + (@wjes4 Ku,,) is direct.
We begin by showing that (@Uies3 Kv;) NIm(¢) = {0}. Let v € S5. By the
definition of S5 we have v & r(F) U s(F'), and so v ¢ Wr U Zr. We now show that
v is orthogonal to each element ¢(z), where x € (E%)U (EL)U(EL)*. Ifz =e € F,
then v - ¢(x) = vee* = 0, since v ¢ s(F). If ¥ = w € Wg, then v # w (since
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v ¢ Wr)and s0 v - ¢(x) = v(w = 3 ep (py=o [f7) = 0. f £ = w € Zp, then again
v # w (since v ¢ Zp) and so v - ¢(z) = vw = 0. Similarly, it is easy to see that
¢(z) - v =0 for each of the above three cases. Thus v is orthogonal to each element
in ¢(EY%). Now suppose h = (z,y) € Ex. Then ¢(h) = ¢(zhy) = ¢(x)d(h)¢(y) and
o(h*) = o(yh*z) = d(y)d(h*)g(x). Since x,y € E%, v is therefore orthogonal to
¢(h) and ¢(h*). Therefore v is orthogonal to each generator of Im(¢), and so Kv; is
orthogonal to Im(¢) for each v; € S3. Since each v; is an idempotent, we therefore
have (@’l}iESg Kv;) NIm(¢) = {0}, as required.

Now we show that (@wjes4 Kuy,, ) NIm(¢) = {0}. Let w € Sy. By the definition
of Sy we have w ¢ r(F), and so again w ¢ Wr U Zp. Again, we must show that w,,
is orthogonal to each element ¢(z), where z € (E%) U (EL) U (EL)*. Ifz =€ € F,
then wu, - ¢(z) = (w — Zfers(f):w ffr)ee” = by se)e€” — 0y s(ere€ee” = 0, using the
(CK1) relation. If z = w’ € Wg, then w' # w (since w ¢ Wg), and 8o u,, - ¢p(w') =
(W =2 rers(pymw fL)W = 3 pepgpyew ['(f)7) = 0. lf x = w' € Zp, then again
w # w' (since w ¢ Zr) and 0 uy - G(z) = (W — Y- pcpg(p)me fST)W' = 0. Similarly,
it is easy to see that ¢(z) - u,, = 0 for each of the above three cases. Thus, using the
same logic as above, we have that u,, is orthogonal to each generator of Im(¢), and
thus Ku,, is orthogonal to Im(¢) for each w; € Sy. As shown above, {u,,; : w; € Sy}
is a set of pairwise orthogonal idempotents, and so (@wj cs, Kuw,) NIm(¢) = {0}

Now take v € S3 and w € Sy. Since S3 NSy = (), we have v # w and so v - u,, =
V(W= reps(pymw [I7) = 0=(0=23"cps(fy=w []7)V = ty-v. Thus (D,,cs, Kvi)N
(@wj es, K uwj) = {0}. Therefore the three sets are mutually orthogonal, and so
I (6)+(Dy,es, Kvi) + (DB cs, Ktiw,) = Im(0)D (D5, Ki) & (D e, K,
as required.

Now we need to show that this direct sum is indeed equal to B(X). For ease
of notation, let Im(¢) & (D,,cq, Kvi) ® (@wjes4 Ku,,) = A. It is clear that
Im(¢) € B(X) and @, .5, Kvi € B(X), by definition. Let w € S;. Then for
each f € F with s(f) = w we have ff* = ¢(f) € Im(¢), and so u, = w —
> rers(p—w /T € B(X). Thus A C B(X). To show that B(X) C A, it suffices to
show that each of its generating elements is contained in A. It is clear that Im(¢) C A

and S3 C A. Furthermore, if w € Sy, then w = u,, + Zfer(f):w ff* e A, since
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> ters(py=w J f7 € Im(¢), as shown above. Thus B(X) = A, as required.

To show that the collection Z = {B(X) : X C Lk(FE), X finite} is an upward-
directed set of subalgebras of Lx(E), we need to show that every pair of elements in
Z has an upper bound; that is, for every pair of finite subsets X, Xo C L (F), we
can find a finite subset X3 € Lk (E) such that B(X;) C B(X3) and B(X2) C B(X3)
(see Appendix A). Now, if X is finite then the sets F, S5 and Sy are finite, by
construction. Then, as noted earlier, EFr is finite, and so Ly (FEr) is a finitely-
generated K-algebra. Thus Im(¢), and therefore B(X), is a finitely-generated K-
algebra for each finite subset X of Li(FE). Let T1, T, be finite generating sets for X;
and Xy respectively, and let T'=T7 U T5. Then for each generating element t € T},
we have t € T'C B(T') (by (i)) and so B(X;) C B(T). Similarly, B(X2) C B(T), as

required.

Finally, let M = lim (xcr.(p), x finite} B(X) (for ease of notation) and suppose
that Lix(F) # M. Then there must exist a finite subset X C Lg(F) such that
X ¢ M. However, since X € B(X) (by (i)) and M is the limit of the upward-
directed set of all such subalgebras B(X) (by (iii)), this is impossible. Thus we have
Lk (E) = M, as required, completing the proof. O

4.2 Regularity Conditions for Leavitt Path
Algebras

Recall that a ring R is said to be von Neumann regular if, for every x € R, there
exists y € R such that z = xyx. We now introduce the concept of ‘m-regularity’ and

related variations on this definition.
Definition 4.2.1. Let R be a ring.

(i) R is said to be w-regular if, for every = € R, there exist y € R and n € N

such that 2" = x"ya".
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(ii) R is said to be left m-regular (resp. right w-regular) if, for every € R, there
exist y € R and n € N such that 2" = yz™! (resp. 2" = 2" y).

(iii) R is said to be strongly w-regular if it is both left and right m-regular.

It is clear that any ring R that is von Neumann regular is also m-regular since,
taking n = 1, for every z € R there exists a y € R such that 2" = z"yz". However,
the converse is not true. Consider, for example, the ring R = Z/4Z. Now R is
m-regular, since 22 = 0 = 22122 and 3% = 1 = 32132 However, it is clear that 2

has no von Neumann regular inverse, and so R is not von Neumann regular.

Furthermore, if R is a unital strongly m-regular ring then [CY, Lemma 6] tells
us that for every element x € R there exist y € R and n € N such that xy = yx

and 2"ty = 2" = ya" !

. It is then straightforward to show that if R is strongly
m-regular then R is also m-regular (see the proof of Theorem 4.2.3 (iv)=-(v)). On
the other hand, consider the ring R = Endg(V'), where V is a vector space over a
field K with infinite basis {z;}3°,. It is well-known that R is von Neumann regular
(see for example [Ri, Example (c), p.131]) and is therefore 7-regular. However, if we
let f:V — V be the shift transformation defined by f(z1) = 0 and f(x;11) = f(z;)
for i > 1, then we have ker(f) = Kz, ker(f?) = Kz; ® Kz, and in general
ker(f") = @,_, Kz;. If there were to exist a g € R for which f* = gf™*!, we
would have ker(gf™") D ker(f"') = @ Kz; D ker(f"), which is impossible.

Thus R is not strongly m-regular, and so in general the property m-regular does not

necessarily imply strongly m-regular.

The following lemma (from [AR, Lemma 2]) is useful in the context of Leavitt

path algebras.

Lemma 4.2.2. Let R be a ring with local units. Then R is strongly m-reqular if and

only if the subring eRe is strongly mw-regular, for every nonzero idempotent e € R.

Proof. Suppose that R is strongly m-regular and let x € eRe for some idempotent

e € R. Since z is an element of R, there exist y, z € R such that 2" = yz"*! and

m

™ = ™z, for some m,n € N. Furthermore, since x € eRe we have x = ze = ex,
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n+1) n+1

and so 2" = ex" = e(yx = eyex™ . Thus there exists an element y' = eye € eRe

for which 2™ = ¢/2"*!. Similarly, we can find an element 2’ = eze € eRe such that
2™ = 2™ and so eRe is strongly 7-regular.

Conversely, suppose that eRe is strongly m-regular for every idempotent e € R
and let * € R. Since R has local units, there exists an idempotent f € R such
that x € fRf. Since fRf is strongly m-regular, there exist y,z € fRf for which

m—+1

2" = ya"t! and 2™ = 2™z, for some m,n € N. However, since y, z are elements

of R, this implies that R is also strongly m-regular, completing the proof. O

We now proceed to our main result for this section (from [AR, Theorem 1}),
which shows, perhaps surprisingly, that the properties von Neumann regular, 7-
regular and strongly m-regular are equivalent for Leavitt path algebras. We also
finally show that Lk (FE) is locally matricial if and only if E is acyclic, a result
first mentioned in Section 2.2 (see page 56). Here we utilise the subalgebra B(X)

introduced in Section 4.1.

Theorem 4.2.3. Let E be an arbitrary graph. The following statements are equiv-

alent:
(i) Lg(E) is von Neumann reqular
(11) Lik(E) is m-reqular

(11i) E is acyclic

(iv) Lk(FE) is locally matricial
(v) Lk (FE) is strongly m-reqular.

Proof. (i)=-(ii): This is immediate, since any von Neumann regular ring is w-regular.

(ii)=-(iii): Suppose that L (F) is m-regular and that there exists a cycle ¢ based
at a vertex v in E. Let xt = v+c¢ € Lg(FE). Since Lk (FE) is m-regular, there exists a
y € Lg(F) and n € N such that z"yz" = 2". Note that zv = = vz and so, letting

a = vyv, we have z"az" = z"(vyv)ax™ = x"ya™ = x". Now break a into its graded
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components, so that
t
a = E a;,
=S

where s,t € Z,as # 0,a; # 0 and dega; = ¢ for all s < ¢ < t. Now vav =

v(vyv)v = vyv = a, and so Yr_ vaw = > .__a;. Since deg(v) = 0, equating graded
components gives va;v = a; for each s <1 < t.
Now, applying the binomial expansion and using the fact that v is an idempotent

and cv = ¢ = ve, we have

" =(v+o)" = Z (Z) v"FeE = v+ (Z) &,

k=0

and so z"az™ = " expands to

Since deg(c) > 0, we have deg(c*) > 0 for all 1 < k < n, and so the lowest-degree
term on the left-hand side is va,v. Since the term of lowest degree on the right-hand
side is v, we have vasv = v and thus a; = v. This implies s = 0, and so we can
write a = Zfzo a;, with ag = v. Now suppose that ¢ is a cycle of length m, so that
deg(c*) = km. With the exception of the first term, every term on the right-hand
side contains a power of ¢, and so every term on the right-hand side is of degree km,
where 0 < k < n. Note that on the left-hand side, the leftmost terms of each bracket
multiply to give ’U(Z::O ai)v = Z;‘i:o a;, and so each a; appears in the expansion
of the left-hand side. Thus, equating terms of equal degree on both sides, we have
that a; # 0 only if i« = km for some 0 < k < n.

We now use induction to establish that ag,, = fi(c) for each 0 < k < n, where
fr(c) is a polynomial in ¢ with integer coefficients. For k = 0, we know that ay =

v =, as required. For k = 1, we equate components of degree m on both sides of

+ n + mn n
VAU cq, a CcC = C
1) 0T\ 1

and so, since ag = v, we have a,, + nc + nc = nc. Thus a, = —nc, which is

(%), giving

certainly a polynomial in ¢ with integer coefficients. Now suppose [ > 1 and suppose
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that ag, = fr(c), where fi(c) is a polynomial in ¢ with integer coefficients, for all

0 <k < I. We now equate terms of degree Im on both sides of (*), giving

o+ (1)l + a0 (7)o awam (5 )+ v, )
()¢ (D)o, )
(()) ( ot a 4>m(7f)c+...+ao(l_3)cl—3>+m+<r;)cla0

By our induction hypothesis, @, ..., aq-1)m are all polynomials in ¢ with integer

3

S

+

coefficients and so, rearranging the above equation for a;,,, it is clear that a;, is a
polynomial in ¢ with integer coefficients.
So we can conclude that for every nonzero homogeneous component a; of a, we

have a;c = ca;, and so ac = ca. Thus
(v+e)"=@w+o)alv+c)" =alv+c)(v+c)" =alv+c)"

Let i be maximal with respect to the property a;(v + ¢)** # 0. (We know such
an 1 exists, since ag(v + ¢)*™ = (v + ¢)*® # 0.) Thus the term of maximum degree

n with degree i + 2nm, while the term of maximum degree of

of a(v + ¢)?" is a,c
(v+c)™is ¢, with degree nm. This contradiction shows that ¢ cannot exist, and so

E must be acyclic.

(iii)=(iv): Recall from Definition 2.2.10 that Lx(FE) is locally matricial if it is
the direct limit of an upward-directed set of subalgebras, each of which is isomorphic
to a finite direct sum of finite-dimensional matrix rings over K. Let {B(X) : X C
Lk (F), X finite} be the upward-directed set of subalgebras of L (F) defined in
Proposition 4.1.7 (iii). By Proposition 4.1.7 (iv), we know the direct limit of this
set is Ly (FE). Thus, by Proposition 4.1.7 (ii) it suffices to show that B(X) =
Im(¢) @ (@UiGS:), Kuv;) @ (@wjes4 Ku,,) is isomorphic to a finite direct sum of
finite-dimensional matrix rings over K for each finite subset X C Ly (FE).

First, note that if E is acyclic then Er must be acyclic, by Lemma 4.1.3. Fur-

thermore, note that the only vertices in Fr that are not sinks are those of the form
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e € F, and that these vertices only emit edges to their range vertices r(e) or to other
vertices of the form f € F' (in the case that ef forms a path in F). Since F is finite,
Er must therefore be row-finite (and finite, as noted earlier). Thus, by Lemma 2.2.9
we have Ly (Ep) = @izl M,,,(K) for some m;,...,m; € N. Now, by Lemma 4.1.5,
the restricted homomorphism ¢ : Lg(Er) — Im(¢) is an isomorphism, and thus
m(¢) = @, My, (K).

Furthermore, each term in the direct sum €9 Kwv; is isomorphic to K =

v; €S53

M;(K), and similarly each term in the direct sum € Ku,, is isomorphic to

W €Sy
M, (K). Thus B(X) is isomorphic to a finite direct sum of finite-dimensional matrix

rings over K for each finite subset X C L (F), as required.

(iv)=(i): If Lg(FE) is locally matricial, then every element of Ly (E) is contained
in a subring S = @izl M, (K). It is well known that any ring of this form is von
Neumann regular (see for example [L1], Proposition 4.27), and so every = € Lk (E)

has a von Neumann regular inverse.

(iv)=-(v): As above, if Lx(FE) is locally matricial then every element x € L (F)
is contained in a subring S = @é:l M,,,(K). Now, any ring of this form is a unital
left (and right) artinian ring, and so considering the descending chain of left ideals
Sz D Sx? D Sx® D ..., we must have Sz = Sz"*! for some n € N. Thus, since S
is unital, we have z" € Sz" = Sz™™! and so 2" = y2"™! for some y € S C L (E).
Since S is also right artinian, we can similarly show that there exists z € Lg(FE) such

that 2™ = ™'z for some m € N. Thus Lx(FE) is strongly m-regular, as required.

(v)=(ii): Let x € Lg(F). Since Lk(FE) has local units, z € eLg(F)e for some
idempotent e € Li(F). If Lk(FE) is strongly m-regular, then by Lemma 4.2.2 we
have that e Ly (E)e is strongly m-regular. Since eLy (FE)e is unital, we can apply [CY,
Lemma 6], and so there exists an element y € eLg(E)e and n € N such that zy = yx
and 2"y = 2™ = ya" ™. Thus 2" = 2"y = (2")zy = (2" y)zy = 2"2Y?, since

x and y commute. Repeating this process, we get

mn — xn+2y2 — $n+3y3 - = x2nyn

and so, using xy = yx again, we have 2" = (z"2")y" = z"y"2". Since y" € Lx(FE),

we have that Li(F) is m-regular, as required. O
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Example 4.2.4. We now apply Theorem 4.2.3 to our familiar examples of Leavitt
path algebras.

(i) The finite line graph M,. Since M, is acyclic, Ly (M,) = M, (K) is von
Neumann regular, w-regular and strongly 7-regular for all n € N. As we are already

aware, Theorem 4.2.3 also confirms that Lk (M,) is locally matricial.

(ii) The rose with n leaves R,,. Since R,, contains n cycles, Lx(R,) = L(1,n) is
not von Neumann regular, m-regular, strongly m-regular or locally matricial for any

n € N.

(iii) The infinite clock graph Cs. Since Cy is acyclic, L (Cx) = D=, Ma(K) &
K155 is von Neumann regular, 7w-regular, strongly m-regular and, of course, locally

matricial.

4.3 Weakly Regular Leavitt Path Algebras

A ring R is said to be right weakly regular (resp. left weakly regular) if 1% =
I for every right (rvesp. left) ideal I of R. This concept was first introduced by
Ramamurthi in [Ram|. We begin with some general properties of weakly regular
rings before moving on to look at weakly regular Leavitt path algebras. This first

proposition is from [Ram, Proposition 5].

Proposition 4.3.1. Let R be a ring with local units. If R is right weakly regular,
then every two-sided ideal I of R is right weakly regular and the quotient R/I is
right weakly regular. On the other hand, if R contains a two-sided ideal I such that
both I and R/I are right weakly reqular, then R is also right weakly regular.

Proof. Suppose that R is right weakly regular. Let I be a two-sided ideal of R and
let J be a right ideal of I. Clearly J? C J, so it suffices to show that a € J? for any
a € J. Now, aR is a right ideal of R, and so aR = (aR)?* = aRaR C al, since [ is a
two-sided ideal. Furthermore, since R has local units, a = ae for some idempotent

e € R. Thus a = ae € aR = (aR)? = (aR)* C (al)* C J?, as required. Now, any
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right ideal of R/I is of the form M /I, where M is a right ideal of R containing I.
Thus (M/I)*> = M?/I = M/I, and so R/I is right weakly regular.

Now suppose that R contains a two-sided ideal I such that both I and R/I
are right weakly regular. Let J be a right ideal of R and let a € J. Again, let
e be a local unit for a, so that a = ae € aR. Since R/I is right weakly regular
we have (aR)?/I = (aR/I)* = aR/I, and so there must exist b € (aR)? such that
b+1=a+1,ie (a—0b)€l. Since (a—b)R C I and [ is right weakly regular, we
have (a — b) € (a — b)R = ((a — b)R)?. Furthermore, since b € (aR)? = aRaR we
have b = ag for some g € RaR, and thus (a —b)R = (ae —ag)R = a(e — g)R C aR.
Thus a = (a —b) +b € ((a —b)R)* + (aR)? C (aR)? + (aR)* C (aR)* C J?. Thus

J C J? and so R is right weakly regular. [

The following proposition gives two useful equivalences to the property that R
is right weakly regular. The equivalence (i) <= (ii) is from [Ram, Proposition 1],
while the equivalence (ii) <= (iii) is from [ARM2, Theorem 3.1].

Proposition 4.3.2. Let R be a ring with local units. The following statements are

equivalent:
(i) R is right weakly regular.
(i1) For all a € R there ezists x € RaR such that a = ax.
(11i) For every two-sided ideal I of R, the left R-module R/I is flat.

Proof. (1)=(ii): Suppose that R is right weakly regular. Then, for any a € R, we
have aR = aRaR. Since R has local units, a € aR = aRaR, and so there exists
2z € RaR such that a = ax.

(ii)=-(iii): Let I be a two-sided ideal of R. Since R has local units, R is flat as
a left R-module (by Corollary 1.2.16). Thus, viewing I as a submodule of R, by
Proposition 1.2.17 it suffices to show that if Y is a right ideal of R then INY R =YI.
NowYI CTandYI CYR,soYI CINYR. Nextsuppose that y € INY R. By (ii),
there exists * € RyR such that y = yx. Since y € YR, we have y = yr € Y RRyR.
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Since Y is a right ideal, YRR C Y. Furthermore, yR C I, since y € I. Thus
YRRyR CYI and so y € YI. Therefore I N"Y R =Y, as required.

(ili)=-(ii): Let a € R. Then RaR is a two-sided ideal of R, and so by (iii) R/RaR
is flat as a left R-module. Since R is flat as a left R-module (by Proposition 1.2.17)
we have that RaRNY R =Y RaR for every right ideal Y of R. Specifically, taking
Y = aR, we have RaR N aRR = aRRaR. Since R has local units, there exists
an idempotent e € R for which eae = a = ae?. Thus a € RaR N aRR, and so
a € aRRaR C aRaR. Therefore there exist r;, s; € R such that a = Z?Zl ar;as; =
a( Yoy riasi). Letting = > | r;as;, we have a = ax for x € RaR, as required.

(ii)=-(i): Assume that for all a € R there exists € RaR such that a = ax, and
let I be a right ideal of R. Then, for any b € I, there exist r;,s; € R such that
b = b(Z?:l ribs;) = Y i bribs; and so b € I?. Since I* C I, we have I? = I, as
required. ]

The following proposition from [ARM2, Proposition 3.11] shows that the prop-

erty of being right weakly regular is preserved by subrings eRe and matrix rings.

Proposition 4.3.3. Let R be a ring with local units. The following statements are

equivalent:

(i) R is right weakly regular.

(1) The subring eRe is right weakly reqular for all idempotents e € R.
(111) The matriz ring M, (R) is right weakly regular for all n € N.

Proof. (i)=-(ii): Suppose that R is right weakly regular and that e € R is an idempo-
tent. Let eae € eRe, where a € R. By Proposition 4.3.2 there exists © € ReaeR for
which eae = eaex. Let x = > | b;(eae)c;, where each b;, ¢; € R. Since e is an idem-
potent, we have eae = (eae)e = (eae ) ., bi(eae)c;)e = eae . (ebe)(eae)(ec;e).
Let y = Y1, (ebe)(eae)(ec;e). Thus we have found an element y € (eRe)eae(eRe)
for which eae = eaey, and so eRe is right weakly regular (by Proposition 4.3.2).
(ii)=(i): Let a € R. Since R has local units, a € eRe for some idempotent e € R.

By our assumption, eRe is right weakly regular, and so there exists x € (eRe)a(eRe)
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for which a = az. However, (eRe)a(eRe) C RaR, so that © € RaR and thus R is
right weakly regular (again by Proposition 4.3.2).

(i)=(iii): This follows from the analogous result for unital rings in [Tu, Propo-
sition 20.4(ii)]. We can generalise it to rings with local units by applying Proposi-
tion 4.3.2.

(iii)=(i): For the case n = 1 we have M, (R) = R, and so R must be right

weakly regular by our assumption. ]

Proposition 4.3.3 leads to the following theorem from [ARM2, Theorem 3.12],

which shows that the property ‘right weakly regular’ is Morita invariant.

Theorem 4.3.4. Let R and S be rings with local units that are Morita equivalent.
Then R is right weakly reqular if and only if S is right weakly reqular.

Proof. Suppose that R is right weakly regular. It suffices to show that eSe is right
weakly regular for every idempotent e € S, since S is then right weakly regular
by Proposition 4.3.3. By Theorem 1.3.7, there exists a surjective Morita context
(R,S,N,M). Since e € S = MN, we have e = > | x;y;, where each z; € M
and each y; € N. Define x = (21,...,2,) and y = (y1,...,y,) so that, in matrix
notation with ¢ denoting transpose, e = xy’. Note that the element v = y'xy’x is

an idempotent in M, (R), since
u? = (y'xy'x)(y'xy'x) = y' (xy") (xy') (xy)x = y'e’x = y'ex = y'xy'x = u.

Define the map ¢ : uM,(R)u — eSe by ¢(udu) = e(xAy')e. (Note that
xAy! € MRN C MN = S, since M is a right R-module.) First we must check
that ¢ is well-defined. Suppose that A, B € M, (R) with uAu = uBu. Then
d(uAu) = e(xAy')e = e*(xAy')e? = xy'xy'xAy'xy'xy! = xuAuy' = xuBuy' =

- = e(xBy')e = ¢(uBu), as required. Now we show that ¢ is a ring homo-

morphism. Clearly ¢ is additive. To check the multiplicative property, consider
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uAu, uBu € uM,(R)u. Then

¢(uAu)p(uBu) = (exAy'e)(exBy'e)
— exAy'exBy'e
= exA(y'xy'x)By'e
— exAuBy'e
= ¢(u(AuB)u)
= ¢((udu)(uBu))

as required.

Now we show that ¢ is injective. Suppose ¢(uAu) = exAy'e = 0 for some
uAu € uM,(R)u. Then uAu = (y'xy'x)A(y'xy'x) = y'(exAy'e)x = 0, and so
ker(¢) = {0}, as required.

Finally, we show that ¢ is surjective. Consider ese = xy'sxy’ € eSe, where
s € S. Note that y'sx is an n x n matrix, and each y;sz; € NSM C NM = R,
since N is a right S-module. Thus y'sx € M, (R). Letting y'sx = C, we have

ese = e(ese)e = exy'sxy'e = e(xCy')e = ¢p(uCu)

and so ¢ is surjective. Thus ¢ is an isomorphism, and since M,,(R) is right weakly

regular (by Proposition 4.3.3), eSe is right weakly regular, as required. O

We now start to examine weakly regular rings in the context of Leavitt path
algebras. We begin by showing that, for any Leavitt path algebra, the properties
‘right weakly regular’ and ‘left weakly regular’ are in fact equivalent. The proof here

expands on the proof given in [ARM2, Theorem 3.15], (i) <= (iii).

Lemma 4.3.5. Let E be an arbitrary graph. Then Ly (E) is right weakly regular if
and only if it is left weakly regqular.

Proof. For any element a = kyp1¢} + - - - + knpnq), € Lx(E), where each k; € K and
each p;, q; € E*, denote by a* the element

o = kqipy + -+ kn@npy,.
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It is easy to see that for any «, f € Lk (E) we have (af)" = 8*a*. Let I be a right
ideal of Li(F) and define I* := {a* : a € I}. If a,b € I then a* —b* = (a—b)* € I*,
since a — b € I. Furthermore, if a € I and x € Lk (F) then za* = (azx*)* € I*, since
ar* € I. Thus I* is a left ideal of Ly (FE). Similarly, if I is a left ideal of L (FE)
then [* is a right ideal of Ly (F).

Suppose that Lx(FE) is right weakly regular, and consider a left ideal J of Lk (FE).
Then J* is a right ideal of L (F), and so (J*)? = J*. Take an arbitrary element a €
J. Then a* = Y"1 | x}yf, where each z;,y; € J. Thus a = (a*)* = Y"1 (zfy})* =
Sy € J?, and so J C J?. Therefore J = J? and so Lg(E) is left weakly

regular. A similar argument shows the reverse implication. [

We now give an example of a Leavitt path algebra that is right weakly regular.

This example is from [ARM2, Example 3.2(ii)].

Example 4.3.6. Consider the following graph E:

Y
\ /
o —— @V

(Y
—/

Since E satisfies Condition (K), [G2, Theorem 4.2] tells us that every ideal of Ly (FE)
is graded. Since E is row-finite, for any graded ideal I of Ly (E) we have I = I(H),
where H = I N E° (by Theorem 3.3.9). Furthermore, H is a hereditary saturated
subset of E° (by Lemma 2.2.1), and so the only ideals in Lx(F) are those generated
by hereditary saturated subsets of EY. Specifically, we have precisely three ideals:
0, Lx(E) and I = I({v}).

Clearly Lx(E)/Lk(F) is flat as a left Lg(F)-module. Furthermore, Ly (FE)/0 =
Li(F) is flat by Corollary 1.2.16. Finally, note that P(E) = {v}, and so by
Theorem 3.2.11 we have soc(Lg(E)) = I. Now, [ARM2, Corollary 2.24] states that
if R is a semiprime ring with local units then R/soc(R) is flat as a left R-module.
Since Lk (FE) is semiprime (by Proposition 3.2.1), Lk (E)/I is flat. Thus we can
apply Proposition 4.3.2 (iii)=-(i) to obtain that L (FE) is right weakly regular.

Not every Leavitt path algebra is right weakly regular, as the following examples

(from [ARM2, Example 3.3]) illustrate.
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Example 4.3.7. Consider the graph

E Co“
We know that Lx(FE) = K|x,27!] from Example 2.1.6. Let J = (1 + ) be the
two-sided ideal generated by 1+ x in K[z, z7!]. Now, if J = J? then we would have
1+ 2z = f(x)(1+z)? for some f(z) € K|x,z™"], which is impossible. Thus Ly (F)
is not right (or left) weakly regular.

Now consider the graph
I C ol ——o"

Letting H = {v} we have F|H = E, and so Lx(F)/I(H) = Lk(E) by Theo-
rem 3.3.8. From above, we know that Ly (FE) is not right weakly regular, and so
Lk (F)/I(H) is not right weakly regular. Thus, by Proposition 4.3.1, Li(F') is not
right weakly regular.

We now begin to work our way towards Proposition 4.3.10, which shows that
any graded ideal of a Leavitt path algebra is itself isomorphic to a Leavitt path
algebra. This result, while being interesting in its own right, will also be useful
when determining which Leavitt path algebras are right weakly regular. To begin,

we need the following definition.

Definition 4.3.8. Let E be an arbitrary graph, let H be a nonempty, hereditary
saturated subset of £ and let S C By. We denote by F z(H,S) the collection of all
finite paths a = e, ...e, (where each e; € E') such that s(a) ¢ H, r(a) € HU S,
and 7(e;) ¢ HUS fori =1,...,n — 1. Informally, Fp(H,S) is the set of all finite
paths in E that begin outside H and end in H U S (with only the final edge entering
H U S). Now we define

Fp(H,S) = Fg(H,S)\{e € E': s(e) € S,r(e) € H}.

In other words, Fp(H,S) is the set Fz(H,S) with all paths of length one going

directly from S to H removed.
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We can use the set Fg(H,S) to construct a new graph pyFEg. First, we create
a copy of Fr(H,S) and denote this by Fg(H,S) = {a : a € Fg(H,S)}. Then we

define the graph yEs = (g B2, g EL, s',1") as follows:
gEY:=HUSUFg(H,S).
pEL ={ceE':s(e)e H}U{e€ E':s(e) € Sand r(e) € H} U Fp(H,S).
For every & € Fg(H,S), s'(@) = a and 7'(a) = r(a).
For the other edges in yE}, s'(e) = s(e) and 7/(e) = r(e).

Note that for any & € Fp(H,S) we have s'(a) = a € Fg(H,S) C yEY and
(@) = r(a) € HUS C gEY. Similarly, for any other edge e € yEL we have
s'(e) € HUS C gEY and 7/(e) € H C ygFY, and so the source and range functions

are well-defined.

We now note some properties of the graph yFg. First, note that 5 Fg contains

the restriction graph
EH = (H, {6 c El : 8(6) € H},?"(EH)1,S’(EH)1).

Note also that every vertex in S C yE2 is an infinite emitter, emitting an infinite
number of edges into H and no other edges. On the other hand, each vertex a €
Fg(H,S) C gE? is by definition a source that emits exactly one edge a with range
in HUS. Moreover, since H is hereditary, if a cycle ¢ in gFEg contains a vertex in
H then all vertices of ¢ must be in H. Thus any cycle in the graph g FEs must come
from the restriction graph Epy. These properties will prove useful in the proof of
Proposition 4.3.10. However, we first give an example to illustrate the construction

of HES'

Example 4.3.9. Consider the following graph E:

e2
/\
o1 ou2

\_/

€1

(c0) (c0)
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where the (c0) symbol indicates that there are infinitely many edges from wu; to v
and from uy to v. Let H = {v} (which is clearly a hereditary and saturated subset
of EY), giving By = {uy,us}. Furthermore, let S = By. Then Fr(H,S) = {e1, e},
and so g Fg is the graph

o€l o°2
€1 \L iéQ
o1 o2

Recall from Theorem 3.3.9 that any graded ideal I of Lx(FE) is generated by
the hereditary saturated subset H = I N E° and the set {v¥ : v € S}, where
S ={w € By : w" € I'}. We denote this by I = I(pg).

The following proposition is from [ARM2, Proposition 3.7], which is the algebraic
analogue of [DHS, Lemma 1.6] and a generalisation of [AP, Lemma 1.2] to arbitrary
graphs. However, when examining this proposition the author discovered an error
that leaves the proof incomplete. Furthermore, the proof of [DHS, Lemma 1.6] was
discovered to contain a similar error. At the time of writing, these errors are yet
to be resolved. We will mention these problems when they arise in the proof and
show that they can be avoided in the row-finite case (so that [AP, Lemma 1.2] is
still valid).

Proposition 4.3.10. Let E be an arbitrary graph. For any graded ideal I = Iy 5y of
the Leavitt path algebra Ly (FE), there exists an isomorphism ¢ : Lx (g FEs) — Iigs).

Proof. Define ¢ : Lg(yEs) — Iu,sy on the generators of Li(uEsg) as follows:

(o ifoeH

v ifves
#o) = aa* ifv=a€ Fg(H,YS5), rla) e H
| ar(a)a* ifv=ac Fg(H,S), r(a) €S,
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.

e if s(e) € H
e if s(e) € S,r(e) € H

¢(e) = , -
o ife=aeFg(H,S), rla) e H

| ar(a)? ife=a€ Fg(H,9), r(a) €S,
and )
e* if s(e) e H
. e* if s(e) € S,r(e) € H

be”) = £ sfe) € 5.1
a ife=ae Fg(H,S), rla) e H
r(a)a* ife=a¢e Fg(H,S), r(a) € S.

\

Note that, by Proposition 3.3.6, Im(¢) is indeed contained in I(z s). Extend ¢
linearly and multiplicatively. As usual, it can be shown that ¢ preserves the Leavitt
path algebra relations on Lg(gFEs). We will check the (CK2) relation, i.e. that
o(v — Zs,(e):v ee*) = 0 for all regular vertices v € g E2, as an example. Note that
if v € S then v is an infinite emitter and so the (CK2) relation does not apply.

Case 1: v € H. Note that every edge emitted by v in E! is contained in the
restriction graph Ep and is therefore in zE%. Thus ZS/(e):v ee* = Zs(e):v ee*, and
SO OV = D (0)=p €€7) =V = D ()= €67 = 0, by the (CK2) relation in Ly (E).

Case 2: v =« € Fg(H,S) with r(a) € H. Then « only emits the edge @, and
so (o — aa*) = aa* — aa* = 0.

Case 3: v =a € Fg(H,S) with r(a) € S. Again, a only emits the edge @, and
so d(a—aa*) = ar(a)la* —(ar(a)?)(r(a)?)a*) = 0, since r(a) is an idempotent.

Thus the (CK2) relation is preserved by ¢.

To show that ¢ is a monomorphism we apply Theorem 2.2.15. From the definition
of ¢ it is clear that ¢(v) # 0 for each v € gE2. Furthermore, the only cycles in
nFEs come from the restriction graph Fp, as noted above. From the definition of
¢ we see that generating elements from Ey are mapped to themselves, so that any
cycle without exits ¢ in Lx(gFg) is mapped to itself (but seen as an element in
I(p,sy). Since c is a non-nilpotent homogeneous element of nonzero degree in Iy g),

¢ is therefore a monomorphism by Theorem 2.2.15.
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Now we show that ¢ is an epimorphism. Recall from Proposition 3.3.6 that
Li,s) = span({af* : r(a) = r(8) € H} U {aw" 3" : r(a) = r(B) = w € S}),

where each o, 5 € E*. Thus, to show the surjectivity of ¢ it is enough to find inverse
images for these generators. Note that for any z € yFE% we have ¢(z*) = [¢(z)]*
and so, for any a € E*, if we can find y € Lig(gEs) for which ¢(y) = « then
o(y*) = a*. Thus it suffices to find inverse images for elements of the form « and
Br(B)" with r(a) € H and r(8) € S (noting that, if r(8;) = 7(8) = w € S, then
Brw (Bow™)* = Bywfw? B = Brw! B3, since w¥ is an idempotent). Note also that
these a and 3 are paths in our original graph E, rather than our constructed graph
uEs.

We begin with an arbitrary path o € E* with r(a) € H. Let o = f1... fm,
where each f; € E'. Suppose that s(a) € H, so that s(f;) € H for each H (by the
hereditary nature of H). Thus each f; € gFE& with ¢(f;) = fi (by definition) and so
a=o¢(fi)...¢(fm) = ¢(a).

Now suppose that s(a) ¢ H and suppose r(f;) € H. Then, as above we have
O(f;)) = fifori=2....,m. If s(f1) €S, then f; € gEL and ¢(f1) = fi, again
giving a = ¢(a). If s(f1) € S, then f; is a path of length 1 contained in Fg(H,JS)
and so f1 € gEL with ¢(f)) = fi. Thus a = ¢(fifa... fn). Note that fifa... fo, is

a nonzero element of L (i FEs) since 7(f1) = r(f1) = s(fa).

Now we suppose that r(f;) ¢ H. Let n be the smallest integer such that 1 <
n <mand r(f,) € H. (We know that such an n exists since (f,,) € H.) As above,
we have ¢(f;) = f; fori =n+1,...,m. However, it is finding the inverse image for
fi-.. fn that poses a problem. If s(f,) € S then ¢(f,) = f. as above, but beyond
this it is not clear how to proceed. In the proof of [ARM2, Proposition 3.7] it is
stated that any edge from a vertex in .S must end in a vertex in H, which is true for
the graph yEs but not necessarily true for the original graph E. (See for example
the graph E in Example 4.3.9, where the edges ey, es have both source and range in

S = {uy,us}.) The reliance on this fact renders the remainder of the proof invalid.

On the other hand, the proof of [DHS, Lemma 1.6] appears to get around this

problem by writing f; ... f, as a concatenation of subpaths ay...ay, where the
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final edge (and only the final edge) of each ay,...,a;_; has range in S. Since
s(fi) ¢ H for any ¢ = 1,...,n (by the minimality of n), each o; € Fg(H,S) for
i=1,...,k—1. Furthermore, either ay, € F(H,S) or a4 is a single edge from S to
H, in which case ¢(ay) = ay. The proof asserts that we therefore have either o =
d(ar) ... 0(ak)O(fre1) .- ¢(fm) (in the former case) or a = ¢p(ay) ... p(ag_1)o(aw)
A(fns1) .- d(fm) (in the latter case). Aside from the fact that ¢(a;) = a;r(o;)?
rather than simply «;, the most significant problem is that a; . .. @ is not a nonzero
element in L (yEs), since it is impossible for two edges 31, 32 € F(H,S) C yEL
to be adjacent. (Recall that for any edge 3 € Fg(H, S), we define s(3) = 3, which
is a source in our graph yFEg by definition.) We refer again to Example 4.3.9, in

which ey, e; are adjacent edges in our graph E, while é1, é; are not:

ol — = o2 ofl 02

— | -

E (00) (00) uEs oll ol2
| S A

Indeed, if we let o = eqeq f in the above example, where f is one of the (infinite
number of) edges from u; to v, it is not clear what the inverse image of a is. A

similar problem arises when we attempt to find the inverse image of an element of

the form Br(3)%, where r(3) € S.

However, in the case that F is row-finite the proof simplifies greatly and it is
possible to show that ¢ is an epimorphism, as we now show. Note that if F is
row-finite there are no breaking vertices and so S = ). Thus the set Fg(H,JS) is
simply the set of all positive paths a = e; ...e, for which each ¢; € E', r(a) € H
and s(e;) ¢ H for each ¢ = 1,...n. Furthermore, I(y gy = I(H), which is generated
by elements of the form «f*, with r(a) = r(8) € H. As above, to show that ¢ is
an epimorphism it suffices to find an inverse image for « = f ... f,,, with r(«a) € H.
If s(a) € H, then a = ¢(«), as was shown in the more general case. Suppose
s(a) ¢ H and let n be the smallest integer such that 1 <n <m and r(f,) € H. If
n < m, then oy = fi... f, € Fg(H,S), while s(f;) € H foreachi =n+1,...,m.
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Thus o = oy frs1--- fn = ¢(A@1)O(frs1) - O(fim). If n = m, then « € Fg(H,S)
and so a = ¢(a@). Thus ¢ is an epimorphism, and therefore an isomorphism, as

required. ]

While we have only proved that Proposition 4.3.10 holds in the case that E
is row-finite, we will proceed as in [ARM2] and assume that the following results,
some of which rely on Proposition 4.3.10, hold for an arbitrary graph E (unless
stated otherwise). As a side note, [ARM2, Proposition 3.7] states that ¢ is a graded
isomorphism, which is not necessarily true. To see this, recall that ¢(a) = « for
all @ € Fp(H,S) with r(a) € H. Now, @ is an element of degree 1 in Lg(gEs),
since @ € yF&, whereas « is an element of degree [(«) in Ly (FE), and [(«) is not

necessarily 1. However, this observation does not affect any subsequent results.

We now proceed to work our way toward the main theorem of this section, The-
orem 4.3.15. To begin, we give the following useful theorem, which is a combination
of results from Tomforde [To] and Goodearl [G2]. Recall that a ring R is said to be
an exchange ring if, given any element x € R, there exists an idempotent e € xR
such that e = x + s — s for some x € R. Note that if R is unital then we have
l—e=1—(x+s—as) = (1 —2)(1 —s) € (1 —=x)R, and so this definition is

consistent with the more familiar unital definition.

Theorem 4.3.11. Let E be an arbitrary graph. The following statements are equiv-

alent:
(i) Every ideal of Lk (E) is graded;
(11) Lik(E) is an exchange algebra; and
(i11) E satisfies Condition (K).
Proof. (i) <= (iii) is from [To, Theorem 6.16], while (ii) <= (iii) is from [G2,
Theorem 4.2]. O

The following proposition is from [ARM2, Proposition 3.8].

Proposition 4.3.12. Let E be an arbitrary graph. If E satisfies Condition (K),
then the Leavitt path algebra L (FE) is right weakly regular.
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Proof. Let I be a two-sided ideal of Li(F). Since E satisfies Condition (K), we
know that I is a graded ideal by Theorem 4.3.11. By Proposition 4.3.10, I is
isomorphic to a Leavitt path algebra, and in particular I has local units. We proceed
by showing that I satisfies condition (ii) of Theorem 1.2.19; that is, for all z € I
there exists f € Homp, () (Lx(E),I) such that f(x) = 2. (Note that we can apply
Theorem 1.2.19 since every Leavitt path algebra is an E°-free left Ly (FE)-module
with basis E° — see page 52.)

Fix a € I. Since I has local units, there exists an idempotent e € I for which
a = ae. Define p, : Lg(E) — I by pe(x) = we. Clearly this is a homomorphism
of left L (E)-modules, and furthermore p.(a) = ae = a, as required. Thus we can
apply Theorem 1.2.19 to give that Lx(E)/I is a flat Lx(E)-module. Finally, by
Proposition 4.3.2 we have that L (F) is right weakly regular. ]

The following proposition from [ARM?2, Proposition 3.9] shows that the converse

of Proposition 4.3.12 is true in the row-finite case.

Proposition 4.3.13. Let E be a row-finite graph. If the Leavitt path algebra Ly (E)
is right weakly regqular, then the graph E satisfies Condition (K).

Proof. We begin by showing that if Ly (F) is right weakly regular then every cycle in
E has an exit. Suppose, by way of contradiction, that there exists a cycle ¢ without
exits in F, and let H be the hereditary saturated closure of the vertices of ¢. By
[AAPS, Proposition 3.6(iii)] we have I(H) = M, (K [z, z~']) for some n € NU {oo}.
Now, since Lk (FE) is right weakly regular, so too is I(H) (by Proposition 4.3.1),
and thus M, (K [z, z7!]) is right weakly regular. Consider E; € M, (K[z,z71]),
the matrix unit with 1 in the (1,1) position and zeros elsewhere. Since Ey; is an
idempotent, we have that E;M,(K[z,z~])FE}; is right weakly regular by Propo-
sition 4.3.3. Note that E;M,(K[z,2z7'])F; consists of those matrices for which
the only nonzero entry is in the (1,1) position, and so is isomorphic to K[z, z71].
However, we know that K[z, z~!] is not right weakly regular (see Example 4.3.7), a

contradiction, and so F contains no cycles without exits.

Now we show that if Ly (FE) is right weakly regular then £ must satisfy Condition

(K). We proceed in a similar manner to the proof of Lemma 2.3.4: suppose, by way
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of contradiction, that there exists a v € E° such that C'SP(v) = {p}. If p is not a
cycle, it is easy to see that there exists a cycle based at v whose edges are a subset
of the edges of p, contradicting the fact that C'SP(v) = {p}. Thus p is a cycle and
so, by the above paragraph, there must exist exits eq, ..., e,, for p.

Let A be the set of all vertices in p. Now r(e;) ¢ A for any i = 1,...,m, for
otherwise we would have another closed simple path based at v distinct from p. Let
X =A{r(e;) : 2 =1,...,m} and let H be the hereditary saturated closure of X.
Recall the definition of G,,(X) from Lemma 1.4.9. Suppose that AN H # (), and let
n be the minimum natural number for which AN G, (X) # 0.

Let w € AN G,(X) and suppose that n > 0. By the minimality of n, we have
w ¢ G,—1(X). Thus, by the definition of G,,(X), w must be a regular vertex and
r(s H(w)) € G,_1(X), so that w only emits edges into G,_1(X). Since w is a
vertex in p, there must exist an edge f such that s(f) = w and r(f) € A. Thus
r(f) € AN GL_1(X), contradicting the minimality of n. Therefore we must have
n =0, and so w € Go(X) = T(X) (by definition). Thus, for some i = 1,...,m,
there is a path ¢ from 7(e;) to w. Since w is in the cycle p, and e; is an exit for p,
there must also be a path p’ from w to r(e;), and so p/q is a closed path based at w.
However, this implies that |C'SP(v)| > 2, a contradiction.

Thus H N A = (), and in particular H # E°. Since F is row-finite, By = () and

so we have
(E|H) = EO\H, and (E|H)' ={ec€ E':r(e) ¢ H}.

Since H N A = (), we have A C (E|H)°. Let p = f1... fx. Since r(f;) € A for each
f; (by definition), we have r(f;) ¢ H and so {fi,..., fs} C (E|H)'. Thus p can be
viewed as a cycle in F|H. Furthermore, for each exit e; of p we have r(e;) € X C H
by definition, and so e¢; ¢ (F|H)'. Thus p is a cycle without exits in F|H. By
Theorem 3.3.8 we have Li(F|H) = Lx(F)/I(H), and since L (FE) is right weakly
regular then so too is Lx(E|H), by Proposition 4.3.1. However, this implies that
every cycle in F|H has an exit (from the first part of this proof), a contradiction.

Thus Lk (FE) satisfies Condition (K), as required. O

Using the fact that right weakly regular is a Morita invariant property, we can
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use the desingularisation process to extend Proposition 4.3.13 to countable graphs,

as shown in [ARM2, Proposition 3.14].

Proposition 4.3.14. Let E be a countable but not necessarily row-finite graph.
Then E satisfies Condition (K) if and only if the Leavitt path algebra Ly (E) is
right weakly regular.

Proof. Suppose that E satisfies Condition (K). Then by Proposition 4.3.12, Lk (E)
is right weakly regular.

Conversely, suppose that Ly (E) is right weakly regular. Since F is countable, we
can apply the desingularisation process (see Definition 2.4.1) to obtain a row-finite
desingularisation F' of E. By Theorem 2.4.5, L (F) and L (F') are Morita equiva-
lent, and so, by Theorem 4.3.4, we have that Ly (F') is right weakly regular. Since
F is row-finite, this implies that F satisfies Condition (K) (by Proposition 4.3.13).
Thus Lk (F) is an exchange ring by Theorem 4.3.11, and since the exchange prop-
erty is a Morita invariant for rings with local units (see [AGS, Theorem 2.1]), Lx(E)
is also an exchange ring. Finally, this implies that F satisfies Condition (K), by
Theorem 4.3.11. [

Proposition 4.3.14 is futhermore generalised to arbitrary graphs in [ARM2, The-
orem 3.15], following the proof of [G2, Theorem 4.2]. However, this proof requires a
large amount of background theory regarding direct limits of Leavitt path algebras

and so we will omit it here.

We now come to the main theorem of this section (from [ARM2, Theorem 3.15]),

which summarises the results we have seen thus far.

Theorem 4.3.15. Let E be an arbitrary graph. The following statements are equiv-

alent:
(i) The Leavitt path algebra Ly (E) is a right weakly regular ring.
(11) The graph E satisfies Condition (K).

(11i) The Leavitt path algebra L (FE) is a left weakly regular ring.
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(iv) The Leavitt path algebra Ly (E) is an exchange ring.
(v) Every ideal of Ly (E) is graded.
(vi) Every ideal of Ly (E) is isomorphic to a Leavitt path algebra.

(vii) Every ideal of Lk (E) has local units.

Proof. The equivalences (i) <= (iv) <= (v) are from Theorem 4.3.11, while
(i) <= (iii) comes from Lemma 4.3.5.

(i)=-(ii): This generalisation of Proposition 4.3.14 comes from [ARM2, Theorem
3.15], as mentioned above.

(ii)=-(vi): If E satisfies Condition (K) then by [G2, Theorem 3.8] every ideal
of Lx(FE) is graded. Thus every ideal of Li(F) is isomorphic to a Leavitt path
algebra, by Proposition 4.3.10.

(vi)=-(vii): This is immediate, since every Leavitt path algebra has local units.

(vii)=(i): Suppose that every ideal of Lx(FE) has local units and consider an
arbitrary element a € Lg(F). Since Li(F) has local units, a = eae for some
idempotent e € Li(F), and so a € Lx(F)aLk(F). Since Lx(E)aLk(F) is a two-
sided ideal, it has local units, and so there exists v € Lx(E)aLg(E) for which
a = au. Thus, by Proposition 4.3.2, Li(F) is right weakly regular, as required. [J

Example 4.3.16. We now apply Theorem 4.3.15 to our familiar examples of Leavitt

path algebras to determine if they are weakly regular.

(i) The finite line graph M,. Since M, is acyclic, it satisfies Condition (K), and
so Lg(M,) = M, (K) is both left and right weakly regular for all n € N.

(ii) The rose with n leaves R,,. For n = 1, the vertex v in R; is the base of
exactly one closed simple path, and so R; does not satisfy Condition (/). Thus
Lg(Ry) & Klx,z7'] is not left or right weakly regular, confirming what we saw in
Example 4.3.7. However, for n > 1 the graph R, does satisfy Condition (K), and

so Lg(R,) = L(1,n) is both left and right weakly regular.

(iii) The infinite clock graph Cs. Since Cu is acyclic, Lk (Cx) = @, Ma(K) &
K Iy is both left and right weakly regular.
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4.4 Self-Injective Leavitt Path Algebras

Recall from Lemma 2.2.4 that every Leavitt path algebra is projective as a left (and
right) module over itself. However, the same is not true of injectivity. Thus it is
natural to ask when a Leavitt path algebra is injective as a left (or right) module over
itself; that is, when it is left (or right) self-injective. In this section we build towards
Theorem 4.4.7, which shows that for any Leavitt path algebra the properties ‘left
self-injective’ and ‘right self-injective’ are equivalent, and furthermore gives graph
theoretic conditions on E that are equivalent to Lx(E) being left (and right) self-

injective.
Our first result is from [ARM2, Proposition 4.1].

Proposition 4.4.1. Let E be an arbitrary graph. If Lix(E) is left (or right) self-

injective then Ly (FE) is von Neumann reqular and the graph E is acyclic.

Proof. Let e € Li(E) be an idempotent, and recall that Ly (F)e is a direct sum-
mand of Lk (FE) (by Lemma 1.2.3 (i)). Since Lk (F) is injective as a left Ly (E)-
module, so too is Lx(E)e (by Lemma 1.2.12) and thus, by [L2, Theorem 13.1],
we have that Endp, g (Lx(E)e) is left self-injective. Since Endy, (g (Lx(E)e) =
(eLg(E)e)?P (by Lemma 1.2.2), (eLx(E)e)?P is therefore left self-injective. Thus,
by [L2, Corollary 13.2(2)] we have that (eLx(E)e)?P/J((eLy(E)e)°P) is von Neu-
mann regular. Note that if a ring R is von Neumann regular then, for any a € R,
there exists an x € R such that a = a-x - a = azxa, and so R is also von Neumann
regular. In particular, we have that eLx(F)e/J(eLk(FE)e) is von Neumann regular.

Now, by [J2, Proposition 3.7.1], we have J(eLg(F)e) = eJ(Lk(E))e. However,
J(Li(FE)) = {0} (by Corollary 3.3.11) and so J(eLx(E)e) = {0}. Thus we have
eLkg(E)e/J(eLk(E)e) = eLk(F)e and so eLg(F)e is von Neumann regular for any
idempotent e € R.

Let © € Lg(F). Since Lk (FE) has local units, there exists an idempotent f € R
such that x € fLg(F)f. Since fLg(E)f is von Neumann regular, there exists
y € fLk(E)f such that = yxy, and so Lg(FE) is von Neumann regular. Finally,
by Theorem 4.2.3, E' must be acyclic. ]
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In Proposition 4.4.4 we give the somewhat surprising result that if a Leavitt path
algebra Ly (FE) is left (or right) self-injective then the corresponding graph £ must
be row-finite. This is the first time in this thesis we have seen a property of Lx(FE)
imply row-finiteness on F. To set up this proposition, we first give two preliminary

results. The first of these results requires the following definition.

Suppose that V' is a left vector space over a division ring D. The dual vec-
tor space of V', denoted V*, is the set of homomorphisms from V' to D; that
is, Homp(V, D). Furthermore, V* is a right vector space over D. The following
theorem, known as the ‘Erdos-Kaplansky Theorem’, gives a formulation for the di-
mension of V*. This theorem is given as Theorem 2 on p. 237 of Jacobson’s [J1] and

Exercise 7.3(d) of Bourbaki’s [Bo].

Theorem 4.4.2 (The Erdés-Kaplansky Theorem). Let V' be a left vector space with
infinite basis {b; : i € I} over a division ring D. Then the dimension of V* as a

right vector space over D is given by
dim(V*) = card(V*) = card(D)<40),

The Erdos-Kaplansky Theorem has the following useful application, which we
will use in the proof of Proposition 4.4.4. Suppose that K is a field and [ is an infinite
index set. Using the fact that Homg (K, K) = K and applying Proposition 1.2.4,
we have K = Homg (K, K)! = Homg(K®, K). Since we can view K as a left
vector space over K (with an infinite basis indexed by I), we have Homg (KD, K) =

(KD)*, Thus, applying the Erdos-Kaplansky Theorem we have

dlm(KI) — dlm((K(I))*) — Card(K)Card(I).

Now let E be an arbitrary graph and let X be a collection of paths in £. We
say that X is an set of independent paths if no path in X is an initial subpath
of any other path in X. The following related lemma has been adapted from the
proof of [ARM2, Proposition 4.4].

Lemma 4.4.3. Let E be an arbitrary graph and let X be a set of independent paths
in E. Then the set of left ideals {Lx(E)pp* : p € X} is Lx(E)-independent — that



CHAPTER 4. REGULAR AND SELF-INJECTIVE LPAS 159

is, L (E)pp* N Y pex qrp L(E)aq" = {0} for all p € X or, equivalently, that the

sum of these left ideals is a direct sum.

Proof. Suppose that rpp* =" rqqq* for some p € X and r,r, € Lg(FE) (with

q€X,q#p
only a finite number of r, nonzero). Since no path in X is an initial subpath of any

other path in X, we have ¢*p = 0 for all ¢ € X,q # p (by Lemma 2.1.10). Thus
rp = rpp*p = quX,q;ép r,q¢"p = 0, and so rpp* = (rp)p* = 0, as required. ]

With these two preliminary results established we can now prove the following

result from [ARM2, Proposition 4.4].

Proposition 4.4.4. If a Leavitt path algebra Lk (E) is left (or right) self-injective,
then the graph E must be row-finite.

Proof. Suppose by way of contradiction that v € E° is an infinite emitter. For each
n € N, define Y,, = {p € E* : s(p) = v,l(p) = n}, and let o, be the cardinality of Y,.
Note that ¥; = s7!(v), which has infinite cardinality since v is an infinite emitter.
Let Y = {J,,cn Ya, so that Y is the set of all paths in £ with source v. Then Y has
infinite cardinality o = sup{«, : n € N}.

Now, elements of vLx(E)v are of the form )" | k;p;q;, where each p;,¢; € E*
with s(p;) = v = s(¢;) and each k; € K. Thus each p;,;¢; € Y, and so, since
the cardinality of the set of all finite subsets of Y is again o, the K-dimension of

vLg(E)v must be < . This observation will prove useful later in the proof.

For the first part of this proof, we wish to find a subset X of Y with cardinality
o such that the set of left ideals {Lx(E)pp* : p € X} is Lx(E)-independent. First
note that, for each n € N, the set {Lx(E)pp* : p € Y,} is Lx(F)-independent.
To see this, note that all paths in Y,, are of length n, so that no path in Y, is an
initial subpath of any other path in Y,,. Thus the result follows from Lemma 4.4.3.
Therefore, if a,, = |Y,,| = o for some n € N, we can choose X =Y.

If not, then we must have «,, < o for all n € N. Note that it is not always
the case that «, .1 > «,, since not every path in Y,, is necessarily a subpath of a
path in Y,,;;. Thus we define a strictly increasing subsequence {a;, : n < w} as

follows: let ay;; = aq, and define i to be the smallest integer for which a;, > ;.
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In general, if a;, is chosen for some n, we define 4,,.1 to be the smallest integer for
which «;, , > «a;,. Note that, since a;;, = o is infinite, this is a sequence of strictly

increasing infinite cardinalities.

We now construct a sequence of sets T, of independent paths. First, we define
Ty = s '(v) = Yy, which is a set of independent paths since it is a set of distinct
edges. By the minimality of 75, the number of paths of length is — 1, ie. a1,
must be less than «a;,. Thus, remembering that «;, is an infinite cardinal, there
must exist a path py € Y;, 1 such that r(py) emits «;, edges. Let r(p2) = vy and let
s Hug) = {e/(;) : B < a;,}. Now we define

Ty, = {pge/(;) B < iy} U(T1\{q : ¢ is an initial subpath of py}).

Note that the removal of the set {q : ¢ is an initial subpath of p,} ensures that T5
is also a set of independent paths.

Now let £ € N and suppose that T; has been defined (and is a set of independent
paths of length at most i;) for all j < k. As above, there must exist a path
Pis1 € Yi,,,—1 such that r(pp41) emits oy, ,, edges. Again, let r(prr1) = UV

and let s (v41) = {egfﬂ) : B < ay,,, }. Now we define

Thir = {leech) 1B <y, } U(Ti\{q : q is an initial subpath of pj41}).

Again, the removal of the set {q : ¢ is an initial subpath of py.} ensures that Ty,
is a set of independent paths. Thus T,, is defined (and is a set of independent paths)
for all n € N. Furthermore, for any n € N, {Lx(E)pp* : p € T,,} is an Lg(E)-
independent set of left ideals, by Lemma 4.4.3. Note also that each T, is a set of
paths of length 7, or less.

However, it may not necessarily be the case that T = J,__ 7T, is a set of inde-

n<w

pendent set of paths, since for example a path in 75 may still be an initial subpath

of py. Thus, for each n € N, we define
W, = T,\{q : q is an initial subpath of p,, for some m = 2,3, ...},

which ensures that W = J __ W, is a set of independent paths. To see this, let

nw

¢i,q; be two paths in W and let m,n be the smallest integers for which ¢; € T,,
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and ¢; € T, respectively. Suppose, without loss of generality, that m < n. If
m = n, then ¢, ¢; € T),, which we know is a set of independent paths. So suppose
that m < n. Now g¢; must be of the form ¢; = pne/(gn) (for some < «;,), since
otherwise ¢; € T,,_1 (by the construction of T,,), contradicting the minimality of n.
In particular, ¢; has length ¢,,. Similarly, the minimality of m gives that p, = pme(vm)
(for some v < «,,) and so p; has length 4,,. Thus p;, cannot be a subpath of ¢;,
since m < n implies 7,, < i,. Conversely, ¢; cannot be an initial subpath of ¢;,
since this would imply that ¢; is an initial subpath of p,,, which is impossible by
our construction of W,,. Thus W is a set of independent paths.

Note that by construction every path in W has source v, so by Lemma 4.4.3
we have that {Lyx(F)qq* : ¢ € W} is an Li(F)-independent family of left ideals
contained in Lx(F)v. Note also that each T),, and thus each W,,, has cardinality
«;,, and so the cardinality of W = sup{«;, : n € N} = . Thus letting W = X,
we have found a subset X of Y with cardinality o such that the set of left ideals
{Lx(E)pp* : p € X} is Lg(F)-independent, as required.

Now, define

=3 LB’ = @ LBy’ € Li(B)o.

peX peX
We know that Ly (E)v is a direct summand of L (FE) (by Lemma 2.1.9), and so since
Lk (F) is injective as a left Ly (FE)-module, so too is Lk (E)v (by Lemma 1.2.12).
Consider the inclusion map ¢ : S — Lg(E)v and let f € Homp, (g (S, Lk (E)v).
Since L (E)v is injective, there exists h € Homp, (g)(Lx(E)v, Lx(E)v) such that

the following diagram commutes:

That is, h¢p = f. Thus, if we define

(b* . HOHlLK(E)(LK(E)U,LK<E)U> — HOH’ILK(E)<S, LK(E>U)
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by ¢*(g) = g¢ for all g € Homp, () (Lx(E)v, Lx(E)v), then ¢* is an epimorphism.

Then we have

Homp, () (S, Lr(E)v) 2 HomLK(E)<S> S)

= HomLK(E) (@ LK(E)pp*’ @ LK(E)P}?*)

peX peX
= H Homyp, . (g (LK(E)pp*> @ LK(E)PP*>>
peX peX

the final isomorphism coming from Proposition 1.2.4. Now, for each k¥ € K and a
fixed i € I, we can define )\S) € Homy, gy (Lx(E)pp*, D,cx Ly (E)pp*) by )\l(f) (x) =
(w;);er, where w; = kz and w; = 0 for j # i. Thus, setting F() = {)\,(j) ke K},
we have F() = K. Therefore

H Homy,, (k) (LK(E)pp*,@LK(E)pP*) 2 H FZS“ = H Ky,

peX peX peEX peX

where each Fzgi) = F® and K, = K. Now, by the Erdos-Kaplansky Theorem,
[1,cx K, has K-dimension card(K ) X) = card(K)? and so, by the above inequal-
ities, Homy, (g)(S, Lx(E)v) has K-dimension > card(K)?. However, by Lemma
1.2.2, Homp, (g (Lk(E)v, Lk (E)v) = vLg(FE)v, which has K-dimension < o <
card(K)?, as observed earlier. This contradicts the fact that ¢* is an epimorphism,

and so E must be row-finite. O]

Let R be aring and let n € N. An R-module M is said to have uniform dimen-
sion n if M contains a direct sum of n nonzero submodules and no such collection
larger than this. This notion features in the proof of the following proposition, which

is from [ARM2, Proposition 4.5].

Proposition 4.4.5. Let Lk (E) be a left (resp. right) self-injective Leavitt path alge-
bra, and let a be an arbitrary element of L (E). Then the left ideal L (E)a (resp.

right ideal aLy(F)) cannot contain an infinite set of L (E)-independent left (resp.
right) ideals of Lk (E).

Proof. 1f Li(F) is left self-injective, then by Proposition 4.4.4 the graph E must be
row-finite. Let a € Lg(F). Write a = 2?21 kjp;jq;, where p;,q; € E* and k; € K,
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and let V' = {s(p;),s(q;) : j = 1,...,n}. By Lemma 2.1.12, e = > _,, v is a local
unit for a, and in particular we have Lx(F)a C Li(F)e. We show that Lx(E)e has
finite uniform dimension.

By way of contradiction, suppose that Ly (FE)e contains an infinite family of
independent submodules {A4; : i € I}, where [ is an infinite index set, and let
S = D, Ai- Note that every element of eL(E)e is of the form 37" | lja;b, where
s(a;),s(b;) € V for each j = 1,...,m. Thus eLg(E)e = @, o, vLr(E)v. For any
v € V, the cardinality of the set of paths of a fixed length n beginning with v must
be finite (since E is row-finite), so the cardinality of the set of all paths of finite
length beginning with v is at most countably infinite. Since vLg(F)v is generated
by finite paths beginning with v, the K-dimension of v L (FE)v is at most countable,
and thus the K-dimension of eLx(FE)e is at most countable.

We now proceed as in the proof of Proposition 4.4.4. Using a similar argument,
we can show Homyp, g (S, Lx(E)e) 2 [[;c; Fi, where each F; = K. Furthermore,
since Ly (F) is left self-injective, the direct summand Ly (E)e is an injective left

Lk (E)-module, and so again we have an epimorphism
(b* . HOHILK(E)(LK<E)€, LK(E>€) — HOHILK(E)(S, LK(E)E)

However, as noted above, Homyp,, () (Li(E)e, Lk (E)e) = eLk(E)e has countable K-
dimension, while [],_; F; has K-dimension card(K)** () (by the Erdos-Kaplansky
Theorem), which is uncountably infinite since [ is infinite. Thus we have a contra-

diction, and so Li(E)e, and therefore L (E)a, has finite uniform dimension. [
The following proposition is from [ARM2, Proposition 4.6].

Proposition 4.4.6. For any graph E, if the Leavitt path algebra Ly (E) is left (or

right) self-injective, then every infinite path in E contains a line point.

Proof. Suppose that v is an infinite path in E that contains no line points. Now,
since Li(E) is left self-injective, E must be acyclic, by Proposition 4.4.1. Thus =y
must contain an infinite number of bifurcation vertices {v; : i = 1,2,3,...}, and so
we can write 7 as a concatenation of a series of countably many paths v;v97vs. . .,

where r(7;) = v; for each i = 1,2,3,.... Furthermore, let s() = v.
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For each n € N, let p, = v172... VW7, ... 757i- Note that p, is an idempotent
in Lig(FE)v. Suppose that p, = xp,41 for some x € Li(FE) and some n € N. Since
vy, is a bifurcation, there must exist an edge f,, with s(f,) = v, such that f, is not

equal to the initial edge of ,,41. Thus 7, f, = 0, and so

0# Y72 Yoo =PeV172 - VnSn = TPp1 Y2 - - - Yo = 27172 - - Y1 Van f = 0,

a contradiction. Thus, in particular we have p,, # vp,11 = Pns1, so that p,—pp1 # 0
for all n > 1.

We now show that {p, — pni1 :n =1,2,3,...} is a set of mutually orthogonal
idempotents in L (E)v. First, consider p;p; with j > 4. Then

pipi = (M2 ~’Yj’Y; D) V2 )
=M% - Vi O N V)Y N

=72 Vi (V) e

= pj.

Similarly, if j < 4 then we have p;p; = p;. In particular, p;11p; = pit1. Note also

that p;p; = p; for any ¢ > 1. Thus
(pi — pi+1)2 = DiPi — PiPi+1 — Pi+1Pi + Dit1Pi+1 = Pi — 2Pit1 + Pig1 = Di — Dit1,

while for 7 > i,

(Pj = Pj+1)(Pi — Pit1) = DjPi — PjPit1 — Pj+1Di + Pjt1Piv1 = Pj — Pj — Pj+1 +Pj41 = 0.

Note that if j = 7 4 1, we still have p;p;11 = p;p; = p; in the expression above, as
required. Similarly, (p; — pj41)(pi — pit1) = 0 for j < i.

Thus {p, — pas1 : n = 1,2,3,...} is a set of nonzero, mutually orthogonal
idempotents in Li(FE)v, and so {Lx(E)(pn — Pny1) : n = 1,2,3,...} is a count-
ably infinite independent family of left ideals in Ly (E)v. However, this contradicts

Proposition 4.4.5, and so every infinite path in £ must contain a line point. O

We now come to the main result of this section, which is from [ARM2, Theorem

1.7).
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Theorem 4.4.7. Let E be an arbitrary graph and let K be any field. The following

statements are equivalent:

(i) Lx(F) is left self-injective.

(1) Li(E) is right self-injective.

(111) The graph E is row-finite, acyclic and every infinite path contains a line point.
(iv) Li(FE) is semisimple.

Proof. (1)=-(iii): This follows directly from Propositions 4.4.1, 4.4.4 and 4.4.6.

(iii)=(iv): We begin by showing that P;(E) = E°. Suppose, by way of contra-

diction, that there exists v € E° such that v ¢ P(F). Since v is not a line point, v

cannot be a sink, and so s~ (v) # 0. Now if 7(s7'(v)) C B(E), then the saturated

property of P(E) would imply that v € P(FE), a contradiction. Thus there must

exist some edge ¢; € s(v) for which w = r(e;) ¢ P/(E). Repeating this argument,
we can find an edge e; € s~!(w) for which z = r(e;) ¢ Pi(E), and so on. Since

E is acyclic, we can create an infinite path v = ejeges ... for which r(e;) ¢ P/(E)

for each e;. However, this contradicts the fact that every infinite path in £ must

contain a line point. Thus F(F) = EY, and so we have I(P(F)) = Lg(FE). By
Theorem 3.2.11, this implies that soc;(Lk(F)) = Lx(E), and so Li(F) is the direct

sum of minimal left ideals. Thus L (E) is semisimple.

(iv)=-(i): If Lg(F) is semisimple then it is a direct sum of minimal left ideals,
and so soc;(Lk(F)) = Lix(F). Thus, by [L1, Theorem 2.8], every left Ly (F)-module
is injective. In particular, Lx(FE) is left self-injective.

Similarly, we can show that (ii)=-(iii)=(iv)=>(ii), since Propositions 4.4.1, 4.4.4
and 4.4.6 also hold for when Lk (F) is right self-injective. Furthermore, if Lx(F) is
semisimple, then soc;(Lx(F)) = Lk (E) = soc,(Lk(E)) (by Corollary 3.2.2), and so
we can apply [L1, Theorem 2.8] again to yield that L (F) is right self-injective. [

Example 4.4.8. We now apply Theorem 4.4.7 to our familiar examples of Leavitt

path algebras to determine if they are self-injective.
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(i) The finite line graph M,. Since M, is row-finite, acyclic and contains no
infinite paths, Lx(M,) = M, (K) is both left and right self-injective (and also

semisimple) for all n € N.

(ii) The rose with n leaves R,. For each n € N, R, contains n cycles and so

Lk (R,) = L(1,n) is neither left nor right self-injective.

(iii) The infinite clock graph Cs. Since Cy is not row-finite, we have that
L (Cw) = @i2; May(K) & K1 is neither left nor right self-injective.



Appendix A

Direct Limits

A.1 Direct Limits

A set A is said to be an upward-directed set if there is a partial ordering < on A

such that, for any pair a,b € A, there exists ¢ € A such that a < c and b < c.

Let I be an upward-directed index set and let {R; : i € I} be a family of
(not necessarily unital) rings. Furthermore, for each pair i,j € I with i < j, let
@ij + Ri — R; be a ring homomorphism. We say that (R;, ¢;;) is a direct system
of rings, indexed by I if, for all ¢, 5,k € I with ¢« < j <k, we have ¢, = pjrpij;

that is, the following diagram commutes:

Definition A.1.1. Let (R;, ¢;;)1 be a direct system of rings and let R be a ring for
which there exists a ring homomorphism ¢; : R; — R for each ¢ € I. We say that
(R, ;), or simply R, is a direct limit of the system if the following two conditions

are satisfied:

(i) For each pair i,j € I with ¢ < j, we have ¢; = ¢,p;;; that is, the following

167
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diagram commutes:
©

R

R;

(ii) If S is a ring for which there exist ring homomorphisms p; : R; — S such
that p; = pjpi; for all 7,5 € I with ¢ < j, then there exists a unique ring
homomorphism g : R — S such that u; = up; for each ¢ € I; that is, the

following diagram commutes:

R; L4

' R
S

Now suppose that (R, ;) is another ring and set of ring homomorphisms that
satisfy conditions (i) and (ii). Then there exists a unique homomorphism p : R — R
such that ¢; = ug; for all ¢ € I. Similarly, there exists a unique homomorphism
i R — R such that ¢; = p/@; for all i € I. Thus we have ¢; = p/jp;, giving
(by the uniqueness) p/'pu = 1g, and @¢; = pp'@;, giving up' = 1z. Thus p is an
isomorphism and so R = R. A direct limit is therefore unique up to isomorphism,

and so we can uniquely denote this limit by lim(2;, ;).

Note that if I is an upward-directed index set and {R; : i € I} is an ascending
chain of rings — that is, R; C R;;; for each ¢ € I — then defining ¢;; to be the
inclusion map from R; to R; (for each pair i,j € I with ¢ < j), we have that
(Ri, wij)1 is a direct system. In this case we usually drop the ¢;; from the notation
and write the direct limit of the family as simply h_rr;ie 1 R;. Tt is straightforward to

show that lim ;e; R; = Uier Ri, the directed union of the family.

We illustrate the concept of a direct limit with the following useful example.
Let R be a ring with local units, so that there exists a set of idempotents I C R
for which, given any finite subset {z;...,2,} C R, there exists e € I such that
x; € eRe for each 1 = 1,...,n. We define a partial ordering < on I by writing
e < fife e fRf. (Note that e < f is equivalent to eRe C fRf.) Furthermore, [
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is an upward-directed set: given any pair e, f € I, there must exist g € [ such that

e, f € gRg (by the definition of local units), so that e < g and f < g.

Lemma A.1.2. Let R be a ring with local units. Let I be the set of local units and
let < be the partial ordering defined above. For each pair e, f € I with e < f, define
e eRe — fRf and ¢, : eRe — R to be the inclusion ring homomorphisms. Then
R =lim(eRe, pef).

Proof. For each e, f,g € I with e < f < g we clearly have ¢, = @s40¢, and so
(eRe, pef)r is a direct system of rings. Furthermore, for each pair e, f € I with

e < f we clearly have ¢, = psp.r, so that the following diagram commutes:

eRe

Thus we have satisfied condition (i) of the direct limit definition.

Now suppose there exists a ring S and ring homomorphisms . : eRe — S such
that p. = pppes for all e, f € I with e < f. For any x € R, choose e € I such that
x € eRe (such an element exists since I is a set of local units), and let u(x) = pe(x),
thus defining a map p: R — S. Note that our choice of e is not unique, so we must
check that this map is well-defined. Suppose there exists f € [ with f # e such
that z € fRf. Since [ is an upward-directed set, there exists g € I such that e < g
and f < g, and so

te(®) = pig(peg()) = pg(x) = pg(@se(z)) = pys()

and thus p is well-defined. Furthermore, given x,y € R there exists e € I for which
r+y € eRe and zy € eRe, and so pu(z+y) = pe(x+y) = pre(x) +pe(y) = pl)+ply)
(since fie is a ring homomorphism) and similarly pu(zxy) = p(z)u(y). Thus pis a ring
homomorphism.

Now, for each e € I we have p(p.(z)) = p(x) = pe(z) for all x € eRe, so that
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the following diagram commutes:

P

eRe - R
S
Finally, to show that p is unique, suppose that v : R — S is also a ring homomor-

phism with vy, = p. for all e € I. Let x € R and choose f € [ such that x € fRf.
Then

v(x) = vips(r)) = py(x) = plz)
and so v = p. Thus we have satisfied condition (ii) of the direct limit definition and

so R =lim(R;, per), up to isomorphism. ]
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acyclic graph, 34 direct

admissible pair, 95 limit, 167

algebra, 9 product, 10
Leavitt path, 40 sum, 10
path, 39 summand, 11

system of rings, 167

bifurcation, 35
directed graph, 32

bilinear map, 18

directly infinite module, 13
bimodule, 9

dual vector space, 158
homomorphism, 9

breaking vertex, 95 edge, 32
adjacent, 32

category, 22
ghost, 40

closed path, 52
endomorphism ring, 8

closed simple path, 52
Erdos-Kaplansky Theorem, 158

cofinal
exact sequence, 15
graph, 35
exchange ring, 152
vertex, 35

exit, 34
Condition (K), 66

extended graph, 40
contravariant functor, 23

external direct sum, 10
covariant functor, 23

Cuntz-Krieger relations, 41 finite
Cuntz-Krieger Uniqueness Theorem, 61 graph, 33
cycle, 34 line graph, 42

flat module, 19
degree, 49

free module, 20
desingularisation, 72

functor
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contravariant, 23

covariant, 23

generator, 26

ghost
edge, 40
path, 40

graded
homomorphism, 4
ideal, 4
ring, 3

Graded Uniqueness Theorem, 60

graph, 32
acyclic, 34
cofinal, 35
countable, 33
directed, 32
extended, 40
finite, 33
finite line, 42
infinite clock, 44
quotient, 95
rose, 43
row-finite, 33

single loop, 43

hereditary
saturated closure, 36
subset, 35
homomorphism, 8
bimodule, 9
graded, 4

ideal

generated by x, 2

graded, 4

nilpotent, 82
idempotent ring, 25
independent paths, 158
infinite

clock graph, 44

emitter, 33

idempotent, 13
initial subpath, 33
injective module, 16

internal direct sum, 11
Jacobson radical, 5

Leavitt path algebra, 40
left
m-regular ring, 135
ideal
maximal, 5
minimal, 5
principal, 2
Loewy length, 109
Loewy ring, 109
socle, 81
socle series, 109
line point, 35
local units, 1
locally matricial, 56

locally projective module, 28
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Loewy left ascending socle series, 109
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Loewy ring, 109

maximal left ideal, 5
minimal left ideal, 5
module, 7

directly infinite, 13

flat, 19

free, 20

injective, 16

locally projective, 28

nondegenerate, 8
projective, 15
self-injective, 16
semisimple, 82
U-free, 20
unital, 8
Morita
context, 25
surjective, 25
equivalent, 24
invariant, 24

morphisms, 22

natural
equivalence, 24
isomorphism, 24
transformation, 24
nilpotent ideal, 82
nondegenerate
module, 8

ring, 82

objects, 22

path, 33
algebra, 39
closed, 52
closed simple, 52
ghost, 40
m-regular ring, 134
principal left ideal, 2
progenerator, 26
projective module, 15

purely infinite ring, 13
quotient graph, 95

range, 32
index, 54

regular vertex, 33

right weakly regular ring, 140

ring
Z-graded, 3
m-regular, 134
endomorphism, 8
exchange, 152
idempotent, 25
left m-regular, 135
Loewy, 109
nondegenerate, 82

purely infinite, 13

right weakly regular, 140

semiprime, 82

simple, 2

strongly m-regular, 135
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rose graph, 43
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self-injective module, 16
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semisimple module, 82
short exact sequence, 15
simple ring, 2
single loop graph, 43
singular vertex, 33
sink, 33
socle, 81
socle series, 109
source

function, 32
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strongly m-regular ring, 135

submodule, 7

tensor product, 18
trace, 26
tree, 34

U-basis, 20

U-free module, 20
uniform dimension, 162
unital module, 8

upward-directed set, 167

vertex, 32

breaking, 95
cofinal, 35
regular, 33
singular, 33

von Neumann regular ring, 6

weakly regular ring, 140
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